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Gradient polyconvexity and modeling of shape memory alloys

Martin Horák, Martin Kružík , Petr Pelech, Anja Schlömerkemper

Abstract

We show existence of an energetic solution to a model of shape memory alloys in which the elastic
energy is described by means of a gradient-polyconvex functional. This allows us to show existence of a so-
lution based on weak continuity of nonlinear minors of deformation gradients in Sobolev spaces. Admissible
deformations do not necessarily have integrable second derivatives. Under suitable assumptions, our model
allows for solutions which are orientation-preserving and globally injective everywhere in the domain rep-
resenting the specimen. Theoretical results are supported by three-dimensional computational examples.
This work is an extended version of [36].

1 Introduction

Gradient polyconvex functionals, introduced originally in [11], depend on the gradients of nonlinear minors of the
deformation gradient, i.e. they involve not only the first, but also the second spatial derivatives of the deformation
field. Materials having such a broader energy dependence are generally called non-simple [53] and their idea
can be traced back to 1901 when Korteweg [33] considered a gradient of the density in his model of fluid
capillarity. Considering more than only the first deformation gradient in the description of elastic behavior of
solids goes back to the 1960’s and appeared in the work of Toupin [51, 52], and Green and Rivlin [30]. Such
materials are usually called N -grade materials, where N refers to the highest deformation gradient appearing
in the model. This approach has brought questions on thermodynamical consistency of such models, treated in
[23, 14], for instance. Since then, it has been used and analyzed in many works; see, e.g., [6, 50, 45, 35, 21, 25,
49, 22, 27, 28]. From the material point of view, the more general energy functionals in higher grade continua
lead to an additional force interaction in a form of an edge traction or the so-called couple-stress or double
force acting on the boundary; see [37, 48, 47, 41]. Mathematically, the presence of higher order gradients in the
model brings additional compactness properties for the set of admissible functions and ensures the existence
of minimizers. We refer to recent related results on the mathematical treatment of shape memory materials and
solid-to-solid interfaces: [1, 5, 8, 20, 19]. We also refer to [10] for an overview of recent mathematical results
in the calculus of variations. For computational results on NiMnGa see e.g. [1].

The aim of this contribution (cf. [36]) is to apply a new class of non-simple material models introduced in [11]
(called gradient polyconvex materials) to evolutionary problems of shape memory alloys and to consider a
computational experiment. The novelty consists in considering only gradients on nonlinear minors in the stored
energy density of the material. It is shown there, and also in Example 2.2 below, that corresponding deformations
do not necessarily have integrable second weak derivatives. Nevertheless, it is possible to prove existence of
an energetic solution. The plan of the paper is as follows. We first introduce necessary notation and tools in
Section 2. The notion of gradient polyconvexity is thoroughly discussed in Section 3 and the quasistatic evolution
in Section 4. Finally, in Section 5 we consider a bar made of a specific shape memory material (NiMnGa)
and provide first computational results on the evolution of a solid-to-solid phase transformation in a tension
experiment.
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2 Preliminaries

Hyperelasticity is a special area of Cauchy elasticity, where one assumes that the first Piola-Kirchhoff stress
tensor P possesses a potential (called stored energy density) W : (0,+∞) × R3×3 → (−∞,∞]. In other
words,

P (θ, ·) :=
∂W (θ, F )

∂F
(1)

on its domain, where F ∈ R3×3 is such that detF > 0 and θ stands for the absolute temperature. This
concept emphasizes that all work done by external loads on the specimen is stored in it. The principle of frame-
indifference requires that W satisfies, for all F ∈ R3×3 and all proper rotations R ∈ SO(3),

W (θ, F ) = W (θ,RF ) = W̃ (θ, F>F ) = W̃ (θ, C),

where C := F>F is the right Cauchy-Green strain tensor and W̃ : (0,+∞)× R3×3 → [−infty,∞].

Additionally, every elastic material is assumed to resist extreme compression, which is modeled by assuming

W (θ, F )→ +∞, if detF ↘ 0. (2)

Let the reference configuration be a bounded Lipshitz domain Ω ⊂ R3. Deformation y : Ω̄ → R3 maps the
points in the closure of the reference configuration Ω̄ to their positions in the deformation configuration. Solutions
to the corresponding elasticity equations can then be formally found by minimizing the energy functional

I(θ, y) :=

∫
Ω
W (θ,∇y(x)) dx− `(y) (3)

over the class of admissible deformations. Here, ` is a functional on the set of deformations, expressing (in a
simplified way) the work of external loads on the specimen, and∇y is the deformation gradient, which quantifies
the strain. We only allow for deformations, which are orientation-preserving, i.e., if a, b, c ∈ R3 satisfy (a× b) ·
c > 0, then (Fa × Fb) · Fc > 0 for every F := ∇y(x) and x ∈ Ω, which means that detF > 0. This
condition can be expressed by extending W by infinity on matrices with non-positive determinants, i.e.,

W (θ, F ) := +∞, if detF ≤ 0. (4)

In view of (1), (2), and (4), we see that W : (0,+∞) × R3×3 → (−∞,+∞], is continuous in the sense
that if Fk → F in R3×3 for k → +∞, then limk→+∞W (θ, Fk) = W (θ, F ). Furthermore, W (θ, ·) is
differentiable on the set of matrices with positive determinants.

Relying on the direct method of the calculus of variations, the usual approach to prove the existence of mini-
mizers is to study (weak) lower semicontinuity of the functional I on appropriate Banach spaces containing the
admissible deformations. For definiteness, we assume that y 7→ −`(y) is weakly sequentially lower semicontin-
uous. Thus, the question reduces to a discussion of the assumptions onW . It is well known that (2) prevents us
from assuming convexity of W . See, e.g., [18] or the recent review for a detailed exposition of weak lower semi-
continuity. Following earlier work by C.B. Morrey, Jr., [42], J.M. Ball [3] defined a polyconvex stored energy den-
sity W by assuming that there is a convex and lower semicontinuous function W (θ, ·) : R19 → (−∞,+∞]
such that

W (θ, F ) := W (θ, F,Cof F,detF ) ∀F ∈ R3×3.

