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Solving optimal stopping problems via randomization and empirical
dual optimization

Denis Belomestny, Christian Bender, John G. M. Schoenmakers

Abstract

In this paper we consider optimal stopping problems in their dual form. In this way we reformulate the
optimal stopping problem as a problem of stochastic average approximation (SAA) which can be solved
via linear programming. By randomizing the initial value of the underlying process, we enforce solutions
with zero variance while preserving the linear programming structure of the problem. A careful analysis of
the randomized SAA algorithm shows that it enjoys favorable properties such as faster convergence rates
and reduced complexity as compared to the non randomized procedure. We illustrate the performance
of our algorithm on several benchmark examples.

1 Introduction

Since the emergence of complexly structured callable products in the financial industry, also known as Amer-
ican style derivatives, the last decades have seen a huge development of numerical methods for solving
optimal stopping problems. Indeed, the evaluation of virtually all callable derivatives that encounter in the
financial markets may be mathematically translated to the solution of an optimal stopping problem,

y∗ := sup
τ∈T

E[Zτ ]. (1.1)

In (1.1) Z = (Zj)j=0,...,J , J ∈ N+, is a nonnegative square-integrable stochastic process on a filtered
probability space (Ω,F ,F = (Fj)j=0,...,J ,P), adapted to F, and T is the set of all F-stopping times τ ∈
{0, . . . , J} . For notational convenience, it is assumed thatF0 is trivial, Z0 = 0, and that P({Zi > 0}) > 0
for some i = 1, . . . , J , hence y∗ > 0.

At the cutting edge around the beginning of this century various simulation based methods that aimed at con-
struction of the optimal exercise boundary or exercise strategy were developed. Let us mention, among other
popular works, Longstaff and Schwartz [2001], Tsitsiklis and Van Roy [2001], Andersen [1999], and Broadie
and Glasserman [2004]. These methods are usually called primal since they provide lower approximations
to (1.1) due to their very nature.

In this paper we focus on the dual representation of the optimal stopping problem (1.1), i.e. the stochastic
minimization problem

y∗ = inf
M∈M

E[ max
i=0,...,J

(Zi −Mi)], (1.2)

whereM is the set of all (Fi)-martingales starting in 0 at i = 0, see Rogers [2002], Haugh and Kogan
[2004] and the short recap in Section 2. We also refer to Brown et al. [2010] and Rogers [2007] for different
approaches to the general theory of information relaxation duality in stochastic control.

Several Monte-Carlo algorithms for constructing upper biased estimators for y∗ based on the minimization
problem (1.2) have been suggested in the literature. They typically consist of two steps:
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I Apply some numerical method to pick a martingale M̂ (typically depending on some training sample
Dn of size n) which is close to optimality:

E[ max
i=0,...,J

(Zi − M̂i)] ≈ y∗ (1.3)

II Estimate E[maxi=0,...,J(Zi− M̂i)] by the sample mean, applying a new independent sample (testing
sample) of size N .

All the existing dual Monte Carlo algorithms can be divided into two broad categories depending on how
the martingale M̂ is constructed. In the first class of algorithms, see for example Andersen and Broadie
[2004], Belomestny et al. [2009], and Glasserman [2003], Belomestny and Schoenmakers [2018] for further
references, the choice of the martingale M̂ is based on approximating the so-called Doob martingale:

M∗
j =

j∑
i=1

Y ∗i − E[Y ∗i |Fi−1], j = 0, . . . J, (1.4)

where
Y ∗J = ZJ , Y ∗j = max{Zj,E[Y ∗j+1|Fj]}, j = J − 1, . . . , 0, (1.5)

is the Snell envelope process. A particular feature of the Doob martingale is that it solves (1.2) and moreover
satisfies (see Section 2)

y∗ = max
i=0,...,J

(Zi −M∗
i ) almost surely. (1.6)

Because of (1.6) we say that the Doob martingale is surely or strongly optimal.

In the second class of algorithms, one tries to solve the dual optimization problem (1.2) directly using meth-
ods of stochastic approximation and some parametric subclasses ofM. See for example Joshi and Theis
[2002], who use a family of discounted swap rates for dual pricing of Bermudan swaptions, Desai et al.
[2012] discussed below, and more recently Lelong [2018] where a family of martingales is constructed by
using chaos expansions. Let us briefly discuss further the existing literature around the methods in this
second class. One of the first extensive studies is carried out by Desai et al. [2012], where the authors
essentially apply the Stochastic Average Approximation (SAA) method in the spirit of Shapiro [2003], next
use nested Monte Carlo to construct a suitable finite dimensional linear space of martingales, and then
cast the resulting minimization problem into a linear program. However, as demonstrated somewhat later in
Schoenmakers et al. [2013] in a toy example, the approach in Desai et al. [2012] may end up with martin-
gales M̂ that are close to optimality in the weak sense (1.3) but with the variance of the random variable
maxi=0,...,J(Zi − M̂i) being relatively high. In contrast, due to (1.6), for a martingale that is close to the
Doob martingale M∗ (in the L2-sense for instance) this variance will be close to zero. As a consequence,
for such a martingale the estimation in step II can be done more efficiently. Moreover, in Schoenmakers
et al. [2013] it is shown that if Varmaxi=0,...,J(Zi − M̂i) = 0, then (1.6) holds for M̂ and moreover that,
loosely speaking, if Varmaxi=0,...,J(Zi − M̂i) ≈ 0, then (1.3) applies (under some mild conditions). Thus,
it may be considered desirable to find martingales that are “close” to the Doob martingale, or at least “close”
to a surely optimal martingale. Belomestny [2013] proposes a modification based on variance penalization
while keeping the resulting minimization problem convex. An extension of the latter approach is considered
in Belomestny et al. [2019] where the authors study a family of different penalization methods and their
performance. However, due to penalization, the original dual empirical objective function is modified to a
computationally more expensive object, and minimization by the standard linear programming may become
unfeasible. In a recent study Belomestny and Schoenmakers [2021] suggest to minimize over a random-
ized class of martingales instead of penalizing the cost criterion. Based on a complete characterization of
the sets of all weakly and surely optimal martingales for the original dual problem, they identify an optimal
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Optimal stopping via randomization and dual optimization 3

randomization that allows for sorting out the Doob martingale as the only minimizer in the randomized mar-
tingale class. However, the identification of the optimal randomization in this approach requires knowledge of
the Snell envelope. In practice, this randomization may generally only be approximated, and the theoretical
quantification of the resulting martingale based on such an approximation has not yet been studied.

The goal of the present paper is a numerically efficient way to deal with the potentially high variance of the
martingales found by minimizing (1.2) directly via stochastic averaging. The key idea is to randomize the
initial value Z0 of the cashflow process. The rationale behind this approach can be easily explained. If we
replace the constant value Z0 = 0 by the (unknown) constant y∗, then immediate exercise at time zero
becomes optimal and any optimal martingale M∗ for the new dual problem satisfies

E[max{y∗, max
i=0,...,J

(Zi −M∗
i )}] = y∗

Hence, maxi=0,...,J(Zi −M∗
i ) ≤ y∗ almost surely, but

E[ max
i=0,...,J

(Zi −M∗
i )] ≥ y∗

by duality for the original problem with Z0 = 0, which implies that maxi=0,...,J(Zi − M∗
i ) = y∗ almost

surely. Thus, any optimal martingale for the problem with Z0 replaced by y∗ is surely optimal for the original
problem with Z0 = 0. Since y∗ is the quantity which we wish to compute numerically, it must be considered
as unknown and, hence, cannot be used as the new initial value for Z . Instead, we sample the initial value
of Z randomly from a distribution whose support is large enough to contain y∗. As demonstrated in Section
4 below, such an initial randomization is still sufficient to ensure that the optimal martingales of the dual
problem with randomizedZ0 are exactly the surely optimal martingales of the original dual formulation. These
observations motivate to apply the stochastic average approximation to the randomized dual problem in order
to benefit from the zero variance property of surely optimal martingales without changing the structure of the
original problem.

Finally, let us stress that direct empirical minimization for solving numerically the information relaxation dual
has recently been applied beyond the optimal stopping problem, see e.g. Yang et al. [2019] for applications
in merchant energy production or Chandramouli [2019] for the pricing of options with several exercise rights.
We consider our randomization approach for the dual problem (1.2) as prototypically and expect that it
can also be applied to more general stochastic minimization problems. The key ingredient is to design the
randomization in such a way that some kind of Bernstein condition (linking the original problem and the
randomized problem) is enforced as in Theorem 4.2 below. We also refer to Bartlett and Mendelson [2006]
for a discussion on how to improve convergence rates for empirical minimization problems in the presence
of the Bernstein condition.

The paper is organized as follows: In Section 2, we briefly review the dual minimization problem, explain
why (weakly) optimal martingales with arbitrarily large variance typically exist, and relate our randomization
approach to variance penalization. In Section 3, we present a class of stylized examples, in which the Doob
martingale is the only surely optimal martingale. However, the stochastic average method applied to the
original dual formulation provably fails to converge to the Doob martingale in this example class, while it
does converge after initial randomization. Section 4 is devoted to a detailed study of the initial randomization
technique. In particular, we derive bounds for the bias and the variance of the original problem in terms of
the bias of the randomized problem. These bounds are also crucial for studying the convergence behavior
of the empirical randomized dual minimization problem (i.e., after replacing the expectation by the sample
mean), see Section 5. In Theorem 5.1, we show that empirical randomized dual problem may converge to
the theoretical randomized dual problem at a faster rate than the Monte-Carlo rate of n−1/2 in the training
sample, even if the martingales are parameterized by a compact set in an infinite-dimensional metric space.
The benefits of the initial randomization are demonstrated numerically in Section 6. We run the algorithm
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into convergence in a toy example, but also illustrate how to exploit the favorable variance properties of our
algorithm in a standard multi-asset Bermudan option pricing framework. All proofs are presented in Section
7.

