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Maximal mixed parabolic-hyperbolic regularity for the full
equations of multicomponent fluid dynamics

Pierre-Étienne Druet

Abstract

We consider a Navier–Stokes–Fick–Onsager–Fourier system of PDEs describing mass, en-
ergy and momentum balance in a Newtonian fluid with composite molecular structure. For the
resulting parabolic-hyperbolic system, we introduce the notion of optimal regularity of mixed type,
and we prove the short-time existence of strong solutions for a typical initial boundary-value-
problem. By means of a partial maximum principle, we moreover show that such a solution can-
not degenerate in finite time due to blow-up or vanishing of the temperature or the partial mass
densities. This second result is however only valid under certain growth conditions on the phe-
nomenological coefficients. In order to obtain some illustration of the theory, we set up a special
constitutive model for volume-additive mixtures.

1 Transport and mechanics for a composite Newtonian fluid

We consider a molecular mixture of N ≥ 2 chemical substances A1, . . . ,AN that constitute a fluid
phase. While being composite at the molecular level, the fluid is macroscopically homogeneous and it
obeys the continuum principles of mass, energy and momentum conservation

∂t%+ div(% v) = 0 , (1)

∂t(%u) + div(%u v + Jh) = (−p I + S) : ∇v , (2)

∂t(% v) + div(% v ⊗ v − S) +∇p = % b , (3)

with the mass density % of the fluid and the velocity field v = (v1, v2, v3). The absolute temperature
T – which does not yet occur explicitely in the PDE system (1), (2), (3) – is usually the chosen as the
additional main state variable. In (2), the function %u is the internal energy density, while Jh denotes
the heat flux. The thermodynamic pressure is denoted by p, and S is the viscous stress tensor. The
field b in (3) denotes the external forces.

To solve these PDEs in some domain Ω×]0, τ̄ [ of R4, closure equations relating %u, p and Jh, S, b
to the main variables are further needed. For single component fluids, the thermodynamic state is ex-
pressed by the absolute temperature T and the density %, and (1), (2), (3) leads to the Navier–Stokes–
Fourier system. On the contrary, for multicomponent fluids, all thermodynamic driving mechanisms are
essentially affected by the molecular composition. Not only the constitutive equations for %u and p, but
also the material parameters occuring in the definition of the heat flux (thermodynamic diffusivities)
and the stress tensor (viscosity coefficients) depend on which composition of the N substances is
locally available.

The thermodynamic state of a mixture is thus locally expressed by N + 1 variables1

T – absolute temperature, ρ = (ρ1, . . . , ρN) – partial mass densities. (4)

1Depending on the context, other sets of variables might arise, which is commented below.
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P.-É. Druet 2

The partial mass density ρi is the mass of the component Ai available per unit volume of the mixture2.
With this definition, the mass density of the fluid is nothing else but the sum of the partial mass
densities: % :=

∑N
i=1 ρi for which reason it shall be called the total mass density. The mass transport

in a multicomponent fluid is described, instead of having only one scalar conservation law (1) for
the mass, by N partial mass balances driving the densities ρ1, . . . , ρN . It might also be practically
useful to specify different body forces b1, . . . , bN for the different species (This occurs for instance
for charge carriers). In general, the mass and energy transport, and the mechanical behaviour of a
multicomponent fluids in Ω×]0, τ̄ [, are described by the equations

∂tρi + div(ρi v + J i) = ri , for i = 1, . . . , N , (5)

∂t(%u) + div(%u v + Jh) = (−p I + S) : ∇v +
N∑
i=1

J i · bi , (6)

∂t(% v) + div(% v ⊗ v − S) +∇p =
N∑
i=1

ρi b
i . (7)

These PDEs (5), (6), (7) form the basic equation of multicomponent fluid dynamics. With i denoting
the mass flux of substance Ai, the mass diffusions fluxes J1, . . . , JN are defined via

J i := i − ρi v ,

as the non-convective part of the mass fluxes. To remain consistent with the continuity equation (1),
one has to postulate that

N∑
i=1

i = % v or, equivalently,
N∑
i=1

J i = 0 . (8)

This means that diffusive transport does not result, at the continuum level, into a net mass flux – which
would have to be associated with mechanical motion. Likewise, the production functions r1, . . . , rN
modelling chemical reactions conserve the total mass, and therefore we must have

∑N
i=1 ri = 0.

Depending on the choice of the thermodynamic potential, which will be discussed just hereafter, dif-
ferent characterisations of %u are possible. In any case, the internal energy density possesses an
expression

%u = ε(T, ρ1, . . . , ρN) , (9)

with a certain constitutive function ε of the main thermodynamic state-variables (4).

The constitutive equations for the diffusion fluxes and the heat flux rely on the laws of Fick, Onsager
and Fourier, more specifically

J i =−
N∑
j=1

Mij

(
∇µj
T
− bj

T

)
+ li∇

1

T
,

N∑
i=1

Mij = 0 for all j and
N∑
i=1

li = 0 , (10)

Jh =−
N∑
j=1

lj

(
∇µj
T
− bj

T

)
+ κ∇ 1

T
. (11)

2The same function was also called the apparent mass density of Ai, see [LT98].
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Multicomponent fluid dynamics 3

In (10), {Mij} is a symmetric, positive semi-definite N ×N matrix, and κ in (11) is a positive scalar.
The coefficients lj with j = 1, . . . , N allow to describe thermo-diffusion. The thermodynamic diffu-
sion coefficients Mij , lj and κ in general exhibit a strong dependence on the state variables T and
ρ1, . . . , ρN .

Hereby, as shown for instance in [BD20], section D, consistency with the second law of thermodynam-
ics requires that the (N + 1)× (N + 1) matrix

M(T, ρ1, . . . , ρN) =

(
{M(T, ρ1, . . . , ρN)} (l(T, ρ1, . . . , ρN)
(l(T, ρ1, . . . , ρN) )T κ(T, ρ1, . . . , ρN)

)
(12)

is positive semi-definite on all states (T, ρ1, . . . , ρN) ∈ RN+1
+ .3 This can be achieved for instance

requiring

li = −
N∑
j=1

Mij l̃j for i = 1, . . . , N, κ = κ̃+Ml̃ · l̃ , (13)

where κ̃ > 0 and l̃1, . . . , l̃N are functions of the state variables.

If the matrixM(T, ρ) which occurs in (10) possesses rankN −1, thenM(T, ρ) possesses rankN
and, due to the constraint in (10)2, the kernel ofM is the span of the vector (1, . . . , 1, 0) in RN+1.
The entries inM are the so-called thermodynamic diffusivities. Details concerning their modelling by
the Fick–Onsager or Maxwell–Stefan equations are to be found for instance in [BD15], [BD20] and
further references given there.

In (10) and (11) we have introduced the (mass-based) chemical potentials µ1, . . . , µN . In this pa-
per, the constitutive theory relating the thermodynamic state variables follows the postulates of local
thermodynamics and the theory of irreversible processes in the fashion of [MR59], [dM63].4 A very
comprehensive overview of the models of ideal gas dynamics, and beyond, is offered by the book
[Gio99].

We start with the assumption that the entropy of the system possesses only a bulk contribution with
density %s, which is of the special form

%s = −h(ρ1, . . . , ρN , %u) . (14)

The constitutive function h : D ⊆ RN
+ × R → R is assumed strictly convex and sufficiently smooth

in its domain D. It is to remark that, in local thermodynamics, the natural variables of the entropy
functional are not T and ρ1, . . . , ρN but rather %u and ρ1, . . . , ρN which are the quantities directly
subject to conservation laws. However, attempts to construct the entropy functional from available data
frequently use other variables like T and ρ1, . . . , ρN or, even better, T , the thermodynamic pressure
p, and the mole fractions x1, . . . , xN . We refer to [BDD], or to [Gio99], Section 6 for details. In Section
7, we shall discuss an explicit example for the constitutive theory of volume-additive mixtures.

With the entropy functional at hand, we have the following well-known definitions relating the chemical
potentials and the internal energy density to the state variables

− 1

T
= ∂%uh(ρ1, . . . , ρN , %u) and

µi
T

= ∂ρih(ρ1, . . . , ρN , %u) for i = 1, . . . , N . (15)

3We define R+ :=]0, +∞[ and RN+ = (R+)
N .

4Personally I learned to know these notions with the more recent [BD15], [Guh14] or [DGM18].
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We introduce the (N + 1)−vector of extended state variables

wi := ρi for i = 1, . . . , N , wN+1 := %u , (16)

to denote the variables occurring in the entropy functional. The combinations

w∗i :=
µi
T

for i = 1, . . . , N , w∗N+1 := − 1

T
, (17)

are the dual variables, also called the ”entropic variables” (See [Gio99], Ch. 8.4 or [Jün15]).

The thermodynamic pressure p that occurs in (6) and (7) obeys the Gibbs-Duhem equation

p = −%u+ T %s+
N∑
i=1

ρi µi . (18)

With the variables in (16), we also have

p = T

(
−%u 1

T
+ %s+

N∑
i=1

ρi
µi
T

)
= T

(
− h(w) +

N+1∑
i=1

wi ∂wih(w)
)

= T g(∇wh(w)) ,

(19)

where g is the classical Legendre transform of h.

In the Navier-Stokes equations (7), the viscous stress tensor is denoted S. We restrict to the choice

S = λ(T, ρ1, . . . , ρN) (div v) I+2 η(T, ρ1, . . . , ρN) (∇v)sym with λ ≥ 0, λ+
2

3
η ≥ 0 . (20)

In general, the viscosity coefficients are functions of the state variables T and ρ as well. The vector
fields b1, . . . , bN occurring in (7) are external body forces, depending on space and time and assumed
given.

To close the equations (5), (6), (7) it remains to explain the reaction terms ri. We do not enter the
details how to choose these functions, and we assume that ri = ri(T, ρ1, . . . , ρN) are certain func-
tion of the state variables. As explained above, these ri are subject to

∑N
i=1 ri ≡ 0. In order to reach

thermodynamic consistency with the second law without cross-effects between the different dissipa-
tive mechanisms, it is usual to require that

∑N
i=1 ri µi/T ≤ 0. Examples and some discussions are

to be found, a.o. in [AB21a, HMPW17, DDGG20], and of course in many other references.

A boundary-value-problem. We shall investigate the system (5), (6), (7) in a cylinderQτ̄ := Ω×]0, τ̄ [
with bounded cross-section Ω ⊂ R3 and τ̄ > 0.

We impose initial conditions for the state variables and the velocity field via

ρi(x, 0) = ρ0
i (x) for i = 1, . . . , N ,

T (x, 0) = T0(x) ,

vj(x, 0) = v0
j (x) for j = 1, 2, 3 ,

for x ∈ Ω . (21)

Then, under the assumption (9), we also obtain the initial state of the internal energy via

%0u0(x) := %u(x, 0) = ε(T0(x), ρ0
1(x), . . . , ρ0

N(x)) for x ∈ Ω . (22)
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Multicomponent fluid dynamics 5

On the lateral surface ∂Ω×]0, τ̄ [= Sτ̄ , we for simplicity consider no-slip boundary conditions for the
velocity field, and conditions of reaction-type for the transport of mass and energy. These read

v = 0 ,

ν · J i = −rΓ
i + JΓ

i for i = 1, . . . , N , ν · Jh = −rΓ
h + JΓ

h ,
on Sτ̄ , (23)

where rΓ
i and rΓ

h are certain functions of the state variables T and ρ1, . . . , ρN and also of (x, t). The
contributions JΓ

i and JΓ
h are given functions of space and time. The data rΓ

i and JΓ
i are moreover

subject to the side conditions

N∑
i=1

rΓ
i = 0 ,

N∑
i=1

JΓ
i = 0 .

The conditions (23) for the mass fluxes describe exchange processes at the boundary: sorption phe-
nomena or chemical reactions with adjacent matter. In [DDGG20], we for instance derived this type
of boundary conditions from the more general principles of surface thermodynamics for electrolyte-
electrode interactions exposed in [Guh14], [DGM18]. We also refer to [AB21a, AB21b] for interesting
discussions in the context of catalysis, or to [BP17]. For the heat flux, typical are for instance cooling
conditions like −rΓ

h (x, t, T ) = α (T − T ext(x, t)), where T ext is the given external temeprature and
α a positive coefficient.

Thermodynamic state variables.

Beside the main variables T and ρ1, . . . , ρN introduced in (4), we encounter in this investigation
different sets of thermodynamic variables. At first, the natural variables of the entropy functional are

(ρ1, . . . , ρN , %u) . (24)

With the molar masses M1, . . . ,MN > 0 of the constituents, we introduce

ni :=
ρi
Mi

–mole density, n =
N∑
i=1

ni –total mole density, xi =
ni
n

–mole fraction.

A second equivalent set of variables is

(T, p, x1, . . . , xN) , (25)

which shall be used in connection with the discussion of ideal mixtures and the construction of the
entropy functional.

For the PDE-analysis, the relevant set of variables relies partly on the dual variables and reads(
%,
µ1 − µN

T
, . . . ,

µN−1 − µN
T

, − 1

T

)
. (26)

It can be shown that, in the stable fluid phase, the sets of state variables (4), (24), (25) and (26) are
equivalent, meaning that there exist smooth bijections transforming these vectors into one another.
These bijections shall be introduced below whenever needed.

When we estimate a function of the state variables (free energy, pressure, internal energy, etc.) or
want to calculate its derivatives using the chain rule, there is the typical problem how to indicate in
which variables this function is currently expressed. The clearest way is certainly using superspripts.
For instance, if %ψ is the Helmholtz free energy, we denote %̃ψ its representation in (T, ρ1, . . . , ρN),

with %̂ψ its representation in (T, p, x1, . . . , xN), and so on. However, since we encounter here at
least four different sets of variables, we often shall prefer to rely on the context than to introduce a
completely consequent, but heavy system of notations.
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2 Multicomponent systems and mathematical analysis

Although fluids with composite molecular structure are omnipresent in every-day life and applications,
the basic PDEs describing their behaviour have been, comparatively to their relevance, rather less
studied from the viewpoint of mathematical analysis. There might exist several reasons explaining
this fact, among them certainly the two following ones. At first, the complexity of the underlying ther-
modynamic models makes investigations in this area long and involved. At second there are tough,
yet unsolved mathematical problems already in the single-component case, like the global existence
of regular solutions or handling the quadratic terms on the right-hand of the energy equation. Such
difficulties are rather amplified by the multicomponent character.

Nevertheless, through the effort of several research groups, it has become clear since several years
that multicomponent fluid dynamics raises, in PDE analysis too, interesting problems which are worth
being investigated for themselves. The consistent coupling of chemistry and mechanics necessary to
handle the basic problems of multicomponent gas dynamics leads, as exhibited in the book [Gio99],
to interesting PDE systems of mixed parabolic-hyperbolic type. We refer to the section 9, in particular
9.4, of [Gio99] for first results on existence of strong solutions in a neighourhood of the chemical
equilibrium for this type of problems.

In several subsequent investigations, the equations (5), (6), (7) or the constitutive equations (10),
(11) have been partly investigated. The paper [FPT08] deals with the global weak solution analysis
of multicomponent flow models, for the case of mixtures of mono-atomic gases. Here the diffusion
fluxes are assumed of the Fickian form J i = −D∇yi with a single common diffusivity D > 0 and
y1, . . . , yN being the mass fractions. This constitutive law preserves the condition

∑N
i=1 J

i = 0, but
the pressure and temperature contributions to the thermodynamic driving forces and the fluxes do not
occur. The constitutive theory in [FPT08] yields chemical potentials of the form µi = µ0(T, %)− T si
where si denote the partial specific entropy of the species, there assumed constant. Hence this form
of the fluxes results from another modelling strategy than (10). In [FPT08], the equation of state for the
pressure depends only on T and %. In this way, the mechanical behaviour is essentially independent on
the molecular composition. (The coupling between partial mass balance equations and the mechanics
is unilateral). This is quite different a situation than the one considered in the present investigation.

In [CJ15], [MT15] and [BP17], the total mass density % is assumed constant, so that (7) reduces
to the usual incompressible Navier-Stokes equations. In this way the hyperbolic component and the
bilateral coupling of chemistry and mechanics are avoided. This type of models can be well justified for
dilute mixtures, see [BS16]. Similar remarks apply to available investigations of the classical Nernst–
Planck model of electrochemistry, or to Navier–Stokes–Nernst–Planck: see [Rou05], [BFS14], [FS17]
or [Sch09], [CI18]. In [MPZ15], beside diverse simplifications, a ”parabolic regularisation” (Bresch–
Desjardins technique) is employed to obtain a control on the density gradient. In this case too, the
hyperbolic character is relaxed.

In [DDGG20] (electrolytes), [Dru20] (Maxwell–Stefan diffusion), we separate the hyperbolic from the
parabolic components in the spirit of the book [Gio99] to obain well-posedness results in classes of
weak solutions for isothermal systems. In [BD21a] we perform, still in the isothermal case, the local-in-
time strong solution analysis for a general thermodynamic model. Other teams have investigated the
models of ideal gas dynamics exposed in [Gio99] with different methods and focusses: Concerning
strong solutions in [PSZ19a], [PSZ19b], concerning (stationary) weak solutions in [BJPZ], [AP21].

The purpose of the present paper is mainly to prove the local well-posedness of the full system (5),
(7), (6) subject to a general thermodynamic model. This result is lacking in the literature. We show that
the approach of [BD21a] extends to non-isothermal systems driven by a general entropy functional of
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Multicomponent fluid dynamics 7

Legendre–type. In comparison to the isothermal case, the temperature is an additional constrained
parabolic variable. We deal with this new situation by combining the setting of optimal mixed regularity
for Navier–Stokes (see [Sol80] for the inspiring precursor) applied in [BD21a], and a partial maximum
principle for strong solutions. The latter technique shows that a solution with mixed regularity cannot
blow-up due to the temperature alone.

In order to illustrate our concept, we moreover develop a thermodynamically consistent explicit consti-
tutive model for volume-additive mixtures.

Since multicomponent systems are not only encountered in the context of fluid dynamics, we conclude
this section on the state of the art with a few additional remarks.

The system (5) occurs in the context of reaction-diffusion systems, with or without energy equa-
tion. These problems are essentially parabolic, but techniques like the entropic variables are obvi-
ously related to the ones in use in multicomponent fluid dynamics. We mention [JS13, Jün15, JCe17]
or, for non-isothermal problems, [PSZ20, BGL17, HJ21, FHKM] with recent interesting advances on
thermodynamically-driven reaction-diffusion equations.

The paper [DGM13] raised a few years ago – in the context of the Nernst–Planck model of elec-
trochemistry – the interesting question how pressure is handled in similar investigations. Very often
indeed, the thermodynamic constitutive hypotheses combined with the Gibbs–Duhem equation do not
yield isobaric systems. An exception is the paper [HMPW17], where the free energy is modelled to
result into an isobaric system. However, [HMPW17] assumes a constant total mass density %.

In the introduction to [AB21b], we find interesting reflexions on how mechanics is handled in reaction-
diffusion systems.

As far as reaction-diffusion systems for fluids are concerned, it is sometimes claimed that other velocity
fields are used (mainly the volume-averaged velocity) than the one occurring in Newton’s equations.
Another interesting idea is using the Darcy velocity v = −∇p in combination with the Gibbs–Duhem
equation. The resulting mass fluxes i = −ρi∇p + J i yield a full-rank reaction-diffusion parabolic
system if J i obeys (10). The Darcy velocity was for instance used in [DJ20]. However, the question
why, for certain situations, the Darcy law or other velocities can be substituted to momentum balance,
seems not to have been yet completely answered for multicompenent fluids. Sometimes v = 0 has
been postulated (See [DGM13], [Fuh15], [KZ16], [HJ21] or [Dru17a, Dru17b]) as the fastest way to
come to reaction–diffusion systems, but often the only solution consistent with momentum balance is
then the hydrostatic and chemical equilibrium. In non-equilibrium, the Navier–Stokes equations cannot
be simultaneously fulfilled.

Mixture models also occur in the context of Cahn–Hilliard equations, that have been intensively studied
from the viewpoint mathematical analysis. In the context of Cahn–Hilliard–Navier–Stokes models, a
coupling to mechanics quite in the spirit of the system (5), (6), (7) has been set up, too. We refer
to [LT98] for the modelling of two-phase (binary) mixtures quite in the same spirit than the present
investigation.

Very often, however, significant differences occur. One important aspect are the variables. In many
investigations on Cahn–Hilliard–Navier–Stokes equations, the volume-fractions are used to describe
the molecular composition of the mixture: See for instance [Boy02, AGG12] or, more recently, [CHM+],
section 3. Then the models resemble the system (5), (6), (7) but the definition of the mechanical
velocity is sometimes different, and the conservation of mass is handled differently in both approaches.

DOI 10.20347/WIAS.PREPRINT.2869 Berlin 2021
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Interesting questions arise for instance from the choice of diffusion constants: Cahn–Hilliard models
often set the mobilities (corresponding to the matrix M ) constant, while the Maxwell–Stefan approach
sets them proportional by a constant factor – the Fickian diffusivities – to the mass densities, see
[BD20].

Despite a profound relashionship between the models, from the viewpoint of mathematical analysis,
the techniques to handle reaction-diffusion systems, Cahn–Hilliard systems and the model studied in
this paper are in fact quite different. We therefore do not further discuss this point here, referring to the
Section C for some additional reflexions on the modelling topic.

3 Main results

We will first formulate our main result in terms of the main state-variables (T, ρ, v) which is a vector
of size 1+N+3. From purely structural PDE considerations, these variables are not the most natural
ones, though, since parabolic and hyperbolic components are not clearly separated. The concept of
optimal mixed regularity that we shall introduce afterwards relies on so-called entropic variables5, see
(17).

