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Multiple self-locking in the Kuramoto–Sakaguchi system with
delay

Matthias Wolfrum, Serhiy Yanchuk, Otti D’Huys

Abstract

We study the Kuramoto-Sakaguchi system of phase oscillators with a delayed mean-field cou-
pling. By applying the theory of large delay to the corresponding Ott–Antonsen equation, we
explain fully analytically the mechanisms for the appearance of multiple coexisting partially locked
states. Closely above the onset of synchronization, these states emerge in the Eckhaus scenario:
with increasing coupling, more and more partially locked states appear unstable from the incoher-
ent state, and gain stability for larger coupling at a modulational stability boundary. The partially
locked states with strongly detuned frequencies are shown to emerge subcritical and gain stability
only after a fold and a series of Hopf bifurcations. We also discuss the role of the Sakaguchi phase
lag parameter. For small delays, it determines, together with the delay time, the attraction or re-
pulsion to the central frequency, which leads to supercritical or subcritical behavior, respectively.
For large delay, the Sakaguchi parameter does not influence the global dynamical scenario.

1 Introduction

In this paper, we study a system of Kuramoto-Sakaguchi phase oscillators with delayed global cou-
pling. As an addition to earlier work on this system, we will use a combination of two tools: the Ott-
Antonsen approach for the continuum limit of phase oscillator systems and the limit of large delay. This
theory allows not only explicit analytical approximations of the stability problem for large delays but, at
the same time, provides sufficient conditions for stability at any value of the delay.

Coupled oscillator systems appear in many fields of science, ranging from neuroscience and system
biology to laser physics or economy [1, 2]. In many cases, their collective behavior can be described
in terms of phase oscillators [3]. It has been shown in [4, 5, 6, 7, 8, 9] that the delay in the classical
Kuramoto-Sakaguchi system leads to substantial modification of the dynamics. Time delays can be
found in various applications, for a recent overview, see [10].

For large systems of coupled phase oscillators with sinusoidal coupling, the Ott-Antonsen approach
[11, 12, 13, 14] allows the derivation of a dynamical equation for the order parameter, which is able to
capture the collective dynamical regimes. Recently, also the version with time-delay has been studied
in some detail. In particular, the paper [15] pointed out the importance of codimension two bifurcations,
and [16] applied center manifold techniques to understand the bifurcation at the onset of synchroniza-
tion.

Our goal is to provide a global picture of the dynamical regimes above the synchronization threshold.
We present the model, and the corresponding Ott-Antonsen equation in Section 2. In Section 3, we
revisit bifurcations of the partially locked states and organize them in a global picture. Next, in Section
4, we focus on the case of large delay. In particular, we show the appearance of an increasing number
of coexisting locked states and bifurcation points. Using the limit of large delay [17, 18], we analytically
investigate the stability properties of all partially locked states. It turns out that the coexisting stable
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solutions are organized according to the Eckhaus scenario. This scenario is known originally from the
classical Ginzburg-Landau setting [19], and it was transferred to systems with long-delayed feedback in
[20]. The Eckhaus stability boundary for the set of stable partially locked states is given as modulational
instability, which has been introduced to delay systems with large delay in [21, 22]. Finally, in Section
5, we summarize and discuss our results.

2 The model and Ott-Antonsen equation for the order parameter

We consider a population of N Kuramoto-Sakaguchi oscillators, coupled with a time-delay,

φ̇k = ωk +
κ

N

N∑
j=1

sin (φj(t− τ)− φk(t) + α) , (1)

with κ the coupling strength, τ the coupling delay, ωk the natural frequency of the k-th oscillator and
α the Sakaguchi phase lag parameter. Because of the sinusoidal coupling function, the system can
be rewritten with the complex mean-field

r(t) = η(t)eiΦ(t) =
1

N

N∑
j=1

eiφj(t) (2)

as

φ̇k = ωk + κη(t− τ) sin (Φ(t− τ)− φk(t) + α) (3)

= ωk +
κ

2i

(
r(t− τ)ei(α−φk(t)) − c.c.