2 Recap of duality, lurking troubles by solving (1.2), and key idea

The representation (1.2) and the almost sure property (1.6) of the Doob martingale (1.4) are by now classical
and follow directly from the following two observations:

(i) Let τ ∗ be an optimal stopping time in (1.1). Then for any martingale M with M0 = 0 we have

y∗ = E[Zτ∗ ] = E[Zτ∗ −Mτ∗ ] ≤ E[ max
i=0,...,J

(Zi −Mi)] and

(ii) for the Doob martingale (1.4) it holds that

max
i=0,...,J

(Zi −M∗
j ) = max

i=0,...,J

(
Zi −

i∑
j=1

Y ∗j +
i∑

j=1

E[Y ∗j |Fj−1]
)

= Y ∗0 + max
i=0,...,J

(
Zi − Y ∗i +

i−1∑
j=0

(E[Y ∗j+1|Fj]− Y ∗j )
)

≤ Y ∗0 = y∗,

by (1.5). We now expose the troubles that one may encounter when solving (1.2) by straightforward minimiz-
ing the corresponding Monte Carlo estimate over a class of martingales M . Denote by

M◦ := {M ∈M : E[ max
i=0,...,J

(Zi −Mi)] = y∗}

the set of all (weakly) optimal martingales. It turns out that the set M◦ contains martingales that can be
found with positive probability and which have arbitrary high variance. More formally, we prove the following
statement in Section 7.2.

Proposition 2.1 If there is a sequence of events (Bk)k∈N in F1 such that P(Bk) ∈ (0, 1) for every k ∈ N
and limk→∞ P(Bk) = 1, then,

sup
M∈M◦

Var

(
max
i=0,...,J

(Zi −Mi)

)
= +∞,

that is, the variances of weakly optimal martingales can be arbitrarily large.

For example, the assumption of the above proposition is already satisfied if there is an F1-measurable
standard Gaussian random variable ξ (in this case we set Bk := {ξ ≤ k}). The above considerations
suggest favoring numerical methods which try to approximate the Doob martingale of Y ∗ directly. On the
other hand, one of the most popular algorithms of this kind, Andersen and Broadie [2004], requires nested
Monte Carlo and a preliminary (usually regression based) estimate of the Snell envelope. The aim of our
paper is to modify the plain EDO method in such a way that

� it can provably benefit from the zero variance property of the Doob martingale of Y ∗;

� and it does so, without changing the structure of the problem. In particular, the Sample Average
Version of the modified minimization problem can still be solved via linear programming on finite di-
mensional subspaces onM as was highlighted by Desai et al. [2012] for the SAA version of (1.2).
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The key idea is to randomize the initial value Z0 of the cashflow, that is, to replace Z by

Z
(A)
i :=

{
A, i = 0,
Zi, i > 0,

where A is a nonnegative random variable independent of FJ . To illustrate that this randomization behaves
similarly to a variance penalty, let us consider the randomized dual problem

inf
M∈M

E[ max
i=0,...,J

(Z
(A)
i −Mi)]

in the case where A is uniformly distributed on [0, K] for some constant K > 0. If we restrict the minimiza-
tion to martingales that satisfy maxj=0,...,J(Zj −Mj) ≤ K a.s. (cp. the discussion in Remark 4.1 below),
then

E[ max
i=0,...,J

(Z
(A)
i −Mi)] =

y∗

K

(
E[ max
i=0,...,J

(Zi −Mi)] +
1

2y∗
E[( max

i=0,...,J
(Zi −Mi)− y∗)2]

)
+ const.

(2.1)
Hence, the randomized dual problem is essentially the same as minimizing

M 7→ E[ max
i=0,...,J

(Zi −Mi)] +
1

2y∗
E[( max

i=0,...,J
(Zi −Mi)− y∗)2].

In particular, if M additionally is weakly optimal, then

E[ max
i=0,...,J

(Z
(A)
i −Mi)] =

1

2K
Var( max

i=0,...,J
(Zi −Mi)) + const. (2.2)

Note that Eq. (2.1) is a consequence of the straightforward identity

E[max{A, c}] =
K

2
+

c2

2K
, c ∈ [0, K],

since, by independence of A and FJ ,

E[ max
i=0,...,J

(Z
(A)
i −Mi)] = E[E[max{A, max

i=0,...,J
(Zi −Mi)}|FJ ]] =

K

2
+

1

2K
E[( max

i=0,...,J
(Zi −Mi))

2]

=
y∗

K

(
E[ max
i=0,...,J

(Zi −Mi)] +
1

2y∗
E[( max

i=0,...,J
(Zi −Mi)− y∗)2]

)
+ const.

3 A stylized yet illustrative example

In this section we consider an example showing the drawbacks of applying straightforwardly the Sample
Average Approximation method (see Shapiro [2003]) to the problem

inf
γ
E

[
max

0≤j≤J
(Zj −Mj(γ))

]
,

where (M(γ))γ is a family of martingales fromM. In particular, this example demonstrates that one may
end up with convergence to weakly but not surely optimal martingales, even if the Doob martingale is con-
tained in the family (M(γ))γ . It also illustrates how randomization of Z0 can serve as a remedy in such a
situation.
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For complete transparency, we consider a stylized Bermudan option with only two exercise dates. That is,
we take J = 2 with Z0 = 0, Z1 > 0, Z2 > 0 a.s., so that the Snell Y ∗ envelope reads

Y ∗2 = Z2, Y ∗1 = max (Z1,EF1 [Z2]) , Y ∗0 = y∗ = E [max (Z1,EF1 [Z2])] .

For the rest we keep the example fairly general and realistic by merely assuming that Y ∗1 has a density which
is strictly positive in an interval (y−, y+) ⊂ (0,∞) and zero in [0,∞)�(y−, y+). Hence y∗ ∈ (y−, y+).
For the Doob martingale we thus have

M∗
1 = Y ∗1 − y∗, M∗

2 −M∗
1 = Z2 − EF1 [Z2] . (3.1)

As a martingale family we consider

M1(γ) = γM∗
1 , M2(γ)−M1(γ) = M∗

2 −M∗
1 , γ ∈ R. (3.2)

One may argue that this family of martingales is rather artificial and unrealistic, as it has only one parameter
and contains the Doob martingale (for γ∗ = 1). However, it is perfectly well suited for our illustration pur-
poses, as one might expect here the ability for identifying this sole surely optimal martingale from any decent
algorithm. As we will show below, if the number of training paths for the sample average grows to infinity, the
martingales that plain SAA delivers, converge to weakly optimal martingales but not to surely optimal ones.
This in spite of the fact that the Doob martingale is a member of the family (M(γ)) we optimize over! In
more specific terms we will prove the following.

Proposition 3.1 Let us set

Z(γ) = max(0, Z1 −M1(γ), Z2 −M2(γ)),

and consider

Zn(γ) :=
1

n

n∑
i=1

Z(i)(γ)

for a sample Z(i)(γ) := max(0, Z
(i)
1 −M

(i)
1 (γ), Z

(i)
2 −M

(i)
2 (γ)), i = 1, ..., n. Further define

γ+ :=
y+

y+ − y∗
= 1 +

y∗

y+ − y∗
> 1 and γ− :=

y−
y− − y∗

< 0. (3.3)

(i) One then has that

E [Z(γ)] = y∗ and Var [Z(γ)] = (1− γ)2Var [Y ∗1 ] for γ− ≤ γ ≤ γ+.

Hence the only surely optimal martingale is obtained for γ = 1, that is, for the Doob martingale.

(ii) With probability one there is a unique

γ inf
n = arg min

γ∈R
Zn(γ),

and one has that γ inf
n /∈ [γ−, γ+]. Furthermore, one has that

E
[
Z(γ inf

n )
] n→∞−→ y∗ and γ inf

n
n→∞−→ {γ−, γ+} almost surely (3.4)

(meaning that the Euclidean distance between γ inf
n and the set {γ−, γ+} converges to zero), while

Var [Z(γ±)] =

(
y∗

y∗ − y±

)2

Var [Y ∗1 ] > 0. (3.5)
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The proof of Proposition 3.1 is given in Section 7.3.

We now illustrate the effect of randomization in this explicit example. Let us choose a random variable A,
which is uniformly distributed on [0, K] for some K > y∗ and independent of F2, and define

ZA(γ) = max(A,Z1 −M1(γ), Z2 −M2(γ)). (3.6)

Thanks to (7.4) below, there is an ε > 0 such that Z(γ) ≤ K a.s. for every γ ∈ (1− ε, 1 + ε) ⊂ [γ−, γ+].
By (2.2),

E[ZA(γ)] =
1

2K
Var[ max

i=0,...,J
(Zi −Mi(γ))] + const., γ ∈ (1− ε, 1 + ε),

since the corresponding martingalesM(γ) are weakly optimal by Proposition 3.1, (i). The variance estimates
in Proposition 3.1, (i), now imply that γ 7→ E[ZA(γ)] has a unique local minimum in (1− ε, 1 + ε) at γ = 1.
Hence, by convexity, the expectation of (3.6) has a strict global minimum at γ = 1. If we now apply the SAA
approach to the problem

inf
γ
E [ZA(γ)] ,

then Thm. 4 in Shapiro [2003] straightforwardly implies that the approximate sequence of martingales con-
verges to the Doob martingale of the original (non-randomized) problem as the size of the training sample
tends to infinity.

4 Cash-flow randomization

In this section, we discuss in more detail the cashflow randomization motivated at the end of Section 2.
Suppose A is a nonnegative square-integrable random variable independent of FJ and define Z(A)

0 = A

and Z(A)
j = Zj for j = 1, . . . , J . In this section, we study the minimization problem

y∗A := inf
M∈M

E[ max
i=0,...,J

(Z
(A)
i −Mi)] (4.1)

and its connections to the original problem (1.2). Note that the only difference between both problems is the
value of the cash-flow process at time 0.

We first show that the minimizers to the auxiliary problem (4.1) are exactly those minimizers to the original
problem (1.2), which share the zero variance property of the Doob martingale of Y ∗, that is, which belong to

M◦◦ := {M ∈M : max
i=0,...,J

(Zi −Mi) = y∗, a.s.} (4.2)

i.e. M∗ ∈ M◦◦. The following theorem additionally entails that every close-to-optimal martingale for the
auxiliary problem (4.1) is also close-to-optimal for the original problem (1.2).