Let Ω ⊂ R3 be a bounded domain, and τ̄ a positive number. We denote byQτ̄ the cylinder Ω×]0, τ̄ [ in
R4. To formulate our results, we need several usual function spaces. We refer to standard monographs,
like for instance the second Chapter of [LSU68] or, for up-to-date language and the most recent results,
to [DHP07] with references. We introduce the parabolic Sobolev spaces

W 2,1
p (Qτ̄ ) :={u ∈ Lp(Qτ̄ ) : ∂βt ∂

α
xu ∈ Lp(Qτ̄ ) for all 0 < 2β + |α| ≤ 2} ,

W 1,0
p (Qτ̄ ) :={u ∈ Lp(Qτ̄ ) : ∂αxu ∈ Lp(Qτ̄ ) for all |α| = 1} ,

and the anisotropic Sobolev spaces over the cylinder domain

W 1,1
p,q (Qτ̄ ) := {u ∈ Lp,q(Qτ̄ ) : Dαu ∈ Lp,q(Qτ̄ ) for all |α| = 1} .

Here, Lp,q(Qτ̄ ) is the Banach–space of all Lebesgue–measurable classes over Qτ̄ with finite integral∫ τ̄
0

(
∫

Ω
|u(x, τ)|p dx)q/p dτ or, for q = +∞, with finite ess sup

τ∈[0, τ̄ ]

∫
Ω
|u(x, τ)|p dx.

We denote by W 1,1
p,∞(Qτ̄ ) the closure of C1(Ω × [0, τ̄ ]) with respect to the Lp,∞−norm. Thus, ele-

ments of this space possess continuous-in-time weak derivatives with values in Lp(Ω). We moreover
need the trace spaces

W
2− 2

p
p (Ω) :=

{
u ∈ W 1,p(Ω) : [∂xiu]

(1− 2
p

)

p,Ω < +∞ for i = 1, . . . , N
}

with [u]
(λ)
p,Ω =

(∫
Ω

∫
Ω

|u(x)− u(y)|p

|x− y|3+λ p
dxdy

) 1
p

,

W
1− 1

p
, 1
2
− 1

2p
p (Sτ̄ ) :=

{
u ∈ Lp(Sτ̄ ) : [u]

(1− 1
p

)

p,x,Sτ̄
+ [u]

( 1
2
− 1

2p
)

p,t,Sτ̄
< +∞

}
with [u]

(λ)
p,x,Sτ̄

:=

(∫ τ̄

0

∫
∂Ω

∫
∂Ω

|u(x, t)− u(y, t)|p

|x− y|2+pλ
dydxdt

) 1
p

,

[u]
(λ)
p,t,Sτ̄

:=

(∫
∂Ω

∫ τ̄

0

∫ τ̄

0

|u(x, t)− u(x, s)|p

|t− s|1+pλ
dtdsdx

) 1
p

.

5From the point of view of the mathematical structure of multicomponent fluid dynamics the relevant distinction is the one
between the total mass density, driven by hyperbolic dynamics, and other suitable components with parabolic dynamics.
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For a function rΓ = rΓ(x, t, T, ρ1, . . . , ρN), defined on Sτ̄ × RN+1
+ we write

rΓ ∈ Cλ,λ
2
,1(Sτ̄ × RN+1

+ ) ,

iff rΓ is continuous in (x, t) for all (T, ρ), continuously differentiable in (T, ρ) for all (x, t) and, for all
K ⊂ RN+1

+ compact, we have

[rΓ](λ)
x := sup

x6=y∈∂Ω, (t, T, ρ)∈]0,τ̄ [×K

|rΓ(x, t, T, ρ)− rΓ(y, t, T, ρ)

|x− y|λ
< +∞

[rΓ]
(λ

2
)

t := sup
t6=s∈]0, τ̄ [, (x, T, ρ)∈∂Ω×K

|rΓ(x, t, T, ρ)− rΓ(x, s, T, ρ)

|t− s|λ2
< +∞ ,

‖DrΓ‖C(Sτ̄×K) := sup
(x,t)∈Sτ̄ , (T,ρ)∈K

|D1
T,ρr

Γ(x, t, T, ρ)| < +∞ .

To formulate the necessary compatibility conditions on the line ∂Ω×{0}, we also need the Slobodecki
spaces W s

p (∂Ω). The definitions are well-known too.

We also define P : RN+1 → {(1N , 0)}⊥ to be the orthogonal projection onto the orthogonal
complement of the span of (1N , 0) = (1, . . . , 1, 0) in RN+1. We choose

D := {(ρ, %u) ∈ RN
+ × R : %u > εmin(ρ)} , (27)

where we assume that εmin ∈ C(RN
+ ) is a given convex function, or εmin ≡ −∞. We next formulate

our main theorem.

Theorem 3.1. We fix p > 3, and we assume that

(a) Ω ⊂ R3 is a bounded domain of class C2;

(b) M : RN+1
+ → RN×N is a mapping of class C2(RN+1

+ ; RN×N) into the positive semi-definite
matrices of rank N − 1 with constant kernel 1N = {1, . . . , 1}; l ∈ C2(RN+1

+ ; RN) maps into
the orthognal complement of 1N ; κ ∈ C2(RN+1

+ ) is a strictly positive function. These functions
are chosen such that the matrix M̃(T, ρ) of (12) is positive semi-definite at all (T, ρ) ∈ RN+1

+ ,
for instance by means of the construction(13);

(c) η, λ ∈ C2(RN+1
+ ) are subject to the restrictions in (20);

(d) D is an open convex set of the epigraphial form (27); h : D ⊂ RN
+ × R→ R is of class C3(D)

and, together with its convex conjugate h∗ on the domain RN × R− =: D∗, it forms a pair of
Legendre–type;

(e) r ∈ C1(RN+1
+ ; RN) maps into the orthogonal complement of 1N ;

(f) rΓ
1 , . . . , r

Γ
N , r

Γ
h ∈ Cλ, λ

2
, 1(Sτ̄ × RN+1

+ ) with λ > 1 − 1/p, and rΓ = (rΓ
1 , . . . , r

Γ
N) maps into

the orthogonal complement of 1N ;

(g) The external forcing b1, . . . , bN satisfies

b− 1N · b/N 1N ∈ W 1,0
p (Qτ̄ ; RN×3) ∩ C([0, T ]; W

1− 2
p

p (Ω; RN×3)) ,

(b− 1N · b/N 1N) · ν ∈ W
1− 1

p
, 1
2
− 1

2p
p (Sτ̄ ; RN) ,

and 1N · b ∈ Lp(Qτ̄ ; R3).
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(h) The functions JΓ
1 , . . . , J

Γ
N , J

Γ
h all belong to W

1− 1
p
, 1
2
− 1

2p
p (Sτ̄ ) and

∑N
i=1 J

Γ
i = 0;

(i) The initial data T0, ρ
0
1, . . . ρ

0
N : Ω→ R+ are strictly positive measurable functions satisfying the

following conditions:

� The initial total mass density %0 :=
∑N

i=1 ρ
0
i is of classW 1,p(Ω), and there ism0 > 0 such

that 0 < m0 ≤ %0(x) for all x ∈ Ω;

� The initial reciprocal temperature −1/T0 belongs to W 2−2/p
p (Ω), and there is θ1 > 0 such

that 0 < T0(x) ≤ θ1 for all x ∈ Ω;

� Defining %0u0 via (22), the vector fieldw0∗ := ∇wh(ρ0
1, . . . ρ

0
N , %0u0) (initial dual variables)

satisfies P w0∗ ∈ W
2− 2

p
p (Ω; RN+1);

� The initial and boundary data satisfy, as traces in W
1− 3

p
p (∂Ω), the compatibility conditions

− ν ·
( N∑
j=1

Mij(T0, ρ
0)(∇w0∗

j − bj(0)/T0) + li(T0, ρ
0)∇w0∗

N+1

)
= −rΓ

i (x, 0, T0, ρ
0) + JΓ

i (x, 0) , for i = 1, . . . , N ,

− ν ·
( N∑
j=1

lj(T0, ρ
0) (∇w0∗

j − bj(0)/T0) + κ(T0, ρ
0)∇w0∗

N+1

)
= −rΓ

h (x, 0, T0, ρ
0) + JΓ

h (x, 0) .

(j) The initial velocity v0 belongs to W
2− 2

p
p (Ω; R3) with v0 = 0 in W

2− 3
p

p (∂Ω; R3).

Then, there exists 0 < t∗ ≤ τ̄ such that the problem (5), (6), (7) with closure relations (10), (11), (18)
and boundary conditions (21), (23) (=: (P )) possesses a unique solution in the class

T ∈ W 2,1
p (Qt∗ ; R+), ρ ∈ W 1

p (Qt∗ ; RN
+ ), v ∈ W 2,1

p (Qt∗ ; R3) .

Moreover, the vector w∗ := ∇wh(ρ, ε(T, ρ)) satisfies P w∗ ∈ W 2,1
p (Qt∗ ; RN+1).

From the purely mathematical viewpoint, there seem to be a more natural formulation of this result.
Indeed, the variables (T, ρ, v) do not account for the mixed parabolic-hyperbolic structure of the PDE
system. In order to formulate results in classes of optimal regularity, we use other variables:

µ1−µN
T

, . . . , µN−1−µN
T

relative chemical potentials

− 1
T

reciprocal of temperature

v1, v2, v3 velocities

 the parabolic variables, (28)

% total mass density the hyperbolic variable. (29)

The origin of a distinction of parabolic and hyperbolic variables is retraced in [Gio99], Chapter 8. The
name ”relative chemical potentials” was used in [DDGG20].6

6In other contexts, one sometimes find the definition of chemical potentials as µi := ∂yiψ with y1, . . . , yN−1 being
the N − 1 independent mass fraction, and ψ the specific Helmholtz free energy as a function of T , % and y1, . . . , yN .
Then, by definition, there are only N − 1 chemical potentials, the ”relative” ones.
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Definition 3.2. A solution for the PDE system (5), (6), (7) is said to possess optimal mixed regularity
(of index p, on the interval ]0, τ̄ [) if all associated parabolic variables in (28) belong to W 2,1

p (Qτ̄ ) and
the hyperbolic component % belongs to W 1,1

p,∞(Qτ̄ ).

The statement of Theorem 3.1 can be equivalently reformulated in more simple fashion.

Theorem. Under the assumptions of Theorem 3.1, there exists 0 < t∗ ≤ τ̄ such that the problem
(P ) possesses a unique solution of optimal mixed regularity with index p on ]0, t∗[.

We shall also raise an additional question concerning blow-up criteria and the maximal existence-time
for the strong solution. Let (T, ρ, v) be a solution of optimal mixed regularity for (P ) on ]0, τ̄ [, and
assume that sup(x,τ)∈Qt T (x, τ) is bounded for all t < τ̄ . Then, the parabolic regularity of the recip-
rocal temperature −1/T alone does not prevent possible blow-up of the temperature for t→ τ̄−. In
other words, ‖T‖L∞(Qt) → +∞ implies certainly that supQt(−1/T ) → 0−, but this is no contra-
diction to −1/T remaining finite and even smooth.

Hence, in the context of solutions with optimal mixed regularity of index p, a maximum principle for the
temperature has to be proved independently. We shall show how to achieve such a result by imposing
certain growth restrictions on the data in the thermodynamic model. This can be done even in the
general case. However it looks in our eyes more meaningful to formulate the result for a particular
example. In this way, we exhibit the general procedure well enough, while being able to calculate
explicit growth conditions. We refer to the section 7 for the construction of a particular constitutive
model for volume-additive mixtures, and to Theorem 8.6 for the formulation of the maximum principle
in this case.

4 Transformation to a parabolic-hyperbolic system

The system (5), (7) for constant temperature has been studied in [BD21a]. Here we show that the
extension to energy systems can be dealt with by means of essentially the same method.

4.1 Change of variables

We recall the definitions (16), (17) of primal variables w = (ρ, %u) ∈ D and dual variables w∗ :=
(µ/T, −1/T ) ∈ RN ×R−. With the help of the conjugate convex function h∗ to h, we can invert the
relations

µi
T

= ∂ρih(ρ, %u) for i = 1, . . . , N , − 1

T
= ∂%uh(ρ, %u) ,

which more compactly now read as w∗ = ∇wh(w).

Lemma 4.1. We assume that h is a function of Legendre–type on D ⊆ RN
+ × R open, convex. We

define D∗ = RN × RN
− and assume that the image of ∇wh on D is equal to D∗. Then, the convex

conjugate h∗(w∗) := supw∈D{w∗ · w − h(w)} is a function of Legendre type on D∗. The gradients
∇wh on D and ∇w∗h

∗ on D∗ are inverse to each other. Moreover h ∈ Ck(D) iff h∗ ∈ Ck(D∗) for
all k ≥ 1.
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Proof. Due to the Theorem 26.5 of [Roc70], we directly obtain that (h, D) and (h∗, D∗) is a Legendre
pair. This means that D, D∗ are open and convex, and they coincide with the interior of the domain
of h, h∗. Moreover, h and h∗ are strictly convex and essentially smooth therein and (∇wh|D)−1 =
∇w∗h

∗
|D∗ . Since∇wh and∇w∗h

∗ are inverse to each other, we get theCk property due to the implicit
function theorem.

The next topic is passing to variables that allow to exhibit the parabolic-hyperbolic structure of the PDE
system. To this aim, we choose new axes ξ1, . . . , ξN , ξN+1 of RN+1 such that ξN := eN+1 = (0, . . . , 0, 1) and ξN+1 := (1, . . . , 1, 0) ,

ξ1, . . . , ξN−1 ∈
{
x ∈ RN+1 : xN+1 = 0,

∑N
i=1 xi = 0

}
=: {ξN , ξN+1}⊥ .

(30)

We let η1, . . . , ηN+1 ∈ RN+1 be the dual basis to ξ1, . . . , ξN+1. We prove easily that

ηN = eN+1, ηN+1 =
1

N
ξN+1 . (31)

For w∗ = (µ1/T, . . . , µN/T, −1/T ), we define the projections

q` := η` · w∗ :=
N+1∑
i=1

η`i w
∗
i for ` = 1, . . . , N . (32)

Due to the properties of the chosen basis, in particular to (31), we have a relationship

w∗ =
N∑
`=1

q` ξ
` + (w∗ · ηN+1) ξN+1 implying that w∗N+1 = qN . (33)

Now, since the coordinate w∗N+1 has the physical meaning of −1/T , the relevant domain for the new
variable q is the half-space

HN
− :=

{
(q1, . . . , qN) ∈ RN : qN < 0

}
= RN−1 × R− .

Since (µ1/T, . . . , µN/T, −1/T ) = ∇wh(ρ1, . . . , ρN , %u), use of the conjugate convex function
implies that

(ρ1, . . . , ρN , %u) = ∇w∗h
∗(µ1/T, . . . , µN/T, −1/T ) .

In order to isolate the hyperbolic component % (total mass density), we now express

% =
N∑
i=1

ρi =
N+1∑
i=1

ξN+1
i ∂w∗i h

∗(w∗1, . . . , w
∗
N+1)

= ξN+1 · ∇w∗h
∗
( N∑
`=1

q` ξ
` + (w∗ · ηN+1) ξN+1

)
.

This is an algebraic equation of the form F (w∗ · ηN+1, q1, . . . , qN , %) = 0. We notice that

∂w∗·ηN+1F (w∗ · ηN+1, q1, . . . , qN , %) = D2h∗(w∗)ξN+1 · ξN+1 > 0 ,
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due to the strict convexity of the conjugate function (Lemma 4.1). Thus, the latter algebraic equation
defines the last component w∗ · ηN+1 implicitly as a differentiable function of % and q1, . . . , qN . We
call this function M and obtain the equivalent formulae

w∗ =
N∑
`=1

q` ξ
` + M (%, q1, . . . , qN) ξN+1 , (34)

ρi = ∂w∗i h
∗
( N∑
`=1

q` ξ
` + M (%, q1, . . . , qN) ξN+1

)
=: Ri(%, q) , for i = 1, . . . , N , (35)

%u = ∂w∗N+1
h∗
( N∑
`=1

q` ξ
` + M (%, q1, . . . , qN) ξN+1

)
, (36)

with % and q1, . . . , qN as the free variables. Since p obeys (18), we have p = T g(∇wh(w)), and here
g denotes the Legendre transform of h. Using Lemma 4.1, we find p = T h∗(w∗) = −h∗(w∗)/w∗N+1.
We combine the latter with (34) to obtain that

p = P (%, q) := − 1

qN
h∗
( N∑
`=1

q` ξ
` + M (%, q1, . . . , qN) ξN+1

)
. (37)

With q̄ = (q1, . . . , qN−1), this expression makes sense in the domain

(%, q̄, qN) ∈ R+ ×HN
− = R+ × RN−1 × R− .

To analyse the PDEs (5), (6), (7), we next need some regularity properties of the transformed coeffi-
cients.

Lemma 4.2. Suppose thatD is of the form (27), and h ∈ C3(D) satisfies the assumptions of Lemma
4.1. Then, the formula (37) defines a function P which belongs to C2(R+ ×HN

− ).

Proof. We first investigate the regularity of the function M introduced in (34).

For fixed q ∈ HN
− and % > 0, we define

f(M ) := h∗
( N∑
`=1

q` ξ
` + M ξN+1

)
− %M for M ∈ R .

This f is of class C2(R) and strictly convex. By the definition of h∗, we have, for all points w =
(t 1N/N, ε) = t ηN+1 + ε ηN ∈ D with t > 0 and ε > εmin(t 1N/N)

f(M ) ≥
( N∑
`=1

q` ξ
` + M ξN+1

)
· (t ηN+1 + ε ηN)− h(t 1N/N, ε)− %M

=qN ε− h(t 1N/N, ε) + (t− %) M .

Hence, choosing fixed t = %/2 and t = 2 %, we easily show that lim|M |→∞ f(M ) = +∞. Thus, f
possesses a unique global minimiser, denoted by M (%, q) ∈ R. Since f ′(M (%, q)) = 0, we thus
see that

ξN+1 · ∇w∗h
∗
( N∑
`=1

q` ξ
` + M ξN+1

)
= % ,
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and M is well-defined. For the derivatives of M , we obtain the expressions

∂%M (%, q) =
1

D2h∗ξN+1 · ξN+1
, ∂qkM (%, q) = − D2h∗ξN+1 · ξk

D2h∗ξN+1 · ξN+1
, (38)

in which the Hessian D2h∗ is evaluated at w∗ =
∑N

`=1 q` ξ
` + M (%, q) ξN+1. We thus see that

M ∈ C2(R+ ×HN
− ). Clearly, the formula (19) implies that P ∈ C2(R+ ×HN

− ).

Remark 4.3. All thermodynamic quantities can now be introduced as functions of the variables %, q.
Indeed, considering a thermodynamic function f = f̃(T, ρ1, . . . , ρN) with a certain constitutive
function f̃ , we use that T = −1/qN and ρ = R(%, q) (see (35)), and we define

f(%, q) := f̃
(
− 1

qN
, R1(%, q), . . . ,RN(%, q)

)
(39)

to obtain the equivalent representation in the entropic variables.

Using this remark, we introduce next some functions that we will need later on. The heat capacity cυ
at constant volume is defined as

cυ = c̃υ(T, ρ) =
1

%
∂T ε(T, ρ) ,

with the ε from (9). We define

cυ(%, q) :=
1

%
∂T ε
(
− 1

qN
, R1(%, q), . . . ,RN(%, q)

)
. (40)

Similarily, for the shear viscosity coefficient η, we have

η = η̃(T, ρ) = η̃
(
− 1

qN
, R(%, q)

)
=: η(%, q) ,

and the same for the bulk viscosity λ. We shall write

S(%, q, ∇v) = 2η(%, q) (∇v)sym + λ(%, q) (div v) I .

4.2 Reformulation of the partial differential equations and of the main theorem

We introduce the combined flux vector

J := (J1, . . . , JN , Jh) in R(N+1)×3 , (41)

the force vector

b(x, t) = (b1(x, t), . . . , bN(x, t), 0) in R(N+1)×3 (42)

and the bulk production vector

π =
(
r1, . . . , rN , (−p I + S) : ∇v + J : b

)
in RN+1 . (43)

With these notations, we express the relations (10) and (11) more compactly as

J i = −
N+1∑
j=1

Mij(T, ρ)∇(w∗j − bj(x, t)/T ) .
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We define

b̃` :=
N+1∑
i=1

η`i b
i(x, t) for ` = 1, . . . , N, b̄ =

N+1∑
i=1

ηN+1
i bi ,

so that b(x, t) =
∑N

`=1 b̃
`(x, t) ξ` + b̄(x, t) ξN+1. We recall in this place that M has the one-

dimensional kernel {ξN+1}, that −1/T = qN , and we see that the fluxes have the form

J i = −
N+1∑
j=1

Mi,j(T, ρ) (∇w∗j + qN b
j(x, t))

= −
N+1∑
j=1

[
N∑
`=1

Mi,j(T, ρ) ξ`j (∇q` + qN b̃
`) +Mi,j(T, ρ) ξN+1

j (∇M (%, q) + qN b̄(x, t))

]

= −
N∑
`=1

[
N+1∑
j=1

Mi,j(T, ρ) ξ`j

]
(∇q` + qN b̃

`) .

If we introduce the rectangular projection matrix Qj` = ξ`j for ` = 1, . . . , N and j = 1, . . . , N + 1,

then J = −MQ(∇q + qN b̃). Thus, the basic PDEs read equivalently

∂tw + div(w v −MQ (∇q + qN b̃(x, t))) = π ,

∂t(% v) + div(% v ⊗ v − S(%, q, ∇v)) +∇p =
N∑
i=1

wi b
i .

