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Global algebraic Poincaré–Bendixson annulus
for van der Pol systems
Alexander Grin, Klaus R. Schneider

Abstract

By means of planar polynomial systems topologically equivalent to the van der Pol system we
demonstrate an approach to construct algebraic transversal ovals forming a parameter depend-
ing Poincaré-Bendixson annulus which contains a unique limit cycle for the full parameter domain.
The inner boundary consists of the zero-level set of a special Dulac-Cherkas function which im-
plies the uniqueness of the limit cycle. For the construction of the outer boundary we present a
corresponding procedure.

1 Introduction

In the qualitative theory of planar autonomous systems

dx

dt
= P (x, y),

dy

dt
= Q(x, y) (1.1)

a special class of ω-limit sets, the so-called limit cycles, plays a fundamental role. A general approach
to prove the existence of at least one limit cycle consists in the construction of an annulus A in the
phase plane which contains no equilibrium and whose boundaries are simple closed curves (in what
follows called ovals) with the property that if any trajectory of system (1.1) meeting the boundary of
A will enter A either for increasing or for decreasing t (see e.g.[10]). We call such curves transversal
curves and the corresponding annulus a Poincaré-Bendixson annulus since the application of the
Poincaré-Bendixson theorem [2, 9] to that annulus provides the existence of at least one limit cycle
of system (1.1) in A. The crucial problem in that approach is: how to construct the transversal ovals?
There is no general procedure to construct such ovals, even in the case of polynomial systems. In the
past, Poincaré-Bendixson annuli have been constructed especially for Liénard-type systems where
the transversal ovals consist of piecewise smooth curves constructed in a sophisticated way, see e.g.
[3, 2, 9, 10, 11, 13]. Recently, two papers have been published [7, 4] devoted to the construction
of smooth transversal ovals as boundaries of a Poincaré-Bendixson annulus for polynomial systems
(1.1). For both papers it is characteristic that each transversal oval is constructed by means of the
approximation of an orbit of system (1.1). In the paper by H. Giacomini and M. Grau [7], for the
construction of the inner and of the outer boundary of A the approximation of two different orbits are
required. In the paper by A. Gasull, H. Giacomini and M. Grau [4], only the approximation of one orbit
is required, but this orbit is assumed to be a limit cycle.
In what follows we present an approach for the construction of a Poincaré-Bendixson annulus which
does not require the approximation of any orbit. We consider polynomial systems (1.1) in a simply
connected region G with a unique equilibrium point and assume that there exists a Dulac-Cherkas
function for system (1.1) whose zero-level set consists of a unique oval surrounding the equilibrium.
This assumption implies that system (1.1) has at most one limit cycle in G and that this oval can be
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used as interior boundary of a possible Poincaré-Bendixson annulus in G. Our main goal is to present
a procedure for the construction of an outer boundary as an algebraic oval.

The paper is organized as follows: In the Section 2 we introduce two systems which are topologically
equivalent to the van der Pol equation for λ > 0. Section 3 deals with the construction of the interior
boundary for a Poincaré-Bendixson annulus by using a Dulac-Cherkas function whose zero-level set
consists of a unique oval. In the Section 4 we describe in details a new procedure to construct an
outer boundary as an algebraic oval. Section 5 presents the global algebraic Poincaré-Bendixson
annuli for two topologically equivalent van der Pol systems including a singularly perturbed system.
The Appendix contains the main facts and key properties about Dulac-Cherkas functions used in this
paper.