Here, Cof F denotes the cofactor matrix of F , which, for F being invertible, satisfies Cramer’s rule:

Cof F = (detF )(F−1)>.
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Hence, det Cof F = det2 F and because we assume that detF > 0 we have that

F =
( Cof F√

det Cof F

)−>
,

i.e., we can reconstruct F from Cof F . It is well-known that polyconvexity is satisfied for a large class of
constitutive functions and allows for the existence of minimizers of I under (2) and (4). On the other hand, there
are still situations where polyconvexity cannot be adopted. A prominent example are shape-memory alloys,
where W has the so-called multi-well structure; see, e.g., [7, 12, 43]. Namely, there is a high-temperature
phase, called austenite, which is usually of cubic symmetry, and a low-temperature phase, called martensite,
which is less symmetric and exists in more variants, e.g., in three for the tetragonal structure (NiMnGa) or in
twelve for the monoclinic one (NiTi). We can assume that

W (θ, F ) := min
0≤i≤M

Wi(θ, F ), (5)

where Wi : (0,+∞) × R3×3 → (−∞,+∞] is the stored energy density of the i-th variant of martensite
if i > 0, and W0 is the stored energy density of the austenite. For every admissible i, we have Wi(θ, ·) is
minimized if and only if F = RFi for a given matrix Fi ∈ R3×3 and an arbitrary proper rotation R ∈ SO(3).
This means that each variant of the martensite and the austenite is modeled as a hyperelastic material with its
own stored energy density Wi. We also assume that each Wi(θ, ·) is differentiable on the set of matrices with
positive determinants. Thus the variants can be described independently of each other, i.e., the elastic constants
can be chosen differently. The drawback is obviously the non-smoothness of W , however, physically realistic
elastic strain values do not occur in the set whereW is not differentiable. We refer, e.g., to [38] for other models
of the stored energy density of shape memory alloys.

Given a deformation gradient F , we need to decide if the corresponding deformation is in the well of the
austenite, or in a martensitic variant. In order to do so, we define a volume fraction λ(F ) as follows: Let
λ : R3×3 → RM+1. Set

λj(F ) :=
1

M

(
1− dist(C,Nj(Cj))∑M

i=0 dist(C,Ni(Ci))

)
∀C = F TF ∈ R3×3, j = 0, . . . ,M, (6)

where {Ni(Ci)}i are pairwise disjoint neighborhoods of the right Cauchy-Green strain tensors Ci = F>i Fi,
for i ∈ {0, . . . ,M}. Notice that

∑M
j=0 λ

j(F ) = 1 for every F , which, together with λj > 0, allows us to
interpret λ as a volume fraction.

Moreover, note that λ is continuous and frame-indifferent in the sense that λ(F ) = λ(RF ) for every proper
rotation R. Volume fractions will play an important role in the definition of our evolutionary model in Section 4.

Remark 2.1. Note that this particular choice of λ allows for some elastic behavior close to the wells SO(3)Fi,
i = 0, . . . ,M , since the volume fraction remains constant on the neighbourhoodsNi(Ci), i = 0, . . . ,M .

Let us emphasize that (5) ruins even generalized notions of convexity as, e.g., rank-one convexity. (We recall
that rank-one convex functions are convex on line segments with endpoints differing by a rank-one matrix and
that rank-one convexity is a necessary condition for polyconvexity; cf. [18], for instance.) Namely, it is observed
(see, e.g., [7, 12]) that there is a proper rotation Rij such that rank(RijFi − Fj) = 1. if 0 < i 6= j > 0.
Hence, generically, W (θ,RijFi) = W (θ, Fj) = −wi(θ), but W (θ, F ) > −wi(θ) if F is on the line
segment between RijFi and Fj . Nevertheless, not having a convexity property at hand that implied existence
of minimizers is in accordance with experimental observations for these alloys.

Indeed, nonexistence of a minimizer corresponds to the formation of microstructure of strain-states. This is
mathematically manifested via a faster and faster oscillation of deformation gradients in minimizing sequences,
driving the functional I to its infimum. One can then formulate a minimization problem for a lower semicontinuous
envelope of I , the so-called relaxation, see, e.g., [18]. Such a relaxation yields information of the effective
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behaviour of the material and on the set of possible microstructures. Thus relaxation is not only an important
tool for mathematical analysis, but also for applications. For numerical considerations it is a challenging problem,
because the relaxation formula is generically not obtained in a closed form. Further difficulties come from the fact
that a sound mathematical relaxation theory is developed only if W has p-growth; that is, for some c(θ), c > 1,
p ∈ ]1,+∞[ and all F ∈ R3×3, the inequality

1

c
(|F | − c(θ)) ≤W (θ, F ) ≤ c(1 + |F |p + c(θ))

is satisfied. This in particular implies that W < +∞. We refer, however, to [9, 17, 34] for results allowing for
infinite energies. Nevertheless, these works include other assumptions that severely restrict their usage. Let us
point out that the right Cauchy-Green strain tensorF>F maps SO(3)F as well as (O(3)\SO(3))F to the same
point. Here, O(3) are the orthogonal matrices with determinant ±1. Thus, for example, F 7→ |F>F − I| is
minimized on two energy wells, on SO(3) and also on O(3)\SO(3). However, the latter set is not acceptable in
elasticity, because the corresponding minimizing affine deformation is a mirror reflection. In order to distinguish
between these two wells, it is necessary to incorporate detF in the model properly.