Next we define, for k = 1, . . . , N , the maps

Rk(%, q) :=
N+1∑
j=1

ξkj wj =
N+1∑
j=1

ξkj ∂w∗jh
∗(

N∑
`=1

q` ξ
` + M (%, q) ξN+1) . (44)

Obviously we can express

wi =
N+1∑
k=1

w · ξk ηki =
N∑
k=1

Rk(%, q) η
k
i + % ηN+1

i .

Lemma 4.4. Suppose that h ∈ C3(RN
+ × R) satisfies the assumptions of Lemma 4.1. Then, the

formula (44) definesR as a vector field of class C2(R+×HN
− ; RN). The Jacobian {Rk,qj}k,j=1,...,N

is symmetric and positively definite at every (%, q) ∈ R+ ×HN
− and

Rq(%, q) = QT D2h∗Q− Q
T D2h∗ξN+1 ⊗QT D2h∗ξN+1

D2h∗ξN+1 · ξN+1
.

In this formula, the Hessian D2h∗ is evaluated at w∗ =
∑N

`=1 q` ξ
` + M (%, q) ξN+1.

The proof is direct, using Lemma 4.1 and the properties of M .

For k = 1, . . . , N , we multiply the mass transport and energy transport equations with ξki , and we
obtain that

∂tRk + div
(
Rk v −

N∑
`=1

M̃k,` (∇q` + qN b̃
`)
)

= (QT π)k ,

M̃(T, ρ) := QTM(T, ρ)Q .
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It turns out that if the rank of M(T, ρ) is N on all states (T, ρ) ∈ RN+1
+ , the matrix M̃(T, ρ) is

strictly positively definite on all states (T, ρ) ∈ RN+1
+ . Making use of (34), (35), we can also consider

M̃ as a mapping of the variables % and q. Using the Lemma 4.4, we then establish the following
properties of this map.

Lemma 4.5. Suppose that h ∈ C3(RN
+×R) satisfies the assumptions of Lemma 4.1. Suppose further

thatM : RN+1
+ → RN+1×N+1 is a map into the positively semi-definite matrices of rank N with

kernel {ξN+1}, having entriesMij of class C2(RN+1
+ ) ∩ C(RN+1

+ ). Then the formula M̃(%, q) :=

QTM(T, ρ)Q defines a map M̃ : R+ × HN
− → RN×N into the symmetric positively definite

matrices. The entries M̃k,j are functions of class C2(]0, +∞[×HN
− ).

Overall, we get for the variables (%, q1, . . . , qN , v) instead of (5), (6), (7) the equivalent equations

∂tR(%, q) + div(R(%, q) v − M̃(%, q) (∇q + qN b̃(x, t))) = π̃(x, t, %, q, ∇q, ∇v) , (45)

∂t%+ div(% v) = 0 , (46)

∂t(% v) + div(% v ⊗ v − S(%, q, ∇v)) +∇P (%, q) = R(%, q) · b̃(x, t) + % b̄(x, t) .
(47)

Here we have reinterpreted

QTπ = QT
(
r1(T, ρ), . . . , rN(T, ρ), (−p I + S) : ∇v + J : b

)
=QT

(
r(
−1

qN
, R(%, q)), (−P (%, q) I + S(%, q, ∇v)) : ∇v − M̃(%, q) (∇q + qN b̃) · b̃

)
=:π̃(x, t, %, q, ∇q, ∇v) .

In the PDE system (45), (46), (47) we are faced with two type of constraints: The positivity constraint
on the total mass density %, and the half-space constraint q ∈ HN

− .

Our aim is now to show that the system (45), (46), (47) for the variables (%, q1, . . . , qN , v) is locally
well-posed. We consider initial conditions

q(x, 0) = q0(x),

%(x, 0) = %0(x) ,

v(x, 0) = v0(x) ,

for x ∈ Ω (48)

To find the initial data for q0(x), we first use the function %0u0 of (22). Then we define

q0
` (x) := η` · ∇wh(ρ0(x), %0u0(x)) for ` = 1, . . . , N . (49)

Under the assumptions of Theorem 3.1, the new initial data are of class

q0 ∈ W
2− 2

p
p (Ω; RN), %0 ∈ W 1,p(Ω), v0 ∈ W

2− 2
p

p (Ω; R3) ,

satisfying %0(x) ≥ m0 > 0 in Ω, q0
N(x) ≤ −1/θ1 < 0 for all x ∈ Ω.

We already showed that J = −MQ(∇q+ qN b̃). With πΓ := −(rΓ, rΓ
h ) and J Γ := (JΓ, JΓ

h ) on
the surface Sτ̄ , we thus obtain the conditions

−MQ(∇q + qN b̃) · ν(x) = πΓ + J Γ ,
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and therefore, with M̃ = QTMQ

−M̃ (∇q + qN b̃) · ν(x) = QTπΓ +QTJ Γ .

Next the matrix M̃, which is strictly positive definite, can also be inverted, and we get

(∇q + qN b̃) · ν(x) = [M̃]−1QTπΓ + [M̃]−1QTJ Γ .

Hence, for simplicity, we might consider the boundary conditions

v = 0 ,

ν(x) · ∇qk = π̃Γ
k (x, t, %, q) for k = 1, . . . , N .

on Sτ̄ , (50)

where π̃Γ(x, t, %, q) stands for

π̃Γ(x, t, %, q) = −qN b̃(x, t) · ν(x) + [M̃(%, q)]−1QTπΓ(x, t, %, q) + [M̃(%, q)]−1QTJ Γ(x, t) .

Owing to the Lemmas 4.2, 4.4 and 4.5, the coefficient functions R, M̃ and P are of class C2 in the
domain of definitions R+ ×HN

− .

5 Proof of the existence theorem

5.1 General method

For the equivalent problem (45), (46), (47) with boundary conditions (48), (50) we search for a solution
in the class of optimal mixed regularity

(q, %, v) ∈ W 2,1
p (Qt; HN

− )×W 1,1
p,∞(Qt; R+)×W 2,1

p (Qt; R3) =: Xt . (51)

The analysis of equations (45), (46), (47) in this class was basically studied in the paper [BD21a]
devoted to the isothermal case. In the present paper, we must deal with the following extensions:

� The production term π̃ depends on the velocity gradient squared;

� The viscosity coefficients η and λ depends on the thermodynamic state;

� There are non-trivial boundary fluxes;

� The variable q is restricted by the half-space constraintHN
− .

We will prove the local well-posedness by adapting the method of [BD21a] to this new case.

Due to the fact that the coefficients of the transformed PDE system are singular when % → 0+ or
qN → 0−, the domain of the differential operator is restricted to the subset

Xτ̄ ,+ := {(q, %, v) ∈ Xτ̄ : qN(x, t) < 0, %(x, t) > 0 for all (x, t) ∈ Qτ̄} .

For the parabolic components, we also introduce

Yτ̄ := {(q, v) : q ∈ W 2,1
p (Qτ̄ , RN), v ∈ W 2,1

p (Qτ̄ , R3)} ,
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For proving a self-map property, we introduce for K0, θ̄ > 0 the closed subsets

Yτ̄ ,K0,θ̄ := {(q, v) ∈ Yτ̄ : qN ≤ −1/θ̄, ‖(q, v)}Yτ̄ ≤ K0} .

We linearise the PDEs as follows. We give arbitrary (q∗, v∗) ∈ Yτ̄ ,K0,θ̄, and for unknowns u =
(q, %, v), we consider the following system of equations

∂t%+ div(% v∗) =0 , (52)

Rq(%, q
∗) ∂tq − div(M̃(%, q∗)∇q) =g(x, t, q∗, %, v∗, ∇q∗, ∇%, ∇v∗) , (53)

% ∂tv − div S(%, q∗, ∇v) =f(x, t, q∗, %, v∗, ∇q∗, ∇%, ∇v∗) . (54)

Here we have set

S(%, q∗, ∇v) = 2η(%, q∗) (∇v)sym + λ(%, q∗) I div v . (55)

In (52) and (54), the right-hands f and g are given by

g(x, t, q, %, v, ∇q, ∇%, ∇v) := (R%(%, q) %−R(%, q)) div v −Rq(%, q) v · ∇q
+ qN M̃%(%, q)∇% · b̃(x, t) + qN M̃q(%, q)∇q · b̃(x, t) + qN M̃(%, q) div b̃(x, t)

+ M̃(%, q) b̃(x, t) · ∇qN + π̃(x, t, %, q, ∇q, ∇v) , (56)

f(x, t, q, %, v, ∇q, ∇%, ∇v) := −P%(%, q)∇%− Pq(%, q)∇q − % (v · ∇)v

+R(%, q) · b̃(x, t) + % b̄(x, t) . (57)

We consider these PDEs together with the initial conditions (48), and with

v = 0, ν · ∇qk = π̃Γ
k (x, t, %, q∗) , on Sτ̄ . (58)

The continuity equation for % is first solved independently in W 1,1
p,∞(Qτ̄ ), and the solution remains

positive on the entire time-interval (see Theorem 1 in [Sol80], Proposition 7.5 in [BD21a]). Then, the
problem (53), (54) is linear in (q, v) and can be solved in Xτ̄ with the theory of Petrovski parabolic
systems (see [LSU68], Chapter 10, [BD21a], Proposition 7.1). However, the equations (53), (54) might
not be solvable in Xτ̄ ,+ on the entire time interval, because the solution q might reach the boundary
of the half-planeHN

− in finite time.

Nevertheless, we can show that the solution map (q∗, v∗) 7→ (q, v), denoted F , is well defined
from the closed subset Yt0,K0,θ̄ into itself for appropriate choices of the positive constants t0 (small
constant), and K0 and θ̄ (large constants).

To establish this key point, we rely on continuous estimates expressing the controlled growth of the
solution in time. For the pair (q, v) ∈ Yτ̄ solving (53) and (54), and for all 0 < t ≤ τ̄ , we obtain an
estimate

‖(q, v)‖W 2,1
p (Qt;RN+3) ≤ Ψ(t, R0, θ

∗(t), ‖(q∗, v∗)‖W 2,1
p (Qt;RN+3)) =: Ψ∗t . (59)

Here R0 is a fixed number depending on the initial data q0, %0 and v0, and on the external forces b
and fluxes rΓ and JΓ in their respective norms, while

θ∗(t) := − 1

sup(x,τ)∈Qt q
∗
N(x, τ)

for 0 < t < τ̄ .
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The function Ψ = Ψ(t, a1, a2, a3) occurring in (59) is defined on [0, +∞[4, it is continuous up to
the boundary, and increasing in all arguments. Moreover, we can establish the important property that

Ψ(0, a1, a2, a3) = Ψ0(a1, a2) , (60)

where Ψ0 is a continuous function independent on the last argument a3 – which stands for the norm
of highest order of the data q∗ and v∗.

Let us now discuss the differences with respect to [BD21a] occurring in the proof of the estimate (59).
For what the lower-order term π̃(%, q∗, ∇v∗) occurring in the right-hand g (cf. (56)) is concerned, this
term can be estimated from above via

|π̃(%(x, t), q∗(x, t), ∇v∗(x, t))| ≤ φ
(
|%(x, t)|, ( inf

x∈Ω
%(x, t))−1, |q∗(x, t)|, θ∗(t)

)
(1 + |∇v∗|2) ,

with a certain continuous function φ. Hence, observing that 2 < 2 − 3/p + 3/(5 − p)+ (since
p > 3 > 5/2), the quadratic growth in |∇v∗| is subcritical, and the Lemma 8.1 of [BD21a] shows that
this case is in fact also comprised in the analysis.

The second difference is that the coefficients η and λ are depending on the state. In order to deal
with this situation, we must apply a localisation technique similar to the one used for the parabolic
system concerning q in [BD21a]. To avoid to much technicalities in this place, we delay the proof to the
appendix. In the same way, we show in the appendix how to consider the case of nonzero boundary
fluxes.

Presently, it thus remain only to show how, relying on (59), to control the distance of the solution q to
the boundary of the half planeHN

− .

To this aim, we construct an extension q0 ∈ W 2,1
p (Qτ̄ , RN) of the initial data q0 into Qτ̄ by solving

the Neumann problem for the heat equation in Qτ̄ with initial data q0. Then, the maximum principle
also guarantees that

sup
(x,t)∈Qτ̄

q0
N(x, t) ≤ sup

x∈Ω
q0
N(x) =: −1/θ1 .

For all t ≤ τ̄ , we employ the inequality of Lemma C.2 in [BD21a], the continuity properties of the
extension operator for q0, and the inequality (59) to obtain that

‖q − q0‖L∞(Qt) ≤ C(τ̄) tγ ‖q − q0‖W 2,1
p (Qt;RN )

≤C(τ̄) tγ (‖q0‖W 2,1
p (Qt,RN ) + ‖q‖W 2,1

p (Qt;RN ))

≤C̄(τ̄) tγ (‖q0‖
W

2−2/p
p (Ω;RN )

+ Ψ∗t ) ,

γ :=

{
1
2

(2− 5
p
) for 3 < p < 5 ,

p−1
3+p

for 5 ≤ p .

Thus we get

sup
(x,τ)∈Qt

qN(x, τ) ≤ sup
(x, τ)∈Qt

q0
N(x, τ) + C̄(τ̄) tγ (‖q0‖

W
2−2/p
p (Ω;RN )

+ Ψ∗t )

≤− 1

θ1

+ C̄(τ̄) tγ (‖q0‖
W

2−2/p
p (Ω;RN )

+ Ψ∗t ) . (61)

Lemma 5.1. We assume the validity of the estimates (59), (61), and we let Ψ, γ > 0, C̄ = C̄(τ̄) and
R0 > 0 be the data occurring there. Let Ψ0 = Ψ(0, ·) be the function occurring in (60). With θ̄ and
K0 being any two positive constants subject to the restrictions

θ̄ > 2 θ1, K0 > Ψ0(R0, θ̄) ,
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we define ta = ta(R0, θ̄, K0) to be the largest number s.t. supt≤ta Ψ(t, R0, θ̄, K0) ≤ K0, and

t∗ := min
{
ta(R0, θ̄, K0),

( 1

θ̄ C̄ (‖q0‖
W

2−2/p
p

+K0)

) 1
γ
}
.

Then, for every (q∗, v∗) ∈ Yt∗,K0,θ̄ the element (q, v) = F(q∗, v∗) belongs to Yt∗,K0,θ̄.

Proof. Assume that (q∗, v∗) ∈ Yt∗,K0,θ̄. In (59) and (61), we have obtained for all 0 < t < t∗ the
following estimates:

‖(q, v)‖Yt ≤ Ψ(t, R0, θ̄, K0)

and (62)

− 1

θ(t)
:= sup

(x,τ)∈Qt
qN(x, τ) ≤ − 1

θ1

+ C̄ tγ (‖q0‖W 2−2/p + Ψ(t, R0, θ̄, K0))

≤ −2

θ̄
+ C̄ tγ (‖q0‖W 2−2/p + Ψ(t, R0, θ̄, K0)) .

With the definition of t∗, it now follows that

sup
t≤t∗

Ψ(t, R0, θ̄, K0) ≤ Ψ(ta, R0, θ̄, K0) = K0 .

Moreover, using the choice of t∗ again

C̄ sup
t≤t∗

tγ (‖q0‖
W

2−2/p
p

+ Ψ(t, R0, θ̄, K0)) = C̄ (t∗)γ (‖q0‖
W

2−2/p
p

+ Ψ(t∗, R0, θ̄, K0))

≤ C̄ (t∗)γ (‖q0‖
W

2−2/p
p

+ Ψ(ta, R0, θ̄, K0)) = C̄ (t∗)γ (‖q0‖
W

2−2/p
p

+K0)

≤ C̄ (t∗)γ (‖q0‖
W

2−2/p
p

+K0) ≤ 1

θ̄
.

Thus, in view of (62), we have obtained ‖(q, v)‖Yt∗ ≤ K0 and θ(t∗) ≤ θ̄, and we see that (q, v) ∈
Yt∗,K0,θ̄. This means that the image F(q∗, v∗) is a well-defined element of Yt∗,K0,θ̄ for (q∗, v∗) ∈
Yt∗,K0,θ̄.

With the self-mapping property at hand, the existence proof can be finalised by means of the same
fixed-point iteration as in the section 9 of [BD21a]. Initialising (q1, v1) = 0, we define (qn+1, vn+1) :=
F(qn, vn) for n ∈ N. This iteration converges in a lower-order norm on the interval ]0, t∗[. This is
sufficient to prove the existence of a unique limit solution. This point was extensively explained and
proved there.

6 A partial maximum principle for the energy equation

Let (q, %, v) ∈ Xτ̄ be a solution of optimal mixed regularity to the system (45), (46), (47) on some
interval ]0, τ̄ [.

In this section we want to show that, under certain natural growth condition for the data of the problem,
a strong solution with bounded state-space norm cannot break down due to blow-up of ‖T (τ)‖L∞(Ω)

as τ → τ̄ . As we already explained, the regularity of qN = −1/T alone does not prevent this type of
blow-up.
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For our aim, we use the parabolicity of the equation for the internal energy density ε := %u. With a
given solution (q, %, v), we first re-introduce the state variables

ρ(x, t) =
N∑
k=1

Rk(%, q) η
k + % ηN+1 , (63)

%u(x, t) =RN(%, q)(= ∂wN+1
h∗
(
QT q + M (%, q) ξN+1

)
) , (64)

with the map R of (44). For i = 1, . . . , N , the function qi belongs to W 2,1
p (Qτ̄ ), while % possesses

all generalised first derivatives in Lp,∞(Qτ̄ ). Together with the C2−regularity of the coefficient R in
the domain R+ × HN

− (Lemma 4.4), the identities (63) and (64) allow to show that, for every t such
that

sup
(x, τ)∈Qt

qN(x, τ) < 0 , (65)

the functions ρi and %u belong to W 1
p (Qt). Hence, %u can be shown to be a weak solution to the

energy equation (6) for all 0 < t < τ̄ enjoying the property (65). To show this, we next restrict for
simplicity to the case that b1 = . . . = bN , which essentially means that the body forces reduce to
gravity. In this case, we have b̃ ≡ 0 so that b does not contribute to the diffusion fluxes. Moreover,
we simplify the proof assuming that there is no heat flux −rΓ

h + JΓ
h on the boundary. We discuss

afterwards the modifications necessary to handle the general case.

Lemma 6.1. Let τ̄ > 0 and assume that (q, %, v) ∈ Xτ̄ is a strong solution to the system (45), (46),
(47), such that (65) is valid for all t < τ̄ . We define ε := RN(%, q). Then, for all t < τ̄ , the function ε
belongs to W 1

p (Qt) and, for all φ ∈ W 1,0
p′ (Qt), it satisfies the integral identity∫

Qt

∂tε φ dxdτ −
∫
Qt

(ε v + Jh) · ∇φ dxdτ =

∫
Qt

(−p I + S) : ∇v φ dxdτ .

Proof. For every t < τ̄ , the optimal regularity together with the condition (65) guarantee that ε, p, the
viscosities η and λ and all other continuous functions of % and q are uniformly bounded on Qt. The
heat flux Jh satisfies an estimate in L∞,p(Qt; R3) at least. To see this, for k = 1, . . . , N − 1 we
define Lk := ξk · (l, 0). Recalling (11) with b = 0 we have

Jh = κ∇ 1

T
− L · ∇q̄ = −κ

(
− 1

qN
, R(%, q)

)
∇qN − L

(
− 1

qN
, R(%, q)

)
· ∇q̄ . (66)

With θ(t) := supQt(−1/qN) < +∞ and M(t) := supQt %, we see that

|Jh| ≤ sup
θ≤θ(t), |r|≤M(t)

{κ(θ, r) + |L(θ, r)|} |∇q| = C(t) |∇q| .

For p > 3, we have W 1,p(Ω) ⊂ L∞(Ω). Hence, Jh ∈ L∞,p(Qt) as claimed.

Using that W 2−2/p
p (Ω) ⊂ L3p/(5−p)+

(Ω), the term |∇v|2 satisfies

‖|∇v|2‖Lz,∞(Qt) ≤ c0 ‖v‖2
W 2,1
p (Qt)

z :=
3p

2 (5− p)+
.

We note that z > 3p/(p + 3). With p′ := p/(p − 1), the Sobolev embedding guarantees that
W 1,p′(Ω) ⊂ L3p/(2p−3)(Ω). Combining these properties and Hölder’s inequality we see that∫

Qt

|∇v|2 |φ| dxdτ ≤ ‖|∇v|2‖
L

3p
p+3 ,∞(Qt)

‖φ‖
L

3p
2p−3 ,1(Qt)

≤ c1 ‖v‖2
W 2,1
p (Qt)

‖φ‖W 1,0

p′ (Qt)
.

Hence, all integral make sense in the weak form of the energy equation.
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Next we want to obtain an equivalent expression of the heat flux allowing us to use weak parabolic
estimate techniques on the function ε. To this aim, we need to introduce some further thermodynamic
quantities. With the h∗ introduced in Lemma 4.1, and the choices (30) of the axes ξ1, . . . , ξN+1, we
define

a0 :=
D2
w∗,w∗N+1

h∗ · ξN+1

D2
w∗,w∗h

∗ ξN+1 · ξN+1
, (67)

ak :=D2
w∗,w∗N+1

h∗ · ξk −
D2
w∗,w∗N+1

h∗ · ξN+1D2
w∗,w∗h

∗ ξN+1 · ξk

D2
w∗,w∗h

∗ ξN+1 · ξN+1
for k = 1, . . . , N − 1 ,

(68)

d0 :=∂2
w∗N+1

h∗ −
(D2

w∗,w∗N+1
h∗ · ξN+1)2

D2
w∗,w∗h

∗ ξN+1 · ξN+1
. (69)

Therein, all occurrences of h∗ and its derivatives are evaluated at w∗ = QTq + M (%, q) ξN+1.
Hence, a0, ak and d0 are well-defined functions over Qτ̄ . Next, we show that these new objects occur
naturally when we re-express the heat flux using the gradient of ε.