)
. (4)

We assume the natural frequencies ωk to be distributed according to the Lorentzian distribution

g(ω) =
1

π(ω2 + 1)
. (5)

Note that the width of the distribution has been rescaled to one; this can always be done by introducing
an appropriate time scale in (1). Since the system is equivariant with respect to the S1-symmetry of
global phase shifts φi → φi + ψ for any real ψ, in the case without delay we can introduce a
corotating frame φj → φi − ω0t, ωj → ωj + ω0 and assume without further implications that the
central frequency in (5) is equal to zero. However, when introducing a corotating frame in a system
with a nonzero delay τ > 0 we also have to adjust the phase shift parameter by α→ α+ ω0τ , i.e. it
accounts now for the detuning from the case of resonant delay ω0τ = 2kπ.

In the limit of large number of oscillators [23], the oscillator population can be described by a probability
density f(ω, φ, t) governed by the Vlasov type continuity equation

∂f

∂t
+

∂

∂φ
(fv) = 0, (6)

where the velocity v is given by the right hand side of (4), i.e.

v(ω, ϕ, t) = ω +
κ

2i

(
r(t− τ)ei(α−φ) − c.c.

)
(7)
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Multiple self-locking in the Kuramoto–Sakaguchi system with delay 3

with the integral version of the complex order parameter

r(t) =

∫ +∞

−∞

∫ 2π

0

f(ω, φ, t)eiφdφdω. (8)

For the system (6)–(8), E. Ott and T. Antonsen derived in [11] the following dynamical equation for the
complex order parameter

ṙ(t) = −r +
κ

2

(
eiαr(t− τ)− e−iαr(t− τ)r2(t)

)
, (9)

where they used the ansatz

f(ω, φ, t) =
g(ω)

2π

(
1 +

(∑
zn(ω, t)einφ + c.c.

))
, (10)

and the explicit solution of the integral

r(t) =

∫
g(ω)z(ω, t)dω = z(−i, t) (11)

for the Lorentzian frequency distribution (5).

3 Partially locked solutions and their bifurcations

3.1 Partially locked solutions

Partially locked solutions of the original oscillator model (1) correspond to solutions of the mean-field
equation (9) of the form

r(t) = ReiΩt with R ∈ [0, 1]. (12)

Such solutions appear generically due to S1-symmetry. It will turn out that, due to the delay, multiple
stable coexisting partially locked solutions can emerge, with different frequencies, organized in a struc-
ture similar to a classical locking cone. Moreover, except for the central mode, i.e. the solution with its
frequency closest to the mean frequency of the distribution (5), the partially locked solutions emerge
unstable from the completely incoherent state and gain stability only after secondary bifurcations at a
higher level of synchrony.

Inserting the ansatz (12) into (9), we obtain for the real and imaginary parts the conditions

cos(α− Ωτ) =
2

κ(1−R2)
, (13)

sin(α− Ωτ) =
2Ω

κ(1 +R2)
. (14)

Eliminating the trigonometric functions we get the expression(κ
2

)2

=
1

(1−R2)2 +
Ω2

(1 +R2)2 , (15)

which gives a relation between frequencies Ω and amplitudes R of the partially locked solutions.
Eliminating κ from (13), (14) we obtain the resonance condition

Ω =
1 +R2

1−R2
tan(α− Ωτ), (16)
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Figure 1: Graphical solution of the resonance condition (16) for parameters α = 0, τ = 1, R = 0.5.
The solutions Ωk are given by the unique intersection of the solid and dashed line within each interval
Jk (indicated by the shading). According to (13) solutions Ωk with even k (blue shaded intervals) lead
to positive κ while odd k (red shaded intervals) give a negative κ.

for the frequencies Ω. This transcendental scalar equation cannot be solved explicitly. However, for
any given amplitude R ∈ [0, 1] and fixed parameters τ > 0, α ∈ [0, 2π] equation (16) has a unique
solution Ωk(R) within each interval

Jk =

[
2α + (2k − 1)π

2τ
,
2α + (2k + 1)π

2τ

]
, k ∈ Z, (17)

see also Fig. 1. We observe that parameter α induces a shift of these intervals, while their length
scales with 1/τ . For each k ∈ Z the corresponding solution branch Ωk(R) of equation (16) can be
obtained numerically. Then, (13) directly provides the corresponding values κk(R). From the sign of
the cosine in equation (13) we conclude that these solution branches provide uniformly either positive
or negative values of κ, alternatingly for even and odd values of k. Since the system is invariant under
the transformation κ 7→ −κ, α 7→ α + π, we can restrict ourselves to the case κ ≥ 0 and only
consider even values of k, i.e. solutions to (13) in the blue regions in Fig. 1. Note that R→ 1 implies
|κk(R)| → ∞, while at R = 0 the branches of rotating wave solutions (12) end at a finite value
κk(0) where they bifurcate from the zero solution.