Besides relaxation, another approach guaranteeing existence of minimizers is to resort to non-simple materials,
i.e., materials, whose stored energy density depends also on higher-order derivatives. Simple examples are
functionals of the form

I(θ, y) :=

∫
Ω
W (θ,∇y(x)) + ε|∇2y(x)|p dx− `(y),

where ε > 0. Obviously, the second-gradient term brings additional compactness to the problem, which allows
to require only strong lower semicontinuity of the term

∇y 7→
∫

Ω
W (θ,∇y(x)) dx

for existence of minimizers.

Here, we follow a different approach suggested in [11], which is a natural extension of polyconvexity exploiting
weak continuity of minors in Sobolev spaces. Instead of the full second gradient, it is assumed that the stored
energy density of the material depends on the deformation gradient∇y and on gradients of nonlinear minors of
∇y, i.e., on∇[Cof∇y] and on∇[det∇y]. The corresponding functionals are then called gradient polyconvex.
While we assume convexity of the stored energy density in the two latter variables, this is not assumed in the
∇y variable. The advantage is that minimizers are elements of Sobolev spaces W 1,p(Ω,R3), and no higher
regularity is required.

The following example is inspired by a similar one in [11]. It shows that there are maps with smooth nonlin-
ear minors whose deformation gradient is not a Sobolev map. Hence, gradient polyconvex energies are more
general than second-gradient ones.

Example 2.2. Let Ω = ]0, 1[3. For functions f, g : ]0, 1[ → ]0,+∞[ to be specified later, let us consider the
deformation

y(x1, x2, x3) := (x1, x2f(x1), x3g(x1)) .

Then,

∇y(x1, x2, x3) =

 1 0 0
x2f

′(x1) f(x1) 0
x3g
′(x1) 0 g(x1)

 ,

Cof∇y(x1, x2, x3) =

 f(x1)g(x1) −x2f
′(x1)g(x1) −x3f(x1)g′(x1)

0 g(x1) 0
0 0 f(x1)
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and

det∇y(x1, x2, x3) = f(x1)g(x1) > 0 .

Finally, the non-zero entries of∇2y(x1, x2, x3) are

x2f
′′(x1), f ′(x1), x3g

′′(x1), g′(x1). (7)

Note that we have in particular

|∇2y(x1, x2, x3)| ≥ |x2||f ′′(x1)|.
Any functions f, g such that y ∈ W 1,p(Ω;R3), Cof∇y ∈ W 1,q(Ω;R3×3), 0 < det∇y ∈ W 1,r(Ω),
(det∇y)−s ∈ L1(Ω) for some p, q, r ≥ 1 and s > 0, but such that one of the quantities in (7) is not a function
in Lp(Ω) yield a useful example since then y /∈W 2,p(Ω;R3). To be specific, we choose, for 1 > ε > 0,

f(x1) = x1−ε
1 and g(x1) = x1+ε

1 .

Hence

f ′(x1) = (1− ε)x−ε1 , g′(x1) = (1 + ε)xε1,

f ′′(x1) = −ε(1− ε)x−1−ε
1 , g′′(x1) = ε(1 + ε)x−1+ε

1 .

Since x2f
′′(x1) is not integrable, we have ∇2y 6∈ L1(Ω;R3×3×3) and thus y 6∈ W 2,1(Ω;R3). We have

only y ∈ W 1,p(Ω;R3) ∩ L∞(Ω;R3) for every 1 ≤ p < 1/ε. Moreover, direct computation shows that both
Cof∇y and det∇y lie in W 1,∞. Finally, det∇y = x2

1 > 0 and (det∇y)−s ∈ L1(Ω) for all 0 < s < 1/2.

Therefore, for any r, q ≥ 1, s > 0, requiring a deformation y : Ω → R3 to satisfy det∇y ∈ W 1,r(Ω),
(det∇y)−s ∈ L1(Ω) and Cof∇y ∈W 1,q(Ω;R3×3) is a weaker assumption than y ∈W 2,1(Ω;R3).

3 Gradient Polyconvexity

We start with a definition of gradient polyconvexity.

Definition 3.1 (See [11]). Let Ŵ : (0,+∞)×R3×3×R3×3×3×R3 → R∪{+∞} be a lower semicontinuous
function, and let Ω ⊂ R3 be a bounded open domain. The functional

J(θ, y) =

∫
Ω
Ŵ (θ,∇y(x),∇[Cof∇y(x)],∇[det∇y(x)])dx, (8)

defined for any measurable function y : Ω→ R3 for which the weak derivatives∇y,∇[Cof∇y],∇[det∇y]
exist and which are integrable, is called gradient polyconvex if the function Ŵ (F, ·, ·) is convex for every F ∈
R3×3.

With J defined as in (8) and a functional y 7→ −`(y) expressing the work of external loads, we set

I(θ, y) := J(θ, y)− `(y). (9)

Besides convexity properties, the results of weak lower semicontinuity of I(θ, ·) on W 1,p(Ω;R3), in the case
1 ≤ p < +∞, rely on suitable coercivity properties. Here we assume that there are numbers q, r > 1 and
c, c(θ), s > 0 such that for every F ∈ R3×3, ∆1 ∈ R3×3×3, and every ∆2 ∈ R3

Ŵ (θ, F,∆1,∆2) ≥


c
(
|F |p + |Cof F |q + (detF )r + (detF )−s + |∆1|q + |∆2|r

)
− c(θ),

if detF > 0,

+∞, otherwise.