Lemma 6.2. For the coefficient introduced in (69), we have

d0(%, q) ≥ %

q2
N

cυ(%, q) (= T 2 % cυ) ,

with the function cυ of (40). Writing q = (q̄, qN), the heat flux Jh is equivalently given as

Jh = − κ

d0

(∇ε− a0∇%)−
(
L− κ

d0

a
)
· ∇q̄ .

Proof. By the definition of the entropic variables, we have

%u = ∂w∗N+1
h∗(QTq + M (%, q) ξN+1) .

Hence, applying the chain rule yields

∇ε =∇%u =
N−1∑
k=1

N+1∑
i=1

∂2h∗w∗N+1,w
∗
i
ξki ∇qk + ∂2

w∗N+1
h∗∇qN +

N∑
i=1

∂2
w∗N+1,w

∗
i
h∗∇M ,

∇M =∂%M ∇%+
N−1∑
k=1

∂qkM ∇qk + ∂qNM ∇qN .

Use of the equivalent expressions (38) for the derivatives of M and of T 2∇qN = ∇T yields

∇ε =
N−1∑
k=1

ak∇qk + a0∇%+
d0

T 2
∇T . (70)

The function d0 defined in (69) is clearly positive as h∗ is strictly convex. Due to (70), we now have

∇T =
T 2

d0

(
∇ε−

N−1∑
k=1

ak∇qk − a0∇%
)

implying that

Jh = − κ

d0

(∇ε− a · ∇q̄ − a0∇%)− L · ∇q̄ .
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This proves the equivalent representation of the heat flux. Finally, we estimate d0 from below. To this
aim, we use that∇w∗h

∗(µ/T, −1/T ) = (ρ, %u). Therein, we now reinterpret µ and %u as functions
of the main variables (T, ρ1, . . . , ρN).

For notational simplicity, let {A∗ik}i,k=1,...,N denote the upper left block of the matrix D2
w∗h

∗. For
i = 1, . . . , N , we differentiate in T the identities ∂w∗i h

∗ = ρi and ∂w∗N+1
h∗ = %u, and thus

N∑
k=1

A∗ik ∂T (µk/T ) +
1

T 2
∂2
w∗N+1,w

∗
i
h∗ = 0 , for i = 1, . . . , N ,

1

T 2
∂2
w∗N+1

h∗ +
N∑
i=1

∂2
w∗N+1,w

∗
i
h∗ ∂T (µi/T ) = % cυ .

Combining both identities, we obtain that

∂2
w∗N+1

h∗ = T 2 % cυ + T 4A∗∂T (µ/T ) · ∂T (µ/T ) .

Hence, an equivalent form for d0 is

d0 = T 2 % cυ + T 4
(
A∗∂T (µ/T ) · ∂T (µ/T )− (A∗∂T (µ/T ) · ξN+1)2

A∗ξN+1 · ξN+1

)
. (71)

Owing to the positivity of A∗, we see that d0 ≥ T 2 % cυ, as claimed.

We now re-express the integral identity of Lemma 6.1 as∫
Qt

∂tε φ dxdτ +

∫
Qt

{ κ
d0

∇ε+ (L− κ

d0

a) · ∇q̄ − κ

d0

a0∇%− ε v
}
· ∇φ dxdτ

=

∫
Qt

(−p I + S) : ∇v φ dxdτ . (72)

In order to obtain a maximum principle, we choose test functions of the form

wk = (ε− k)+ := max{ε− k, 0} ,

where k is any parameter such that

k > k0 := sup
x∈Ω

ε(x, 0) . (73)

We also define

Ωt, k :={x ∈ Ω : ε(x, t) > k}, Qt,k := {(x, τ) ∈ Qt : ε(x, τ) > k} .

For all 0 < t < T , we next insert φ(x, τ) := wk(x, τ)χ]0, t[(τ) in (72), easily showing that

1

2

∫
Ωt,k

%(x, t)w2
k(x, t) dx+

∫
Qt,k

κ

d0

|∇ε|2 dxdτ = (74)

−
∫
Qt,k

{
(L− κ

d0

a) · ∇q̄ +
κ

d0

a0∇%+ ε v
}
· ∇ε dxdτ +

∫
Qt,k

(−p I + S) : ∇v wk dxdτ .
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We also notice that∫
Qt,k

ε v · ∇ε dxdτ =

∫
Qt,k

(ε− k) v · ∇ε dxdτ + k

∫
Qt,k

v · ∇ε dxdτ

= −
∫
Qt,k

div v
(1

2
wk + k

)
wk dxdτ .

Using that 1
2
wk + k ≤ 3

2
ε if ε ≥ k, we see that∣∣∣∣∣
∫
Qt,k

ε v · ∇ε dxdτ

∣∣∣∣∣ ≤ 3

2

∫
Qt,k

| div v| ε wk dxdτ .

By means of Young’s inequality, we moreover estimate∣∣∣{(L− κ

d0

a) · ∇q̄ +
κ

d0

a0∇%
}
· ∇ε

∣∣∣ ≤ κ

2d0

|∇ε|2 +
d0

2κ
{|L− κ

d0

a| |∇q̄|+ κ

d0

|a0| |∇%|}2 .

Combining these ideas, (74) implies that

1

2

∫
Ωt,k

%(x, t)w2
k(x, t) dx+

∫
Qt,k

κ

2d0

|∇ε|2 dxdτ (75)

≤
∫
Qt,k

(d0

κ
{|L− κ

d0

a| |∇q̄|+ κ

d0

|a0| |∇%|}2 + {|p| |∇v|+ |S| |∇v|+ 3

2
ε |∇ · v|} wk

)
dxdτ .

Depending on the asymptotic behaviour of the coefficients κ, L, a, etc. for large values of ε and fixed
or bounded entropic variables (%, q), we can now obtain a maximum principle. In order to make the
discussion more simple from the viewpoint of notations, we use the following convention.

Convention 6.3. Consider a function f of the thermodynamic state variables (T, ρ) and α > 0. We
let (%, q) being the associated entropic variables and ε = ε(T, ρ) the associated internal energy. If
there are:

� a positive, continous function k1 on ]0, +∞[2;

� a continuous, nonnegative function φ (a continuous, strictly positive function ψ) on R+ ×HN
−

such that

f ≤ φ(%, q) εα, (f ≥ ψ(%, q) εα) for all ε ≥ k1(%, |q|) ,

then we write f - εα, (f % εα). We write f h εα if both f - εα and f % εα hold.

Proposition 6.4. Assume that there are numbers β ≥ 1 and βi ≥ 0 (i = 0, . . . , 3) such that the
following estimates for the functions κ, d0, a0, (a), (L), p, η and λ are valid:

κ

d0

% ε2(β−1),
d0

κ
|L|2 +

κ

d0

|a|2 - εβ0 ,
κ

d0

|a0|2 - εβ1 ,

|p| - εβ2 , η + |λ| - εβ3 .

(76)
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We assume that for all t < τ̄ , ε ∈ W 1
p (Qt) satisfies the weak form (74) and that (%, q, v) ∈ Xτ̄ is a

solution of optimal regularity. We suppose, moreover, that ε ∈ L1,∞(Qτ̄ ). Then, under the conditons
that p > 5 and that the exponents p, β and βi occurring in the conditions (76) are subject to

max{β0, β3 + 1} < 6

5
(1 + β) , β1 <

6

5
(1 + β − 5

3p
) ,

β2 <
1

5
(6β + 1) ,

we have lim supt→τ̄− ‖ε‖L∞(Qt) < +∞.

Proof. Since (%, q, v) ∈ Xτ̄ by assumption, the norms ‖%‖L∞(Qτ̄ ) and ‖q‖L∞(Qτ̄ ;RN ) are finite.
Moreover, infQτ̄ % > 0 follows from the continuity equation. We introduce m(t) := infQt % > 0,
M(t) := supQt % and Q(t) := ‖q‖L∞(Qt). Due to the assumptions (76), for all

ε ≥ sup
m(τ̄)≤r≤M(τ̄), |ξ|≤Q(τ̄)

k1(r, |ξ|) =: k̄1(τ̄) ,

we can rely on a bound

κ

d0

≥ ψ(%, q) ε2(β−1) ≥
(

inf
m(τ̄)≤r≤M(τ̄), |ξ|≤Q(τ̄)

ψ(r, ξ)
)
ε2(β−1) = c(τ̄) ε2(β−1) .

Similarly, (76) guarantees that

d0

κ
|L|2 +

κ

d0

|a|2 ≤ C(τ̄) εβ0 ,
κ

d0

|a0|2 ≤ C(τ̄)εβ1 , etc. for all ε ≥ k̄(τ̄) ,

where the number k̄(τ̄) is obtained as the maximum among all threshold functions k1 associated with
the coefficients (See the convention 6.3). In (75), we restrict to k > max{k0, k̄(τ̄)}. Use of (75) and
of the growth conditions on κ/d0 and the other coefficients yields

m(τ̄)

2

∫
Ωt,k

w2
k(x, t) dx+ c(τ̄)

∫
Qt,k

ε2(β−1) |∇ε|2 dxdτ (77)

≤ C(τ̄)

∫
Qt,k

(
εβ0 |∇q̄|2 + εβ1 |∇%|2 + {( εβ2 +

3

2
ε) |∇v|+ εβ3 |∇v|2}wk

)
dxdτ .

Since β ≥ 1, we also observe that, for ε(x, t) ≥ k

ε2(β−1) |∇ε|2 ≥ (ε− k)2(β−1) |∇ε|2 =
1

β2
|∇(ε− k)β|2 .

Moverover, since wk ≤ ε, (77) implies that, possibly with a larger constant C(τ̄),∫
Ωk

w2
k(x, t) dx+

∫
Qt,k

|∇wβk |
2 dxdτ (78)

≤ C(τ̄)

∫
Qt,k

{εβ0 |∇q̄|2 + εβ1 |∇%|2 + (εβ2+1 + ε2) |∇v|+ εβ3+1 |∇v|2} dxdτ .

Due to the Lemma B.1, restriction to k > 2 ‖ε‖L1,∞(Qt)/λ3(Ω) implies that

‖wk‖rLr(Qt) ≤ c0 ‖wk‖
4
3

L2,∞(Qt)
‖∇wβk‖

2
L2(Qt)

with r =
4

3
+ 2 β , (79)
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with c0 = c0(Ω) being an embedding constant. Thus, with R(t) denoting the right-hand of (78), we

have ‖wk‖rLr(Qt) ≤ c0 (R(t))
2
3 R(t) or, in other words,

‖wk‖
3r
5

Lr(Qt)
≤ C(τ̄)

∫
Qt,k

{εβ0 |∇q̄|2 + εβ1 |∇%|2 + (εβ2+1 + ε2) |∇v|+ εβ3+1 |∇v|2} dxdτ .

(80)

We introduce functions and exponents

G0 := |∇q̄|2, α0 := β0, G1 := |∇%|2, α1 := β1

G2 := |∇v|, α2 := max{2, β2 + 1}, G3 := |∇v|2, α3 := β3 + 1 .
(81)

Then, (80) can be rewritten as

‖wk‖
3r
5

Lr(Qt)
≤ C(τ̄)

3∑
i=0

∫
Qt,k

Gi(x, τ) εαi dxdτ . (82)

In order to estimate a generic term of the form
∫
Qt,k

Gi(x, τ) εαi dxdτ , we rely moreover on the

information ‖ε‖L1,∞(Qt) < +∞.

For i = 0, . . . 3, we choose numbers 0 ≤ ai < min{1, αi} and we define bi := αi − ai, in order to
re-express ∫

Qt,k

Gi(x, τ) εαi dxdτ

∫
Qt,k

(Gi(x, τ) εai) εbi dxdτ .

Use of ε = wk + k on Ωk implies that∫
Qt,k

(Gi(x, τ) εai) εbi dxdτ ≤ 2bi
∫
Qt

(Gi ε
ai)wbik dxdτ + (2k)bi

∫
Qt,k

Gi ε
ai dxdτ .

Next, we assume that bi < r and we let 0 < 1/s < 1− bi/r. Then, Hölder’s inequality implies that∫
Qt,k

(Gi ε
ai) εbi dxdτ ≤2bi ‖wk‖biLr(Qt) ‖Gi ε

ai‖Ls(Qt) |Qt,k|1−
1
s
− bi
r

+ (2k)bi ‖Gi ε
ai‖Ls(Qt) |Qt,k|1−

1
s .

We further restrict the choice of bi and r by the condition

bi <
3r

5
. (83)

By means of Young’s inequality x y < δ xp + c(δ, p) yp/(p−1), which we apply with δ > 0 arbitrary,
p = ξi := 3r/(5bi) we get, with ξ′i = ξi/(ξi − 1),∫

Qt,k

(Gεai) εbi dxdτ ≤δ ‖wk‖
3r
5

Lr(Qt)
+ cδ ‖Gεai‖

ξ′i
Ls(Qt)

|Qk|ξ
′
i (1− 1

s
− bi
r

)

+ c kbi ‖Gi ε
ai‖Ls(Qt) |Qk,t|1−

1
s . (84)

We introduce numbers

zi := (1− 1

s
− bi
r

) ξ′i
5

3r
= (1− 1

s
− bi
r

)
5

3r − 5bi
, z̃ = (1− 1

s
)

5

3r
, ωi :=

5bi
3r

,
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and we attain∫
Qt,k

Gi ε
αi dxdτ ≤δ ‖wk‖

3r
5

Lr(Qt)
(85)

+ cδ ‖Gi ε
ai‖ξ

′
i

Ls(Qt)
|Qk|

3r
5
zi + c0 k

3r
5
ωi ‖Gi ε

ai‖Ls(Qt) |Qk,t|
3r
5
z̃ .

We recall (82) and choose δ suitably small. Since 5ξ′i/(3r) = 5/(3r − 5bi), we obtain that

‖wk‖Lr(Qt) ≤ C(τ̄)

(
1 +

3∑
i=0

‖Gi ε
ai‖

5
3r−5bi

Ls(Qt)

)
3∑
i=0

(
|Qk,t|zi + kωi |Qt,k|z̃

)
.

It also follows that

‖wk‖L1(Qt) ≤ C(τ̄)

(
1 +

3∑
i=0

‖Gi ε
ai‖

5
3r−5bi

Ls(Qt)

)
3∑
i=0

(
|Qt,k|zi+1− 1

r + kωi |Qt,k|z̃+1− 1
r

)
.

Under the conditions

zi, z̃ >
1

r
and ωi ≤ 1 + z̃ − 1

r
for i = 0, . . . , 3 , (86)

the Lemma B.2 with n = 3, σi := zi+1−1/r, y := z̃+1−1/r, andAi := 1+
∑

j ‖Gj ε
aj‖

5
3r−5bj

Ls(Qt)
=:

Bi gives the bound

‖ε‖L∞(Qt) ≤ k1 + C
(
τ̄ , Ω, k1,

3∑
i=0

‖Gi ε
ai‖

5
3r−5bi

Ls(Qt)
, ‖ε‖L1(Qt)

)
, (87)

with k1 := max{k0, k̄(τ̄), 2 ‖ε‖L1,∞(Qt)/|Ω|} and a certain constant C .

Verifying the conditions (86) is elementary. They reduce to s > 5/2 and bi < 3r/5 + 2/5 − 1/s,
but the latter condition is weaker than bi < 3r/5 which we already assumed in (83). Thus, in order to
obtain the bound as claimed in the Lemma, it is sufficient to assume that

αi − ai = bi <
3r

5
and Gi ε

ai ∈ Ls(QT ) for a s > 5/2 .

In order to satisfy the latter condition, we choose appropriate numbers 0 ≤ ai < 1/s. This is possible
if

αi <
3r

5
+

1

s
. (88)

In this case, we can estimate∫
Ω

(Gi(x, t))
s εai s(x, t) dx ≤ ‖Gi(·, t)‖s

L
s

1−ais (Ω)
‖ε(·, t)‖aisL1(Ω)

yielding

‖Gi ε
ai‖Ls(Qt) ≤ ‖ε‖

ai
L1,∞(Qt)

‖Gi‖Ls/(1−ais),s(Qt) .

Suppose that Gi ∈ Lsi,s(Qt) with si ≥ s > 5/2, then we define ai := (si − s)/(s si). We can now
choose any

αi <
3r

5
+

1

s
− 1

si
, (89)
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a restriction which is stronger than (88). Now (87) implies that

‖ε‖L∞(Qt) ≤ k1 + C
(
τ̄ , Ω, k1,

3∑
i=0

(
‖ε‖

1
s
− 1
si

L1,∞(Qt)
‖Gi‖Lsi,s(Qt)

) 5
3r−5bi

, ‖ε‖L1(Qt)

)
. (90)

Here si > s > 5/2 are arbitrary numbers. Finally, it remains to choose s and si in order that we are
able to estimate the norms of the functions Gi by the state-space norm.

At this point, we recall the definitions (81). Commencing with G1 = |%x|2 we can at best rely on the
bound ‖G1‖2

Lp/2,∞(Qt)
≤ c ‖%‖2

W 1
p,∞(Qt)

. Hence for all 5
2
< s < si ≤ p

2
, we get a bound for G1 in

Lsi,s(Qt). This means that we have to restrict to p > 5, and (89) restritcs β1 via

β1 <
2

5

(
2 + 3β + 1− 5

p

)
,

Next with G2 = |vx|, we have a bound ‖vx‖L∞,p(Qt) ≤ c0 ‖v‖W 2,1
p (Qt)

, hence we can choose

p ≥ s > 5/2 arbitrary and si = +∞. Thus, (89) restricts the exponent α2 as

α2 = max{2, 1 + β2} <
3r

5
+

2

5
=

2

5
(3 + 3β) arbitrary.

Since β ≥ 1, this condition reduces to β2 <
1
5

(6β − 1 + 2). For G3 = |vx|2 and G0 = |q̄x|2, we
have the same parabolic regularity. Due to the Sobolev embedding, we have

‖Gi‖Lz,∞(Qt) + ‖Gi‖L∞,p/2(Qt) ≤ c0 (‖q‖W 2,1
p (Qt)

+ ‖v‖W 2,1
p (Qt)

)2 z :=
3p

2 (5− p)+
.

Thus, since we already restrict to p > 5, we can choose s > 5/2 arbitrary and s0, s2 = +∞. Hence
max{β0, β3 + 1} < 2

5
(3 + 3β).

Remark 6.5. In the case that there is a heat flux on the boundary, the weak form reads∫
Qt

{∂tε φ− (ε v + Jh) · ∇φ} dxdτ =

∫
Qt

(−p I + S) : ∇v φ dxdτ +

∫
St

(rΓ
h − JΓ

h )φ dSxdτ .

Here it is necessary to derive also growth conditions for the temperature-dependence of rΓ. A not
seldom, convenient case occurs if T 7→ rΓ(x, t, T, ρ) is monotone decreasing. Then, %u 7→
rΓ(x, t, T̂ (ρ, %u), ρ) is also monontone decreasing and there are no growth conditions coming from
this term. For instance, the natural cooling condition rΓ = T ext − T with the outer temperature T ext is
of this form. As to JΓ

h , it is sufficient to assume that it possesses an extension of class W 1,0
r (Qτ̄ ) with

r > 5.

Remark 6.6. We considered the case b1 = . . . = bN . Otherwise b̃ 6= 0 and two differences have to
be studied.

1. The heat flux gets, in comparison to (66), an additional term

Jh = κ(T, ρ)∇ 1

T
−

N−1∑
k=1

ξk · l(T, ρ) (∇qk + qN b̃
k(x, t)) .

In the right-hand of (78), there is an additional term
∫
Qt,k

εβ4 |b̃(x, t)|2 dxdτ , where we assumed that

β4 is such that

d0

κ
q2
N l

2(%, q) - εβ4 . (91)
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Since b̃ ∈ L∞,p(Qτ̄ ) by assumption, we in fact do not need to reinforce the assumptions (76). The
term q2

N being favourable for T → +∞ (meaning that qN → 0−), we have β4 ≤ β0 and finish the
proof as in Proposition 6.4.

2. If b̃ 6= 0, the right-hand side of the equation (6) gets the additional term J : b. On the right-hand
side of (78), there is an additional term

∫
Qt,k

εβ5+1 (|∇q|+ |qN | |b̃(x, t)|) |b̃(x, t)| dxdτ where β5 is

the growth exponent for the thermodynamic diffusivities Mij :

|Mij| - εβ5 for i, j = 1, . . . , N .

If β5 + 1 is subject to the same restrictions as β0, the term
∫
Qt,k

εβ5+1 |qN | |b̃(x, t)|2 dxdτ can be

treated as just shown under 1. of the present remark. For b̃ ∈ L∞,p(Qτ̄ ), the product |b̃| |∇q| can
be estimated in the same way as |∇q|2 and |∇v|2 in the proof of Proposition 6.4. Hence, β5 is also
subject to the same restrictions as the exponent β3. Summarising, the entries of M are essentially
subject to the same growth restrictions as the viscosity coefficients η and λ.

With the boundedness of %u, we also obtain the maximum principles for T and ρ.

Corollary 6.7. Assume that the function ε in (9) is such that, for all 0 < m ≤M < +∞

lim inf
T→+∞

inf
m≤|ρ|≤M

ε(T, ρ) = +∞ .

Under the assumptions of Proposition 6.4, we then also have

lim sup
t→τ̄−

‖T‖L∞(Qt) < +∞, lim inf
t→τ̄−

inf
i=1,...,N, x∈Ω

ρi(x, t) > 0 .

Proof. By assumption, the total mass density % associated with the solution remains inside of the
interval [m(τ̄), M(τ̄)]. Thus, the bound obtained in Proposition 6.4 implies that ‖T‖L∞(Qτ̄ ) remains
bounded.