2 Van der Pol system and two equivalent systems

The scalar second-order autonomous differential equation

d2x̄

dt2
+ λ(x̄2 − 1)

dx̄

dt
+ x̄ = 0, (2.1)

where λ is a scalar parameter, has been introduced by Balthasar van der Pol [12] in 1926 to describe
self-oscillations in a triod circuit. If we replace t by −t and λ by −λ, then equation (2.1) remains
invariant. Thus, the study of the the phase portrait of the system

dx̄

dt
=− ȳ,

dȳ

dt
=x̄− λ(x̄2 − 1)ȳ,

(2.2)

which corresponds to equation (2.1), can be restricted to the case λ ≥ 0.
It is well-known (see e.g. [9]) that system (2.2) has to any λ 6= 0 a unique limit cycle Γλ . For small
λ, equation (2.1) can be considered as a perturbation of the harmonic oscillator, thus the shape of
Γλ looks like a circle. For increasing λ, the amplitude of the limit cycle Γλ increases unbounded.
Therefore, to study the van der Pol equation for large λ it is usual to apply the Liénard transformation
to system (2.2) such that the limit cycles of the transformed system stay for all λ in a bounded region.
For defining the Liénard transformation for λ > 0 we introduce a new time τ by t = λτ and a new
parameter ε by ε = 1

λ2
. By this way, equation (2.1) can be rewritten in the form

d

dτ

[
ε
dx̄

dτ
− x̄+

x̄3

3

]
+ x̄ = 0. (2.3)

Applying the nonlinear Liénard transformation

η = x̄, ξ = −
√
εȳ − x̄+

x̄3

3
= ε

dx̄

dτ
− x̄+

x̄3

3
,

equation (2.3) is equivalent to the system

dξ

dτ
= −η,

ε
dη

dτ
= ξ + η − η3

3

(2.4)
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which represents a singularly perturbed system for small ε > 0. A.D. Flanders and J.J. Stoker [3]
constructed in 1946 for sufficiently small ε a Poincaré-Bendixson annulus containing the unique limit
cycle Γε of system (2.4).
In a recent paper [11] we applied for λ > 0 the linear time scaling σ = λ t to the van der Pol equation
(2.1). Using the notation ε = 1/λ2 we get the equation

d2x

dσ2
+ (x2 − 1)

dx

dσ
+ εx = 0 (2.5)

which is equivalent to the system

dx

dσ
= −y,

dy

dσ
= εx− (x2 − 1)y.

(2.6)

For sufficiently small ε, we constructed in [11] a local Poincaré-Bendixson annulus Aε with the follow-
ing properties:
(i). The interior boundary is for any ε a transversal curve and is defined by the zero-level set of a
Dulac-Cherkas function for system (2.6). Since this set consists of a unique oval we could immediately
conclude that the annulus Aε contains a unique limit cycle which is orbitally stable. Basic information
about Dulac-Cherkas functions can be found in the Appendix.
(ii). For the construction of the outer boundary we used special techniques, especially the theory of
rotated vector fields, and it is only for sufficiently small ε a transversal curve.
In what follows now we present a new approach to construct transversal algebraic ovals for system
(2.6) which form an algebraic Poincaré-Bendixson annulus Aε for any ε > 0, called global algebraic
Poincaré-Bendixson annulus.

3 Construction of the interior boundary

System (2.6) has for all ε the origin as unique equilibrium representing a focus. Thus, any limit cycle
of (2.6) must surround the origin. Our goal is to construct two transversal ovals Iε and Ωε surrounding
the origin which can be used to form an annulus Aε for system (2.6). We suppose that Iε is the interior
boundary. One possibility to construct transversal curves is to use the zero-level set W of a Dulac-
Cherkas function (see Definition 6.1 in the Appendix) of system (2.6). Under the additional assumption
that this set consists of a unique oval we can conclude that system (2.6) has at most one limit cycle
and that it surrounds W (see e.g. [8]). In [11] the following result has been proved

Lemma 3.1. The function
Ψ(x, y, ε) := εx2 + y2 − ε

is a Dulac-Cherkas function of system (2.6) for ε > 0 in R2 whose zero-level set W is the ellipse

Iε := {(x, y) ∈ R2 : εx2 + y2 = ε}. (3.1)

The derivative of Ψ along system (2.6) on Iε is positive except at the points (−1, 0) and (1, 0) where
this derivative vanishes.