(10)

The following existence result is taken from [11] where it is stated without the explicit dependance on θ. For the
reader’s convenience, we provide a proof below.
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Proposition 3.1. Let θ > 0 be fixed. Let Ω ⊂ R3 be a bounded Lipschitz domain, and let Γ = Γ0 ∪ Γ1 be an
H2-measurable partition of Γ = ∂Ω with the area of Γ0 > 0. Let further−` : W 1,p(Ω;R3)→ R be a weakly
lower semicontinuous functional satisfying, for some C̃ > 0 and 1 ≤ p̄ < p,

`(y) ≤ C̃‖y‖p̄
W 1,p(Ω;R3)

, for all y ∈W 1,p(Ω;R3). (11)

Further, let J , as in (8), be gradient polyconvex on Ω and such that there is a Ŵ as in Definition 3.1 which in
addition satisfies (10) for p > 2, q ≥ p

p−1 , r > 1, s > 0. Moreover, assume that, for some given measurable

function y0 : Γ0 → R3, the following set

A : =
{
y ∈W 1,p(Ω;R3) : Cof∇y ∈W 1,q(Ω;R3×3), det∇y ∈W 1,r(Ω),

(det∇y)−s ∈ L1(Ω), det∇y > 0 a.e. in Ω, y = y0 on Γ0

}
is nonempty. If infA I(θ, ·) <∞ for I from (9), then the functional I has a minimizer onA.

Proof. Our proof closely follows the approach in [11]. Let {yk} ⊂ A be a minimizing sequence of I . Due to
coercivity assumption (10), the bound on the loading (11), the Poincaré inequality, and the Dirichlet boundary
conditions on Γ0, we obtain that

sup
k∈N

(
‖yk‖W 1,p(Ω;R3) + ‖Cof∇yk‖W 1,q(Ω;R3×3) + ‖ det∇yk‖W 1,r(Ω) + ‖(det∇yk)−s‖L1(Ω)

)
<∞.

(12)

Hence, by standard results on weak convergence of minors, see, e.g., [15, Thm. 7.6-1], there are (not explicitly
labeled) subsequences such that

yk ⇀ y in W 1,p(Ω;R3), Cof∇yk ⇀ Cof∇y in Lq(Ω;R3×3), det∇yk ⇀ det∇y in Lr(Ω)

for k → ∞. Moreover, since bounded sets in uniformly convex Sobolev spaces are weakly sequentially com-
pact,

Cof∇yk ⇀ H in W 1,q(Ω;R3×3), det∇yk ⇀ D in W 1,r(Ω) (13)

for some H ∈ W 1,q(Ω;R3×3) and D ∈ W 1,r(Ω). Since the weak limit is unique, we have H = Cof∇y
and D = det∇y. By compact embedding, also Cof∇yk → H in Lq(Ω;R3×3) and hence we obtain a (not
explicitly labeled) subsequence such that, for k →∞,

Cof∇yk → Cof∇y a.e. in Ω. (14)

Since, by Cramer’s formula, det(Cof∇y) = (det∇y)2, we have, for k →∞, that

det∇yk → det∇y a.e. in Ω. (15)

Next we show that y belongs to the set of admissible functionsA. Notice that det∇y ≥ 0 since det∇yk > 0
for any k ∈ N. Further, the conditions (10), (11), (12), and the Fatou lemma imply that

+∞ > lim inf
k→∞

I(θ, yk) + `(yk) ≥ lim inf
k→∞

∫
Ω

1

(det∇yk(x))s
dx ≥

∫
Ω

1

(det∇y(x))s
dx.

Hence, inevitably, det∇y > 0 almost everywhere in Ω and (det∇y)−s ∈ L1(Ω). Since the trace operator is
continuous, we obtain that y ∈ A.

By Cramer’s rule, the inverse of the deformation gradient satisfies, for almost all x ∈ Ω and k →∞, that

(∇yk(x))−1 =
(Cof∇yk(x))>

det∇yk(x)
−→ (Cof∇y(x))>

det∇y(x)
= (∇y(x))−1. (16)

DOI 10.20347/WIAS.PREPRINT.2851 Berlin 2021
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Notice that, for almost all x ∈ Ω,

sup
k∈N
|∇yk(x)| = sup

k∈N
det∇yk(x) |((Cof(∇yk(x)))−1))>|

≤ sup
k∈N

3

2
det∇yk(x) |(∇yk(x))−1|2 <∞

because of the pointwise convergence of {det∇yk} and (16).

Due to (16), we have, for almost all x ∈ Ω and k →∞, that

∇yk(x) = ((Cof(∇yk(x))−1)> det∇yk(x) −→ ((Cof(∇y(x))−1)> det∇y(x) = ∇y(x),

where we have used that the cofactor of some matrix is invertible whenever the matrix itself is invertible too. As
the Lebesgue measure on Ω is finite, we get by the Egoroff theorem, c.f. [24, Thm. 2.22],

∇yk → ∇y in measure. (17)

Since Ŵ (θ, ·) is bounded from below and continuouson matrices with positive determinants and Ŵ (θ, F, ·, ·)
is convex, we may use [24, Cor. 7.9] to conclude, from (17) and (13), that∫

Ω
Ŵ (θ,∇y(x),∇Cof∇y(x),∇ det∇y(x)) dx

≤ lim inf
k→∞

∫
Ω
Ŵ (θ,∇yk(x),∇Cof∇yk(x),∇ det∇yk(x)) dx .

To pass to the limit in the functional−`, we exploit its weak lower semicontinuity. Therefore, the whole functional
I is weakly lower semicontinuous along {yk} ⊂ A and hence y ∈ A is a minimizer of I(θ, ·).

Remark 3.2. Note that the pointwise convergence (15) of the determinant, necessary for obtaining the crucial
convergence in (17), was not achieved by compact embedding, as it was done for Cof∇y in (14). Hence,
the coercivity in∇[det∇y] is of minor importance and can be relaxed, provided the function Ŵ from (8) does
not depend on its last argument, c.f. [11, Prop. 5.1]. On the other hand, although only∇[Cof∇y] is necessary
for regularizing the whole problem, making the functional in (8) dependent also on∇[det∇y] may be interesting
from the applications point of view.