3.2 Hopf bifurcations of partially locked solutions

Inserting R = 0 into (15) we obtain the frequency-dependent synchronization threshold(κ
2

)2

= 1 + Ω2, (18)

which is a necessary condition for a purely imaginary eigenvalue of the linearization of equation (9) at
the zero solution. Note that the synchronization threshold (18) does not depend on τ and α. The Hopf
frequencies Ωk(0) can be obtained from the resonance condition (16) which for R = 0 reduces to

Ω = tan(α− Ωτ), (19)

while from (13) we obtain the corresponding coupling strengths

κk(0) =
2

cos(α− τΩk(0))
.
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Figure 2: (a) Dashed line: frequency dependent synchronization threshold (18). Dotted line: asymptotic
linear cone. Black dots: Hopf bifurcations (Ωk(0), κk(0)) of partially locked solutions for τ = 5 and
α = 0. Red dots: Hopf bifurcations for τ = 5 and α = π. (b) Onset of partial synchrony at κ0(0)
(primary Hopf bifurcation) for varying α and different choices of τ according to (20). (c) Onset of
partial synchrony at κ0(0)) for varying τ and different choices of α. In (b) and (c) the incoherent state
is stable in the parameter region below the corresponding solid line.

Recall that without loss of generality we may restrict ourselves to positive kappa, which corresponds
to even values k. For α = 0, the primary Hopf bifurcation, where the incoherent solution r(t) = 0
loses its stability, occurs at the central frequency Ω = 0 and at the classical Kuramoto threshold
κ = 2, independent of the delay. However, due to the delay, synchrony can emerge for all values
of α, including those corresponding to repulsive coupling. In such cases, the locking frequency Ω is
detuned from the central frequency, and the onset of partial synchrony happens at a higher value of κ.
The mechanism for synchronization at repulsive coupling can be explained as follows: the oscillators
are repelled from the delayed position of the mean field but, for positive delay and properly detuned
frequency, it can happen that at the same time they are pushed towards the instantaneous position of
the mean field.

Figure 2(a) shows the frequency-dependent synchronization threshold (18) and the Hopf bifurcations
for α = 0, π, and τ = 5. One can see that the synchronization threshold behaves asymptotically
like a linear locking cone. With changing α, the Hopf points move along the curve (18), while for
larger τ they become more densely distributed. One can see that, for α = π, the zero state r = 0
of complete incoherence loses its stability with increasing κ in a double Hopf bifurcation, where two
Hopf bifurcations with frequencies Ω and −Ω occur simultaneously. This is because the complex
conjugation r 7→ r is a symmetry of equation (9) for α = 0 and α = π. In both cases, α = 0
and α = π, all secondary Hopf bifurcations, where unstable partially locked states bifurcate from the
already unstable zero solution, are double ones, caused by this symmetry.

In order to obtain the relation between α and the coupling strength κ at the primary Hopf bifurcation,
corresponding to the onset of partial synchrony, one can combine equations (18) and (19) to

α = ±

(
arctan

√(κ
2

)2

− 1 + τ

√(κ
2

)2

− 1

)
+ 2kπ. (20)

Figure 2(b) shows these curves in the (κ, α) parameter plane for different choices of delay τ . At
α = π the onset of synchrony happens at a maximal value of κ0(0), and the two leading modes
interchange their order.

Figure 2(c) shows the same bifurcations in the parameter plane (τ, κ) for different values of α. Note
that, according to (20), for π/2 ≤ α ≤ 3π/2 and τ → 0, the threshold value κ0(0) tends to infinity,
while it remains finite for |α| < π/2, i.e. in the case of attractive coupling.