Theorem 4.1 Suppose A is a nonnegative, integrable random variable independent of FJ such that
P({A ∈ (y∗ − ε, y∗]}) > 0 for every ε > 0. Then:

(i) Optimality: The value of the auxiliary minimization problem (4.1) is given by

inf
M∈M

E[ max
i=0,...,J

(Z
(A)
i −Mi)] = E[max{y∗, A}],

and M is a minimizing martingale for (4.1) if and only if M ∈M◦◦.
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(ii) Bias: For every M ∈M it holds that

E[ max
j=0,...,J

(Zj −Mj)]− y∗

≤ 1

P({A ≤ y∗})

(
E[ max
j=0,...,J

(Z
(A)
j −Mj)]− E[max{A, y∗}]

)
.

The next theorem is a key to our error analysis. It states that, under appropriate assumptions on the distri-
bution of A, every close-to-optimal martingale for the auxiliary problem has automatically small variance for
the original problem. For the exact statement, we introduce the setM≤K of all (Fi)-martingales M such
that M0 = 0 and

max
i=0,...,J

(Zi −Mi) ≤ K, a.s. (4.3)

Theorem 4.2 Suppose A is (0,∞)-valued, integrable random variable independent of F with strictly posi-
tive, continuous density fA. Then, for every K > y∗ and M ∈M≤K

Var( max
j=0,...,J

(Zj −Mj)) ≤ E[| max
j=0,...,J

(Zj −Mj)− y∗|2]

≤ 8

3

(
min

x∈[y∗/3,K]
fA(x)

)−1(
E[ max
j=0,...,J

(Z
(A)
j −Mj)]− E[max{A, y∗}]

)

Remark 4.1 Suppose that Z is bounded, i.e. there is a constant KZ > 0 such that

max
i=0,...,J

Zi ≤ KZ .

If a martingale M ∈M is bounded from below, that is, there is a constant KM > 0 such that

min
i=0,...,J

Mi ≥ −KM ,

then, M ∈M≤K for every K ≥ KM +KZ . Note that, for every M◦◦ ∈M◦◦,

min
i=0,...,J

M◦◦
i ≥ −y∗ ≥ −KZ

So we can restrict the optimization to martingales which are bounded from below by −KZ , and these are
included inM≤2KZ

Discussion: Suppose that Z is bounded by some constant KZ and K ≥ 2KZ . We assume that some
algorithm is fixed which takes a training sample Dn of size n as input and computes a martingale inM≤K
as output. Hence, we may think of this algorithm as a family of maps

M̂n : Dn →M≤K , n ∈ N.

Conditionally on the realization of the training sample Dn, we generate N independent copies Z l − M̂n,l,
l = 1, . . . N , of Z − M̂ (testing sample) and study the upper biased estimator

y
(up)
n,N =

1

N

N∑
l=1

max
j=0,...J

(Z l
j − M̂

n,l
j )

DOI 10.20347/WIAS.PREPRINT.2884 Berlin 2021
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of y∗. For a complexity analysis based on Theorems 4.1 and 4.2, we assume that we have some control on
the bias of the randomized problem, i.e. there are constants c, γ > 0 such that for every n ∈ N

E[ max
j=0,...,J

(Z
(A)
j − M̂n

j )|Dn]− E[max{A, y∗}] ≤ cn−γ (4.4)

with probability larger or equal to 1− n−2γ . Then, by Theorems 4.1 and 4.2 and thanks to (4.4),

E[|y(up)
n,N − y

∗|2] ≤ c2

P({A ≤ y∗})2
n−2γ +

8c

3

(
min

x∈[y∗/3,K]
fA(x)

)
n−γ

N
+ (y∗ +K)2n−2γ (4.5)

In order to match the error terms we may choose N proportionally to nγ , and obtain a root mean-square
error (RMSE) of the order √

E[|y(up)
n,N − y∗|2] /

1

N

in the size of the testing sample. As this rate beats the standard Monte Carlo rate of 1/2, we observe that,
by building approximate martingales based on the bias of the randomized problem as error criterion, we can
provably benefit from the zero-variance property of surely optimal martingales.

Let us now assume that

� the cost of the algorithm M̂n for choosing the martingale grows as nρ in the size of the training
sample;

� the cost for evaluating a single trajectory of (M̂n
j )j=0,...,J grows as nθ.

Then, in the typical situation γ ≤ 1 and ρ ≥ θ + 1 (i.e., the algorithm for choosing the martingale based
on a sample of size n is at least as expensive as evaluating n trajectories of this martingale), the choice
N ≈ nγ is easily seen to be optimal. Therefore the complexity for achieving a RMSE error of size ε > 0 is of
the order ε−ρ/γ . We shall demonstrate by a theoretical example (Remark 5.4) and by a numerical test case
(Section 6.1) below, that the complexity for solving the dual problem (1.2) may (under suitable assumptions)
even grow at an order ρ/γ smaller than 2, when solving the randomized dual problem via direct empirical
minimization.

5 Randomized empirical dual optimization

In this section, we study the bias estimate (4.4), when the martingales are constructed by direct empirical
minimization of the randomized dual problem. Our analysis crucially depends on the variance estimate in
Theorem 4.2.

We start by fixing a metric space Ψ and a family (Mj(ψ))j=,0,...,J of martingalesM(ψ) ∈M parameterized
by ψ ∈ Ψ. That is, M(ψ) is adapted to F and satisfies M0(ψ) = 0 for all ψ ∈ Ψ. Now let A be a
nonnegative random variable independent of F and define

ZA(ψ) := max
j=0,...,J

(
ZA
j −Mj(ψ)

)
,

where ZA
0 = A and ZA

j = Zj for j = 1, . . . , J . Let Ψ0 be a bounded subset of Ψ. In view of Theorem 4.1
we consider the optimization problem

arg inf
ψ∈Ψ0

QA(ψ) withQA(ψ) := E[ZA(ψ)] for any ψ ∈ Ψ (5.1)
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together with the original (non-randomized) dual problem

arg inf
ψ∈Ψ0

Q(ψ) withQ(ψ) := E[Z(ψ)] for any ψ ∈ Ψ, (5.2)

where

Z(ψ) = max
j=0,...,J

(Zj −Mj(ψ)) .

Since the expectation in (5.1) ((5.2)) can not be computed in closed form, we shall replace (5.1) ((5.2)) via the
corresponding empirical dual optimization problem (EDO) on a set of trajectories. To this end, we define the
product space (ΩN, F̃N,PN), where (with slight abuse of notation) F̃ = F∨σ(A), and its natural projections

Πi(ω) = ωi, ω = (ωn)n∈N ∈ ΩN

as well as the processes Z(i)
A , i = 1, 2, . . . on (ΩN, F̃N,PN)×Ψ via

Z(i)
A (ω, ψ) := max

j=0,...,J

(
Z
A(Πi(ω))
j (Πi(ω))−Mj(Πi(ω);ψ)

)
.

Let ψAn denote one of the random solutions of the EDO problem

inf
ψ∈Ψ0

QA,n(ψ) := inf
ψ∈Ψ0

{
1

n

n∑
i=1

Z(i)
A (ω, ψ)

}
, (5.3)

If n → ∞ then this optimization problem becomes PN-a.s. close to the optimization problem (5.1), and
we denote by ψ◦◦ one of its (deterministic) solutions. Let us now analyze the properties of the measurable
selector ψAn . Set for any n ∈ N,

Dn : ΩN → (Rn)Ψ, ω 7→
(
Z(1)
A (ω, ψ), . . . ,Z(n)

A (ω, ψ)
)
ψ∈Ψ

.

The mapping Dn can be interpreted as a set of Monte Carlo paths of the process ZA(ψ) used to construct
ψAn . We assume that there is ψ◦◦ ∈ Ψ such that M(ψ◦◦) ∈M◦◦ and

ψ◦◦ ∈ arg min
ψ∈Ψ
QA(ψ),

that is,QA(ψ◦◦) = E [max(A, Y ∗)] . Let us introduce the (semi-)metric

d(ψ, ψ′) := E[|Z(ψ)−Z(ψ′)|2]1/2. (5.4)

We further need the following quantitative uniqueness assumption. There exists λmin such that

QA(ψ)−QA(ψ◦◦) ≥ λmin d
2 (ψ, ψ◦◦) . (5.5)

In view of Theorem 4.2, the inequality (5.5) holds with λmin = 3
8

(
minx∈[Y ∗/3,K] fA(x)

)
, provided that (4.3)

holds with K > Y ∗. Now we are prepared to analyze the properties of the minimizer ψAn .

For a bounded subset Ψ0 in a metric space Ψ endowed with a metric ρ, the covering numberN (δ,Ψ0, ρ) is
defined as the smallest number of balls of radius δ in the ρ-metric needed to cover Ψ0, that is, the smallest
value of N such that there exist ψ1, . . . , ψN ∈ Ψ0, satisfying minj=1,...,N ρ(ψ, ψj) ≤ δ for any ψ ∈ Ψ0.
The following result concerns the optimization problem (5.3) and shows how close is its solution ψAn to ψ◦◦.
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Theorem 5.1 Assume that (5.5) holds with λmin ≤ 1, |Z| ≤ Hmax a.s. for a constant Hmax ≥ 1 and

sup
ψ,ψ′∈Ψ0

d(ψ,ψ′)6=0

E

[
exp

(
|ZA(ψ)−ZA(ψ′)|2

Bd2(ψ, ψ′)

)]
≤ Lmax (5.6)

for some constant B > 0. Suppose also that, for all 0 < u ≤ 2Hmax,

log[1 +N (Ψ0, d, u)] ≤ κ
(

1

u

)α
(5.7)

for some constants κ = κ(Ψ0) ≥ 1 and α ∈ (0, 2). Set ψ ∈ arg infψ∈Ψ0
QA(ψ), then for all n ≥ n0 and

all t > 0, with probability at least 1− 4e−t,

0 ≤ QA(ψAn )−QA(ψ◦◦) . max

{
λ
−(2−α)/(2+α)
min

(
κL2

max

n

)2/(2+α)

,
tH2

max

nλmin

}
, (5.8)

provided thatQA(ψ)−QA(ψ◦◦) . n−2/(2+α), where. stands for inequality up to a constant not depending
on n, t.