Hence, we also have that supQτ̄ qN < 0. Next we recall that ρ = R(%, q), and since (%, q) remains
in the strict interior of the domain R+ ×HN

− , the mass densities cannot tend to zero.

This achieves to prove the general form of the maximum principle for the system (5), (6). For a more
concrete illustration of the condition (76) in Proposition 6.4, we refer to the Theorem 8.6.

The first task is to introduce a special construction of the entropy functional.

7 A constitutive model for ideal mixtures

With the concept of an ideal mixture, we refer to a concrete form of the chemical potentials

µi = µ̂i(T, p, xi) = gi(T, p) +RT lnxi . (92)

The structure (92) implies that the mixture is volume-additive and enthalpy-additive. Let us however
remark that the predicates ”simple mixture” or ”ideal mixture” do not seem to possess a completely
univoque meaning in the literature. For instance, a more restrictive characterisation of the concept of
an ideal mixture is to be found in [Brd81], Ch. 4.1. 7

7In an ideal mixture the same forces are acting in average between the molecules of the different materials as between
the molecules of the pure components (...). A series of extensive properties of ideal mixtures are obtained in simple additive
way from the corresponding properties of the pure components. See [Brd81], page 317.
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For notational simplicity, the gas constant R shall from now be normalised to one. In (92), gi(T, p)
denotes the Gibbs free energy density of the constituent Ai. In particular, with ρ̂i(T, p) denoting the
mass density of the constituent Ai as a function of temperature and pressure, we have the identity
∂pgi(T, p) = 1/ρ̂i(T, p). If full data are available for all Ai, we can therefore construct the function
gi from the following data concerning the constituent Ai:

� The equation of state ρ̂i(T, p) giving the density or specific volume as function of temperature
and pressure;

� The heat capacity at reference pressure ci0p (T ) := cip(T, p
0) as a function of temperature only;

� The (constant) enthalpy hi0 and entropy si0 at reference temperature T 0 and pressure p0.

Then we have the formula (see [BDD], equation (32))

gi(T, p) =

∫ p

p0

1

ρ̂i(T, p′)
dp′ −

∫ T

T 0

∫ θ

T 0

ci0p (θ′)

θ′
dθ′dθ − si0 T + hi0 . (93)

In the stable fluid phase, the data in the latter formula are restricted by several conditions of thermody-
namic consistency. Denoting by υi the specific volume and cip, c

i
υ the heat capacities of the constituent

Ai, we must have

∂2
pgi = ∂pυi < 0, ∂2

Tgi = −
cip
T
< 0 ,

∂2
Tgi −

(∂2
T,pgi)

2

∂2
pgi

= −c
i
υ

T
< 0 .

(94)

In this section, we at first investigate the possibility to construct the constitutive function h from the
data in (92) with general g1, . . . , gN . At second, we shall set up a simple particular constitutive model.

7.1 General results

We start with giving the form of several thermodynamic functions implied by the definition (92).

Lemma 7.1. Assume that for i = 1, . . . , N the function gi belongs to C2(]0, +∞[2), is strictly
concave, and it satisfies ∂pgi > 0. Assume moreover that, for all T > 0,

lim
p→0+

max
i=1,...,N

∂pgi(T, p) = +∞ , lim
p→+∞

∂pgi(T, p) = 0 for i = 1, . . . , N . (95)

If the chemical potentials are given by (92), then the Gibbs-Duhem equation (18) is satisfied iff p =
p̃(T, ρ), where the function p̃ of the main variables is defined as the root of the equation

N∑
i=1

∂pgi(T, p) ρi = 1 ⇐⇒ p = p̃(T, ρ) . (96)
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Moreover, the free and internal energy densities and the entropy density are, up to a function of
temperature only, uniquely determined as functions of the main variables via

%ψ =
N∑
i=1

gi(T, p̃(T, ρ)) ρi − p̃(T, ρ) + T

N∑
i=1

(ρi/Mi) ln
ρi/Mi∑
j(ρj/Mj)

=: f(T, ρ) , (97)

%u =
N∑
i=1

(gi(T, p̃(T, ρ))− T ∂Tgi(T, p̃(T, ρ))) ρi − p̃(T, ρ) =: ε(T, ρ) , (98)

− %s =
N∑
i=1

∂Tgi(T, p̃(T, ρ)) ρi +
N∑
i=1

ρi
Mi

ln
ρi/Mi∑
j(ρj/Mj)

=: h̃(T, ρ) . (99)

The heat capacity cυ := ∂T ε/% is strictly positive, and it obeys

cυ = c̃υ(T, ρ) = −T
%

 N∑
i=1

∂2
Tgi(T, p̃) ρi −

(∑N
i=1 ∂

2
T,pgi(T, p̃) ρi

)2

∑N
i=1 ∂

2
pgi(T, p̃) ρi

 ≥ inf
i=1,...,N

ciυ(T, p̃) .

(100)

Proof. Due to the definition %ψ = %u−T %s of the Helmholtz free energy, the Gibbs-Duhem equation
(18) reads p = −%ψ +

∑N
i=1 ρi µi. We claim that this equation equivalently defines the partial

mass densities as functions of temperature, pressure and the mole fractions. To see this, we write
%ψ = f(T, ρ1, . . . , ρN) with a constitutive function f of the main variables. With υ = 1/n being
the molar volume, and x1, . . . , xN the mole fractions, we have ρi = Mixi/υ. Hence, an equivalent
expression of the Gibbs-Duhem equation is

p = −f
(
T,

1

υ
(M1x1, . . . ,MNxN)

)
+

1

υ

N∑
i=1

Mi xi µ̂i(T, p, xi) . (101)

The strict convexity of f in the ρ−variables is a consequence of the basic definitions8. This can now
be used to show that (101) defines υ as an implicit function υ̂ of T, p, x. Then, differentiating (101) in
p yields 1 =

∑N
i=1 ρi ∂pµ̂i(T, p, xi), which is nothing else but the left-hand of (96).

Under the conditions (95), we have for all T, ρ1, . . . , ρN > 0

lim
p→+∞

N∑
i=1

∂pgi(T, p) ρi = 0 and lim
p→0+

N∑
i=1

∂pgi(T, p) ρi = +∞ .

Owing to the strict concavity of gi, we must also have ∂2
pgi < 0. Hence, for all T, ρ1, . . . , ρN > 0, the

equation
∑

i ∂pgi ρi = 1 in (96) possesses exactly one root p = p̃(T, ρ), achieving to justify (96).

In the appendix of [BDD], we prove that the corresponding form of the Helmholtz free energy %ψ is,
up to a function of temperature, given by (97).

8Recall that f is a function of (T, ρ), while h is a function of (ρ, %u). We have

D2
ρ,ρf =

1

T

(
D2
ρ,ρh−

D2
ρ,%uh⊗D2

ρ,%uh

∂2
%uh

)
.
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Using the definition (96) of p̃(T, ρ), we compute

∂T p̃(T, ρ) = −
∑N

i=1 ∂
2
T,pgi(T, p) ρi∑N

i=1 ∂
2
pgi(T, p) ρi

. (102)

We are now able to compute ∂Tf . Then, the identities %u = f − T ∂Tf and %s = −∂Tf are used
to derive the forms (98) and (99) of the internal energy and entropy densities. Using next the definition
% cυ = ∂T%u of the heat capacity, we obtain its representation (100) as a straightforward exercise.
Finally we want to obtain a lower bound on cυ. With the mass fractions yi := ρi/%, we now can
express

cυ = − T∑N
i=1 ∂

2
pgi(T, p) yi

Det
( N∑
i=1

yiD
2
T,pgi(T, p)

)
.

The strict positivity of cυ directly follows from the strict concavity of (T, p) 7→ gi(T, p) for each i.
Moreover, by the sub-additivity of the determinant on definite matrices

cυ ≥
−T∑

i ∂
2
pgi(T, p) yi

N∑
i=1

yi Det(D2
T,pgi(T, p)) =

1∑
i ∂

2
pgi yi

∑
i

yi ∂
2
pgi c

i
υ ,

from which it follows that cυ ≥ mini c
i
υ.

In order to investigate further thermodynamic functions, we next introduce thresholds functions related
to the definition (96) of the pressure variable.

Lemma 7.2. In addition to the assumptions of Lemma 7.1, we assume that limp→0+ ∂pgi(T, p) =
+∞ for all i = 1, . . . , N and all T > 0. For T, % > 0 and i = 1, . . . , N , we define pi(T, %) as the
root of the equation ∂pgi(T, pi) = 1/%, and

pmin(T, %) := min
i=1,...,N

pi(T, %), pmax(T, %) := max
i=1,...,N

pi(T, %) .

Let T, ρ1, . . . , ρN > 0. It p̃(T, ρ1, . . . , ρN) is defined via (96), then with % =
∑N

i=1 ρi we have
pmin(T, %) ≤ p̃ ≤ pmax(T, %).

Proof. In view of the asymptotic behaviour of ∂pgi for p→ {0, +∞}, the functions pi, pmin and pmax

are well-defined. If p̃(T, ρ1, . . . , ρN) satisfies (96), then the definition of pi implies that

min
i
∂pgi(T, p̃) ≤

1∑N
i=1 ρi

=
1

%
= ∂pgi(T, pi(T, %)) for i = 1, . . . , N .

Thus, with a certain index i1 such that ∂pgi1(T, p̃) = mini ∂pgi(T, p̃), we obtain that

∂pgi1(T, p̃) ≤ ∂pgi1(T, pi1) .

Using that ∂pgi1 is strictly decreasing in the second argument yields p̃ ≥ pi1(T, %) ≥ pmin(T, %).
Similarly, we show that p̃ ≤ pmax(T, %).

In the next statement we show under which conditions for g1, . . . , gN we obtain a full thermodynamic
model. With this notion, we mean that the entropy potential is a so-called function of Legendre type9

on an open convex setD ⊆ RN
+×R, and that the Legendre transform h∗ is well-defined in the largest

possible domain allowed by the constraint of temperature positivity.

9A function f defined in an open convex set D ⊆ RN is called of Legendre–type if it is continuously differentiable and
strictly convex in D and the gradient of f blows up at every point of the boundary of D (see [Roc70], Section 26).
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Proposition 7.3. We adopt the assumptions of Lemma 7.1 and 7.2. Moreover, we assume that there
are εmin

1 , . . . , εmin
N ∈ R ∪ {−∞} such that, for all i = 1, . . . , N and arbitrary p1, %1 > 0

lim
T→0+

∂pgi(T, p1) = 0 , lim
T, p→0+, p≥pmin(T, %1)

(gi(T, p)− T ∂Tgi(T, p)) = εmin
i . (103)

For T1 > 0 arbitrary, assume that the heat capacities of the species, defined in (94), satisfy

inf
i=1,...,N, T≥T1, p>0

ciυ(T, p) > 0 .

We define an open, convex set D := {(ρ, %u) ∈ RN
+ × R : %u >

∑N
i=1 ε

min
i ρi}. Then, with ε

defined in (98), the root T = T̂ (ρ1, . . . , ρN , %u) of the equation

ε(T, ρ1, . . . , ρN) = %u (104)

is well-defined for all (%, %u) ∈ D. With h̃ from (99), we introduce h(ρ, %u) := h̃(T̂ (ρ, %u), ρ) for
(%, %u) ∈ D. Then, h is strictly convex in D and of class C3(D). Suppose additionally that for all
T > 0

lim
p→+∞

gi(T, p) = +∞ for i = 1, . . . , N , lim
p→0+

min
i=1,...,N

gi(T, p) = −∞ . (105)

Then the image of ∇wh on D is RN × R− =: D∗. Finally, suppose that for all T2 > T1 > 0 and
%1 > 0

lim
T→+∞

min
i=1,...,N

sup
%≤%1

gi(T, pmax(T, %))

T
= −∞ ,

lim
p→+∞

max
i=1,...,N

max
T2≥T≥T1

∂pgi(T, p) = 0 ,

lim
p→0+

min
i=1,...,N

max
T2≥T≥T1

gi(T, p) = −∞ .

(106)

Then h is essentially smooth on D.

Proof. For fixed ρ1, . . . , ρN > 0, and T ≥ T1, we have

∂T ε(T, ρ) =
1

%
c̃υ(T, ρ) ≥ 1

%
inf

i=1,...,N, T≥T1, p>0
ciυ(T, p) > 0 .

Hence limT→+∞ ε(T, ρ) = +∞. Due to the relation (96), we have 1/% ≤ maxi=1,...,N ∂pgi(T, p̃).
We next fix ρ ∈ RN

+ , while letting T → 0+, and want to show that lim supT→0+ p̃(T, ρ) = 0.
Suppose that it is not the case, that is lim supT→0+ p̃(T, ρ) =: p1 > 0. Then, (103)1 implies that

1

%
≤ lim sup

T→0+
max

i=1,...,N
∂pgi(T, p1) = 0 , (107)

a clear contradiction. It then also follows by means of (103)2 that

lim
T→0+

ε(T, ρ) =
N∑
i=1

lim
T,p→0+, p≥pmin(T,%)

(gi(T, p)− T ∂Tgi(T, p)) ρi =
N∑
i=1

εmin
i ρi . (108)

This shows that for all %u ∈]
∑

i ε
min
i ρi, +∞[, the equation (104) possesses a unique solution T =

T̂ (ρ, %u). The derivatives of T̂ in particular satisfy ∂%uT̂ (ρ, %u) = 1/(% cυ).
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For (ρ, %u) ∈ D, we introduce h(ρ, %u) := h̃(T̂ (ρ, %u), %), where h̃ is the (T, ρ) representation
of the negative entropy (See (99)). For the derivatives, we obtain that

∂ρih =
µi(T̂ , ρ)

T̂
= gi(T̂ , p̃(T̂ , ρ)) +

1

Mi

ln
ρi/Mi∑
j(ρj/Mj)

, ∂%uh = − 1

T̂
. (109)

For the second derivatives, we obtain that

∂2
ρi,ρj

h =
1

T̂
∂2
ρi,ρj

f(T̂ , ρ) +
% cυ

T̂ 2
∂ρiT̂ ∂ρj T̂ ,

∂2
%u,ρi

h =
1

T̂ 2
∂ρiT̂ , ∂2

%uh =
1

% cυ T̂ 2
.

(110)

Here f is the (T, ρ) representation of the free energy (See (97)). Since % cυ > 0, the function h thus
possesses a strictly positive definite Hessian iff ρ 7→ f(T, ρ) possesses a strictly positive definite
Hessian for all T . Now, the Hessian of the free energy at fixed temperature can again be computed
from the representation of %ψ, to the result

∂2
ρi,ρj

f(T, ρ) = − 1∑
k ∂

2
pgk(T, p̃) ρk

∂pgi(T, p̃) ∂pgj(T, p̃) +
1

MiMj

(Mi δij
ρi
− 1∑

k(ρk/Mk)

)
.

The latter matrix is strictly positive definite on all states.

Next we want to show that for allw∗ ∈ RN×R−, the equations∇wh(ρ, %u) = w∗ possess a unique
solution. We first introduce T = −1/w∗N+1. As a next step, we determine a solution (p, x1, . . . , xN),

with the constraint
∑N

i=1 xi = 1, for the equations

w∗i =
µi
T

=
gi(T, p)

T
+

1

Mi

lnxi for i = 1, . . . , N

yielding

xi = exp
(
Mi (w

∗
i −

gi(T, p)

T
)
)
. (111)

For the sake of commodity, we shall from now also use the notation w∗ = (w̄∗, wN+1). To realise
the constraint that xi ( which stands for the mole fractions) sum up to one, we find the root p of the
equation

1 =
N∑
i=1

exp
(
Mi (w

∗
i −

gi(T, p)

T
)
)
. (112)

Owing to the conditions (105), this equation defines p implicitely as a function of the variables T and
(w∗1, . . . , w

∗
N) = w̄∗. We denote this function by p̂(T, w̄∗). We also define

ρ̂i(T, w̄
∗) := Mi

exp
(
Mi (w

∗
i −

gi(T, p̂(T, w̄
∗))

T
)
)

∑N
j=1Mj ∂pgj(T, p̂(T, w̄∗)) exp

(
Mj (w′j −

gj(T, p̂(T,w̄∗))
T

)
) (113)

and we choose

ρ = ρ̂
(
− 1

w∗N+1

, w̄∗
)
, %u := ε

(
− 1

w∗N+1

, ρ̂
(
− 1

w∗N+1

, w̄∗
))

.
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We claim to have determined a solution (ρ, %u) to ∇wh(ρ, %u) = w∗, which can be verified easily.
This solution must be unique, since h is a strictly convex function on a convex domain.

Finally we want to show that h is an essentially smooth function on its domainD. This means showing
that |∇wh(ρ, %u)| → +∞ whenever (ρ, %u) approach a boundary point of D. Consider arbitrary
a sequence wm = (ρm, %um) ⊂ D such that wm → w0 = (ρ0, %u0) ∈ ∂D. (In particular, this
implies that supm |wm| < +∞). The boundary of D consists of the surfaces

S1 = {(ρ, %u) : ρ ∈ RN
+ , %u =

∑
i

εmin
i ρi} , S2 = {(ρ, %u) : inf

i
ρi = 0, %u >

∑
i

εmin
i ρi} ,

where S1 is empty if infi ε
min
i = −∞.

We define 1/Tm := −∂%uh(ρm %um). If Tm → 0, then obviously |∇wh(ρm %um)| ≥ 1/Tm →
+∞, and we are done already. Hence, we assume that infm∈N T

m > 0.

Since the sequence ρm converges, it is bounded. As shown in (108), we can have %um−
∑

i ε
min
i ρmi →

0 only if Tm → 0+ and we are done again. Hence, it remains to consider the case wm approaches
a point on S2. This means that infi ρ

m
i → 0.

Suppose now that Tm → +∞. Due to the definition of pmax, we have

µmi
Tm
≤ gi(T

m, pm)

Tm
≤ gi(T

m, pmax(Tm, %m))

Tm
≤ sup

%≤supm %m

gi(T
m, pmax(Tm, %))

Tm
.

Hence, the condition (106)1 implies that

inf
i

µmi
Tm
≤ inf

i
sup

%≤supm %m

gi(T
m, pmax(Tm, %))

Tm
→ −∞ .

As µmi /T
m = ∂ρih(ρm, %um), this again would show that |∇wh(ρm, %um)| → +∞.

Thus, it remains only to consider the case where infi ρ
m
i → 0 while the sequence Tm is uniformly

bounded from below and above. Then, we invoke (96) to see that

max
i=1,...,N, supm Tm≥T≥infm Tm

∂pgi(T, p
m) ≥ 1

%m
≥ 1

supm %
m
> 0 , (114)

and, with pm := p̃(Tm, ρm), the assumption (106)2 implies that supm p
m < +∞. Thus, gi(Tm, pm)

is uniformly bounded above for i = 1, . . . , N . We then distinguish two cases. The first case is that
the associated total mass densities %m :=

∑N
i=1 ρ

m
i are bounded away from zero. Since xmi ≤

Mmax ρ
m
i /(%mMmin), with the maximal/minimal molar masses, we must have infi=1,...,N x

m
i → 0,

and we see that

1

Tm
inf
i
µmi ≤ inf

i
lnxmi + sup

i

gi(T
m, pm)

Tm
≤ inf

i
lnxmi + C0 → −∞ .

The second case is %m → 0. Then, it is possible that all xmi remain bounded from below. However,
(114) shows that pm → 0+, and (106)3 yields

min
i=1,...,N

sup
supm Tm≥T≥infm Tm

gi(T, p
m)→ −∞ .

We find again that |∇wh(ρm, %um)| → +∞, finishing the proof.

The next step is to propose a concrete Ansatz realising all conditions of Proposition 7.3.
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7.2 Particular constitutive model

We employ the equation (93), an we assume that the specific volume of each Ai possesses sublinear
growth/decay in temperature/pressure with certain powers. This reflects an equation of state of Tait–
type. For the heat capacity ci0p (T ), we assume some growth of monomial type in temperature. With
this motivation10, we consider the particular choice

gi(T, p) =
p0

βi ρR
i

(
T

T 0

)αi ( p

p0

)βi
− ci0 T 0

γi (γi + 1)

(
T

T 0

)γi+1

+ gi1 T + gi0 , (115)

subject to the restrictions

0 ≤ αi < 1, 0 < βi < 1, αi + βi ≤ 1 ,

γi ≥ 0, ci0 > 0 ,
(116)

and certain constants ρR
i > 0 and gi0, gi1 that play no particular role for the analysis of the model.

The practically relevant case of Ai being an ideal gas is not covered by (115), but occurs for the limiting
case βi → 0 and αi → 1. In this case we in fact choose

gi(T, p) =
p0

ρR
i

T

T 0
ln

p

p0
− ci0 T

(
ln

T

T 0
− 1
)

+ gi1 T + gi0 . (117)

We here impose the restriction that

ci0 >
p0

T 0 ρR
i

. (118)

Lemma 7.4. The conditions (116) and (118) guarantee the thermodynamical consistency of the
choices (115) and (117).

Proof. For (115), we get

1

ρ̂i(T, p)
= ∂pgi(T, p) =

p0

ρR
i p

(
T

T 0

)αi ( p

p0

)βi
,

and

∂2
pgi =

(βi − 1) p0

ρR
i p

2

(
T

T 0

)αi ( p

p0

)βi
< 0 ,

∂2
Tgi =

αi (αi − 1) p0

βi ρR
i T

2

(
T

T 0

)αi ( p

p0

)βi
− ci0

T

(
T

T 0

)γi
< 0 .

Moreover

∂2
Tgi −

(∂2
T,pgi)

2

∂2
pgi

=− αi p
0

βi (1− βi) ρR
i T

2

(
T

T 0

)αi ( p

p0

)βi
(1− αi − βi)−

ci0

T

(
T

T 0

)γi
< 0 .