Using Theorem 6.6 and Theorem 6.9 in the appendix this lemma implies

Lemma 3.2. System (2.6) has at most one limit cycle Γε. If Γε exists, it is hyperbolic and orbitally
stable.

Lemma 3.3. The ellipse Iε can be used as interior boundary for a Poincaré-Bendixson annulus Aε of
system (2.6) for any ε > 0.
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4 Construction of the outer boundary

In what follows we present a new approach to construct the outer boundary of Aε as an algebraic oval
defined by the equation

O(x, y, ε) := O0(x, ε) +O1(x, ε)y +O2(x, ε)y2 = 0, (4.1)

where the functions Oi(x, ε) are polynomials in x. Our idea is to determine the function Oi in such a
way that
(i). The set Nε, where the derivative of O with respect to system (2.6) vanishes, contains a subset Cε,
where the derivative of O with respect to system (2.6) changes sign. Cε is an oval surrounding the
interior boundary Iε.
(ii). The zero-level set Ωε of the polynomial O(x, y, ε) is an oval surrounding Cε.
Then we can conclude that Ωε is a transversal curve with respect to the trajectories of system (2.6).

Differentiating O with respect to system (2.6) yields

dO(x, y, ε)

dσ |(2.6)
=O1(x, ε)εx+

(
− dO0(x, ε)

dx
−O1(x, ε)(x2 − 1) +O2(x, ε)2εx

)
y

−
(dO1(x, ε)

dx
+O2(x, ε)2(x2 − 1)

)
y2 − dO2(x, ε)

dx
y3.

(4.2)

In order to render that the set

Nε := {(x, y) ∈ R2 :
dO(x, y, ε)

dσ |(2.6)
= 0} (4.3)

can have an oval Cε in the phase plane where dO(x,y,ε)
dσ

changes sign we require

dO2(x, ε)

dx
≡ 0, −dO0(x, ε)

dx
−O1(x, ε)(x2 − 1) +O2(x, ε)2εx ≡ 0, (4.4)

and that O1(x, ε)x is an even function in x.
For O1 we make the ansatz

O1(x, ε) ≡ c1(ε)x+ c3(ε)x3, (4.5)

moreover, we have by (4.4)

O2(x, ε) ≡ c2(ε). (4.6)

Taking into account (4.4) – (4.6), the relation (4.2) reads

dO(x, y, ε)

dσ |(2.6)
= ε
(
c1(ε)x2 + c3(ε)x4

)
+
[
−
(
c1(ε) + 3c3(ε)x2

)
− 2c2(ε)(x2 − 1)

]
y2. (4.7)

Further we want to guarantee that the sign of−
(
c1(ε) + 3c3x

2
)
− 2c2(ε)(x2 − 1) does not depend

on x. For this purpose we put

c1(ε) = 2c2(ε) (4.8)

such that we have

dO(x, y, ε)

dσ |(2.6)
= x2

[
εc3(ε)x2 + ε2c2(ε)−

(
3c3(ε) + 2c2(ε)

)
y2
]
. (4.9)
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If we require c3(ε) < 0, c2(ε) > 0, 3c3(ε) + 2c2(ε) > 0, then Nε contains an ellipse Cε where
dO(x,y,ε)

dt
changes sign. Finally we set

c2(ε) = −3c3(ε) (4.10)

such that it holds

dO(x, y, ε)

dσ |(2.6)
= 6x2c3(ε)

[εx2

6
+
y2

2
− ε
]
. (4.11)

Thus, we have the result

Lemma 4.1. The derivative dO(x,y,ε)
dσ |(2.6)

vanishes on the y-axis, it has positive (negative) sign at all
other points of the region located in the interior (exterior) of the ellipse

Cε := {(x, y) ∈ R2 :
εx2

6
+
y2

2
= ε}.

The following lemma is obvious

Lemma 4.2. The ellipse Cε surrounds the ellipse Iε for any ε.