Let L3 denote the Lebesgue measure in R3. If p > 3 and y ∈ W 1,p(Ω;R3) is such that det∇y > 0 almost
everywhere in Ω, then the so-called Ciarlet-Nečas condition∫

Ω
det∇y(x) dx ≤ L3(y(Ω)), (18)

derived in [16], ensures almost-everywhere injectivity of deformations. We also refer to [29, Sec. 6, Thm.2] and
to [4] for other conditions ensuring injectivity of deformations, requiring, however, a prescribed Dirichlet boundary
datum on the whole ∂Ω, which is difficult to ensure in a physical lab. If

|∇y|3
det∇y ∈ L

δ(Ω) (19)

for some δ > 2 and (18) holds, then we even get invertibility everywhere in Ω due to [31, Theorem 3.4]. Namely,
this then implies that y is an open map. Hence, we get the following corollary of Proposition 3.1.

DOI 10.20347/WIAS.PREPRINT.2851 Berlin 2021
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Corollary 3.3. Let Ω ⊂ R3 be a bounded Lipschitz domain, and let Γ = Γ0∪Γ1 be anH2-measurable partition
of Γ = ∂Ω with the area of Γ0 > 0. Let further ` : W 1,p(Ω;R3) → R be a weakly upper semicontinuous
functional and J as in (8) be gradient polyconvex on Ω such that Ŵ satisfies (10). Finally, let p > 6, q ≥ p

p−1 ,

r > 1, s > 2p/(p − 6), and assume that, for some given measurable function y0 : Γ0 → R3, the following
set

A : = {y ∈W 1,p(Ω;R3) : Cof∇y ∈W 1,q(Ω;R3×3), det∇y ∈W 1,r(Ω),

(det∇y)−s ∈ L1(Ω), det∇y > 0 a.e. in Ω, y = y0 on Γ0, (18) holds}
is nonempty. If infA I < ∞ for I from (9), then the functional I has a minimizer on A which is injective
everywhere in Ω.

A simple example of an energy density which satisfies the assumptions of Proposition 3.3 and Corollary 3.3 is

Ŵ (θ, F,∆1,∆2) =


W (θ, F ) + ε

(
|F |p + |Cof F |q + (detF )r + (detF )−s + |∆1|q + |∆2|r

)
,

if detF > 0,

+∞, otherwise,

for W defined in (5).

Remark 3.4 (Gradient polyconvex materials and smoothness of stress). Gradient polyconvex materials enable
us to control regularity of the first Piola-Kirchhoff stress tensor by means of smoothness of the Cauchy stress.
Assume that the Cauchy stress tensor T y : y(Ω) → R3×3 is Lipschitz continuous, for instance. If Cof∇y :
Ω → R3×3 is Lipschitz continuous too, then the first Piola-Kirchhoff stress tensor P inherits the Lipschitz
continuity from T y because

P (x) := T y(xy) Cof∇y(x),

where xy := y(x). In a similar fashion, one can transfer Hölder continuity of T y to P via Hölder continuity of
x 7→ Cof∇y(x).

4 Evolution

If the loading changes in time or if the boundary condition becomes time-dependent, then the specimen evolves
as well. We consider here the case, in which evolution is connected with energy dissipation. Experimental ev-
idence shows that considering a rate-independent dissipation mechanism is a reasonable approximation in a
wide range of rates of external loads. We hence need to define a suitable dissipation function. Since we consider
a rate-independent processes, this dissipation will be positively one-homogeneous. We associate the dissipa-
tion with the magnitude of the time derivative of the dissipative variable z ∈ RM+1, where M ∈ N, i.e., with
|ż|M+1, where | · |M+1 denotes a norm on RM+1 (in our setting, the internal variable z can be seen as a vec-
tor of volume fractions of austenite and M variants of martensite). Therefore, the specific dissipated energy
associated with a change from state z1 to z2 is postulated as

D(z1, z2) := |z1 − z2|M+1. (20)

Hence, for zi : Ω→ RM+1, i = 1, 2, the total dissipation reads

D(z1, z2) :=

∫
Ω
D(z1(x), z2(x)) dx,

and the total D-dissipation of a time dependent curve z : t ∈ [0, T ] 7→ z(t), where z(t) : Ω → RM+1 is
defined as

DissD(z, [s, t]) := sup
{ N∑
j=1

D(z(ti−1), z(ti)) : N ∈ N, s = t0 ≤ . . . ≤ tN = t
}
.
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LetZ denote the set of all admissible states of internal variables z : Ω→ RM+1 andA be the set of admissible
deformations as before. For a given triple (t, y, z) ∈ [0, T ]×A×Z , we define the total energy of the system
by

E(t, θ, y, z) =

{
J(θ, y)− L(t, y), if z = λ(∇y) a.e. in Ω,
+∞, otherwise,

where L(t, ·) is a functional on deformations expressing time-dependent loading of the specimen, and λ is
defined in (6).

4.1 Energetic Solution

Suppose, that we look for the time evolution of t 7→ y(t) ∈ A and t 7→ z(t) ∈ Z := L∞(Ω,RM+1) during a
process on a time interval [0, T ], where T > 0 is the time horizon. We use the following notion of solution from
[26], see also [39, 40].

Definition 4.1 (Energetic solution). Let an energy E : [0, T ] × (0,+∞) × A × Z → R ∪ {+∞} and a
dissipation distance D : Z × Z → R ∪ {+∞} be given. The set of admissible configurations is defined as

Q := {(y, z) ∈ A× Z : λ(∇y) = z a.e. in Ω}.

We say that (y, z) : [0, T ]→ Q is an energetic solution to (Q, E ,D), if the mapping t 7→ ∂tE(t, θ, y(t), z(t))
is in L1(0, T ) and if, for all t ∈ [0, T ], the stability condition

E(t, θ, y(t), z(t)) ≤ E(t, θ, ỹ, z̃) +D(z(t), z̃) ∀(ỹ, z̃) ∈ Q. (S)

and the energy balance

E(t, θ, y(t), z(t)) + DissD(z; [s, t]) = E(s, θ, y(s), z(s)) +

∫ t

s
∂tE(a, θ, y(θ), z(θ)) da (E)

are satisfied for any 0 ≤ s < t ≤ T .