Remark 5.2 Let us note that the set Ψ0 may grow with n to makeψ satisfyQA(ψ)−QA(ψ◦◦) . n−2/(2+α),
then the constant κ can also increase in dependence on n.

Upon getting ψAn , we generate a new set of N trajectories of the process Z(ψAn ) independent of Dn and
consider the Monte Carlo estimate of Y ∗

Y A
N,n :=

1

N

N∑
l=1

Z(l)(ψAn ).

Then, in view of Theorem 5.1 and the discussion at the end of Section 4, we obtain

E[|y∗ − Y A
N,n|2] .

(κ
n

)4/(2+α)

+
(κ
n

)2/(2+α) 1

N
, (5.9)

and recall that the choice N ≈ n1/(2+α) is optimal in typical settings.

Example 5.3 If we consider a linear parametric family of martingales

Mj(α) := α1M
1
j + . . .+ αKM

K
j , j = 0, . . . , J, α ∈ RK , (5.10)

where M1, . . . ,MK are given F-martingales. In this case the optimization problem (5.3) boils down to

arg min
α∈RK

{
1

n

n∑
i=1

max
0≤j≤J

(
Z
A,(i)
j −M (i)

j (α)
)}

(5.11)

which in turn can be written as a linear program:

arg min
α∈RK , z∈Rn

1

n

n∑
i=1

zi (5.12)

under the constraints

zi ≥ Z
A,(i)
j −M (i)

j (α), i = 1, . . . , n, j = 0, . . . , J.
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Indeed, this is an optimization problem of the type arg minx f
>x under Ax ≤ b with x =

(z1, . . . , zn, α1, . . . , αK) ∈ Rn+K , f = (1/n, . . . , 1/n, 0, . . . , 0), a very sparse matrix A ∈ Rn·(J+1) ×
Rn+K with n · J · K + n · (J + 1) nonzero entries and a vector b ∈ Rn·(J+1). This linear programming
formulation has already been exploited by Desai et al. [2012] for the non-randomized empirical dual mini-
mization (i.e., A = 0). They also argue that due to the sparse structure of the matrix A, the cost for solving
this linear program is of the order n for a fixed linear parametric martingale family.

In the setting of this example, the entropy bound (5.7) changes to

log[1 +N (Ψ0, d, u)] ≤ K log

(
1

u

)
(5.13)

where Ψ0 is a bounded subset inRK and the rate in (5.8) becomes of orderO(K/n) with a hidden constant
depending on λmin and Lmax. In order to fulfill the condition QA(ψ)−QA(ψ◦◦) . n−2/(2+α), we need to
take an increasing sequence K = K(n). The growth of K in n depends on approximation properties of
the family M(α), α ∈ RK w.r.t. to the setM◦◦. As a result the bound (5.9) becomes

E[|y∗ − Y A
N,n|2] .

(
K

n

)2

+
K

n

1

N
.

Remark 5.4 Let us revisit the stylized example in Section 3. Restrict the martingale family to γ ∈
[−γmax, γmax] with γmax large enough such that γmax > max(|γ−| , γ+), and consider an independent
random variable A with strictly positive density fA on (0,∞) as in Theorem 4.1. It is easily seen from
(7.4) that with K = y+(1 + γmax), M(γ) ∈ M≤K for γ ∈ [−γmax, γmax] . Thus, (5.9) applies and our
randomized algorithm, that is solving the minimization problem

γinf
A,n := arg inf

γ∈[−γmax,γmax]

1

n

n∑
i=1

max(A(i),Z(i)(γ)),

and subsequently computing the upper bound estimate

y
(A)
n,N :=

1

N

N∑
i=1

Z(i)(γinf
A,n) (5.14)

based on an independent trajectory sample of size N ≈ n1/(2+α), yields a root mean-square error

RMSE . n−2/(2+α), α ∈ (0, 2). (5.15)

Since the stylized martingale family (3.2) is spanned by a fixed finite number of martingales and contains the
Doob martingale, we can take ρ = 1 and θ = 0 in the complexity analysis at the end of Section 4 and can
choose α = 0, see the previous example. Hence our algorithm achieves a complexity of ε−1 for a RMSE of
size ε in this example.

In contrast, without randomization we always end up with a test estimator (i.e. (5.14) forA = 0) with positive
variance (3.5). As a consequence, no matter how fast the convergence speed of the SAA method for the
non-randomized minimization actually is, the resulting complexity will always be bounded from below by the
standard Monte Carlo rate of ε−2.

Example 5.5 (Martingales based on stochastic integrals) Let (St)t≥0 denote a d-dimensional diffusion
process solving the following system of SDE’s:

dSt = a(t, St)dt+ σ(t, St) dWt, S0 = x0, (5.16)
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where a : [0, T ] × RD → RD and σ : [0, T ] × RD → RD×m are Lipschitz-continuous in space and 1/2
Hölder-continuous in time, with m denoting the dimension of the Brownian motion W = (W1, . . . ,Wm)T .
Then the martingale representation theorem implies that any square integrable martingale (Mt)t≥0 with
respect to the filtration (Ft)t≥0 generated by (Wt)t≥0 such that M0 = 0 can be represented as

Mt =

∫ t

0

Gs dWs, t ∈ [0, T ], (5.17)

where (Gs) is an adapted to (Ft)t≥0 square integrable on [0, T ] process. Under some conditions it
can be shown using the Itô formula, that the Doob martingale (M∗

t ) of the Snell process V ∗t =
ess supτ∈T ,τ≥t E [f(Sτ ) | Ft] for a function f : Rd → R has representation (5.17) on [0, T ] with
Gs = G(s,Xs) and some measurable function G : R+ × Rd → Rd such that (Gs) is square inte-
grable on [0, T ], see Ye and Zhou [2015]. Hence it seems reasonable to parameterize square integrable
martingales adapted to (Ft)t∈[0,T ] by a class Ψ of functions ψ(t, x) = (ψ1(t, x), . . . , ψm(t, x)) satisfying∫ T

0

E
[
|ψ(t, St)|2

]
dt <∞

in the following way

M c
t = M c

t (ψ) =

∫ t

0

ψ(u, Su) dWu.

Note that such type of representations was already used to solve optimal stopping/control problem in dual
formulation, see e.g. Wang and Caflisch [2010] and Ye and Zhou [2015]. Also they were used to construct
control variates in variance reduction methods, see e.g. Vidales et al. [2021]. By discretizing the time we can
consider a family of martingales

Mj(ψ) = M c
tj

(ψ), j = 0, . . . , J, (5.18)

where 0 = t0 < t1 < . . . < tJ = T. It is clear that (Mj(ψ)) is adapted to the filtration (Ftj).
Denote by Hs

p([0, T ] × RD) the Sobolev space of functions defined on [0, T ] × RD, that is, the set of
functions f ∈ Lp([0, T ] × RD), such that for every multi-index r with |r| ≤ s the mixed partial derivative
Drf exists and is in Lp([0, T ] × RD). Further let β ∈ R and 〈x〉β = (1 + |x|2)β/2 for all x ∈ RD. For
s−D/p > 0 we define the weighted Sobolev-space

Hs,β
p ([0, T ]× RD) =

{
f : [0, T ]× RD → Rm | f · 〈x〉β ∈ Hs

p([0, T ]× RD)
}
.

Let πt denote the density function of St. We have for the distance d from (5.4),

d(ψ, ψ′) .

(∫ T

0

E |ψ − ψ′|2 (t, St)dt

)1/2

=

(∫ T

0

∫
Rd

|ψ − ψ′|2 (t, x)πt(x) dx dt

)1/2

= ‖ψ − ψ′‖L2([0,T ]×RD,µ),

where µ is a finite measure on [0, T ]×RD with density πt(x). Let Ψ̃ be a bounded subset ofHs,β
2 ([0, T ]×

RD) for some β ≤ 0, then due to [Nickl and Pötscher, 2007, Corollary 4], we have

log(N (Ψ̃, d, ε)) . ε−(D+1)/s, ε→ 0, (5.19)

provided that √∫
[0,T ]

∫
RD

〈x〉2(%−β)πt(x) dx dt <∞ (5.20)
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with % > s− (D+ 1)/2. It is well known (see Theorem 8 in Friedman [2008]) that if the diffusion coefficient
σ is uniformly elliptic, the coefficients a and σ are infinitely differentiable in [0, T ] × RD with bounded
derivatives of any order, then ∂st ∂

r
xπt(x) exists for all natural r and s. Moreover, it holds for all x ∈ RD and

t > 0,

|∂st ∂rxπt(x)| . 1

t(D+|r|)/2+s
exp

(
−c |x− x0|2

t

)
, for some c > 0.

where . means that the above inequality holds up to a constant, only depending on s and r. Hence (5.20)
is satisfied for an arbitrary large % ≥ β. As a result, the condition (5.7) holds for Ψ̃ ⊂ Hs

2([0, T ] × RD) ∩
L∞([0, T ] × RD) with α = (D + 1)/s. Moreover, α ∈ (0, 2) if D ≤ 2s − 1, that is, we the functions
ψ are sufficiently smooth. As to the condition (5.6), it can be directly checked in many situations using the
inequality (see Section 4.13 in Liptser and Shiryayev [1989])

sup
ψ,ψ′∈Ψ0

d(ψ,ψ′) 6=0

E

[
exp

(
|Mτ (ψ)−Mτ (ψ

′)|2

E|Mτ (ψ)−Mτ (ψ′)|2

)]
≤ L′max

which holds for any stopping time τ ∈ {0, . . . , J} and a finite constant L′max > 0.

6 Numerical examples

In this section, we illustrate our theoretical results by two numerical examples. The first one is a toy example
with two time steps and with a single uniformly distributed random variable as the only source of randomness.
In this toy example, the excellent convergence properties of the randomized empirical dual minimization can
be illustrated, when the martingale dictionary exhausts a complete orthonormal system. The second numer-
ical example is a typical pricing problem of a Bermudan knock-out max-call option on several stocks. This
problem has been previously treated by Desai et al. [2012] and we show that, by adding our randomization,
one can significantly improve the numerical results in this example.