DOI 10.20347/WIAS.PREPRINT.2890 Berlin 2021



M. Wolfrum, S. Yanchuk, O. D’Huys 6

0 2 4 6 8

0

0.4

0.8

κ

R

-4 -2 0 2 4

0

2

4

6

8

Ω

κ

Figure 3: Branches of partially locked states with Hopf bifurcations for τ = 5. Black: Branches and
Hopf points for α = 0. Red: Branches and Hopf points for α = π. Green curve: Location of folds
according to (23), (24). Green circles: degenerate Hopf at (25), (26).

3.3 Branches of partially locked solutions and fold bifurcations

In Fig. 3 we show numerically computed branches of partially locked solutions (12) for fixed τ = 5
and α = 0, π and varying κ > 0. We observe that beyond a certain coupling strength, the branches
bifurcate subcritically from the zero solution, before they turn back in a fold bifurcation. This fold can
be calculated as follows. Eliminating R from (13) and (14) we get the condition

Ω = κ sin(α− Ωτ)− tan(α− Ωτ), (21)

which we differentiate with respect to Ω in order to obtain double roots at

κ =
1

cos3(α− Ωτ)
− 1

τ cos(α− Ωτ)
. (22)

Using (13), (15), and (22) we obtain the location of the folds(κ
2

)2

=
2

(1−R2)3
+

1

τ(1−R2)3
, (23)

Ω2 =

(
1 +R2

1−R2

)3

+
1

τ

(
1 +R2

1−R2

)2

. (24)

Together with the resonance condition (13), these expressions provide the folds for each branch of
partially locked states. The green dashed curves in Figure 3 are given by (23) and (24), and meet the
branches of partially locked states precisely at the fold points. Note that the fold curves terminate for
R = 0 at the point

κ = 2
√

2 + 1/τ , (25)

Ω = ±
√

1 + 1/τ (26)

such that branches of partially locked states emerging with a Hopf frequency |Ω| < ±
√

1 + 1/τ
have no fold and bifurcate supercritically. If Ω in (26) also satisfies the resonance condition (19), then
the corresponding branch emerges from the zero solution in a degenerate Hopf (Bautin) bifurcation,
which is characterized by a transition from super- to subcritical behavior. Combining (26) and (19) we
obtain for the Bautin points the condition

α = ±
(

arctan
[√

1 + 1/τ
]

+
√
τ 2 + τ

)
+ 2kπ. (27)
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Figure 4: Regions the (τ, α) parameter plane with different numbers of supercritical branches, given
by (27). In the white region, for increasing κ all branches of partially locked solutions bifurcate subcrit-
ically from the zero solution and, hence, the onset of partial synchronization happens in a first order
(subcritical) transition. For larger delay τ there is an increasing number of supercritical branches.

In particular, we conclude that for small values of τ > 0 and α close to π, the primary branch of par-
tially locked states emerges beyond the Bautin points and hence behaves subcritical, i.e., the onset of
synchronization behaves like a first-order transition. Note that according to (25) this happens for rather
large values of κ. In Figure 4 we show how the number of supercritical branches increases for increas-
ing τ . Only in the white region, there are no supercritical branches, and already the primary branch
behaves subcritical. For the parameters chosen in Figure 3, there are two supercritical branches in the
case α = π and three at α = 0. In the latter case, our choice τ = 5 by coincidence almost exactly
hits the Bautin point, which can be calculated by (27) to happen at α ≈ 4.97494.

4 Stability of partially locked solutions in the large delay limit

We have seen that in the situation of larger values of τ there is an increasing number of branches of
partially locked states. However, all secondary branches bifurcate unstable from the already unstable
zero solution. In order to investigate how these branches eventually gain stability, we will invoke the
stability theory in the limit of large delay [17]. This theory can provide explicit analytical expressions
for the stability at infinite delay, which not only provide good approximations for the case of large finite
delay, but can also give sufficient conditions for the stability at any finite delay.