(119)

10The canonical way is obviously to look up such data in tables, and then trying to fit a function with the available
parameters. This is however not necessary to perform this step for a qualitative analysis like the present investigation.
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For (117), we get

1

ρ̂i(T, p)
=

p0

ρR
i p

T

T 0
and ∂2

pgi = − p0

ρR
i p

2

T

T 0
< 0 , ∂2

Tgi = −c
i0

T
< 0 .

Moreover

∂2
Tgi −

(∂2
T,pgi)

2

∂2
pgi

=− 1

T

(
ci0 − p0

T 0 ρR
i

)
. (120)

Under the condition (118), we obtain that ciυ is a positive constant.

Lemma 7.5. Assume that for i = 1, . . . , N , the function gi is given either by (115) or (117), where we
adopt the assumptions (116) and (118). We additionally suppose that there exists at least one index
i such that gi obeys (117). Then, with εmin

i = gi0 for i = 1, . . . , N , all assumptions of Prop. 7.3 are
satisfied.

Proof. We verify easily that gi(T, p) → +∞ for p → +∞. Consider any index i such that g obeys
(117), which is the case for at least one. Then, for 0 < p < p0 and T ≥ T1 > 0 arbitrary we have

gi(T, p) ≤
p0

ρR
i

T1

T 0
ln

p

p0
+ sup

T≥T1

{−ci0 T (lnT/T 0 − 1) + gi1 T + gi0}

⇒ inf
i

sup
T≥T1

gi(T, p) ≤ c0 ln
p

p0
+ c1 .

Hence, limp→0+ infi supT≥T1
gi(T, p) = −∞.

For (115), we have ∂pgi(T, pi) = 1/% iff

p0

ρR
i pi

(
T

T 0

)αi ( pi
p0

)βi
=

1

%
⇔ pi = p0

(
%

ρR
i

) 1
1−βi

(
T

T 0

) αi
1−βi

.

For (117), similar arguments yield

pi = p0 %

ρR
i

T

T 0
.

Recall that αi < 1−βi. Hence, for % ≤ %1, and T sufficiently large the largest pi is always associated
with the choice (117), and it is of the form c1 T with a certain positive constant c1. Hence, for all gi
obeying (117) we have

gi(T, pmax(T, %)) ≤ p0

ρR
i T

0
ln(c1 T/p

0)− ci0 T ln(T/T 0) + g̃i1 T + gi0

≤(−ci0 +
p0

ρR
i T

0
)T lnT + g̃i1 T + g̃i0 .

Now it is readily seen that

lim
T→+∞

min
i

sup
%≤%1

gi(T, pmax(T, %))

T
= −∞ .

For gi obeying (115) we have

lim
T,p→0+

gi(T, p) = gi0, lim
T,p→0+

T ∂Tgi(T, p) = 0 .
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For gi obeying (117), we can show as above that for %1 > 0 fixed and T sufficiently small, the function
pmin(T, %1) is of the form c2 T with a positive constant c2. Thus, for p1 ≥ p ≥ pmin(T, %1) we have

T ln p1 ≥ T ln p ≥ T (lnT − C1)

which, for (117), allows showing that

lim
T,p→0+, p≥pmin(T, %1)

gi(T, p) = gi0, lim
T,p→0+, p≥pmin(T, %1)

T ∂Tgi(T, p) = 0 .

The other claims are proven similarly.

Remark 7.6. The assumption that there is one index such that gi is given by (117) is rather artificial
and in fact not needed. More natural and sufficient is the condition that at least one of the gi is singular
in p in a neighourhood of the origin (T = 0, p = 0). For instance, let gi obey

gi(T, p) =
p0

ρR
i

(
T

T 0

)αi (
ln

p

p0
+

1

βi

(
p

p0

)βi)
− ci0 T 0

γi (γi + 1)

(
T

T 0

)γi+1

+ gi1 T + gi0 ,

for at least one constituent. However, working with the explicit formula (115), (117) is simpler if we
want to compute exponents. We remind the reader that these are just particular examples.

For later discussion of the maximum principle for the temperature, we will restrict to the case where, at
large temperatures, there is a single dominant species with respect to the heat capacity. This concept
is explained in the next definition. It relies on the representations (119) and (120) of the heat capacities
of the species.

Definition 7.7. Assume that for i = 1, . . . , N , the function gi obeys either (115) or (117). We set
γi := 0 in the case of (117), and we define

γmax := max
i=1,...,N

γi .

We let k1, . . . , km be an enumeration of the indices such that γkj = γmax (where 1 ≤ m ≤ N ). If
there is a strict ordering:{

ck10 < ck20 < . . . < ckm0 , for γmax > 0 ,

ck10 − p0

ρR
k1
T 0 < ck20 − p0

ρR
k2
T 0 < . . . < ckN0 − p0

ρR
kN

T 0 , for γmax = 0 ,

then, we define I := km call the species AI dominant with respect to the heat capacity.

8 Proof of the maximum principle for a special ideal mixture

In this section we prove the maximum principle for the free energy model relying on (92) and (115),
(117) (Theorem 8.6). At first we need to work out growth properties of the basic thermodynamic quan-
tities for large temperatures.
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8.1 Growth properties of some basic thermodynamic quantities

For a general ideal model, the pressure function p = p̃(T, ρ) is defined as the root of the equation
(96). If gi obeys (115) or (117), we have

∂pgi(T, p) =
1

ρ̄R
i

(
p0

p

)1−βi ( T

T 0

)αi
.

Hence, computing the functions pmin and pmax (See Lemma 7.2) is a straightforward exercise. For at
least two indicies i0, i1 (the choice of which is presently depending on the state variables!), we obtain
that

p0

(
T

T 0

) αi1
1−βi1

(
%

ρR
i1

) 1
1−βi1 ≤ p ≤ p0

(
T

T 0

) αi0
1−βi0

(
%

ρR
i0

) 1
1−βi0

. (121)

Now for i = 1, . . . , N , we also see that( T
T 0

)αi ( p
p0

)βi
≤ ci %

βi
1−βi0 T

αi+βi
αi0

1−βi0 ,

where (122)

αi + βi
αi0

1− βi0
= αi + βi − βi

1− αi0 − βi0
1− βi0

≤ 1 .

Recalling the ansatz (115) for gi, the latter implies that, for fixed %, the functions gi having γi > 0 are
all strictly negative if T is sufficiently large. In fact, the heat capacity term dominates, and we have

gi = − T 0

(γi + 1) γi

(
T

T 0

)1+γi

(ci0 − oi) (123)

where

T 0

(γi + 1) γi
oi :=

p0

βi ρR
i

(
T

T 0

)αi−γi−1 (
p

p0

)βi
+ (g1i T + gi0)

( T
T 0

)−γi−1

.

With the help of (122), and recalling that 1/T = −qN , we now have

T γi |oi| ≤ci (%
βi

1−βi0 T
αi+βi

αi0
1−βi0

−1
+ |g1i|+ |gi0|T−1)

≤ci (%
βi

1−βi0 (−qN)
1−αi−βi

αi0
1−βi0 + 1− qN) =: ci(%, −qN) .

We see that oi is bounded for bounded entropic variables. Moreover

|oi| ≤ ci(%, −qN) (−qN)γi → 0 for qN → 0− . (124)

To obtain a similar result in the case of (117), we again use (121) to estimate

T ln
p

p0
≤T ln

(
T

T 0

) αi0
1−βi0

+ T ln

(
%

ρR
i0

) 1
1−βi0 ≤ αi0

1− βi0
T ln

T

T 0
+ c T (1 + ln %) . (125)

Thus

gi = −T ln
T

T 0
(ci0 − p0

ρR
i T

0
− oi) , (126)

where

oi := − p0

ρR
i T

0

(
1−

ln p
p0

ln T
T 0

)
+

1

ln T
T 0

(ci0 + gi1 +
gi0

T
) .
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We see with the help of (125) that

lnT |oi| ≤ ci lnT
1 + | ln %|

lnT − lnT 0
= ci ln

1

|qN |
1 + | ln %|

ln 1
|qN |
− lnT 0

,

showing that oi is bounded for bounded entropic variables, and moreover that

|oi| ≤ ci(%, −qN)
1

ln 1
|qN |
→ 0 for qN → 0− . (127)

8.2 Estimates for the growth in temperature at fixed entropic variables

We showed in Remark 4.3 that all thermodynamic quantities can be introduced as functions of the
variables % and q1, . . . , qN . If we fix % and q̄ = (q1, . . . , qN−1), a thermodynamic quantity is a
function of qN = −1/T only, hence a function of T = −1/qN only. To hint at this situation we shall,
in this paragraph, use the tilde superscripts again, for instance

ρ̃i(T ) = ρ̃i(T ; %, q̄) = Ri(%, q̄, −1/T ) .

Now we want to investigate the behaviour for T → +∞ for several functions. This is a key idea to
obtain a maximum principle for the temperature using the general energy equation like in the preceding
section. For two functions f̃1(T ), f̃2(T ), we use the notations

f̃1(T ) - f̃2(T ), (f̃1(T ) % f̃2(T ))

if there are continuous functions φ and ψ on R+ × HN
− with φ nonnegative and ψ strictly positive,

such that

f̃1(T ) ≤ φ(%, q) f̃2(T ), (f̃1(T ) ≥ ψ(%, q) f̃2(T )) .

Moreover f̃1(T ) h f̃2(T ) means that both f̃1(T ) % f̃2(T ) and f̃1(T ) - f̃2(T ) are valid.

To start with, the identities (92) allow to epress, with x1, . . . , xN denoting the mole fractions,

1

Mi

lnxi =
µi
T
− gi(T, p)

T
for i = 1, . . . , N

and, using the entropic variables with the transformation (33) (recall that ξNi = 0 for all 1 ≤ i ≤ N )

1

Mi

lnxi =
N−1∑
k=1

qk ξ
k
i + M (%, q)− gi(T, p)

T
. (128)

Since xi ≤ 1 by definition, we obtain that

gi(T, p)

T
≥M (%, q)− |Q| |q̄| for all i = 1, . . . , N

=⇒

M (%, q) ≤ 1

T
inf
i
gi(T, p) + |Q| |q̄| .
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The property
∑

i xi = 1 also implies that there is at least one i2 such that xi2 ≥ 1/N . Thus, (128)
also implies that

M (%, q) ≥gi2(T, p)

T
− 1

Mi2

lnN − |Q| |q̄|

≥ 1

T
inf
i
gi(T, p)− C (1 + |q̄|) .

We hence see that the factor M (%, q) satisfies

|M (%, q)− 1

T
inf
i
gi(T, p)| ≤ C (1 + |q̄|) . (129)

Due to (123), (124) and (126), (127), the heat capacity terms in the formula for the gis always dominate
at large temperature. We now exploit this fact to determine the behaviour of infi=1,...,N g̃i(T ) for T
large.

Lemma 8.1. We assume that g1, . . . , gN obey the representation (115) or (117), with exponents
αi, βi and γi subject to (116) and, in the case (117), subject also to (118). We define γmax :=
maxi=1,...,N γi, and we assume that there is a single index I such that the species AI dominates in
the sense of Definition 7.7. Then,

� For all j 6= I , there is a strictly positive, continuous function bj(%, q̄) such that

ρ̃j(T ) h

{
e−bj T

γmax if γmax > 0 ,

T−bj if γmax = 0 .

� limT→+∞ ρ̃i(T ) = % δIi, with the Kronecker symbol δ.

Proof. For two arbitary indices i 6= j, we want to investigate the asymptotic behaviour of the differ-
ences g̃i(T )− g̃j(T ) for T → +∞, while (%, q̄) remains fixed.

First we choose i 6= j such that γi > γj > 0. Then, the formula (123) implies that

g̃j(T )

g̃i(T )
=

(γi + 1) γi
(γj + 1) γj

( T
T 0

)γj−γi cj0 − oj
ci0 − oi

. (130)

In view of the property (124), we can choose a number T1 = T1(%, i, j) > T 0 such that

|oi| ≤
1

2
ci0 and 2

cj0

ci0
(γi + 1) γi
(γj + 1) γj

( T
T 0

)γj−γi
≤ 1

2
for all T ≥ T1 .

Then g̃j(T )/g̃i(T ) ≤ 1/2 and, invoking (123),

g̃i(T )− g̃j(T ) ≤ 1

2
g̃i(T ) ≤ −c0i

4

T 0

(γi + 1) γi

( T
T 0

)1+γi
. (131)

Second, we consider the case that γi = γj > 0. Then, by means of (130)

g̃j(T )

g̃i(T )
=
cj0 − oj
ci0 − oi

.
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Now, suppose that cj0 < ci0. Then, by means of (124), we can find a T2(%, i, j) > T 0 such that, for
all T ≥ T2

ci0 − oi > (1 + δ) cj0 − oj, 2δ :=
ci0

cj0
− 1 .

Then, for T ≥ T2

g̃i(T )− g̃j(T ) ≤ δ

1 + δ
g̃i(T ) ≤ −c

i0 − cj0

ci0 + cj0
ci0

T 0

(γi + 1) γi

( T
T 0

)1+γi
. (132)

The third case is that i 6= j are such that γi > 0 and γj = 0. Then we invoke (123) and (126) to see
that

g̃j(T )

g̃i(T )
= [T 0]γi (γi + 1) γi

ln T
T 0

T γi

cj0 − p0/(ρR
j T

0)− oj
ci0 − oi

.

In the same way as for (131), the difference g̃i − g̃j is asymptotically equivalent to −T γi+1 for suffi-
ciently large T .

The fourth and last case is γi = γj = 0, and then

g̃j(T )

g̃i(T )
=
cj0 − p0/(ρR

j T
0)− oj

ci0 − p0/(ρR
i T

0)− oi
.

If ci0 − p0/(ρR
i T

0) > cj0 − p0/(ρR
j T

0), we can argue as for (132), and find in this case with the
help of (126) that

g̃i(T )− g̃j(T ) ≤ −
ci0 − p0/(ρR

i T
0)− cj0 + p0/(ρR

j T
0)

ci0 − p0/(ρR
i T

0) + cj0 − p0/(ρR
j T

0)
(ci0 − p0/(ρR

i T
0))T ln

T

T 0
. (133)

Due to these considerations, we see that for fixed entropic variables % and q̄ = (q1, . . . , qN−1)

lim
T→∞

(g̃i(T )− g̃j(T )) = −∞ for


γi > γj ,

γi = γj > 0 if ci0 > cj0 ,

γi = γj = 0 if ci0 − p0

ρR
i T

0 > cj0 − p0

ρR
j T

0 .

For fixed density % and sufficiently large temperature T , we have infi=1,...,N g̃i(T ) = g̃I(T ) and the
index I is uniquely determined as follows:

For max{γ1, . . . , γN} > 0 : γI = max{γ1, . . . , γN} and cI0 > ck0 for all γk = γmax ,

For max{γ1, . . . , γN} = 0 : cI0 − p0

ρR
I T

0
= max

k

(
ck0 − p0

ρR
k T

0

)
.

Then, in view of (129), we see that, for γmax > 0,∣∣∣M (%, q) +
cI0

γmax(γmax + 1)

( T
T 0

)γmax
∣∣∣ ≤ C (1 + |q̄|+ c(%, 1/T )) ,

where c occurs in (124) and is uniformly bounded. If γmax = 0, then with the c(%, 1/T ) of (127), we
have instead ∣∣∣M (%, q) + ln

T

T 0

(
ci0 − p0

ρR
i T

0

)∣∣∣ ≤ C (1 + |q̄|+ c(%, 1/T )) .
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We recall (128). If i = I , then (129) shows that

(x̃I(T ))
1
MI = eq̄·ξI eM− g̃I (T )

T

implying that

eq̄·ξI e−C (1+|q̄|+c(%, 1/T )) ≤ (x̃I(T ))
1
MI ≤ eq̄·ξI eC (1+|q̄|+c(%, 1/T )) .

In short, the fraction xI is bounded and strictly positive independently on the temperature. For j 6= I ,
we have

1

Mj

ln x̃j(T ) =
1

MI

ln x̃I(T ) +
g̃I(T )− g̃j(T )

T
+ q̄ · (ξj − ξI)

and therefore

(x̃j(T ))
1
Mj = (x̃I(T ))

1
MI eq̄·(ξj−ξI) e

g̃I (T )−g̃j(T )

T . (134)

Now, as shown in (131), (132), for γmax > 0, we find T1 > T0 such that g̃I(T ) − g̃j(T ) =

−cIj T 1+γmax , with cIj positive and bounded, for all T ≥ T1. Hence exp( g̃I(T )
T
− g̃j(T )

T
) = e−cIj T

γmax .

If γmax = 0, then for all T ≥ T2, (133) yields g̃I(T )− g̃j(T ) = −cIj T lnT . Therefore exp( g̃I(T )
T
−

g̃j(T )

T
) = T−cIj .

Overall, for all j 6= I (134) shows that

x̃j(T ) h

{
e−bj T

γmax for γmax > 0 ,

T−bj for γmax = 0 ,

with strictly positive, continuous functions bj of the entropic variables.

Lemma 8.2. With the index I of Lemma 8.1, we also have

ρ̃i(T ) ∂̃pgi(T ), ρ̃i(T )T ∂̃2
Tgi(T ) −→ 0 for all i 6= I as T →∞ ,

p̃(T ) h T
αI

1−βI .

Proof. In the case that γmax > 0, i 6= I implies that ρ̃i(T ) h e−bi T
γmax . On the other hand, we have

∂pgi = ci T
αi pβi−1, and (121) implies that

∂̃pgi(T ) ≤ c̃i T
αi−αi1

1−βi
1−βi1 .

Thus, limT→∞ ρ̃i(T ) ∂̃pgi(T ) ≤ c̃i limT→∞ e−bi T
γmax

T
αi−αi1

1−βi
1−βi1 = 0.

If γmax = 0, then ∂pgi = ci T/p, and (121) implies that ∂pgi ≤ c̃i. Hence

lim
T→∞

ρ̃i(T ) ∂̃pgi(T ) ≤ c̃i lim
T→∞

T−bi = 0 .

We can prove the same for ρ̃i(T ) ∂̃2
Tgi(T ). If i 6= I and γmax > 0, then T ∂̃2

Tgi(T ) possesses at

most polynomial growth. If γmax = 0, then T ∂̃2
Tgi(T ) is bounded.

To investigate the growth exponent of p̃(T ), we use the preceding result, showing that

ρI ∂pgI = 1−
∑
j 6=I

ρj ∂pgj = 1− δ(T ; %, q) ,
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where δ → 0 as T → +∞. Thus, for all T ≥ T1 such that δ ≤ 1/2, we have

p̃(T ) ≤ ci

(
ρI
%

) 1
1−βI

%
1

1−βI T
αI

1−βI .

We prove the lower bound similarly.

Next we investigate other basic thermodynamic functions. For notational relief, we introduce the en-
thalpies

Hi := gi(T, p̃)− T ∂Tgi(T, p̃) , %H :=
N∑
i=1

ρi (gi(T, p̃)− T ∂Tgi(T, p̃)) .

Proposition 8.3. Assumptions of Lemma 8.1. Then

c̃υ(T ) h T γmax , %̃ u(T ), %̃H(T ) h T 1+γmax .

Proof. We recall that

% cυ = ∂T%u = −T

 N∑
i=1

∂2
T,Tgi(T, p) ρi −

(∑N
i=1 ∂

2
T,pgi(T, p) ρi

)2

∑N
i=1 ∂

2
pgi(T, p) ρi

 .

We have shown in Lemma 8.2 that T ∂̃2
Tgi(T ) ρ̃i(T )→ 0 as T →∞ for all i 6= I . Moreover(∑N

i=1 ∂
2
T,pgi ρi

)2

∑N
i=1 ∂

2
pgi ρi

−
ρI (∂2

T,pgI)
2

∂2
pgI

=
ρI (∂2

T,pgI)
2

∂2
pgI

((1 +
∑

i 6=I(ρi/ρI) (∂2
T,pgi/∂

2
T,pgI))

2

1 +
∑

i 6=I(ρi/ρI) (∂2
pgi/∂

2
pgI)

− 1
)
.

(135)

Since ∂2
T,pgi = αi

T
∂pgi, and since ∂2

pgi = −1−βi
p
∂pgi, it follows that

−ρI
(∂2
T,pgI)

2

∂2
pgI

= α2
I (1− βI)

p

T 2
ρI ∂pgI ≤ α2

I (1− βI)
p

T 2
,

where we use that ρI ∂pgI ≤ 1. Hence

∣∣∣T ρ̃I (∂̃2
T,pgI(T ))2

∂̃2
pgI(T )

∣∣∣ ≤ c
p̃(T )

T
≤ c .

Moreover, invoking Lemma 8.2 again,

ρ̃i(T )

ρ̃I(T )

∂̃2
T,pgi(T )

∂̃2
T,pgI(T )

= ci
ρ̃i(T ) ∂̃pgi(T )

ρ̃I(T ) ∂̃pgI(T )
−→ 0 ,

ρ̃i(T )

ρ̃I(T )

∂̃2
pgi(T )

∂̃2
pgI(T )

= ci
ρ̃i(T ) ∂̃pgi(T )

ρ̃I(T ) ∂̃pgI(T )
−→ 0 .

Thus, (135) implies that

% c̃υ(T ) = −T

∂̃2
TgI(T ) ρ̃I(T )−

ρ̃I(T )
(
∂̃2
T,pgI(T )

)2

∂̃2
pgI(T )

+ o(1/T ) = ρ̃I(T ) c̃Iυ(T ) + o(1/T ) ,
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where o(1/T )→ 0 for T →∞. Since we know that the heat capacity of the species I is asymptotic
equivalent with T γmax , the claim for cυ follows.