6.1 A toy example

In this toy example originally due to Schoenmakers et al. [2013], the cashflow is given by

Z0 = 0, Z1 = 2U, Z2 = 1,

where U is uniformly distributed on the unit interval. One easily computes the Snell envelope Y ∗ and its
Doob martingale M∗ as

y∗ = Y ∗0 = 1.25, Y ∗1 = 1 + (2U − 1)+, Y ∗2 = 1

and
M∗

0 = 0, M∗
1 = M∗

2 = (2U − 1)+ − 0.25.

Obviously, this example satisfies the assumptions of Proposition 2.1, and so there are weakly optimal mar-
tingales leading to a pathwise maximum with arbitrarily large variance for the original (non-randomized)
problem.

Since the only source of randomness in this example is a uniform random variable, we may construct mar-
tingale dictionaries in terms of the complete orthonormal system of Legendre polynomials for L2(σ(2U −
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Figure 1: Boxplots of the empirical mean and the empirical standard deviation as a function of the number of
basis martingales (without randomization)

1),P). Let

Lk(x) =

bk/2c∑
κ=1

(−1)κ
(2k − 2κ)!

(k − κ)!(k − 2κ)!κ!2k
xk−2κ

denote the Legendre polynomial of degree k (normalized to have value 1 at x = 1). Then,
(
√

2k + 1Lk(2U − 1))k∈N0 is an orthonormal basis for L2(σ(2U − 1),P). For a fixed maximal polynomial
degree K , we consider the martingale families

M(K) =

{
M (K)(ψ) :=

K∑
k=1

ψkM̃
k, (ψ1, . . . , ψK) ∈ RK

}
,

where M̃k
0 = 0 and M̃k

1 = M̃k
2 =
√

2k + 1Lk(2U − 1).

We first perform a direct empirical dual minimization without randomization as originally suggested by Desai
et al. [2012]. For K = 1, 3, 5, 7, 9, 11, we simulate n = n(K) = 2000K2 independent copies Uν of U
and consider the empirical minimization problem

inf
ψ∈RK

1

n

n∑
ν=1

(
max{2Uν , 1} −

K∑
k=1

ψk
√

2k + 1Lk(2Uν − 1)

)
+

,

noting that maxi=0,1,2(Zi−M (K)
i (ψ)) = (max{2U, 1}−M (K)

1 (ψ))+.We solve the empirical minimization
problem by applying MATLAB®’s interior point algorithm to the corresponding linear program (cp. Example
5.3) and denote the resulting coefficient vector by ψn. Then, we generate a new independent sample of
N = N(K) = 100000K2 uniform random variables in order to estimate the mean and the standard

deviations of maxi=0,1,2(Zi−M (K)
i (ψn)). The whole algorithm is then repeated 60 times, and the boxplots

in Figure 1 exhibit the range of the 60 empirical means and empirical standard deviations computed this way.

The display on the left-hand side shows that the empirical minimization is successful in the sense that the
empirical means are close to the correct value y∗ = 1.25, and that the approximation quality tends to im-
prove as the number of basis martingales increases. However, the display on the right-hand side illustrates
that the range and the median of the empirical standard deviations increase with the number of basis martin-
gales. One explanation is the following: For a larger polynomial degree K , there is an increasing number of
martingales inM(K), which are ‘close’ to some weakly optimal martingale, and the interior point algorithm
appears to have a tendency to come up with a variety of different ‘close-to-optimal’ martingales favoring
those with a large variance. This example, thus, demonstrates the need for some variance regularization.
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Figure 2: log-log plot of the bias for the orthogonal projection M (K)(c∗1, . . . , c
∗
K) of the Doob martingale as

function of the number of basis martingales (with randomization).

We therefore apply the randomized empirical minimization, which was introduced and studied in the previous
sections, and choose A = |ξ|, where ξ is Gaussian with mean 1 and variance 1 as the initial distribution
for Z(A). In view of Theorem 5.1, the optimal parameter choice for the number n(K) of samples for the
empirical minimization depends on the behavior of the bias of the randomized problem

inf
ψ∈RK

E[ max
i=0,1,2

(Z
(A)
i −M (K)

i (ψ))]− E[max{A, y∗}] =: B(K)

as function in the polynomial degreeK . A direct computation based on the Rodrigues formula and integration
by parts shows that

M∗
1 =

∞∑
k=1

c∗k
√

2k + 1Lk(2Uν − 1),

where

c∗1 =
1

2
√

3
, c∗2k =

√
4k + 1(2k − 2)!(−1)k−1

22k+1(k + 1)!(k − 1)!
, c∗2k+1 = 0, k ≥ 1.

Figure 2 shows a log-log plot of the bias of the pathwise maximum corresponding to the orthogonal projection
of M∗ onM(K), i.e. the mapping

K 7→ E[ max
i=0,1,2

(Z
(A)
i −M (K)

i (c∗1, . . . , c
∗
K))]− E[max{A, y∗}]

It suggests that B(K) = O(K−2.6). Tailoring the number of training samples n = n(K) for the opti-
mization to the limiting case α = 0 in Theorem 5.1 (cp. Example 5.3), we let n(K) = 500 · dK2.6e. The
constraint matrix of the corresponding linear program is sparse with the number of non-zero entries growing
proportionally to Kn = n18/13. The log-log-plot of the average run time of 60 repetitions of the empirical
minimization (Figure 3) roughly confirms that the run time is of the order 18/13 ≈ 1.38 in the number of
training samples.

We again simulate a second independent sample of N trajectories and apply it to estimate the mean of
maxi=0,1,2(Zi−M (K)

i (ψAn )), where ψAn is the (random) coefficient vector computed by MATLAB®’s interior
point algorithm applied to the empirical randomized problem based on the training sample. The discussion
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Figure 3: log-log plot of the average run time (60 repetitions) as a function of the number of samples for the
empirical minimization (with randomization).

Figure 4: log-log plot of the empirical root mean-square error (over 60 runs) as a function of the number of
samples for the empirical minimization (with randomization).
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following Theorem 5.1 (with α = 0) suggests that the root mean-square error between the sample mean and
the true value y∗ is of the order 1/n+

√
1/n · 1/N . We, thus, chooseN = 2000 · dK2.6e proportionally to

n to calibrate the algorithm to an error of the order 1/n. Note that the cost for the evaluation of a single path
M (K)(ψAn ) grows linearly in K in practice for polynomials of low degree and so the cost for this evaluation
step of the algorithm is of the same order as for the optimization step.

A log-log plot of the empirical root mean-square error between sample mean and the true value y∗ (over
60 runs of the algorithm) as a function of the number n of optimization samples is shown in Figure 4. The
empirical rate of 0.88 of the root mean-square error in the number of samples is slightly below the optimal
limiting rate of 1 derived from Theorem 5.1, but, nonetheless we obtain a rate of about 0.68 for the root
mean-square error in the run time for this toy example, which even beats the Monte-Carlo rate of 1/2 for
computing a single expectation. To summarize, this toy example shows that the randomization of the initial
value Z0 of the cashflow in the direct empirical dual minimization does not only stabilize the algorithm, but
significantly improves its convergence behavior.

6.2 A Bermudan max-call option

The second numerical example is a typical test case of a pricing problem for a multi-asset Bermudan option
and is taken from Desai et al. [2012].

The discounted cashflow of a knock-out max-call option on D stocks S1, . . . SD is given by

Zi = e−rti
(

max
d=1,...,D

Sdti −K1

)
+

·
i∏

j=1

1{maxd=1,...,D Sd
tj
≤K2}, i = 1, . . . J.

The option can be exercised at times ti = iT/J , i = 1, . . . , J for some maturity T > 0, r denotes the
riskless interest rate, K1 is the strike price of the option, and K2 is the knock-out level. Note that the option
expires worthless, if one of the stock prices exceeds the knock out level K2, before the option is exercised.
We assume that the stock prices follow independent identically distributed Black-Scholes models (under the
risk-neutral pricing measure), i.e.

Sdt = s0e
σW d

t +(r−σ2/2)t, 0 ≤ t ≤ T,

where W d, d = 1, . . . , D, are independent standard Brownian motions, s0 is the initial stock price and σ is
the stock volatility. Following one of the specifications in Desai et al. [2012], we choose:

D = 4, J = 54, T = 3, K1 = s0 = 100, K2 = 170, r = 0.05, σ = 0.2.

Desai et al. [2012] state a price estimate with a negative bias of 41.541 and one with a positive bias of 43.853
for this problem, where the latter one was computed via direct empirical dual minimization and serves as a
benchmark for our experiments.

Following a standard procedure in financial engineering, we do not attempt to choose generic basis martin-
gales and to run the algorithm into convergence, but rather fix a problem-specific martingale basis. We aim at
showing that the variance benefits of the randomized dual minimization also lead to significant improvements
in this pre-limit situation. Specifically, we construct martingale families as follows. Denote by

yi =
i∏

j=1

1{maxd=1,...,D Sd
tj
≤K2}

the indicator function that the option has not been knocked-out up to time ti. Let

∆M1
i = yi

(
max

d=1,...,D
Sdti −K1

)
+

− E
[
yi

(
max

d=1,...,D
Sdti −K1

)
+

∣∣∣∣Fti−1

]
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and
∆M2

i = yi max
d=1,...,D

Sdti − E[yi max
d=1,...,D

Sdti |Fti−1
],

where the conditional expectations are estimated by one layer of nested Monte-Carlo with 500 inner simula-
tions in the practical implementation. We consider the two martingale families

M̃i(ψ) = ψ1

i∑
j=1

∆M1
j + ψ2

i∑
j=1

∆M2
j , ψ ∈ R2

and

Mi(ψ) =
i∑

j=1

ψj∆M
1
j +

i∑
j=1

ψJ+j∆M
2
j , ψ ∈ R2J

In the first family, we build two martingales based on the martingale increments ∆M1, resp. ∆M2 and fit
two parameters, one for each martingale. We refer to this family as the global case or time-independent case
below. In the second family, we fit one parameter for each increment ∆M ι

i of each martingale, and refer to
this situation as the local case or time-dependent case. In this time-dependent case, we have to fit a total of
108 parameters (since J = 54).

