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Efficient approximation of high-dimensional exponentials by
tensor networks

Martin Eigel, Nando Farchmin, Sebastian Heidenreich, Philipp Trunschke

ABSTRACT. In this work a general approach to compute a compressed representation of the exponen-
tial exp(h) of a high-dimensional function h is presented. Such exponential functions play an impor-
tant role in several problems in Uncertainty Quantification, e.g. the approximation of log-normal random
fields or the evaluation of Bayesian posterior measures. Usually, these high-dimensional objects are
intractable numerically and can only be accessed pointwise in sampling methods. In contrast, the pro-
posed method constructs a functional representation of the exponential by exploiting its nature as a
solution of an ordinary differential equation. The application of a Petrov–Galerkin scheme to this equa-
tion provides a tensor train representation of the solution for which we derive an efficient and reliable a
posteriori error estimator. Numerical experiments with a log-normal random field and a Bayesian likeli-
hood illustrate the performance of the approach in comparison to other recent low-rank representations
for the respective applications. Although the present work considers only a specific differential equa-
tion, the presented method can be applied in a more general setting. We show that the composition
of a generic holonomic function and a high-dimensional function corresponds to a differential equation
that can be used in our method. Moreover, the differential equation can be modified to adapt the norm
in the a posteriori error estimates to the problem at hand.

1. INTRODUCTION

In this work we consider the problem of approximating the exponential u = exp(h) of a differentiable
multivariate function h(y). Before presenting the new approach, we first illustrate the relevance of this
often challenging task by two examples from the field of Uncertainty Quantification (UQ).

First, consider the steady state diffusion in a porous medium also known as Darcy’s problem. This is
a standard benchmark problem in forward UQ and can be modeled by the second order linear partial
differential equation

(1.1) − div(κ∇w) = f,

where w is the concentration of some substance, the diffusion coefficient κ determines the mobility of
the particles and f describes sources or sinks. In practical applications the diffusion coefficient often
takes the form κ(x, y) = exp(γ(x, y)) where the function γ depends on the spatial coordinate x
as well as a random parameter y that models uncertainties. A popular approach for solving equa-
tion (1.1) is the stochastic Galerkin (SG) method (cf. [1, 2]) as it can be interpreted as an extension
of the finite element method (FEM) to parametric random PDEs. In comparison to simpler sampling
estimates such as different variants of the Monte Carlo method, the convergence of the SG method
is potentially much faster since it exploits inherent structural properties of the considered problem, in
particular anisotropic sparsity that can be captured in an appropriate generalized polynomial chaos
basis. Moreover, when using SG methods a reliable a posteriori error estimator can be computed,
leading to a quasi optimal iterative construction of the discrete space as introduced in [3, 4].

To apply the SG method to the variational formulation of equation (1.1), a functional representation of
the diffusion coefficient κ is required, which is provided by our proposed approach.

A second related example is the representation of some posterior probability density πδ in the context
of Bayesian inference [5, 6] via the exponential of the log-likelihood `(y; δ) and the prior π0 as

dπδ
dπ0

(y) ∝ exp(`(y; δ)).

In UQ this task arises for example in the parameter reconstruction of model data via inverse prob-
lems [7–9]. If a functional representation of exp(`(y; δ)) can be constructed, it may for instance be
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used to efficiently generate independent posterior samples [10] or to compute high-dimensional quan-
tities of interest such as moments or marginals [11].

The preceding two examples highlight the benefits of a functional representation of the occurring expo-
nentials, which however is difficult to obtain. A classical approach to represent any multivariate function
u : RM → R numerically is to choose a set of d polynomial basis functions {pmi (ym)}i=0,...,d−1 for
each coordinate ym and each m = 1, . . .M , and then apply the expansion

u(y) ≈
d−1∑
i1=0

· · ·
d−1∑
iM=0

c[i1, . . . , iM ] p1
i1

(y1) · · · pMiM (yM).