First we recall that the frequency dependent synchronization threshold (18) is already independent on
τ and α. Moreover, the bifurcation condition (22) for the fold has a straightforward version for large
values of τ given by

κ =
1

cos3(α− Ωτ)
, (28)

from which we derive the condition

R =
√

1− 2κ−2/3, (29)

which is now also independent on τ and α. Using (15), this gives an explicit condition for the frequen-
cies

Ω =
(
κ2/3 − 1

)3/2
, (30)

i.e. we have already some information about the existence region of partially locked solutions in the
case of large delay.
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In the case of large delay, the frequencies Ω of the partially locked states become denser and can
be treated as a pseudo-continuous family. Indeed, as follows from (17), the distance between the
neighboring roots Ωk is proportional to 1/τ . Hence, for τ → ∞, also the curves of Hopf and fold
bifurcations will be filled densely with bifurcation points, see Fig. 3(b).

4.1 Large delay limit and stability of the incoherent solution

In order to analyze the stability of the partially locked solutions, we briefly recall some basic facts from
[17] about the spectral theory of delay systems with large delay. For a linear system of the form

~̇v(t) = A~v(t) +B~v(t− τ) (31)

with coefficient matrices A and B, the eigenvalue spectrum shows certain scaling properties for τ →
∞. The asymptotic location of the spectrum can be calculated and provides a good approximation
for the exact spectrum at large finite values of τ . The onset of instability is governed by the so-called
pseudo-continuous spectrum, which can be calculated by inserting the ansatz λ = εγ+ iσ, ε = 1/τ ,
into the characteristic equation

χ(λ) = det(λId− A− e−λτB) = 0, (32)

and omitting terms of order ε. Replacing the term eγ+iστ by Y , we obtain the equation

det(iσId− A− Y B) = 0. (33)

This is a polynomial in Y with degree rank(B) > 0. For each branch of complex roots Y∗(σ) of this
polynomial, we obtain a spectral curve

γ∗(σ) = − ln (|Y∗(σ)|)

determining real parts of the eigenvalues for large τ . More precisely, the eigenvalues accumulate
along the curve λ = εγ∗(σ) + iσ. For the detailed theoretical background of this procedure, see [17].

We now apply this procedure to equation (9). When we linearize (9), we must split it into real and
imaginary parts r = x + iy in order to deal with the complex conjugation. Hence, the characteristic
equation (33) contains real 2 × 2 matrices and there are generically two branches of complex roots
Y1,2(σ). The polynomial (33) can be rewritten as

DBY
2 + (C − iσTB)Y +DA − iσTA − σ2 = 0, (34)

where DA,B denote the determinants and TA,B the traces of the matrices A and B, respectively.
Additionally, we have introduced

C = det(A+B)−DA −DB.

The linearization at the zero solution gives the matrices

A =

(
−1 0
0 −1

)
, B =

κ

2

(
cosα − sinα
sinα cosα

)
. (35)

With matrices (35), the polynomial (34) possesses the roots

Y1,2(σ) =
2

κ
(1 + iσ)e±iα.
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Due to the specific form of the equation, this results in the single branch of pseudo-continuous spec-
trum

γ∗(σ) = ln
(κ

2

)
− 1

2
ln
(
1 + σ2

)
. (36)

The expression (36) shows that the onset of partial synchrony at κ = 2 is expressed as an instability
of the pseudo-continuous spectrum with the real part of the eigenvalue γ∗(σ) becoming positive at
σ = 0. Such a scenario has been studied in detail for Stuart-Landau oscillators with long-delayed
feedback in [20]. It has been shown that locally this instability can be described in terms of the Eckhaus
scenario, which is originally known from the classical real Ginzburg-Landau equation. In that setup, the
critical spectrum is locally approximated by a parabola, and the zero solution becomes unstable with
respect to periodic patterns. Within the band of unstable wavenumbers from the zero solution, there is
the region of coexisting Eckhaus stable periodic patterns, which also has a parabolic shape covering
precisely two-thirds of the unstable wavenumbers of the zero solution. For the oscillatory instability
with large delay, there is a similar scenario of coexisting time-periodic solutions. They emerge at the
frequency-dependent synchronization threshold (18), which can be approximated by a parabola locally
around the central frequency Ω = 0. The solution at the central frequency bifurcates stable, while
the solutions with side-band frequencies Ω 6= 0 emerge unstable, and gain stability at the Eckhaus
stability boundary, which is locally also given by a parabola. However, we do not content ourselves
here with the local parabolic approximation but calculate the exact location of the Eckhaus stability
boundary for distant frequencies.