We compare below the cases without randomization of Z0 and with randomization. In the case of initial
randomization we let Z(A)

0 := A := |ξ|, where ξ is Gaussian with mean a and variance b2. In order to study
the influence of the randomization distribution we consider the three cases

(a, b2) ∈ {(30, 40), (30, 4), (40, 40)}.

In the figures below, we denote the various settings by:

� global: the two-parametric martingale family M̃(ψ), ψ ∈ R2 and no initial randomization.

� (a, b2): the time-dependent martingale family M(ψ), ψ ∈ R108 and the initial randomization based
on the Gaussian ξ with mean a and variance b2.

The general implementation is analogous to the first numerical example. In the training step, we generate n
independent copies (Aν , Zν

i ,∆M
1,ν
i ,∆M2,ν

i , i = 1, . . . , J), ν = 1, . . . , n, of (A,Zi,∆M
1
i ,∆M

2
i , i =

1, . . . , J). In the randomized, time-dependent case, we consider the randomized empirical dual minimization
problem

arg inf
ψ∈R108

(
1

n

n∑
ν=1

max
i=0,...,J

(Z
(A),ν
i −Mν

i (ψ))

)
and find a minimizer ψ∗,n by applying MATLAB®’s interior point algorithm to the linear programming formu-
lation of this problem. We proceed in the same way in the non-randomized case, replacing Z(A) by Z , and
in the global basis case, replacing Mν(ψ) by the two-parametric family M̃ν(ψ).

In the testing step, we simulate (with a slight abuse of notation) a new independent sample
(Zµ

i ,∆M
1,µ
i ,∆M2,µ

i , i = 1, . . . , J), µ = 1, . . . , N, of (Zi,∆M
1
i ,∆M

2
i , i = 1, . . . , J). This sam-

ple is then applied to compute the empirical mean

YN,n =
1

N

N∑
µ=1

max
i=0,...,J

(Zµ
i −M

µ
i (ψ∗,n)),

the empirical standard deviation

ΣN,n =

√√√√ 1

N − 1

N∑
µ=1

(
max
i=0,...,J

(Zµ
i −M

µ
i (ψ∗,n))− YN,n

)2

DOI 10.20347/WIAS.PREPRINT.2884 Berlin 2021



D. Belomestny, C. Bender, J.G.M. Schoenmakers 20

Algorithm \ n 2000 4000 6000

global 43.89 43.84 43.82
no randomization 44.07 43.97 43.93

local 44.67 44.03 43.92
no randomization 45.87 44.63 44.37

local 43.88 43.74 43.68
randomization (30,40) 44.08 43.84 43.75

local 43.85 43.76 43.71
randomization (40,40) 43.96 43.84 43.77

local 43.90 43.75 43.69
randomization (30,4) 44.09 43.90 43.78

Table 1: Upper biased estimate (empirical mean; solid) and 97.5 % upper confidence bound (italic) for the
option price in dependence of the number of training samples n for various algorithm specifications. The
numbers represent the average over the 20 runs of each algorithms.

of the pathwise maximum for the original non-randomized problem, and the 97.5% upper confidence bound
YN,n + 1.96 · ΣN,n for the option price (with M replaced by M̃ in the global basis case).

In our simulation study, we letN = 10n and vary the number of training paths n. We repeat 20 runs of each
algorithm specification. The results are summarized in Table 1 and Figures 5 and 6, which show boxplots
of the 20 empirical means and empirical standard deviations of the different algorithm specifications as the
number of training paths varies from n = 2000 to n = 6000. The ‘global’ specification (two basis mar-
tingales, no randomization) achieves (upper biased) approximations for the option price Y ∗0 , which slightly
improve as n increases and vary around 43.83. As expected, these estimates without randomization are
comparable to the bounds obtained by Desai et al. [2012] with similar, but different basis martingales. In the
presence of the randomization, the same moderate number of optimization paths is sufficient to stably fit
the time-dependent martingale family with 108 parameters. This larger family leads to an improved upper
biased estimate of around 4.7 for the three different randomizations (when n = 6000). The variability of the
empirical means for each algorithm specification, observed in Figure 5 can be easily explained by the central
location of the empirical standard deviation (shown in Figure 6) in conjunction with the moderate number of
evaluation paths N . Figure 6 also shows the variance reduction effect of the randomization: The median of
the empirical standard deviations under each of the three radomizations is significantly below the one for the
nonrandomized global specification. In line with the theoretical result in Theorem 4.2, the variance reduction
effect but also a higher stability of the optimization step (for which we may take a low variability of the em-
pirical standard deviations as an indicator) are more pronounced when the randomization distribution has a
relatively flat density (b2 = 40 compared to b2 = 4). We also remark that, in each of the algorithm specifi-
cations, the run time increases (by and large) linearly in the number of training paths which is proportional
to the number of non-zero entries in the sparse constraint matrix of the linear program. Quite surprisingly,
there are no significant differences in the run time for the global case (2 parameters, no randomization)
and the three time-dependent specifications (108 parameters) with randomization in our implementation. At
n = 6000 optimization paths, the largest average run-time (over the 20 runs) has even been observed for
the time-independent case without randomization.

For comparison, Figure 7 exhibits boxplots for the empirical means and standard deviations for the time-
dependent martingale basis run without randomization. The moderate number of optimization paths is clearly
not sufficient to obtain a stable fit of the 108 parameters without randomization (note the different scales on
the y-axis compared to Figures 5 and 6).

To summarize, in the typical situation in financial engineering, where a small number of basis martingales
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Figure 5: Boxplot of the 20 empirical means for different algorithm specifications for n = 2000, 4000, 6000.

has been fixed, the initial randomization brings in the opportunity to improve the upper bound estimates by
stably fitting time-dependent parameters (one for each martingale increment), which is out of reach for the
direct dual minimization algorithm of Desai et al. [2012] with a moderate size of the optimization sample.

7 Proofs

7.1 Preliminaries

For a generic initial time i = 0, ..., J the optimal stopping problem is defined as

Y ∗i = ess sup
τ∈Ti

E[Zτ |Fi],

where Ti denotes the set of {i, . . . , J}-valued stopping times. By arguments analogue to (i) and (ii) in
Section 2, one obviously has that for every M ∈M and i = 0, . . . , J ,

E[ max
j=i,...,J

(Zj − (Mj −Mi))|Fi] ≥ sup
τ∈Ti

E[ max
j=i,...,J

(Zτ − (Mτ −Mi))|Fi] = Y ∗i , (7.1)

and moreover for i = 0, . . . , J one has for the Doob martingale (1.4)

max
j=i,...,J

(Zj − (M∗
j −M∗

i )) = Y ∗i , a.s., . (7.2)
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Figure 6: Boxplot of the 20 empirical standard deviations for different algorithm specifications for n =
2000, 4000, 6000.

Figure 7: Boxplot of the 20 empirical means (left) and standard deviations (right) for n = 2000, 4000, 6000
for the time dependent martingale familyM(ψ) without randomization. The solid line (left) shows the average
empirical mean obtained from the initial randomization (30, 40) with n = 6000 for comparison.
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We now provide a characterization of the set M◦◦ of surely optimal martingales, which is crucial for the
proof of Theorem 4.1. To this end, we introduce the notation

M◦◦(a) :={M ∈M : max
i=0,...,J

(Z
(a)
i −Mi) = max{a, y∗}, a.s.}

M◦(a) :={M ∈M : E[ max
i=0,...,J

(Z
(a)
i −Mi)] = max{a, y∗}}

for sets of (surely and weakly) optimal martingales, after changing the initial value of the cashflow to the real
number a ≥ 0.

Lemma 7.1 (i)M◦◦ =M◦(y∗) =
⋂
a≥0M◦◦(a)

(ii) If M ∈M \M◦◦, then there is an ε > 0 such that M ∈M \M◦(a) for every a ∈ (y∗ − ε, y∗ + ε).

Proof. (i) Denote
M̃ := {M ∈M : max

1=1,...,J
(Zi −Mi) = y∗, a.s.}.

Since the inclusions
⋂
a≥0M◦◦(a) ⊂M◦◦ and

⋂
a≥0M◦◦(a) ⊂M◦(y∗) are obvious, it suffices to show

the inclusions
M◦(y∗) ⊂ M̃, M◦◦ ⊂ M̃, M̃ ⊂

⋂
a≥0

M◦◦(a).

M◦(y∗) ⊂ M̃: Note first that, for every M ∈M,

E[ max
j=1,...,n

(Zj −Mj)] ≥ y∗. (7.3)

Indeed, taking expectation in (7.1) for i = 1 yields

E[ max
j=1,...,n

(Zj −Mj)] ≥ E[Y ∗1 ].

However y∗ = max{E[Y ∗1 ], Z0} = E[Y ∗1 ], since Z0 = 0 and Y ∗ inherits the nonnegativity from Z . We
now fix some M ∈M◦(y∗). Then,

E[max{y∗, max
i=1,...,n

(Zi −Mi)}] = E[ max
i=0,...,J

(Z
(y∗)
i −Mi)] = y∗,

which yields maxi=1,...,n(Zi −Mi)} ≤ y∗ a.s. Now (7.3) implies

max
i=1,...,n

(Zi −Mi) = y∗, a.s.,

i.e. M ∈ M̃.

M◦◦ ⊂ M̃: If M ∈M◦◦, then
max
i=0,...,n

(Zi −Mi) = y∗, a.s.

As y∗ > 0 and (Z0 −M0) = 0, we obtain

max
i=1,...,n

(Zi −Mi) = y∗, a.s.,

i.e. M ∈ M̃.

M̃ ⊂
⋂
a≥0M◦◦(a): Let M ∈ M̃. Then, for every a ≥ 0,

max
i=0,...,J

(Z
(a)
i −Mi) = max{a, max

i=1,...,n
(Zi −Mi)} = max{a, y∗}, a.s.,
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i.e. M ∈M◦◦(a).

(ii) By (i), if M /∈M◦◦, then it is not optimal for Z(y∗), i.e. the map

f : R→ R, a 7→ E[ max
i=0,...,J

(Z
(a)
i −Mi)]−max{a, y∗}

satisfies: f(y∗) > 0. Since f is continuous, there is an ε > 0 such that f(a) > 0 for every a ∈ (y∗ −
ε, y∗ + ε), or, equivalently, M /∈M◦(a) for every a ∈ (y∗ − ε, y∗ + ε).