Note that in both examples mentioned above, the dimensionM of the parameter vector y may vary for
practical problems from just a few to well over a hundred. This renders a standard product basis rep-
resentation like this unfeasible since dM coefficients would be required. One remedy to this problem
is to use a sparse representation of the coefficient tensor c. This works well as long as the function
u can be sparsely represented in the chosen product basis. However, to represent the exponential
function u(y) := exp(h(y)) higher-order multivariate polynomials are necessary and theoretical re-
sults indicate [12] that the number of required coefficients in a sparse representation quickly becomes
intractable in practice. To mitigate this problem tensor network representations [13] have been suc-
cessfully applied to both examples. This work focuses in particular on the tensor train (TT) format [14],
also know as matrix product states, as a technique to compress the high-dimensional coefficient tensor
c. Given such a representation of the diffusion coefficient κ it is easy to apply the SG algorithm [15].
If the likelihood function exp(`(y; δ)) is given in TT format quantities of interest [11] can be computed
promptly and samples can be draw efficiently [10].

Concerning the diffusion coefficient κ there exist several approaches to represent c of (1) in TT format.
In [15] an exact representation is developed for the case that γ(x, y) is an affine function in the
parameters y. However, since the construction is tailored to the specific structure of γ, it is not straight-
forward to apply in other settings. As an alternative, it is possible to construct an approximation in TT
format by exploiting the connection of mean an variance of κ and its exponent γ [16] while also
providing bounds for the approximation error in the Frobenius norm. The use of numerical quadrature
in [16] is replaced by a block cross approximation algorithm, which constructs the TT format for κ
from a few evaluations of the entry-wise formula in [17] to improve efficiency. A hybrid algorithm to
approximate κ is presented in [18]. This algorithm iteratively approximates c via the alternating linear
scheme (ALS) [19–21] and replaces the dense iterates by a sparse approximation obtained via cross
approximation, which exploits and preserves the block diagonal structure of the discretized operator in
stochastic collocation schemes. A drawback of numerical quadrature is that a large number of function
evaluations is necessary or strong regularity assumptions have to be made. Using cross approximation
could be problematic because — to the knowledge of the authors — no convergence guarantees exist.

To circumvent the dimension independent but slow convergence rate of Monte Carlo sampling in
Bayesian inference, measure transport approaches [22–24] gained a lot of popularity in recent years.
These approaches allow for a fast generation of independent samples from the posterior, but generally
do not supply a functional representation thereof. Recent results to gain such a functional represen-
tation in TT format are presented in [10, 11], which is motivated by the low-rank representability of
Gaussian densities [25]. However, the approximation task itself can be quite challenging since one
needs to guarantee small Lipschitz constants of the transport map [26] to achieve numerical stability.

The above mentioned methods for the representation of an exponential are either highly intrusive or
are at least tailored to a specific problem structure. Furthermore, a direct approach of a solely sample
based non-intrusive reconstruction using e.g. tensor recovery [27] or cross approximation [28, 29]
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requires an infeasible amount of training data or an unrealistically good initial guess to obtain similar
approximation results as the other methods.

In this paper we propose to compute the exponential of a function given in TT format by solving the
system

∇u− u∇h = f, u(y0) = 0

of ordinary differential equations (ODE) via Galerkin projection. This makes it possible to derive an ap-
proximation of the exponential and establish error bounds via an equivalence of the discrete residuum
and an energy norm. The system operator and right-hand side can be discretized efficiently in the
TT format which enables to solve the problem using the ALS method. We restrict our examinations
mainly to first order systems and to the representation of the exponential in the TT format. However, a
specific choice of the tensor network or the ODE is not necessary and both may be adapted to other
applications. In fact, we argue that our approach is not limited to the reconstruction of exponentials,
but can be extended to other functions which constitute the solution of a linear homogeneous differen-
tial equation with polynomial coefficients, namely holonomic functions. These functions are a powerful
tool in computer algebra since they are smooth, can be represented by a finite amount of data and
satisfy several closure properties. By our work we extend these properties by adding an algorithmic
representability in the TT format and hope that this will provide a new and practical way to represent
functions in the ever more important field of high-dimensional numerical computations.