An important role is played by the set of so-called stable states, defined for each t ∈ [0, T ] as

S(t) := {(y, z) ∈ Q : E(t, θ, y, z) < +∞ and E(t, θ, y, z) ≤ E(t, θ, ỹ, z̃) +D(z, z̃) ∀(ỹ, z̃) ∈ Q} .

4.2 Existence of an Energetic Solution

A standard way how to prove the existence of an energetic solution is to construct time-discrete minimization
problems and then to pass to the limit. Before we give the existence proof we need some auxiliary results. For
given N ∈ N and for 0 ≤ k ≤ N , we define the time increments tk := kT/N . Furthermore, we use the
abbreviation q := (y, z) ∈ Q. We assume that there exists an admissible deformation y0 being compatible
with the initial volume fraction z0, i.e., q0 := (y0, z0) ∈ S(0). For k = 1, . . . , N , we define a sequence of
minimization problems

minimize Ik(θ, y, z) := E(tk, θ, y, z) +D(z, zk−1), (y, z) ∈ Q. (21)

We denote a minimizer of (21), for a given k, as qNk := (yk, zk) ∈ Q for 1 ≤ k ≤ N . The following lemma
shows that a minimizer always exists if the elastic energy is not identically infinite onQ:

Lemma 4.1. Let Ω ⊂ R3 be a bounded Lipschitz domain, and let Γ = Γ0∪Γ1 be anH2-measurable partition
of Γ = ∂Ω with the area of Γ0 > 0. Let J , of the from (8), be gradient polyconvex on Ω and such that the stored

DOI 10.20347/WIAS.PREPRINT.2851 Berlin 2021



M. Horák, M. Kružík, P. Pelech, A. Schlömerkemper 10

energy density Ŵ satisfies (10). Moreover, let L ∈ C1([0, T ];W 1,p(Ω;R3)) be such that, for some C > 0
and 1 ≤ α < p,

L(t, y) ≤ C‖y‖αW 1,p , for all t ∈ [0, T ]

and y 7→ −L(t, y) is weakly lower semicontinuous on W 1,p(Ω;R3) for all t ∈ [0, T ]. Finally, let p > 6,
q ≥ p

p−1 , r > 1, s > 2p/(p− 6).

If there is (y, z) ∈ Q such that Ik(y, z) < ∞ for Ik from (21), then the functional Ik has a minimizer
qNk = (yk, zk) ∈ Q such that yk is injective everywhere in Ω. Moreover, qNk ∈ S(tk) for all 1 ≤ k ≤ N .

Proof. Since the discretized problem (21) has a purely static character, we can follow the proof of Proposi-
tion 3.1. Let {(ykj , zkj )}j∈N ⊂ Q be a minimizing sequence. As

∇ykj −→ ∇yk strongly in Lp̃(Ω,R3×3) as j →∞

for every 1 ≤ p̃ < p and λ ∈ C(R3×3,RM+1) is bounded, we obtain that

zkj = λ(∇ykj ) −→ λ(∇yk) strongly in Lp̃(Ω,RM+1) as j →∞.

Since ‖zkj ‖L1(Ω,RM+1) is uniformly bounded in j, there is a subsequence (not explicitly relabeled) such that

zkj
∗
⇀ µk in Radon measures on Ω. This shows that zk := µk = λ(∇yk) and hence qNk = (yk, zk) ∈ Q.

SinceD(·, zk−1) is convex, we obtain that qNk is indeed a minimizer of Ik. Moreover, yk is injective everywhere
by the reasoning used for proving Corollary 3.3. The stability qNk ∈ S(tk) follows by standard arguments; see,
e.g., [26].

Denoting by B ([0, T ];A) the set of bounded maps t ∈ [0, T ] 7→ y(t) ∈ A, we have the following result
showing the existence of an energetic solution to the problem (Q, E ,D):

Theorem 4.1. Let θ > 0 be fixed. Let T > 0 and let the assumptions in Lemma 4.1 be satisfied. Moreover,
let the initial condition be stable, i.e., q0 := (y0, z0) ∈ S(0). Then there is an energetic solution to (Q, E ,D)
satisfying q(0) = q0 and such that y ∈ B ([0, T ];A), z ∈ BV

(
[0, T ];L1(Ω;RM+1)

)
∩ L∞(0, T ;Z),

and such that for all t ∈ [0, T ] the identity λ(∇y(t, ·)) = z(t, ·) holds a.e. in Ω. Moreover, for all t ∈ [0, T ],
the deformation y(t) is injective everywhere in Ω.

Proof. Let qNk := (yk, zk) be the solution of (21), which exists by Lemma 4.1, and let qN : [0, T ] → Q be
given by

qN (t) :=

{
qNk , if t ∈ [tk, tk+1[ if k = 0, . . . , N − 1,

qNN , if t = T .

Following [26], we get, for some C > 0 and for all N ∈ N, the estimates

‖zN‖BV (0,T ;L1(Ω;RM+1)) ≤ C, ‖zN‖L∞(0,T ;BV (Ω;RM+1)) ≤ C, (22a)

‖yN‖L∞(0,T ;W 1,p(Ω;R3)) ≤ C, (22b)

as well as the following two-sided energy inequality∫ tk

tk−1

∂tE(a, θ, qNk ) da ≤ E(tk, θ, q
N
k ) +D(zk, zk−1)− E(tk−1, θ, q

N
k−1)

≤
∫ tk

tk−1

∂tE(a, θ, qNk−1) da. (23)
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The second inequality in (23) follows since qNk is a minimizer of (21) and by comparison of its energy with
q := qNk−1. The lower estimate is implied by the stability of qNk−1 ∈ S(tk−1), see Lemma 4.1, when compared

with q̃ := qNk . By this inequality, the a-priori estimates and a generalized Helly’s selection principle [40, Cor. 2.8],
we get that there is indeed an energetic solution obtained as a limit for N →∞.