4.2 Stability of partially locked solutions

In order to calculate the pseudo-continuous spectrum of the partially locked solutions (12), we intro-
duce the corotating coordinate frame rnew = re−iΩt and split the equation into real and imaginary
parts rnew = x+ iy. This gives the real system

ẋ =− x+ Ωy +
κ

2
[(cos(α− Ωτ)xτ − sin(α− Ωτ)yτ )(1− x2 + y2)

− 2xy(sin(α− Ωτ)xτ + cos(α− Ωτ)yτ )] (37)

ẏ =− Ωx− y +
κ

2
[(sin(α− Ωτ)xτ + cos(α− Ωτ)yτ )(1 + x2 − y2)

− 2xy(cos(α− Ωτ)xτ − sin(α− Ωτ)yτ )], (38)

where we used the abbreviations xτ = x(t− τ), yτ = y(t− τ). The partially locked solutions, given
by the conditions (13) and (14), appear as one-parameter families of stationary states x+ iy = Reiϕ,
ϕ ∈ S1. From these we choose ϕ = 0, i.e., x = R, y = 0 and obtain for the corresponding
linearization of (9) in the form (31) the matrices

A =

(
−q Ω/q
−Ω/q −q

)
, B =

(
1 −Ω/q
Ω q

)
(39)

with

q =
1 +R2

1−R2
.

Examples of pseudo-continuous spectra of partially locked solutions with different parameters are
given in Fig. 5.

Since the locked states appear as families of stationary states, we always get a trivial eigenvalue
λ = 0, corresponding to the tangential direction along the family. This implies that for one of the
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Figure 5: Pseudo-continuous spectrum of coexisting partially locked solutions at κ = 4: (a) – spectrum
of stable solution with R = 0.7 and resulting Ω = 0.5872; (b) – spectrum of modulationally unstable
solution with R = 0.55 and resulting Ω = 1.8162; (c) – spectrum of uniformly unstable solution with
R = 0.3 and resulting Ω = 1.8214. Note that for large but finite τ the existence region is densely filled
with solution branches such that partially locked solutions with prescribed amplitude R can always be
found by small variations in α or τ .

two curves, we have γ∗(0) = 0. The main destabilization mechanism is a so-called modulational
instability, which is characterized by the fact that the critical curve of the pseudo-continuous spectrum
with γ∗(0) = 0 changes its curvature at ω = 0, i.e., γ′′∗ (0) = 0. This scenario has been described
for delay systems with large delay in [20, 24].

Theorem 1. For the partially locked solutions (12) of equation (9) in the limit of τ →∞ the condition
for modulational instability is given by

Ω2 = κ2 − 3
√

32κ4/3 +
3
√

250

2
κ2/3 − 1. (40)

Moreover, the stability region delineated by (40) provides a sufficient condition for stability of partially
locked solutions (12) valid for all positive delays τ > 0 (absolute stability).

The following lemma shows, how for systems of two real equations, such as as (37)–(38), the condition
for modulational instability can be calculated in terms of the matrices of the linearization.

Lemma 1. A linear delay system of the form

~̇v = A~v +B~vτ (41)

with real 2× 2 matrices A and B satisfying

det(A+B) = 0 (42)

has in the limit of large delay a critical branch of the pseudo-continuous spectrum undergoing a mod-
ulational instability if

(DA −DB)2 + (TA + TB)(DA −DB)TB −
1

2
(TA + TB)2(DA − 3DB) = 0 (43)

is satisfied. By DA,B we denote the determinants and by TA,B the traces of the matrices A and B,
respectively.