The rest of the paper is structured as follows. After introducing basic notation in Section 1.1 , Section 2
presents the general framework of our approach. We describe the system of differential equations that
we solve and the realization of the Galerkin scheme for the univariate case. Subsequently, we define
the energy norm and show equivalence of this norm to the discrete residual. We conclude the section
by generalizing the univariate results to the multivariate case and establish a theoretical foundation
to apply our approach to other types of holonomic functions. Section 3 recalls the basic workings
of the ALS method and constructs a dimension independent low-rank representation of the system
operator and right-hand side in the TT format. Additionally, we comment on the algorithmic realization
of our method and give detail on some numerical intricacies in Section 3.3. Numerical applications
are discussed in Section 4. There we explain our choice of discretization and error evaluation and
give further details on the Darcy problem and Bayesian likelihoods before we discuss our numerical
results. The paper concludes with an outlook on further applications of the suggested approach as
well as possible future research.

1.1. Preliminaries. In the following we introduce the notation used throughout the paper. If not spec-
ified differently, sets are denoted by calligraphic letters. Denote by [n] ⊂ N0 := N ∪ {0} the set of
integers {0, . . . , n−1}. For setsX ,Y , we denote by Ck,α(X ;Y) the space of k-times differentiable
functions from X to Y with α-Hölder-continuous kth derivative. Denote by Lp(X , ρ;Y) the weighted
Lp-space for any p ∈ N, weight function ρ, and two setsX , Y . The same notation is used for Sobolev
spaces W k,p(X , ρ;Y) and we write Hk(X , ρ;Y) = W k,2(X , ρ;Y). If ρ ≡ 1 we omit the weight
function and if Y = R, we omit the image space. The unit sphere of any set X is defined by

S(X ) := {v ∈ X : ‖v‖X = 1}.
For any Hilbert space X and any subspace Y ⊆ X , the orthogonal projection onto Y is denoted
by PY : X → Y . We use standard notation for multiindices µ, ν ∈ NM

0 and additionally abbreviate
sums over multiindices by

µ∑
ν=1

:=

µ1∑
ν1=1

· · ·
µM∑
νM=1

.

Regular letters are used to notate standard non-discretized operators and functions. The discretized
versions of objects are denoted by boldface symbols. For any orthonormal set of functions {Pµ}µ∈[d]M ⊂
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L2(RM , ρ) we define the finite dimensional subspace

Vd := span{Pµ : µ ∈ [d]M} ⊂ L2(RM , ρ).

Then, functions w ∈ Vd can be expressed by

w(x) =
∑
µ∈[d]M

w[µ]Pµ(x) with w ∈ Rd×···×d.

Hence, the finite dimensional space Vd is isomorphic to the space of coefficient tensors RdM .

Note that the size of the coefficient tensorw grows exponentially with the order M . This is commonly
referred to as the curse of dimensionality. To mitigate this exponential dependence on M , we employ
a low-rank decomposition of the tensor w. There are many tensor decompositions discussed in the
literature [13, 30–32]. Mainly due to its simplicity and the wide availability in numerical libraries we have
chosen the tensor train (TT) format for our derivations. It is one of the best-studied tensor formats in
numerical mathematics (cf. [14, 21, 25, 33]). We can efficiently represent all the tensors in our method
in this format and the employed optimization algorithm is has been used reliably in many applications.
We want to stress however that the approach presented in this work can be applied to any other tensor
decomposition.

In the following we provide a brief overview of the notation used with the tensor train format. For further
details, we refer the reader to [33, 34] and the references therein. The TT representation of a tensor
w ∈ RdM is given as

w[µ] =
r∑

k=1

M∏
m=1

wm[km, µm, km+1] for any µ ∈ [d]M ,

with order three component tensors wm ∈ Rrm×d×rm+1 . Here, r = (r0, . . . , rM+1), with r0 =
rM+1 = 1. If all ranks rm are minimal, this is called tensor train decomposition of w with TT rank r.
The degrees of freedom of a TT representation are defined by

tt-dofs(w) =
M−1∑
m=1

(
rmdrm+1 − r2

m+1

)
+ rMd,(1.2)

which shows that the complexity of tensor trains behaves like O(Mdr̂2) for r̂ = max{r1, . . . , rM}.
In contrast to full tensor representations with complexityO(dM), tensor trains depend only linearly on
the order M . As a result, the TT format is especially efficient for a small maximal rank r̂.