Let us comment more on the two main properties of the minimizer, namely, that it is orientation preserving
and injective everywhere in Ω. The condition det∇y > 0 a.e. in Ω follows from the fact that if tj → t,
(y(j), z(j)) ∈ S(tj) and (y(j), z(j)) ⇀ (y, z) inW 1,p(Ω;R3)×BV (Ω;RM+1), then (y, z) ∈ S(t). Indeed,

we have z(j) → z in L1(Ω;RM+1) in our setting and hence for all (ỹ, z̃) ∈ Q, we get

E(t, θ, y, z) ≤ lim inf
j→∞

E(tj , θ, y(j), z(j)) ≤ lim inf
j→∞

(E(tj , θ, ỹ, z̃) +D(z(j), z̃))

= E(t, θ, ỹ, z̃) +D(z, z̃).

In particular, as E(tj , θ, ỹ, z̃) is finite for some (ỹ, z̃) ∈ Q, we get E(t, θ, y, z) < +∞ and thus det∇y > 0
a.e. in Ω in view of (10).

To prove injectivity, we profit again from the fact that quasistatic evolution of energetic solutions is very close
to a purely static problem. In view of (22b), we obtain, for each t ∈ [0, T ], all necessary convergences that were
used in the proof of Corollary 3.3 to pass to the limit in the conditions (18) and (19).

5 Computational experiments

In this section, we demonstrate computational performance of the above model on a numerical experiment. We
will use a St.Venant-Kirchhoff-like form of the stored energy of each particular phase variant, which allows for an
explicit reference to measured data and can easily be applied to various materials. We consider that the material
can occur inM+1 stress-free configurations that are determined by distortion matricesFi, i = 0, ...,M , which
are independent of θ, i.e. thermal expansion is neglected. The austenite well is defined by F0 = I.

The frame-indifferent free energy of particular phase(variant)s is considered as a function of Green strain tensor
ε` related to the distortion of this phase(variant). In the simplest case (cf. [46, Sect. 6.6], e.g.), one can consider
a function quadratic in

ε` =
(F>` )−1F>FF−1

` − I
2

,

of the form (provided detF > 0)

W`(F, θ) =

d∑
i,j,k,l=1

ε`ijC`ijklε`kl + d`(θ) + α((detF )−2 + |∇[Cof F ]|2), (24)

where C` = {C`ijkl} is the 4th-order tensor of elastic moduli satisfying the usual symmetry relations depending
also on symmetry of the specific phase(variant) ` and d` is some offset. The overall stored energy is assembled
as in (5).

The data required for the potential are available for many alloys, except perhaps the measurements of the elastic
tensor C`, which are standardly done (with few exceptions) only for the austenite so that elastic response of the
martensitic variants has to be extrapolated. The heat capacities c` are usually obtained experimentally, while
the offsets d` are then to be fitted to get the agreement with energetical equilibrium between martensite and
austenite at a specific temperature. Typically, heat capacity of austenite is larger than that of martensite, which
is just what causes the shape memory effect.

We performed our computation on a prismatic single crystal of Ni2MnGa in a specific orientation, mostly (1,0,0).
This alloy (or, more precisely, intermetalic) undergoes a cubic/tetragonal transformation, which is relatively easy
to model because the martensite forms only 3 variants, i.e. M = 3.
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Following [13] we describe the variants of martensite by F1 = diag(η2, η1, η1), F2 = diag(η1, η2, η1) and
F3 = diag(η1, η1, η2) where η1 = 0.9512 and η2 = 1.130. The stretch tensor of the austenite is the identity,
i.e. F0 = diag(1, 1, 1). The Euclidean distance between any two variants of the martensite is about 0.253
while the distance between the austenite and any variant of the martensite is 0.147. The distances here are
calculated as the Frobenius norms of the corresponding right Cauchy-Green strains. Hence, we can define
Ni(Ci) = {C ∈ R3×3 : |C − Ci| < εi} for some εi > 0. Then

dist(C,Ni(Ci)) =

{
0 if |C − Ci| < εi,

|C − Ci| − εi otherwise.

We can take εi = 0.07 for every 0 ≤ i ≤ 3. This formula is then used in (6). As the elastic moduli are much
bigger than the transformation strains, the volume fraction λ will have one dominant component because ∇y
must be pointwise in a small vicinity of some energy well. Using [7] we can see that the martensitic variants are
rank-one connected with each other while none of them is rank-one connected with the austenite. Rank-one
connection allows for the formation of a planar interface between two martensitic variants.

We prescribe the dissipation energy density as 0.35 MPa for transformations between the austenite and any
martensitic variant [1] and almost no dissipation is assumed for transformations among martensitic variants.
This can be done by setting |z|4 :=

∑3
i=0 γi|zi| in (20) and taking γ0 = 35× 104 Pa and γi = 1 Pa if i 6= 0.

The equilibrium temperature θ0 of the austenite and the martensite is about 288 K. The Clausius-Clapeyron
constant describing the rate of the increase of the bottoms of the martensitic wells with respect to the austenite
is about 0.2 MPa/K. Therefore, we can take d`(θ) = 0.2MPa (θ − 288K) for ` > 0 and d0(θ) = 0.

Elastic moduli of the austenite are taken zero but C0
1111 = 136 GPa, C0

1122 = C0
2211 = 92 GPa, C0

2323 =
C0

2332 = C0
3223 = C0

3232 = 102 GPa.