7.2 Proof of Proposition 2.1

We recall thatM∗ denotes the Doob martingale of the Snell envelope Y ∗ of Z . Let bk := P(Bk). We define
a sequence of martingales by Mk

0 = 0 and

Mk
i = M∗

i + y∗1Bk
− y∗bk

1− bk
1Bc

k
, i = 1, . . . , J.

As M∗ is a martingale starting at 0, Bk ∈ F1 and F0 is trivial, the martingale property of Mk is a simple
consequence of

E

[
y∗1Bk

− y∗bk
1− bk

1Bc
k

]
= 0.

Since Z0 = 0 and y∗ > 0, we observe that Y ∗1 −M∗
1 = y∗. Then, by (7.1),

max
i=0,...,J

(Zi −Mk
i ) =

(
max
i=1,...,J

(Zi −M∗
i )− y∗1Bk

+
y∗bk

1− bk
1Bc

k

)
+

=

(
Y ∗1 −M∗

1 − y∗1Bk
+

y∗bk
1− bk

1Bc
k

)
+

= y∗ − y∗1Bk
+

y∗bk
1− bk

1Bc
k
.

Hence,

E

[
max
i=0,...,J

(Zi −Mk
i )

]
= y∗,

i.e. Mk ∈M◦ for every k ∈ N. Moreover,

Var

(
max
i=0,...,J

(Zi −Mk
i )

)
= y∗bk

(
1 +

bk
1− bk

)
→∞, (k →∞).

7.3 Proof of Proposition 3.1

Let us observe that

max(Z1 −M1(γ), Z2 −M2(γ)) = −M1(γ) + max(Z1, Z2 +M1(γ)−M2(γ))

= −γM∗
1 + max(Z1, Z2 + EF1 [Z2]− Z2)

= −γY ∗1 + γy∗ + max(Z1,EF1 [Z2])

= (1− γ)Y ∗1 + γy∗

= Y ∗1 + γ(y∗ − Y ∗1 ).

Since 0 ≤ y− < Y ∗1 < y+ almost surely, it is not difficult to see that

Y ∗1 + γ(y∗ − Y ∗1 ) = (1− γ)Y ∗1 + γy∗ ≥ 0 almost surely if γ− ≤ γ ≤ γ+.
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One thus has Z(γ) = Y ∗1 + γ (y∗ − Y ∗1 ) for γ− ≤ γ ≤ γ+ and so, for γ− ≤ γ ≤ γ+, E [Z(γ)] = y∗ and
Var [Z(γ)] = (1− γ)2Var [Y ∗1 ] , i.e. (i) is proved.

For arbitrary γ ∈ R we have
Z(γ) = (Y ∗1 + γ (y∗ − Y ∗1 ))+ , (7.4)

which is piecewise linear in γ, with a kink at Y ∗1 /(Y
∗

1 − y∗) (which is almost surely finite). We so consider
the estimator

Zn(γ) =
1

n

n∑
i=1

(
Y
∗(i)

1 + γ(y∗ − Y ∗(i)1 )
)+

.

Obviously, the function γ → Zn(γ) is nonnegative and convex. Moreover, since Y ∗1 has a density, we have
almost surely a set of mutually different kink points

γ(i) = γ
(i)
kink =

Y
∗(i)

1

Y
∗(i)

1 − y∗
= 1 +

y∗

Y
∗(i)

1 − y∗
, i = 1, ..., n.

Thus, we see from (3.3) that

γ(i) > γ+ if Y
∗(i)

1 > y∗ and γ(i) < γ− if Y
∗(i)

1 < y∗, (7.5)

hence γ(i)
kink /∈ [γ−, γ+] , i = 1, ..., n with probability one. Suppose that Zn(γ) is constant on an interval

[γ(i0), γ(i′0)] for two neighbored kink points γ(i0) < γ(i′0) (hence no further kinks in between). Then, it is easy
to see by convexity that

Zn(γ) = min
γ′∈R
Zn(γ′) for γ(i0) ≤ γ ≤ γ(i′0).

Moreover, since Zn(γ) is differentiable on (γ(i0), γ(i′0)) we must have for γ(i0) < γ < γ(i′0),

Z ′n(γ) = 0 =
1

n

n∑
i=1

(y∗ − Y ∗(i)1 )H
(
Y
∗(i)

1 + γ(y∗ − Y ∗(i)1 )
)

(7.6)

=
1

n

∑
γ(i)≤γ(i0)

(y∗ − Y ∗(i)1 )H
(
Y
∗(i)

1 + γ(y∗ − Y ∗(i)1 )
)

+
1

n

∑
γ(i)>γ(i0)

(y∗ − Y ∗(i)1 )H
(
Y
∗(i)

1 + γ(y∗ − Y ∗(i)1 )
)
,

where H = 1[0,∞) denotes the Heaviside function. It is clear that,

Y
∗(i)

1 + γ(y∗ − Y ∗(i)1 ) > 0 if and only if (7.7)(
y∗ − Y ∗(i)1 > 0 and γ > γ(i)

)
or

(
y∗ − Y ∗(i)1 < 0 and γ < γ(i)

)
.

Thus (7.6) implies∑
γ(i)≤γ(i0)

(y∗ − Y ∗(i)1 )1{
y∗−Y ∗(i)1 >0

} =
∑

γ(i)>γ(i0)

(Y
∗(i)

1 − y∗)1{
y∗−Y ∗(i)1 <0

} ≥ 0. (7.8)

It is easy to see that the event that both sums are strictly positive and equal has probability zero since the
Y
∗(i)

1 are i.i.d. and have a density by assumption. If both sums in (7.8) are zero we must have

y∗ − Y ∗(i)1 ≤ 0 for all γ(i) ≤ γ(i0) and

y∗ − Y ∗(i)1 ≥ 0 for all γ(i) > γ(i0).
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Then by (7.5) it follows (with probability one) that γ(i0) > γ+ and γ(i′0) < γ−, which contradicts γ(i′0) > γ(i0).
We so conclude that with probability one there is a unique iinf

n such that

γ inf
n := γ(iinf

n ) ∈
{
γ(i) : i = 1, ...n

}
with γ inf

n = arg min
γ∈R
Zn(γ),

and in particular γ inf
n /∈ [γ−, γ+].

Let us next show that
arg min

γ∈R
E [Z(γ)] = [γ−, γ+].

By (i), it is enough to show that for any γ > γ+ or γ < γ− one has that E [Z(γ)] > y∗. Indeed, suppose
that for some γ > γ+ one has

E [Z(γ)] = E
[
(Y ∗1 + γ (y∗ − Y ∗1 ))+] = y∗.

It then follows by y∗ = E [Y ∗1 ] that

E
[
(Y ∗1 + γ (y∗ − Y ∗1 ))+ − (Y ∗1 + γ (y∗ − Y ∗1 ))

]
= 0. (7.9)

Then, since for any real x, x+ − x ≥ 0, (7.9) implies (Y ∗1 + γ (y∗ − Y ∗1 ))+ = Y ∗1 + γ (y∗ − Y ∗1 ) almost
surely. However, for γ > γ+ one has Y ∗1 +γ (y∗ − Y ∗1 ) < 0 for Y ∗1 > y∗+ y∗/(γ−1), hence for an event
with positive probability, since y∗ + y∗/(γ − 1) < y+ for γ > γ+. The case γ < γ− goes analogue.

After the above preparations we may now straightforwardly apply Thm. 4 in Shapiro [2003] and conclude that

E
[
Z(γi

inf

n )
]
n→∞→ inf

γ∈R
E [Z(γ)] = y∗ and,

[γ−, γ+] 63 γiinf

n → {γ−, γ+} for n→∞ a.s. (7.10)

The expression in (3.5) follows directly from (i).

7.4 Proof of Theorem 4.1

(i) Note that, by Fubini’s theorem,

Φ(M) := E[ max
i=0,...,J

(Z
(A)
i −Mi)] =

∫
E[ max
i=0,...,J

(Z
(a)
i −Mi)]PA(da), M ∈M, (7.11)

where PA denotes the distribution of A. If M /∈M◦◦, then, by Lemma 7.1(ii), there is an ε > 0 such that

E[ max
i=0,...,J

(Z
(a)
i −Mi)] > max{a, y∗}, a ∈ (y∗ − ε, y∗ + ε).

By assumption PA((y∗ − ε, y∗ + ε)) > 0. Moreover, by the duality (1.2) with Z(a) in place of Z ,

E[ max
i=0,...,J

(Z
(a)
i −Mi)] ≥ max{a, y∗}, a ∈ R.

Hence, ∫
E[ max
i=0,...,J

(Z
(a)
i −Mi)]PA(da) > E[max{A, y∗}],

which, in view of (7.11), implies Φ(M) > E[max{A, y∗}].
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If M ∈M◦◦, then, by Lemma 7.1-(i), M ∈M◦◦(a) for every a ≥ 0, i.e.

E[ max
i=0,...,J

(Z
(a)
i −Mi)] = max{a, y∗}, a ≥ 0.

Integrating the previous identity with respect to PA yields, thanks to (7.11): Φ(M) = E[max{A, y∗}].
2. Consider the function

ϕ(a) = E[max{A, y∗ + a} −max{A, y∗}], a ≥ 0.

Note that

ϕ(a) ≥ E[(max{A, y∗ + a} −max{A, y∗})1{A≤y∗}] = aP({A ≤ y∗}), a ≥ 0. (7.12)

Let a := E[maxj=0,...,J(Zj −Mj)] − y∗ for some fixed M ∈ M, and note that P({A ≤ y∗}) > 0 by
assumption. Then we obtain by (7.12) and by Jensen’s inequality, exploiting the independence of A and FJ ,

E[ max
j=0,...,J

(Zj −Mj)]− y∗

≤ 1

P({A ≤ y∗})
E[max{A,E[ max

j=0,...,J
(Zj −Mj)|A]} −max{A, y∗}]

≤ 1

P({A ≤ y∗})
E[max{A, max

j=0,...,J
(Zj −Mj)} −max{A, y∗}]

=
1

P({A ≤ y∗})

(
E[ max
j=0,...,J

(Z
(A)
j −Mj)]− E[max{A, y∗}]

)
,

which concludes the proof of the bias estimate.