Next we look at the internal energy density and the enthalpy density. If we insert the particular choices
(115), we first obtain that

Hj(T, p) = gj(T, p)− T ∂Tgj(T, p) =
p0 (1− αj)
βj ρR

j

(
T

T 0

)αj ( p

p0

)βj
+
cj0 T 0

γj + 1

(
T

T 0

)γj+1

.

Thus

%u+ p = %H =
N∑
i=1

ρi (gi − T ∂Tgi) ≥ ρI
cI0

(γmax + 1) [T 0]γmax
T 1+γmax .

If γmax > 0, and j 6= I , the mass density ρ̃j(T ) decays exponentially, and we therefore easily show

that ρ̃j(T ) H̃j(T )→ 0 for T →∞. Hence %̃H(T ) h T 1+γmax .

If γmax > 0, we have p̃(T )/T 1+γmax → 0. Thus, it also follows that %̃u(T ) h %̃H(T ) h T 1+γmax .

For (117), we haveHj(T, p) = gj(T, p)−T ∂Tgj(T, p) = cj0 T and %H = %u+p = T
∑N

i=1 c
i0 ρi.

In this case, we have also p = p0 T
T0

∑
i(ρi/ρ

R
i ). Hence %̃H(T ) h T and

%u = T
N∑
i=1

(ci0 − p0

T 0 ρR
i

) ρi ≥ ρI (cI0 − p0

T 0 ρR
I

)T .

8.3 Partially explicity formulas for the derivatives of transformed coefficients
depending on the entropic variables

Now, we need estimating the combinations a0, a1, . . . , aN−1 and d0 introduced in (67), (68) and (69).
In order to obtain estimates for these functions, we first have to obtain more explicit formula relating
them to the quantities T , ρ̃(T ), %̃u(T ), etc. of which we know the asymptotic behaviour.

As already shown in the papers [DDGG20, Dru21], in the case of ideal mixtures (92), we can achieve
partially explicit formula.

Proposition 8.4. We adopt the assumptions of Lemma 4.1. For the derivatives of the function h∗, for

DOI 10.20347/WIAS.PREPRINT.2869 Berlin 2021



P.-É. Druet 46

all i, k ≤ N , we obtain the representations

∂2
w∗i ,w

∗
k
h∗(w̄∗, −1/T ) = ρi

(
Mi δik − ρk

(
Mi ∂pgi +Mk ∂pgk

)
+ ρk

∑
j

(∂pgj)
2 ρjMj − T ρk

∑
j

∂2
pgjρj

)
,

(136)

∂2
w∗i ,w

∗
N+1

h∗(w̄∗, −1/T ) = ρi (MiHi −
∑
j

Mj ρj ∂pgj Hj)

+ ρi %H (−Mi ∂pgi +
∑
j

Mj ρ̃j (∂pgj)
2 − T

∑
j

ρ̃j ∂
2
pgj)− T 2 ρi

∑
j

ρj ∂
2
T,pgj ,

(137)

∂2
w∗N+1

h∗(w∗,−1/T ) =
∑
i

Mi ρiH
2
i − 2 %H

∑
i

Miρi∂pgiHi

+ (%H)2 (
∑
i

Miρi(∂
2
pgi)

2 − T
∑
i

ρi ∂
2
pgi)− 2 %H T 2

∑
i

ρi ∂
2
T,pgi − T 3

∑
i

ρi ∂
2
Tgi .

(138)

Proof. The key idea is using the equation (112) and the representation (113) of ρi in the variables T
and w̄∗. Differentiating in (112) yields, after using the identity (111),

1

T

N∑
i=1

Mi xi ∂pgi(T, p̂(T, w̄
∗)) ∂w′j p̂(T, w̄

∗) = Mj xj for j = 1, . . . , N . (139)

Thus, invoking (139) and (113)

∂w∗j p̂(T, w̄
∗) =

T Mj xj∑N
i=1Mi xi ∂pgi(T, p̂(T, w̄∗))

= T ρ̂j(T, w̄
∗) .

With the same ideas, we also find that

∂T p̂(T, w̄
∗) =

1

T

N∑
i=1

ρ̂i (gi(T, p̂(T, w̄
∗))− T ∂Tgi(T, p̂(T, w̄∗))) .

Moreover, direct calculations yield

∂w′k ρ̂i(T, w̄
∗) = ρi

(
Mi δik − ρk

(
Mi ∂pgi +Mk ∂pgk

)
+ ρk

∑
j

(∂pgj)
2 ρjMj − T ρk

∑
j

∂2
pgjρj

)
,

in which gi and its derivatives are evaluated at (T, p(T, w̄∗)).

The expression for ∂T ρ̂i(T, w̄∗) is sligthly more complex. Again, direct calculations yield

∂T ρ̂i(T, w̄
∗) =

ρi
T 2

(MiHi −
∑
j

Mj ρj ∂pgj Hj)

+
ρi
T 2

%H (−Mi ∂pgi +
∑
j

Mj ρj (∂pgj)
2 − T

∑
j

ρi ∂
2
pgj)− ρi

∑
j

ρj ∂
2
T,pgj .
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Note that %u = %̂u(T, w̄∗) =
∑N

i=1 ρ̂i (gi(T, p̂)− T ∂Tgi(T, p̂))− p̂. Thus

∂T %̂u(T, w∗) =
N∑
i=1

Hi ∂T ρ̂i +
N∑
i=1

ρ̂i (∂pgi ∂T p̂− T ∂2
T,Tgi − T ∂2

T,pgi ∂T p̂)− ∂T p̂

=
N∑
i=1

Hi ∂T ρ̂i − T
N∑
i=1

ρ̂i ∂
2
T,Tgi − T

∑
i

ρ̂i ∂
2
T,pgi ∂T p̂ .

Inserting the corresponding identities for ∂T p̂ and ∂T ρ̂, we get

∂T %̂u(T, w∗) =
1

T 2

∑
i

Mi ρiH
2
i − 2

%H

T 2

∑
i

Miρi∂pgiHi

+
(%H)2

T 2
(
∑
i

Miρi(∂
2
pgi)

2 − T
∑
i

ρi ∂
2
pgi)− 2 %H

∑
i

ρi ∂
2
T,pgi − T

∑
i

ρi ∂
2
Tgi .

Now, we have defined the entropic variables via

∇w∗h
∗(w∗) = w = [ρ, %u] = [ρ̂(−1/w∗N+1, w̄

∗), %̂u(−1/w∗N+1, w̄
∗)] .

This allows to compute

∂2
w∗i ,w

∗
k
h∗ =∂w∗k ρ̂i(−1/w∗N+1, w̄

∗) for 1 ≤ i, k ≤ N

∂2
w∗i ,w

∗
N+1

h∗ =∂T ρ̂i(−1/w∗N+1, w̄
∗)

1

(w∗N+1)2
for 1 ≤ i ≤ N

∂2
w∗N+1

h∗ =− ∂T %̂u(−1/w∗N+1, w̄
∗)

1

(w∗N+1)2
,

and we obtain the representations (136), (137), and (138).

The formula of Proposition 8.4 also yield

N∑
k=1

∂2
w∗i ,w

∗
k
h∗(w̄∗, −1/T ) =ρi

(
Mi −Mi ∂pgi %−

∑
k

ρkMk ∂pgk

+ %
∑
j

(∂pgj)
2 ρjMj − T %

∑
j

∂2
pgj ρj

)
. (140)

In addition, we have

D2
w∗,w∗h

∗ξN+1 · ξN+1 =
N∑

i,k=1

∂2
w∗i ,w

∗
k
h∗ =

N∑
i=1

Mi ρi (1− ∂pgi %)2 + T %2

N∑
i=1

ρi |∂2
pgi| . (141)

We also compute

N∑
i=1

∂2
w∗i ,w

∗
N+1

h∗(w̄∗, −1/T ) =
∑
j

ρjMj Hj (1− % ∂pgj)

+ %H
(∑

j

ρjMj ∂pgj (% ∂pgj − 1)− T %
∑
j

ρj ∂
2
pgj
)
− T 2 %

∑
j

ρj ∂
2
T,pgj . (142)
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8.4 Some estimates

We exploit the representation (136) and the asymptotic properties in Lemma 8.2 and Proposition 8.3.
We see that

∂̃2
w∗i ,w

∗
k
h∗(T ) h

T %2

p̃(T )
δiI δkI and ˜D2h∗w∗,w∗(T )ξN+1 · ξN+1 h

T %2

p̃(T )
. (143)

We obtain that

∂̃2
w∗i ,w

∗
k
h∗(T )

˜D2h∗w∗,w∗(T )ξN+1 · ξN+1
- 1 . (144)

In order to estimate (137), we use the result of Proposition 8.3 for %̃H(T ). By the same means

˜∂2
w∗N+1

h∗(T ) - (%̃H(T ))2 h T 2+2γmax , ˜∂2
w∗i ,w

∗
N+1

h∗(T ) - T 1+γmax . (145)

It also follows that

| ˜∂2
w∗i ,w

∗
N+1

h∗(T )|

˜D2h∗w∗,w∗(T )ξN+1 · ξN+1
- T γmax p̃(T ) h T

γmax+
αI

1−βI . (146)

Finally we estimate the coefficients occurring in the weak form of the energy equation.

Lemma 8.5. Define a0, ak and d0 as in (67), (68) and (69). Then

|ã0(T )| - T
γmax+

αI
1−βI , |ãk(T )| - T 1+γmax , d̃0(T ) h T 2+γmax .

Proof. The estimates for a and b is a direct consequence of the definitions (67) and (68), where we
use (145) and (146). In (71), we proved that

d0 = T 2 % cυ + T 4
(
A∗∂T (µ/T ) · ∂T (µ/T )− (A∗∂T (µ/T ) · ξN+1)2

A∗ξN+1 · ξN+1

)
,

in which A∗ = D2
w̄∗,w̄∗h

∗. In the case of γmax > 0, we express

A∗ij = δIi δIj
T %2

p̃(T )
+ B̃ij(T ) ,

where, exploiting the result of Lemma 8.1, the coefficients B̃ij(T ) decay exponentially for T → ∞.
Then, for z ∈ RN arbitrary

A∗z · z = a∗II z
2
I + B̃z · z , (A∗z · ξN+1)2 = z2

I (a∗II)
2 + (B̃z · ξN+1)2 .

Hence

A∗z · z − (A∗z · ξN+1)2

A∗ξN+1 · ξN+1

=
a∗II z

2
I B̃z · ξN+1 + B̃z · z a∗II − (B̃z · ξN+1)2 − 2 a∗II zI (B̃z · ξN+1)

A∗ξN+1 · ξN+1
,

DOI 10.20347/WIAS.PREPRINT.2869 Berlin 2021



Multicomponent fluid dynamics 49

and we see that

A∗z · z − (A∗z · ξN+1)2

A∗ξN+1 · ξN+1
≤ |B̃| |A

∗| |z|3 + |B̃| |z|2 + 2 |A∗| |z|2

A∗ξN+1 · ξN+1
. (147)

We also note that, for the chemical potentials as functions of T and ρ,

∂T (µi/T ) = − 1

T 2
(gi − T ∂Tgi − T ∂pgi ∂T p̃) =

1

T 2
Hi −

1

T
∂pgi ∂T p̃ .

We recall that

∂T p̃(T, ρ) = −
∑N

i=1 ∂
2
T,pgi(T, p) ρi∑N

i=1 ∂
2
pgi(T, p) ρi

.

Since ∂2
pgi = (βi − 1) p−1 ∂pgi and ∂2

T,pgi = αi T
−1 ∂pgi, we have

∂pgi ∂T p̃ =
αi

1− βi
p

T
∂pgi .

Hence, T 2 ˜∂T (µi/T )(T ) h Hi - T 1+γmax . We choose z := T 2 ˜∂T (µi/T )(T ) in (147), and we see
that

T 4
(
A∗∂T (µ/T ) · ∂T (µ/T )− (A∗∂T (µ/T ) · ξN+1)2

A∗ξN+1 · ξN+1

)
decays with B̃(T ) exponentially to zero for T → +∞. Thus d0 h T 2 % c̃υ.

In the case γmax = 0, we can directly compute that

∂T (µi/T ) = − 1

T
(ci0 − p0

ρR
i T0

) ,

T 4
(
A∗∂T (µ/T ) · ∂T (µ/T )− (A∗∂T (µ/T ) · ξN+1)2

A∗ξN+1 · ξN+1

)
=T 2

(
A∗c · c− (A∗c · ξN+1)2

A∗ξN+1 · ξN+1

)
,

with the constants ci = ci0 − p0/(ρ
R
i T0) of modified heat capacities. Here again, we can write

A∗ = a∗II I + B̃ where B̃(T ) → 0 for T → +∞ in polynomial decay. Hence A∗c · c − (A∗c ·
ξN+1)2/A∗ξN+1 · ξN+1 tends to zero, allowing to conclude again that d0 h % T 2 c̃υ.

8.5 Sufficient conditions for the maximum principle

In this last paragraph we show how to derive the growth conditions on the thermodynamic diffusivities
and viscosities. We give the statement for b1 = . . . = bN which corresponds to the case that the
body forces reduce to the gravitational attraction. For the general case, there is an additional restriction
concerning the growth of the functions Mij(T, ρ) in temperature (cf. Remark 6.6).

Theorem 8.6. We consider the ideal mixture of Section 7, based on the choice of g1, . . . , gN ac-
cording to (115) or (117). Moreover, assume that the function T 7→ rΓ

h (x, t, T, ρ) is nonpositive if

T is large enough11. We assume that Jh ∈ W
1− 1

r
,0

r (Sτ̄ ) with r > 5. We assume that, for some

11More precisely, we assume that there is a function T1 ∈ C(R+) such that rΓ(x, t, T, ρ) ≤ 0 for all T ≥ T1(|ρ|).
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I ∈ {1, . . . , N}, the species AI has dominant heat capacity according to the Definition 7.7. Let
p > 5 and assume that the exponents γ = γmax, αI and βI are such that

αI
1− βI

< 1 +
(2

5
− 1

p

)
(1 + γ) .

Then we choose any β in the interval

β ∈
[

max
{

1,
1

6

( 5αI
1− βI

− 1
)}
, min

{
3 +

5γ

2(1 + γ)
, 3− 5

p
+

5

γ + 1
(1− αI

1− βI
)
}[

,

and any s0 ≤ s1 in the interval[
2 β (1 + γ)− γ, min

{6

5
(1 + β) (1 + γ),

6

5
(1 + γ) (1 + β − 5

3p
) + 2 (1− αI

1− βI
)− γ

}[
.

Suppose that for all 0 < m ≤M < +∞, the coefficients κ, l1, . . . , lN , η and λ satisfy the following
growth conditions:

lim inf
T→+∞

1

T s0
inf

m≤|ρ|≤M
κ(T, ρ) > 0, lim sup

T→+∞

1

T s1
sup

m≤|ρ|≤M
κ(T, ρ) < +∞ ,

lim sup
T→∞

1

T
s0
2

+ 3
5

(1+β) (1+γ)−1− γ
2

sup
m≤|ρ|≤M

|l(T, ρ)| < +∞ ,

lim sup
T→+∞

1

T ( 6
5

(1+β)−1) (1+γ)
sup

m≤|ρ|≤M

(
η(T, ρ) + |λ(T, ρ)|

)
< +∞ ,

Then, for every solution of optimal mixed regularity on ]0, τ̄ [ subject to the assumptions of Theorem
3.1 and satisfying ‖%u‖L1,∞(Qτ̄ ) < +∞, we have

‖T‖L∞(Qτ̄ ) < +∞, inf
(x, t)∈Qτ̄ , i=1,...,N

ρi(x, t) > 0 .

A small application of this result is the following. Consider the typical choice of a mixture of ideal gases,
that is, for all i, the function gi obeys (117). Then the heat capacities ciυ of the species are constant,
we have γmax = 0, αI = 1 and βI = 0. We assume that κ = κ0 T

2 with a constant κ0 > 0. We
choose β = 1 and s0 = s1 = 2 which is compatible with the conditions in Theorem 8.6. Then, we
obtain the maximum principle if the growth of |M |, |l| and η, |λ| in T does not exceed T

6
5 .

Proof. Let I be the index of the dominant species. We assume that p > 5, γmax, αI and βI satisfy
the conditions of Theorem 8.6.

Then we choose any β and s0 ≤ s1 as in the statement of the theorem. Suppose that T s0 - κ̃(T ) -
T s1 and the coefficients l, η and λ satisfy

|l| - T
s0
2

+ 3
5

(1+β) (1+γ)−1− γ
2 , η + |λ| - T ( 6

5
(1+β)−1) (1+γmax) .

We claim that the coefficients κ, d0, a0, (a), (l), p, η and λ satisfy the requirements of Proposition
6.4.

To see this, we at first recall that ε = %u h T 1+γmax (Prop. 8.3), and that d0 h T 2+γmax (Lemma
8.5). The condition (76)1 is equivalent to

κ % T 2 T 2(β−1) (1+γmax)+γmax . (148)
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In order to ensure (76)2, we require separately that

1

κ
|l|2 - T−2−γmax T β0 (1+γmax), κ - T β0 (1+γmax) . (149)

Then, (76)2 follows from the growth rates established in Lemma 8.5 for d0 and a1, . . . , aN−1.

Here, β0 is subject to β0 <
6
5

(1 + β). Moreover the condition (76)3 for a0 yields

κT
γmax+2

αI
1−βI - T β1 (1+γmax) T 2 , (150)

with β1 subject to β1 <
6
5

(1 + β − 5
3p

).

Finally, (76)4 and (76)5 impose the conditons

αI
1− βI

≤ β2 (1 + γmax) and η + |λ| - T β3 (1+γmax) . (151)

Here β2 and β3 are subject to

β3 + 1 <
6

5
(1 + β) , β2 <

1

5
(6β + 1) .

The condition (151)1 is independent. With δ := αI/(1− βI), it imposes the restriction

δ ≤ 1

5
(6β + 1) (1 + γmax) . (152)

To satisfy the other conditions, we assume that κ % T s0 . Then, in view of (148), s0 is subject to

s0 ≥ 2 + 2(β − 1) (1 + γmax) + γmax .

Moreover, if κ - T s1 , then s1 ≥ s0. Due to (149)2 and (150) s1 is also subject to

s1 ≤ β0 (1 + γmax) <
6

5
(1 + β) (1 + γmax)

s1 + 2 δ + γmax < 2 +
6

5
(1 + β − 5

3p
) (1 + γmax) .

We can satisfy these algebraic conditions under the assumptions of the Theorem. The remaining
conditions (149)1 and (151)2 then restrict the growth of the coefficients l and η, λ as

|l| - T
s0
2

+
β0
2

(1+γmax)−1− γmax
2 , η + |λ| - T β3 (1+γmax) .
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A Estimates for linearised problems

A.1 The linearised system for the variable q

We want to derive the desired estimate for the linear system (53), recalling that % ∈ W 1,1
p,∞(Qτ̄ ),

q∗ ∈ W 2,1
p (Qτ̄ ; RN) and v∗ ∈ W 2,1

p (Qτ̄ ; R3) are given. In order to reduce this problem to the
situation of zero flux boundary conditions considered in the paper [BD21a], we at first show how to
homogenise the boundary data given in the condition ν · ∇q = gΓ on Sτ̄ , with boundary data given
in the form of

gΓ(x, t) = G(x, t, q∗(x, t), %(x, t), v∗(x, t)) .

Here, the function G is a generalisation of π̃Γ that occurs in the original problem. The natural domain
of definition of G is the set Sτ̄ × HN

− × R+ × R3. In order to state the assumptions on G, we also
introduce for parameters 0 < m < M < +∞ and K0, θ̄ > 0 the convex sets

E(m, M, K0, θ̄)

:= {(z, r, w) ∈ HN
− × R+ × R3 : |z|+ |w| ≤ K0, m ≤ r ≤M, zN ≤ −1/θ̄} .
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Lemma A.1. Let (q∗, %, v∗) ∈ Xτ̄ ,+. For t ≥ 0, we define m∗(t) = infQt %, M∗(t) := supQt % and
θ∗(t) := −1/ supQt qN . For (x, t) ∈ Qτ̄ , we define

gΓ(x, t) := G
(
x, t,

(
q∗, %, v∗

)
(x, t)

)
,

where the function G satisfies the follwowing assumptions:

1 For all (z, r, w) ∈ HN
− × R+ × R3, the function (x, t) 7→ G(x, t, (z, r, w)) belongs to

Cλ,λ
2 (Sτ̄ ) with λ > 1− 1/p. For all 0 < m < M < +∞ and K0, θ̄ > 0 we have

sup
(z, r, w)∈E(m,M,K0, θ̄)

‖G(·, (z, r, w))‖
C
λ, λ2
p (Sτ̄ )

< +∞ .

2 For all (x, t) ∈ Sτ̄ , the map (z, r, w) 7→ G(x, t, (z, r, w)) is of class C1(HN
− ×R+×R3),

and ‖G‖L∞(Sτ̄ ;C1(E(m,M,K0, θ̄))) < +∞.

Then, there exists a continuous function Ψ = Ψ(t, b1, . . . , b4) on [0, +∞[5 such that

‖gΓ‖
W

1− 1
p ,

1
2−

1
2p

p (St;RN )
≤ Ψ(t, (m∗(t))−1, M∗(t), θ∗(t), ‖(q∗, %, v∗)‖Xt) .

In addition, Ψ is nondecreasing in all arguments and Ψ(0, b) ≡ 0 for all b ∈ R4
+.

Proof. For arbitrary u ∈ W 1,0
p,∞(Qt) we have ‖Dxu‖Lp(Qt) ≤ t

1
p ‖Dxu‖Lp,∞(Qt), hence

‖u‖
Lp(0,t;W

1− 1
p

p (∂Ω))
≤ c0 ‖u‖W 1,0

p (Qt)
≤ c0 t

1
p ‖u‖W 1,0

p,∞(Qt)
.