Proof: For real 2×2 matricesA andB in (41) there are two branches of pseudo-continuous spectrum

γ1,2(σ) = − ln (|Y1,2(σ)|) ,
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originating from the roots Y1,2 of the polynomial (34). The condition (42) implies that (Y, σ) = (1, 0) is
a solution of (34) and we obtain a critical branch of the pseudo-continuous spectrum with γcrit(0) = 0.
Implicit differentiation of (34) with respect to σ gives

−2σ − i(TA + Y TB)− iσY ′TB + 2Y Y ′DB + Y ′C = 0. (44)

Inserting Y = 1, σ = 0 and the condition (42) we obtain

Y ′(0) = −i TA + TB
DA −DB

. (45)

A second implicit differentiation gives

−2− 2iY ′TB − iσY ′′ + 2
(
Y Y ′′ + Y ′

2
)
DB + Y ′′C = 0. (46)

Inserting Y = 1, σ = 0, (42), and (45), we get

Y ′′(0) = −2
(DA −DB)2 + (TA + TB)(DA −DB)TB + (TA + TB)2DB

(DA −DB)3
. (47)

The condition for modulational instability γ′′(0) = 0 is satisfied if the second derivative of |Y (0)|
vanishes. Taking into account that Y ′′(0) is real, this leads to Y ′′(0)− |Y ′(0)|2 = 0. Using (47) and
(45), this gives the condition (43) stated in the lemma.

�

With this lemma we can now proceed to prove the theorem: Using the expressions for the matrices
(39) and the condition (43), we obtain for the modulational instability of the partially locked states

Ω2 =
q2(q − 1)

2
. (48)

Rewriting (15) in terms of q and inserting (48) we obtain for the coupling strength at the modulational
instability

κ2 =
(q + 1)3

2
. (49)

Equations (48) and (49) can be combined to the bifurcation condition (40) given in the theorem.

The fact that stability for large delay implies stability for all positive values of the delay (absolute
stability) can be seen as follows: Assume that for some finite delay τ0 > 0, coupling strength κ > 2,
and some choice of α0 there is a partially locked solution (12) with frequency Ω and amplitude R
that within the stability region delineated by the stability boundary (40), which we derived for the case
of infinite delay. Moreover, assume that this solution, written as a stationary solution in a corotating
frame, has at least one unstable eigenvalue λ0. If we now increase the delay and adapt α by

α(τ) = α0 + Ω(τ − τ0),

then according to (13), (14) this solution will persist, i.e. Ω and R will stay constant. Since we keep
also κ fixed, the solution will keep its position fixed within the stability region for large delay. In this
way we can reach arbitrarily large values of τ , where the solution is known to be stable. Hence, the
unstable eigenvalue λ(τ) has to cross the imaginary axis for some intermediate value τ̂ . With a purely
imaginary eigenvalue λ = iσ̂ as a solution of the characteristic equation (32), also Ŷ = eiσ̂τ̂ together
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Figure 6: Shaded regions indicate existence (light) and stability (dark) of partially locked states in the
limit of large delay. Blue curve: modulational instability (40). Green dashed curves: folds of partially
locked states (29), (30), ending at degenerate Hopf (green circles). Black dashed curve in panel (b):
frequency dependent synchronization threshold (18). Pseudo-continuous spectrum of partially locked
states at red dots in panel (a) is shown in Fig. 5.

with σ̂ solves the equation (33) for the pseudo-continuous spectrum and the corresponding branch
satisfies γ(σ̂) = 0. However, the whole pseudo-continuous spectrum was assumed to be stable and
only the critical branch touches the imaginary axis at σ = 0. The corresponding trivial eigenvalue,
which exists due to the rotation symmetry, is fixed, and it cannot move into the unstable half plane.
If there would be another eigenvalue at zero, the parameters would have to satisfy the fold condition
(23). But it can be easily seen that the fold curve does never enter the Eckhaus stable region. This
shows by contradiction that for a partially locked solution within the Eckhaus stable region stability
for large delay implies stability for all positive τ and all choices of α. This completes the proof of the
theorem.