7.5 Proof of Theorem 4.2

Consider the function

ϕ(a) = E[max{A, y∗ + a} −max{A, y∗}], a ∈ R.

We note that

ϕ(a) =

∫ y∗+a

y∗
(y∗ + a− u)f(u)du+ aP({A ≤ y∗}), a ∈ R, (7.13)

which follows for a ≥ 0 by a direct computation. The identity also holds for a < 0, since

ϕ(a) =

∫ y∗

y∗+a

(u− y∗)f(u)du+ aP(({A ≤ y∗ + a})

=

∫ y∗+a

y∗
(y∗ + a− u)f(u)du+ aP({A ≤ y∗}).

We now fix K > y∗ and M ∈M≤K , and define

∆ := max
j=0,...,J

(Zj −Mj)− y∗.

As E[∆] ≥ 0, Eq. (7.13) yields

E[ϕ(∆)] ≥ E

[∫ y∗+∆

y∗
(y∗ + ∆− u)f(u)du

]
.
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Let f ∗ := minx∈[y∗/3,K] f(x) and note that f ∗ > 0. Then, on the one hand,

E

[∫ y∗+∆

y∗
(y∗ + ∆− u)f(u)du1{∆≥−2y∗/3}

]
≥ f ∗E

[∫ y∗+∆

y∗
(y∗ + ∆− u)du1{∆≥−2y∗/3}

]
=
f ∗

2
E[∆21{∆≥−2y∗/3}].

On the other hand,

E

[∫ y∗+∆

y∗
(y∗ + ∆− u)f(u)du1{∆<−2y∗/3}

]
≥ E

[∫ y∗

y∗/3

−(y∗ + ∆− u)f(u)du1{∆<−2y∗/3}

]
≥ f ∗

2
E[∆21{∆<−2y∗/3}]−

f ∗

2
E[(∆ + 2y∗/3)21{∆<−2y∗/3}].

Gathering terms, we obtain

E[∆2] ≤ 2

f ∗
E[ϕ(∆)] + E[(∆ + 2y∗/3)21{∆<−2y∗/3}]. (7.14)

As ∆ + y∗ ≥ 0, we observe that

−y∗/3 ≤ ∆ + 2y∗/3 < 0 on {∆ < −2y∗/3}.

Thus, by Markov’s inequality,

E[(∆ + 2y∗/3)21{∆<−2y∗/3}] ≤
(y∗)2

9
P({|∆| > 2y∗/3}) ≤ 1

4
E[∆2].

Hence, in view of (7.14) and the independence of A and ∆,

E[∆2] ≤ 8

3f ∗

(
E[max{A, max

j=0,...,J
(Zj −Mj)} −max{A, y∗}]

)
=

8

3f ∗

(
E[ max
j=0,...,J

(Z
(A)
j −Mj)]− E[max{A, y∗}]

)
.

7.6 Proof of Theorem 5.1

Let
δn := QA(ψAn )−QA(ψ◦◦) ≤ Hmax.

Notice that by the definition of ψAn we get

δn ≤
(
QA(ψAn )−QA(ψ◦◦)

)
−
(
QA,n(ψAn )−QA,n(ψ)

)
= Tn(ψAn )− Tn(ψ) +QA(ψ)−QA(ψ◦◦)

with Tn(ψ) := (E− En)(ZA(ψ)−ZA(ψ◦◦)) and

EnZA(ψ) :=
1

n

n∑
i=1

Z(i)
A (·, ψ).
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Set εn = n−2/(2+α). Since 0 ≤ QA(ψ)−QA(ψ◦◦) . n−2/(2+α), we have

δn . φn(δn),

where, for any δ > 0,

φn(δ) := sup
ψ∈Ψ(δ)

Tn(ψ) + |Tn(ψ)|+ εn, Ψ(δ) :=
{
ψ ∈ Ψ : QA(ψ)−QA(ψ◦◦) ≤ δ

}
. (7.15)

The main technical result we will invoke, in order to bound δ̄n, is the following lemma. This result follows from
the combination of arguments presented in Theorem 4.1, Corollary 4.1, and Theorem 4.3 in [Koltchinskii,
2011].

Lemma 7.2 Let {φ(δ) : δ ≥ 0} be non-negative random variables (indexed by all deterministic δ ≥ 0)
such that, almost surely, φ(δ) ≤ φ(δ′) if δ ≤ δ′. Let {β(δ, t) : δ ≥ 0, t ≥ 0}, be (deterministic) real
numbers such that

Pr
(
φ(δ) ≥ β(δ, t)

)
≤ e−t. (7.16)

Finally, let δ̂ be a nonnegative random variable, a priori upper bounded by a constant δ̄ > 0, and such that,
almost surely,

δ̂ ≤ φ(δ̂).

Then defining, for all t ≥ 0,

β(t) := inf

{
τ > 0 : sup

δ≥τ

β
(
δ, tδ

τ

)
δ

≤ 1

2

}
, (7.17)

we obtain, for all t ≥ 0,
Pr
(
δ̂ ≥ β(t)

)
≤ 2e−t.

According to Theorem 7.2, it remains to bound φn(δ) with high probability for any fixed δ > 0. The next
lemma reduces the problem to that of bounding the expected suprema of empirical processes.

Lemma 7.3 Suppose that Assumption (5.5) holds and |Z| ≤ Hmax a.s. Then, for every δ > 0 and any
t > 0,

Pr
(
φn(δ) ≥ βn(δ, t)

)
≤ 2e−t,

where,

βn(δ, t) := B

E sup
ψ∈Ψ(δ)

(E− En)∆(ψ) +

√
Hmaxt(δ + εn)

λminn
+
H2

maxt

n
+

1

n2/(2+α)

 ,

∆(ψ) := ZA(ψ)−ZA(ψ◦◦) and B > 0 is a universal constant.

Proof. We have |∆(ψ)| ≤ 2Hmax for all ψ ∈ Ψ. It then follows from the Bernstein inequality and a version
of Talagrand’s inequality due to Bousquet (see Theorem A.1) that, with probability at least 1− 2e−t,

φn(δ) . Eφn(δ) +

√
t

n

(
σ2(δ) +Hmax Eφn(δ)

)
︸ ︷︷ ︸

Bound for Tn(ψA
n )

+
Hmaxt

n
+

√
t

n
E[∆2(ψ)]︸ ︷︷ ︸

Bound for Tn(ψ)

+εn, (7.18)
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where

σ2(δ) = sup
ψ∈Ψ(δ)

E[∆(ψ)]2.

Using basic inequalities
√
u+ v ≤

√
u+
√
v and 2

√
uv ≤ u+ v for positive numbers u and v, we further

deduce that, with probability at least 1− e−t,

φn(δ) . Eφn(δ) +
(
σ(δ) +

√
E[∆2(ψ)]

)√ t

n
+
Hmaxt

n
. (7.19)

Now let us upper bound the terms σ2(δ) and E[∆2(ψ)]. Due to (5.5) we have for every ψ ∈ Ψ,

E[∆(ψ)]2 = E[|ZA(ψ)−ZA(ψ◦◦)|2] ≤ d2 (ψ, ψ◦◦) ≤ λ−1
min[QA(ψ)−QA(ψ◦◦)],

so that

σ2(δ) ≤ λ−1
minδ. (7.20)

Combining (7.19) with (7.20) and using the fact thatQA(ψ)−QA(ψ◦◦) . εn, we deduce that

φn(δ) . E sup
ψ∈Ψ(δ)

(E− En)∆(ψ) +

√
Hmaxt(δ + εn)

λminn
+
H2

maxt

n
. (7.21)

Let us now bound the expected suprema of empirical processes given in βn(δ, t) under the assumptions on
the entropy which follows from Proposition 5.2 in Viens and Vizcarra [2007].

Lemma 7.4 It holds under assumptions of Theorem 5.1,

E sup
ψ∈Ψ(δ)

(E− En)∆(ψ) ≤ Lmax√
n

∫ √δ/λmin

0

√
log [1 +N (Ψ0, d; ε)] dε

for some constant C > 0.

Using the assumption (5.7), we get

βn(δ, tδ/τ)

δ
.

Lmax

√
κ(Ψ0)√

nδ1+α/2λ
1−α/2
min

+

√
tHmax

nλminτ
+

√
εntHmax

nλminδτ
+H2

max

t

nτ
+

1

n2/(2+α)δ

yielding for

βn(t) := inf

{
τ > 0 : sup

δ≥τ

βn
(
δ, tδ

τ

)
δ

≤ 1

2

}

the inequality

βn(t) . max

{
λ
−(2−α)/(2+α)
min L4/(2+α)

max

(
κ(Ψ0)

n

)2/(2+α)

,
tHmax

n (1 ∧ λmin)

}

for n large enough.
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A Supplementary Material

In this section we have compiled some standard facts on empirical processes. We start with the well-known
concentration result, known as Bousquet’s form of Talagrand’s inequality for empirical processes. It involves
a notion of variance of the empirical process

σH := sup
h∈H

√
Eh2,

which plays a crucial role in many modern proof techniques involving the local behavior of the supremum of
empirical process. The proof of the following lemma can be found in [Bousquet, 2002] or [Giné and Nickl,
2016].

Lemma A.1 Suppose that all functions in H are [a, b]-valued, for some a < b. Then, for all n ≥ 1 and all
t > 0,

sup
h∈H

(E− En)h ≤ E sup
h∈H

(E− En)h+

√
2t

n

(
σ2
H + 2(b− a)E sup

h∈H
(E− En)h

)
+

(b− a)t

3n
,

with probability larger than 1− e−t.

Lemma A.2 Let (Xt), t ≥ 0 be an R-valued, continuous square integrable martingale with X0 = 0, and τ
a bounded stopping time. Then, it holds for every ε > 0, Γ > 0,

P

(
sup
t∈[0,τ ]

|Xt| > ε, [X]τ ≤ Γ

)
≤ 2 exp

(
− ε

2

2Γ

)
, (A.1)

where ([X]t)t≥0 is quadratic variation process of X.
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