We consider a simple problem of uniaxial tension of a three dimensional bar, i.e, the horizontal displacements
are fixed at the left end and all the nodes at the right end are loaded by increasing horizontal displacements,
while the vertical displacements at the both ends are prescribed such as the rigid body modes are removed
but the bar is free to deform laterally. In the case the bar is considered as perfectly uniform, the onset of phase
transition from austenite to martensite is reached for all the points at the same time. This situation can be
studied analytically, assuming zero dissipation for simplicity. First, we know that the only nonzero component of
the second Piola-Kirchhoff stress tensor S` is S`33 calculated as

S`33 = C33ε
`
33 + C23ε

`
22 + C13ε

`
11. (25)

The condition of zero stress components S`11 and S`22 can be written as

S`11 = C11ε
`
11 + C12ε

`
22 + C13ε

`
33 = 0 (26)

S`22 = C12ε
`
11 + C22ε

`
22 + C23ε

`
33 = 0 (27)

where Cij are components of the stiffness tensor in Voigt notation, i.e., C12 = C21 = C2211 = C1122,
C22 = C2222, C23 = C23 = C2233 = C3322, etc. Solution of the above system of two equations is given as

ε`11 = ε`22 (28)

ε`22 = − C23

C22 + C12
ε`33 (29)

Substituting back to (25) we arrive at

S`33 =

(
C33 − 2

C2
23

C22 + C23

)
︸ ︷︷ ︸

K

ε`33 (30)

The transformation from austenite to the first variant of martensite happens when the energy of both phases are
the same

W0(F ) = W3(F ) (31)
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which can be written in terms of strain as

K(ε0
33)2 = K(ε3

33)2 (32)

where the strains are calculated as

ε0
33 =

1

2

(
F 2

33 − 1
)

(33)

ε3
33 =

1

2

(
F 2

33

η2
2

− 1

)
. (34)

Therefore, the critical stretch Fc of the bar at the onset of transformation from austenite to martensite can be
determined as

Fc =

√
2η2

2

η2
2 + 1

(35)

for the given value of η2 = 1.13, the stretch is Fc = 1.059, and the strains are

ε0
33 =

1

2

(
F 2
c − 1

)
= 0.0608 (36)

ε3
33 =

1

2

(
F 2
c

η2
2

− 1

)
= −0.0608. (37)

The solution is represented graphically in Figure 1.

1 1.059 1.13 1.2
0

2

4

6

F33

W
`
[G

P
a
]

Austenite ` = 0
Martensite ` = 3

Figure 1: Uniaxial tension: Free energy of particular phase(variant)s, namely W0 and W3 in terms of F33.

Moreover, also remaining nonzero components of the strain tensor before and after transformation can be
calculated as

ε0
22 = − C23

C33 + C23
ε0

33 = −0.608
92

136 + 92
= −0.0245 (38)

ε3
22 = − C23

C33 + C23
ε1

11 = 0.608
92

136 + 92
= 0.0245 (39)

and the stretches in the lateral direction before and after deformation are therefore given as

F 0
22 =

√
2ε0

22 + 1 = 0.9752 (40)

F 3
22 =

√
2ε3

22 + 1 = 1.0242. (41)
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Let us now calculate also the stress at the point of transition form austenite to martensite. The first Piola-Kirchhoff
stresses right before and after the transformation, i.e., P 0

33 and P 1
33 are calculated as

P 0
33 = FcS

0
33 = Fc

(
C33 − 2

C2
23

C22 + C23

)
ε0

33 (42)

= 1.059

(
136− 2

92

136 + 92

)
0.0608 = 8.705 GPa. (43)

P 3
33 = FcS

3
33 = Fc

(
C33 − 2

C2
23

C22 + C23

)
ε1

33 (44)

= 1.059

(
136− 2

92

136 + 92

)
(−0.0608) = −8.705 GPa. (45)

Interestingly, jump from tension to compression occurs during the transformation, see Figure 2 for the depen-
dence of the first Piola-Kirchhoff stress on the stretch.

1 1.059 1.13 1.2
−10

−5

0

5

10

F33

P
3
3
[G

P
a]

Figure 2: Uniaxial tension: first Piola-Kirchoff stress – stretch graph.

However, in reality, the material is never homogeneous and uniform but shows certain variation in material
properties. Such a variation can trigger the transformation from austenite to martensite only in a small part of
the bar. Nonetheless, such a uniaxial state would violate the equilibrium condition as well as the compatibility
condition since the distortion matrices F0 and F3 are not rank-1 connected. Therefore, the bar must deform in
a more complex way that is in general not possible to study analytically. Therefore, we simulate this case by the
finite element method.

The proposed material model enhanced by gradient polyconvexity has been implemented into a finite element
code OOFEM[44]. The implementation of gradient polyconvexity was based on the so-called micromorphic
approach, see [32] for more details. Thus, in the present example we perform a uniaxial tension test of a bar
with η2 considered as a random variable with a Gaussian distribution, specified by mean µ = 1.13 and standard
deviation parameter σ = 0.01. As expected, the martensite transformation starts in several separated parts of
the bar leading to violation of uniaxial stress state resulting into bending of the bar. Moreover, since the variants
` = 0 and ` = 3 are not rank-1 connected, an interface consisting of the other two variants of martensite is
created. The transformation process is depicted in Figure 3 where gradual change from the initial austenite state
to the final state of martensite variant ` = 3 is shown. Moreover, details of the interface between austenite and
martensite is illustrated in Figure 4.

Note that the solution was obtained by the Newton-Raphson procedure which generally leads to a critical point
rather than the global minima. Since the present problem involves several local minima, a more robust tech-
nique will be further implemented into OOFEM to allow development of austenite-martensite laminates without
perturbing material parameters.
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Uniaxial tension test: Evolution of a austenite-martensite transformation form (a) to (f). Blue color
represents the austenite variant, while the remaining colors represent different variants of martensite according
to the color bar.

Figure 4: Uniaxial tension test: Detail of austenite-martensite interface.
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