In the final step we have to ensure that the outer boundary Ωε surrounds the ellipse Cε. From (4.5),
(4.8) and (4.10) we get

O1(x, ε) = c3(ε)(−6x+ x3), O2(x, ε) = −3c3(ε). (4.12)

Using these functions we obtain from (4.4) for O0(x, ε) the differential equation

dO0(x, ε)

dx
= −c3(ε)

[
(x2 − 1)(−6x+ x3) + 6εx

]
(4.13)

which has the first integral

O0(x, ε) = −3c3(ε)
( 1

18
x6 − 7

12
x4 + (1 + ε)x2 + c0(ε)

)
. (4.14)

Thus, it holds

O(x, y, ε) = −3c3(ε)
[
y2 + yx(2− x2

3
) + (1 + ε)x2 − 7

12
x4 +

1

18
x6 + c0(ε)

]
. (4.15)

If we introduce the polynomial

P (x, y, ε) := y2 + yx
(

2− x2

3

)
+ (1 + ε)x2 − 7

12
x4 +

1

18
x6 + c0(ε), (4.16)

then the zero-level set Ωε of the polynomial O(x, y, ε) coincides with the zero-level set ¶ε of the
polynomial P (x, y, ε). In what follows we prove that there is a function c0 : R+ → R− such that ¶ε
is an oval surrounding Cε.

Theorem 4.3. For the continuous function c0 : R+ → R− defined by

c0(ε) := −18− 8ε− 3
√
ε (4.17)

¶ε represents an oval which is centrosymmetric and surrounds Nε.
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Proof. First we note that the curve ¶ε is invariant under the transformation (x, y)→ (−x,−y), that
is, ¶ε is centrosymmetric. From (4.16) and (4.17) it follows that ¶ε is an oval surrounding the origin.
To prove that ¶ε surrounds Cε we first note that Cε intersects the x-axis at the points (−

√
6, 0) and

(
√

6, 0). Since both curves are centrosymmetric, it suffices to prove

P
(
x,

√
ε

3
(6− x2), ε

)
< 0 for −

√
6 ≤ x ≤

√
6

in order to guarantee that ¶ε surrounds Cε.

P
(
x,

√
ε

3
(6− x2), ε

)
=
ε

3
(6−x2)+

√
ε

3
(6− x2)

(
2x− x

3

3

)
+(1+ε)x2− 7

12
x4+

1

18
x6+c0(ε)

Using

max0≤x≤
√

6

(
2x− x3

3

)√6− x2

3
< 3

we get

P
(
x,

√
ε

3
(6− x2), ε

)
< 2ε+ 3

√
ε+ (1 + ε)6 + 12 + c0(ε) < 18 + 8ε+ 3

√
ε+ c0(ε) = 0.

The same inequality is valid for −
√

6 ≤ x < 0.

From Lemma 4.1 we can conclude that the derivative dO
dt |(2.6)

takes on Ωε negative values except at
the two points on the axis x = 0 where the derivative vanishes. This fact implies that any trajectory
of system (2.6) which meets Ωε will cross it. Using Lemma 3.3, we can conclude that the annulus Aε

bounded by the affine algebraic ovales Iε and Ωε is a region for system (2.6) to which the Poincaré-
Bendixson theorem can be applied. Taking into account Lemma 3.2, we get

Theorem 4.4. For any ε > 0, the annulus Aε contains a unique limit cycle Γε of the van der Pol
equivalent system (2.6). Γε is hyperbolic and stable.

Annulus Aε bounded by the ovals Iε and Ωε together with limit cycle Γε of system (2.6) for cases
ε = 0.1 and ε = 10 is presented on the Figure 1.