�

The results for the case of large delay are summarized in Figure 6, showing the regions of existence
and stability of the coexisting partially locked states together with the modulational instability and
the fold curves. The fold curve is located within the unstable region; when crossing this curve, the
pseudo-continuous spectrum changes its shape. Indeed, we observe that according to (45) and (47)
the first and second derivatives of Y , and hence of the critical curves of pseudo-continuous spectrum
γ, have a singularity at σ = 0 if the denominator DA − DB vanishes. This coincides with fold
condition (24), which in the limit of large delay, can be rewritten as Ω2 = q3. As a result, the fold
curve induces a branch switching singularity of the pseudo-continuous spectrum, mediating between
the two different types of pseudo-continuous spectrum given in Figure 5(b) and (c). Moreover, at the
fold, we have another eigenvalue at zero, additionally to the trivial eigenvalue from the phase shift
of the partially locked states. This leads to a degeneracy γ1(0) = γ2(0) = 0 of the two curves of
the pseudo-continuous spectrum at zero, the role of the critical branch switches, and a transition from
modulationally unstable to uniformly unstable partially locked states occurs. The fold curves terminate
at degenerate points (green dots in Fig. 6) where this change of instability happens on the frequency
dependent synchronization threshold (18) and, at the same time, the branches of partially locked
states change between supercritical and subcritical.
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5 Discussion and Outlook

Our results describe partially locked states in a large population of Sakaguchi-Kuramoto oscillators
with delayed coupling. Moreover, in many cases, we can provide analytic expressions for the dynamics,
instabilities, and bifurcations. In contrast to the Sakaguchi-Kuramoto oscillator system without delay,
the delay is known to induce the following two important differences [4, 5]:

(i) Synchronization can also emerge for repulsive coupling, i.e., for π/2 < α < 3π/2, and some-
times emerges subcritical.

(ii) There are multiple coexisting stable partially locked states.

We have shown that the onset of synchronization can be described by a frequency-dependent syn-
chronization threshold. This threshold is independent of the phase lag and the delay, and it describes
how partially locked states with larger detuning from the central frequency emerge for larger coupling.
Along this threshold curve, there are two Bautin points, beyond which branches with sufficiently large
detuning bifurcate subcritical, see Fig. 3. The role of the phase lag parameter α has to be reinterpreted
as the detuning from the resonant delay and becomes less important in the case of larger delay, where
there are more resonances closer to each other.

In the case of large delay, this results in an increasing number of coexisting stable partially locked
states. We investigated their stability by methods of the large delay limit. It can be shown that close to
the onset of partial synchrony, they are organized according to the classical Eckhaus scenario, which
has already been described for other oscillatory systems with delayed feedback. As a characteristic
feature of this scenario, only the partially locked state closest to the central frequency emerges stable
from the zero solution. In contrast, the partially locked states at detuned frequencies gain stability
with nonzero amplitude at the Eckhaus boundary of modulational instability. The specific structure
of the Ott-Antonsen equation allows us to perform this stability analysis not only locally around the
central frequency, but globally for all frequencies. As a result, we obtain a stability region, which rather
resembles a locking cone than the typical parabolic Eckhaus stability region. Moreover, in the global
scenario (see Fig. 6) with the Bautin points and the subcritical branches, the stability region extends
below the frequency-dependent synchronization threshold, such that stable partially locked states exist
at frequencies, with respect to which the zero solution is stable.

A key ingredient of our approach is the restriction to Lorentzian frequency distributions. Without this
restriction, new effects arise, see, e.g. [25] for the case of bimodal distributions. Nevertheless, even
for unimodal distributions, the situation can be more complicated. Indeed already without delay, an
interplay of the phase lag and certain unimodal frequency distributions can lead to a variety of non-
universal synchronization transitions, including subcritical and nonmonotonic behavior [26, 27, 28].

At the other hand, already a single oscillator with delayed self-coupling gives rise to multiple coexisting
stable self-locked solutions. This situation has been studied in [29] together with the influence of noise.
The observed effect of stochastic switching towards the central frequency is likely to happen similarly
in our case of a globally coupled ensemble under the influence of noise. A related question is the
behavior for random initial conditions and the relative size of the basins for the different resonant
frequencies. Following the results in [30], where this question has been addressed for coexisting states
with different wave numbers in a spatially extended system of coupled phase oscillators, one would
expect as well a strong bias towards the central part of the stable frequencies.

When considering delay coupled oscillatory systems beyond phase oscillators, the amplitude can play
an important role and induce new dynamical phenomena already in small systems [31]. It might be
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an interesting question to understand the amplitude effects in a globally delay coupled heterogeneous
oscillator population on the dynamical scenario presented here.
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