Moreover, if u ∈ W 1
p (Qt) we also have

‖u‖
Lp(∂Ω;W

1
2−

1
2p

p (0,t))
≤t

1
2
− 1

2p ‖u‖
Lp(∂Ω;W

1− 1
p

p (0,t))
≤ t

1
2
− 1

2p ‖u‖
W

1− 1
p

p (St)

≤c1 t
1
2
− 1

2p ‖u‖W 1
p (Qt)

Hence

‖u‖
W

1− 1
p ,

1
2−

1
2p (St)

≤ c max{t
1
p , t

1
2
− 1

2p} (‖u‖W 1
p (Qt) + ‖Dxu‖Lp,∞(Qt)) .

We apply this inequality to % and the components of (q∗, v∗). Clearly, it follows that

‖(q∗, %, v∗)‖
W

1− 1
p ,

1
2−

1
2p (St)

≤ c max{t
1
p , t

1
2
− 1

2p} ‖(q∗, %, v∗)‖Xt . (153)

Now, for (x, τ) and (y, s) arbitrary on St, we have, with E∗(t) := E(m∗(t), M∗(t), ‖q∗‖L∞(Qt) +
‖v∗‖L∞(Qt), θ

∗(t))

|G(x, τ, (q∗, %, v∗)(x, τ))−G(y, s, (q∗, %, v∗)(y, s))|
≤ |G(x, τ, (q∗, %, v∗)(x, τ))−G(y, s, (q∗, %, v∗)(x, τ))|

+ |G(y, s, (q∗, %, v∗)(x, τ))−G(y, s, (q∗, %, v∗)(y, s))|

≤ ‖G(·, (q∗, %, v∗)(x, τ))‖
Cλ,

λ
2 (St)

(|x− y|λ + |τ − s|
λ
2 )

+ ‖DG(y, s, ·)‖L∞(E∗(t)) |(q∗, %, v∗)(x, τ)− (q∗, %, v∗)(y, s)|

≤ sup
(z,r,w)∈E∗(t)

‖G(·, (z, r, w))‖
Cλ,

λ
2 (St)

(|x− y|λ + |τ − s|
λ
2 )

+ sup
(y,s)∈St

‖DG(y, s, ·)‖L∞(E∗(t)) |(q∗, %, v∗)(x, τ)− (q∗, %, v∗)(y, s)| .
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In particular, it follows that

[gΓ]
(1− 1

p
)

p,x,St
≤c t

1
p sup

(z,r,w)∈E∗(t)
‖G(·, (z, r, w))‖Cλ,0(St)

+ sup
(y,s)∈St

‖DG(y, s, ·)‖L∞(E∗((t)) [(q∗, %, v∗)]
(1− 1

p
)

p,x,St
,

and also that

[gΓ]
( 1

2
− 1

2p
)

p,t,St
≤c t

1
2

(λ+ 1
p
−1) sup

(z,r,w)∈E∗(t)
‖G(·, (z, r, w))‖

C0, λ2 (St)

+ sup
(y,s)∈St

‖DG(y, s, ·)‖L∞(E∗) [(q∗, %, v∗)]
( 1

2
− 1

2p
)

p,t,St
.

Invoking (153), we are done.

Consider now the parabolic system (53). Using the preceding Lemma, we have

‖π̃Γ(·, %(·), q∗(·))‖
W

1− 1
p ,

1
2−

1
2p

p (Sτ̄ ;RN )
≤ ΨΓ

t ,

with a factor ΨΓ
t = ΨΓ(t, ~b) of the desired structure. For k = 1, . . . , N , we solve the problem

∂tsk −∆sk = 0 in Qτ̄ ,

ν(x) · ∇sk =π̃Γ
k (x, t, %, q∗) on Sτ̄ , sk(x, 0) = q0

k(x) in Ω .
(154)

Then, s = (s1, . . . , sN) satisfies (see [LSU68], Th. 9.1 and page 351, or [DHP07], Th. 2.1)

‖sk‖W 2,1
p (Qt;RN ) + sup

τ≤t
‖sk(·, τ)‖

W
2− 2

p
p (Ω;RN )

≤ C1 (‖q0‖
W

2− 2
p (Ω)

+ ‖π̃Γ‖
W

1− 1
p ,

1
2−

1
2p

p (St)
) =: Ψt .

(155)

We remark that q solves the equations (53) if and only if q̃ := q − s solves

Rq(%, q
∗) ∂tq̃ − div(M̃(%, q∗)∇q̃) = g̃(x, t, q∗, %, v∗, ∇q∗, ∇%, ∇v∗) , in Qτ̄

ν(x) · ∇q̃ = 0 on Sτ̄ , q̃(x, 0) = 0 in Ω ,
. (156)

With g from (53), we here have

g̃ := g −Rq(%, q
∗) ∂ts+ div(M̃(%, q∗)∇s) .

It is readily shown that the norm of g̃ in Lp(Qt) can be controlled by the norm of g and the norm of s
occurring in (155). For the problem (156), we can apply the Proposition 7.1 of [BD21a].

A.2 Linearised parabolic system for the variable v

At second, we consider the parabolic system (54) with given right-hand side

% ∂tv − div S(%, q∗, ∇v) = f(x, t) , in Qτ̄

v = 0 on Sτ̄ , v(x, 0) = v0(x) , in Ω .
(157)
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We recall that the meaning of S(%, q∗, ∇v) was given in (55), that is, we here assume that the
coefficients η and λ are C2 functions of their arguments.

In the present case, the data f and v0 are subject to

f ∈ Lp(Qτ̄ ; R3), v0 ∈ W 2− 2
p (Ω; R3) ,

and to the compatibility condition v0 = 0 on ∂Ω.

Lemma A.2. If v ∈ W 2,1
p (Qτ̄ ) is a solution to (54), then

‖v‖W 2,1
p (Qτ̄ ) + sup

τ≤τ̄
‖v‖

W
2− 2

p
p (Ω)

≤ C2 (1 + [%]
Cβ,

β
2

+ [q∗]
Cβ,

β
2
)

2
β (‖v0‖

W
2− 2

p
p (Ω)

+ ‖f‖Lp(Qt)) .

Proof. Here the difference to Prop. 7.5 of [BD21a] is the state-dependence of the viscosity functions.
We deal with this case with the same localisation technique applied in [BD21a], Appendix B. At first
we rewrite the PDEs in the form

% ∂tv − η∆v − (λ+ η)∇ div v = f − 2∇η · (∇v)sym −∇λ div v

=f − 2 (η%∇%+ ηq · ∇q∗) · (∇v)sym − (λ%∇%+ λq · ∇q∗) div v =: f̃ .

Let (x0, t0) ∈ Qt and r > 0. We consider a (small) volume

Q0
r = Qr(x

0, t0) := {(x, t) ∈ R4 : |x− x0| ≤
√
r, |t− t0| ≤ r} .

We can localise the boundary value problem (157) in Q0
r by choosing a cutoff function ζ ∈ C∞c (Q0

r)
and satisfies the condition |∂tζ|+ |∂2

xζ| ≤ c0 r
−1. Then, w := ζ v satisfies

% ∂tw − η∆w − (λ+ η)∇ divw = f̂ , in Qt

w = 0 on St , w(x, 0) = v0(x) η(x, 0) , in Ω .

Here

f̂ = ζ f̃ + % ∂tζ v + η (∇ζ · ∇v + div(v∇ζ)) + (λ+ η) (div v∇ζ +∇v · ∇ζ +D2ζ v) .

Next, we write the PDEs in the form

%(x0, t0) ∂tw − div S(%(x0, t0), q∗(x0, t0), ∇w) = f̂

+ [%(x0, t0)− %] ∂tw + [η(%, q∗)− η(%(x0, t0), q∗(x0, t0))] ∆w

+ [(λ+ η)(%, q∗)− (λ+ η)(%(x0, t0), q∗(x0, t0))]∇ divw .

Recalling that w is localised in Q0
r , the perturbations on the right-hand sides satisfy estimates

|[%(x0, t0)− %] ∂tw| ≤ [%]
Cβ,

β
2 (Qt)

r
β
2 |∂tw| ,

|η(%, q∗)− η(%(x0, t0), q∗(x0, t0))| |∆w| ≤ [η]C1(E∗t ) ([%]
Cβ,

β
2 (Qt)

+ [q∗]
Cβ,

β
2 (Qt)

) r
β
2 |D2w| ,

and the same for the grad-div term. HereE∗t is the range overQt of the variables (%, q∗) in R+×HN
− .

We obtain an estimate

‖w‖W 2,1
p (Qt)

≤ c (‖w(·, 0)‖
W

2− 2
p

p (Ω)
+ ‖f̂‖Lp(Qt))

+ c (1 + [η]C1(E∗t ) + [λ]C1(E∗t )) ([%]
Cβ,

β
2 (Qt)

+ [q∗]
Cβ,

β
2 (Qt)

) r
β
2 ‖w‖W 2,1

p (Qt)
.
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Here c is the norm of the inverse of the right-hand side operator, hence it depends only on t, %(x0, t0)
and the values of the viscosity coefficients at %(x0, t0), q∗(x0, t0). Choosing r in such a way that

c (1 + [η]C1(E∗t ) + [λ]C1(E∗t )) ([%]
Cβ,

β
2 (Qt)

+ [q∗]
Cβ,

β
2 (Qt)

) r
β
2 =

1

2
,

we obtain that

‖w‖W 2,1
p (Qt)

≤ 2c (‖w(·, 0)‖
W

2− 2
p

p (Ω)
+ ‖f̂‖Lp(Qt)) .

Now, it remains to estimate the norm of the right-hand side. By appropriate covering of Qt with sets
of the structure of Q0

r , we can sum up these estimates to the result. We refer to the Appendix B of
[BD21a] for details.

B Two technical statements for the maximum principle

We denote by λ3 the three-dim. Lebesque measure. We begin with a short preliminary remark. Con-
sider a Lipschitz domain Ω in R3. Then, there exists c0 = c0(Ω) such that ‖u‖L2(Ω) ≤ c0 ‖∇u‖L2(Ω)

for all u ∈ W 1,2(Ω) with the property

λ3({x ∈ Ω : |u(x)| = 0}) ≥ λ3(Ω)/2 .

This can be proved as usual by showing that the negation yields a contradiction.

Lemma B.1. Let u ∈ C1(Qt) and β > 0. There is c0 = c0(Ω) s.t. for all k > 2 ‖u‖L1,∞(Qt)/λ3(Ω),
the function wk = max{u− k, 0} satisfies

‖wk‖rLr(Qt) ≤ c0 ‖wk‖
4
3

L2,∞(Qt)
‖∇wβk‖

2
L2(Qt)

, r =
4

3
+ 2 β ,

Proof. For τ ∈]0, t[ arbitrary, and for k as in the assumptions, we have

λ3({x : u(x, τ) > k}) ≤
‖u‖L1,∞(Qt)

k
≤ λ3(Ω)

2
.

Hence, λ3({x : wk(x, τ) = 0}) ≥ λ3(Ω)/2.

Moreover ‖wk(·, τ)‖rLr(Ω) =
∫

Ω
|wk|

4
3 |wk|2β dx. Use of Hölder’s inequality yields ‖wk(·, τ)‖rLr(Ω) ≤

‖wk(·, τ)‖
4
3

L2(Ω) ‖w
β
k (·, τ)‖2

L6(Ω). Since W 1,2(Ω) ⊂ L6(Ω) with continuous embedding, we get

‖wβk (·, τ)‖2
L6(Ω) ≤ c1 ‖wβk (·, τ)‖2

W 1,2(Ω) ≤ c1 c2 ‖∇wβk (·, τ)‖2
L2(Ω) ,

where we also use the preliminary consideration. The claim follows.

Lemma B.2. Let u ∈ L1(Qt). For k ∈ R, we denote Qt,k := {(x, τ) ∈ Qt : u(x, τ) > k}.
Assume that for all k ≥ k1, the function wk = max{u− k, 0} satisfies the inequality

‖wk‖L1(Qt) ≤
n∑
i=0

(
Ai |Qt,k|σi +Bi k

ωi |Qt,k|y
)
,

with n ∈ N, y > 1 and, for i = 1, . . . , n, constants 1 < σi, 0 ≤ ωi ≤ y and Ai, Bi ≥ 0. Then

sup
Qt

u ≤ k1 + C(t, |Ω|, k1, |A|1, |B|1, ‖u‖L1(Qt)) ,

where C is a positive continuous function.
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Proof. Let f(k) := ‖wk‖L1(Qt)/|Qt|. Then f is differentiable at every k in the classical sense, and
−f ′(k) = |Qt,k|/|Qt| ≤ 1. Hence f ∈ C0,1(R). Using the assumptions, for all k ≥ k1, we can
show that

|Qt| f(k) ≤

(
n∑
i=0

Ai |Qt|σi
)

(−f ′(k))σmin +

(
n∑
i=0

Bi k
ωi
1

) (
k

k1

)ωmax

|Qt|y (−f ′(k))y .

From this we deduce that

− f ′(k) ≥ min

{(
f(k)

2
∑n

i=0 Ai |Qt|σi−1

) 1
σmin

,

(
f(k)

2(k/k1)ωmax |Qt|y−1
∑

iBi k
ωi
1

) 1
y

}

≥ min{(|Qt| f(k))
1

σmin , (|Qt| f(k))
1
y }

2α max{(
∑n

i=0 Ai |Qt|σi)
1

σmin , |Qt| (
∑n

i=0 Bi k
ωi
1 )

1
y }

(
k1

k

)ωmax
y

,

with α := max{1/y, 1/σmin} < 1. Since |Qt| f(k)/‖u‖L1(Qt) ≤ 1, with ν := ωmax/y ≤ 1 we
also obtain that

−f ′(k) ≥
kν1 min{‖u‖

1
σmin

−α
L1(Qt)

, ‖u‖
1
y
−α

L1(Qt)
}

2α max{(
∑n

i=0 Ai |Qt|σi)
1

σmin , |Qt| (
∑n

i=0Bi k
ωi
1 )

1
y }
|Qt|α

(f(k))α

kν
.

We are now in the situation of Lemma 5.1 in [LU68]. If ν < 1, we get a bound

sup
Qt

u ≤ k1 + c(α, ν) Σ
1

1−ν

(
‖u‖L1(Qt)

|Qt|

) 1−α
1−ν

,

Σ :=‖u‖
| 1
y
− 1
σmin

|
L1(Qt)

2α max{(
∑n

i=0 Ai |Qt|σi)
1

σmin , |Qt| (
∑n

i=0 Bi k
ωi
1 )

1
y }

kν1 |Qt|α
.

If ν = 1, then with the same Σ the bound takes the form

sup
Qt

u ≤ k1 exp
( Σ

1− α

(‖u‖L1(Qt)

|Qt|

)1−α)
.

C Analytical investigations on fluid mixtures

We started with the PDEs (5), (6), (7) of multicomponent fluid dynamics; This is the Navier–Stokes–
Fick–Onsager–Fourier system.

In other investigations devoted to mixtures, the modelling seems to be different at first sight. In many
mixture theories indeed, the varying composition is handled by means of the volume fractions.

To understand this viewpoint, let us call a mixture ofN constituents volume-additive if for every control
volume V in the fluid, the equation

|V| =
N∑
i=1

mi(V) υ̂i (158)
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is valid, withmi(V) being the total mass of Ai available in V , and υ̂i = 1/ρ̂i denoting the specific vol-
ume of Ai as pure substance. For instance, ideal mixtures are volume-additive in this sense ([Brd81],
section 4.1). The mixtures characterised by the splitting (92) of the chemical potentials are also a
subclass of the volume-additive mixtures (cp. (96))12.

The specific volume/the mass density of a constituent are functions of temperature and pressure. In
the continuum limit, the definition (158) implies that the equation

N∑
i=1

ρi
ρ̂i(T, p)

= 1 (159)

is valid at every point of a volume-additive mixture. In fact, (159) is the equation of state of any volume-
additive mixture.

The quantities ϕi := ρi/ρ̂i(T, p) sum up to one at every point and ϕ1, . . . , ϕN are called the volume
fractions.

To determine the volume fractions, one is faced with the difficulty that, up to the equation (159) –
which, depending on the properties of the mixture, we might postulate or not – conservation principles
are not formulated for the volume, but for the mass. For this reason, the volume-fractions are not
always subject to similar conservation laws like the partial mass densities. If we account for the fact
that ρ̂i remains dependent on T and p in the mixture, dividing in (5) with ρ̂i(T, p) does not yield a
divergence-form equation for ϕi except, of course, for isothermal and isobaric systems.

However, another special case occurs if the involved constituents are all perfectly incompressible. In
this case ∂pρ̂i = 0 for each Ai by definition and, due to the inequality (See [Mül85] or [BDD], (36))

(∂T υ̂i)
2 ≤ −

cip
T
∂pυ̂i ,

also ∂T ρ̂i = 0. Hence ρ̂i = ρ̂R
i with the constant reference bulk mass density of the constituent Ai.

Then, (159) reduces to a constraint for the partial mass densities:

N∑
i=1

ρi
ρR
i

= 1 , (160)

expressing the equation of state of a volume-additive mixture of incompressible constituents13. In this
case, the volume fractions of the constituents satisfy conservation laws: We divide in (5) with ρR

i ,
yielding with ϕi := ρi/ρ

R
i ,

∂tϕi + div((ρR
i )−1 i) = (ρR

i )−1 ri . (161)

This form of the equations of mass conservation is used for instance in [JHH96], [OW97], [Boy02],
[AGG12] and many more. However, note that other papers like [LT98] on Cahn–Hilliard regularisations
of two-phase binary mixtures do not rely on the assumption that the mass densities of the constituents
are constant14.

12For mixtures which are not volume-additive, the equation (158) can be postulated too, but the specific volumes υ̂i are
not independent on the molecular composition.

13In the paper [JHH96], the same type of mixture is called ”simple mixture”. In [BD15], Section 15, ”simple mixture” refers
to a different concept. A mixture is simple if the internal energy density and the pressure can be additively constructed
from the corresponding partial constitutive quantities of the constituents.

14In [LT98], the partial mass density is called ”apparent mass density” and the mass density of the constituent is called
”actual mass density”.
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We sum up the equations (161) and, in the absence of chemical reactions, we get

div
( N∑
i=1

(ρR
i )−1 i

)
= 0 .

Hence we recover the statement of [Boy02] that the volume-averaged velocity

vvol :=
N∑
i=1

(ρR
i )−1 i

is divergence-free. This is however only true in a volume-additive mixture of incompressible fluids
where there are, moreover, no chemical reactions.

In order to work with the equation (161) while preserving
∑N

i=1 ϕi = 1, several approaches have
been tried. For instance, in [OW97], two modelling possibilities are discussed in order to guarantee
that the net flux

∑N
i=1(ρR

i )−1 i – or at least its divergence – vanish. In this paper, the modelling results
into reaction-diffusion systems, which raises also the question on how to couple mass transport with
mechanics. In [Boy02] or [AGG12], another solution is applied. The rescaled mass fluxes

(ρR
i )−1 i = ϕi v

vol + J̃ i ,

are employed. The modified diffusion fluxes J̃ i have to sum up to zero due to the definition of the
volume-averaged velocity. Now, it is postulated that vvol is the mechanical velocity occurring in New-
ton’s law and diffusion is modelled in the spirit of the theory of irreversible processes as relative motion
to this new velocity. This approach is restricted to ideal mixtures of perfectly incompressible con-
stituents without chemical reactions, and it is incompatible with the identity (8). Hence, the continuity
equation ∂t% + div(% v) = 0 is not valid with the same velocity field as the one occurring in the
equations of momentum balance.

At last, let us remark that serious conceptual problems are still generated by the appropriate notion of
incompressibility for the multicomponent case. In [OW97], incompressibility is defined as

∑N
i=1 ϕi =

1. In [Boy02, AGG12], incompressibility is defined as div vvol = 0. This constraint is enforced by using
the pressure in the momentum equation (for vvol) as a Lagrange multiplier, in the spirit of the single-
component incompressible Navier–Stokes equations. As a drawback, the pressure is decoupled from
the thermodynamic potential and does not obey (18).

As already shown in [JHH96], it is not to be expected that the barycentric velocity field vmass is
solenoidal even in volume additive mixtures of incompressible fluids. The only possible exceptions
are: (i) that all fluids possess the same density, which is seldom the interesting case in practice or,
(ii) that N − 1 components are dilute in one dominating fluid, which of course occurs frequently. But
mathematically, the case (ii) reduces to the single-component variant of the Navier–Stokes equations,
which essentially decouple.

From this latter viewpoint, a reliable way to enforce the constraint (160) while staying consistent with
(18) and the general form of the free energy functional %ψ(T, ρ1, . . . , ρN), is to introduce the ther-
modynamic pressure as a Lagrange multiplier directly for the algebraic constraint (160) instead of the
differential constraint div v = 0. We refer to [BDD] for a recent model derivation – similar observations
had been done in [JHH96] and [LT98] with the notion of quasi-incompressible fluid – and to [FLM16],
[Dru21], [BD21b] for first analytical results. Here too, div vvol = 0 results as a trivial consequence of
the mass conservation equations ∂tρi + div i = 0, the equation of state (160) (= the incompressibil-
ity constraint), and the assumption that the constituents are incompressible – that is, ρ̂i(T, p) = ρR

i
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constant. Hence, div vvol = 0 does not need being enforced by changing the definition of pressure or
Newton’s conservation principle.

Another interesting recent result proved in this context is that not only volume-additive mixtures of
incompressible fluids, but even general incompressible mixtures must obey the equation (160). Hence,
the partial molar volumina are independent of the composition if the mixture is incompressible. This
has been proved and discussed in [BDD].
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