Fig. 1. Annulus Aε with limit cycle Γε of system (2.6) for ε = 0.1 (left) and ε = 10 (right).
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5 Global Algebraic Poincaré-Bendixson annulus for equivalent
van der Pol systems

In the sections 3 and 4 we have constructed a global algebraic Poincaré-Bendixson annulus for system
(2.6). The same procedure we used for system (2.6) could be applied to system (2.2). The question
we study now reads: is there another (simpler) way to construct a global algebraic Poincaré-Bendixson
annulus for system (2.2)? It is clear that system (2.6) is topologically equivalent to the original van der
Pol system (2.2). But if we compare their vector fields by considering the corresponding differential
equations

dȳ

dx̄
= − x̄

ȳ
+ λ(x̄2 − 1) for system (2.2) (5.1)

and

dy

dx
= − 1

λ2

x

y
+ (x2 − 1) for system (2.6) (5.2)

it is obvious that these fields are different. Thus, the Poincaré-Bendixson annulus Aε constructed for
system (2.6) is not a Poincaré-Bendixson annulus for system (2.2). To find a transformation which
maps the Poincaré-Bendixson annulus Aε for system (2.6) into a Poincaré-Bendixson annulus for
system (2.2) we look for a transformation which maps the vector field defined by system (2.6) onto the
vector field defined by system (2.2). If we multiply equation (5.2) by λ and apply the transformation

x = x̄, λy = ȳ

then the differential equation (5.2) will be mapped into the differential equation (5.1). Hence, we have
the result

Theorem 5.1. The algebraic ovals
x̄2 + ȳ2 = 1

and

ȳ2 + λȳx̄
(

2− x̄2

3

)
+ (1 + λ2)x̄2 − 7λ2

12
x̄4 +

λ2

18
x̄6 − 8− 3λ− 18λ2 = 0

form a global algebraic Poincaré-Bendixson annulus for system (2.2).

If we scale for λ > 0 in system (2.2) the state variables x̄ and ȳ by the transformation

u =
√
λx̄, v =

√
λȳ, (5.3)

then system (2.2) takes the form

du

dt
=− v,

dv

dt
=u+ λv − u2v.

(5.4)

System (2.2) and system (5.4) are topologically equivalent for λ > 0, but not for λ = 0: system (2.2)
is linear while system (5.4) is nonlinear, passing λ the value 0 is connected in system (2.2) with the
bifurcation of a limit cycle from a circle centered at the origin, while in system (5.4) Hopf bifurcation
takes places.
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A peculiarity of system (5.4) is that it represent a rotated vector field, that means the limit cycle Γ̄λ
bifurcating from the origin uniformly expands with λ: Γ̄λ̄ is located in the interior of Γ̄λ for λ > λ̄. The
question whether Γ̄λ exists for all λ > 0 or if there exists a blow up for a finite value λ̂ can be answered
by constructing a Poincaré-Bendixson annulus where the outer boundary is a bounded curve for any
λ > 0. It is trivial that the vector field defined by system (2.2) will be mapped onto the vector field of
system (5.4) by means of the transformation (5.3). Thus we have the result

Theorem 5.2. The algebraic ovals

u2 + v2 = λ

and

v2 + vu
(

2λ− u2

3

)
+ (1 + λ2)u2 − 7λ

12
u4 +

u6

18
− 8λ− 3λ2 − 18λ3 = 0

form a global algebraic Poincaré-Bendixson annulus for system (5.4).

In order to get another topologically equivalent system especially for large λ we use the scaling t =
λτ , the notation ε = 1/λ2, and introduce new variables by ξ̄ = x̄, η̄ = ȳ/

√
ε. Then system (2.2) can

be written in the form

dξ̄

dτ
= −η̄,

ε
dη̄

dτ
= ξ̄ − (ξ̄2 − 1)η̄,

(5.5)

which represents for small ε, that is for large λ, a singularly perturbed system. This system is equiva-
lent to the differential equation

1

λ

dη̄

dξ̄
= −λξ̄

η̄
+ λ(ξ̄2 − 1). (5.6)

Applying the transformation
√
εη̄ =

η̄

λ
= ȳ, ξ̄ = x̄

we get from system (5.5) the van der Pol system (2.2). Thus we have the result

Theorem 5.3. The algebraic ovales

ξ̄2 + εη̄2 = 1

and

ε2η̄2 + εη̄ξ̄
(

2− ξ̄2

3

)
+ (1 + ε)ξ̄2 − 7

12
ξ̄4 +

ξ̄6

18
− 8ε− 3

√
ε− 18 = 0

form a global algebraic Poincaré-Bendixson annulus for system (5.5).

Annulus Aε bounded by the ovals Iε and Ωε together with limit cycle Γε of system (5.5) for cases
ε = 0.15 and ε = 10 is presented on the Figure 2.
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Fig. 2. Annulus Aε with limit cycle Γε of system (5.5) for ε = 0.15 (left) and ε = 10 (right).

6 Appendix

We consider planar autonomous systems

dx

dt
= P (x, y),

dy

dt
= Q(x, y) (6.1)

in some open region G ⊂ R2 under the assumption

(A1). P,Q ∈ C1(G,R).

We denote by X the vector field defined by (6.1). An important tool for the qualitative investigation of
system (6.1) is the Dulac function (see e.g. [9]).

Definition 6.1. Suppose the assumption (A1) to be valid. A function B ∈ C1(G,R) is called a Dulac
function of system (6.1) in G if the expression

div(BX) ≡ ∂(BP )

∂x
+
∂(BQ)

∂y
≡ (gradB,X) +B divX

does not change sign in G and vanishes only on a set N of measure zero.

The existence of a Dulac function implies the following estimate of the number of limit cycles of system
(6.1) in G [2].

Proposition 6.2. Let G be a p-connected (p ≥ 1) region in R2, let the assumption (A1) be satisfied.
If there is a Dulac function B of (6.1) in G, then (6.1) has not more than p − 1 limit cycles located
entirely in G.

The method of Dulac function has been generalized by L. A. Cherkas in 1997 (see [1]). The corre-
sponding generalized Dulac function, which is also called Dulac-Cherkas function (see [8]), is defined
as follows.

Definition 6.3. Suppose the assumption (A1) is valid. A function Ψ ∈ C1(G,R) is called a Dulac-
Cherkas function of system (6.1) in G if there exists a real number κ 6= 0 such that

Φ := (grad Ψ, X) + κΨ div X > 0 (< 0) in G. (6.2)

DOI 10.20347/WIAS.PREPRINT.2864 Berlin 2021
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Remark 6.4. In case κ = 1, Ψ is a Dulac function.

Remark 6.5. Condition (6.2) can be relaxed by assuming that Φ may vanish in G on a set of measure
zero, and that no oval of this set is a limit cycle of (6.1).

For the sequel we introduce the subset W of G defined by

W := {(x, y) ∈ G : Ψ(x, y) = 0}. (6.3)

The following theorem can be found in [1].

Theorem 6.6. Assume the assumption (A1) to be valid. Let Ψ be a Dulac-Cherkas function of (6.1)
in G. Then any limit cycle Γ of (6.1) located entirely in G has the following properties:

(i). Γ does not intersect W.

(ii). Γ is hyperbolic.

(iii). The stability of Γ is determined by the sign of the expression kΦΨ on Γ.

Corollary 6.7. Property (ii) has the strong consequence that the existence of a Dulac-Cherkas func-
tion implies that system (6.1) has no multiple limit cycle.

The following result about the upper bound of the number of limit cycles has been proved in [8].

Theorem 6.8. Let G be a p-connected region and suppose the assumption (A1) to be valid. Let Ψ be
a Dulac-Cherkas function of (6.1) in G such that W consists of s ovals in G. Then system (6.1) has at
most p− 1 + s limit cycles in G, and all limit cycles are hyperbolic.

In the special case p = s = 1, Theorem 6.8 reads as follows.

Theorem 6.9. Let G be a simply connected region and suppose the assumption (A1) holds. Let Ψ be
a Dulac-Cherkas function of (6.1) in G such that W consists of one oval in G. Then system (6.1) has
at most one limit cycle in G.

We note that the method of Dulac-Cherkas functions was also used by A. Gasull and H. Giacomini
[5, 6].
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