In a similar fashion, for any d, q ∈ N we can express linear operatorsW : Vq → Vd in the tensor train
format. For this recall that the application of W to v ∈ Vq reads

Wv(x) =
∑
µ∈[d]M

∑
ν∈[q]M

W [µ, ν]v[ν]Pµ(x).

The TT representation of the tensor operatorW : RqM → RdM is thus determined by

W [µ, ν] =
r∑

k=1

M∏
m=1

Wm[km, µm, νm, km+1] for any µ ∈ [d]M and ν ∈ [q]M ,

with the order four component tensors Wm ∈ Rrm×d×q×rm+1 . The TT decomposition always ex-
ists and can be computed in polynomial time using the hierarchical singular value decomposition
(SVD) [21]. A truncated hierarchical SVD leads to quasi-optimal approximations of the TT decom-
position in the Frobenius norm [14, 35–37]. This can also be applied to tensors which are already
represented in the TT format to obtain a TT decomposition with a lower rank. This process is re-
ferred to as rounding. Note that sums and products can be computed efficiently in the TT format [34],
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which is crucial for the proposed method. Moreover, many of the occurring tensors are of the form
W =

∑M
m=1Bm, where, for any µ ∈ [d]M ,

Bm[µ] =
r∑

k=1

m−1∏
n=1

Un[kn, µn, kn+1]Cm[km, µm, km+1]
M∏

n=m+1

V n[kn, µn, kn+1].

Such tensors are said to have a Laplace-like structure [38] and are representable with a particularly
low rank.

2. APPROXIMATION OF EXPONENTIALS VIA GALERKIN PROJECTION

In this section we demonstrate how the exponential of a function can be approximated by using a
Galerkin projection and derive computable bounds for the approximation error. However, the presented
orthogonal projection as well as the derived a posteriori error bounds can in principle be adapted to
a broader class of multivariate holonomic functions. These are functions that constitute solutions of a
system of linear differential equations with polynomial coefficients as discussed in Section 2.3.

For any given exponent h, we construct a system of differential equations that has exph as a unique
solution and then use a Galerkin projection to construct an approximation to exph. This also allows
us to harvest well established results of the Galerkin method to obtain an a posteriori error control of
the approximation.

We start with the description of the approach for univariate functions, subsequently derive upper and
lower bounds of the approximation error in terms of the residual, and eventually generalize our results
to the multivariate case.

2.1. Approximation of univariate exponentials. Let ρ be the standard Gaussian density and as-
sume that the exponent in C1(R) ∩ L2(R, ρ) can be approximated by

h(y) =

dh−1∑
j=0

h[j]pj(y),(2.1)

where {pj}∞j=0 form an orthonormal basis in L2(R, ρ). Consider the linear initial value problem

(2.2)
u′ − uh′ = 0,

u(y0) = exph(y0),

for an arbitrary y0 ∈ R. It is easy to verify that u = exph is the unique solution to (2.2). For
f(y) = exp(h(y0))h′(y), the problem with inhomogeneous initial condition (2.2) is equivalent to

(2.3)
u′ − uh′ = f,

u(y0) = 0,

in the sense that u is the solution of (2.3) if and only if u+ exph(y0) is the solution of (2.2). Although
the choice of y0 ∈ R is arbitrary, it is advisable to choose the initial point such that ρ(y0) � 0 to
avoid numerical precision issues. Because of this and for the sake of simplicity, we assume y0 = 0 in
the following.

Let X = {u ∈ H2(R, ρ) : u(y0) = 0} and define B(v) = v′ − vh′. The variational form of (2.3)
then reads: Find u ∈ X such that

(B(u), v)V = (f, v)V for all v ∈ V ,(2.4)

where (•, •)V denotes the inner product in V := L2(R, ρ).
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For the Galerkin approximation of (2.4), we define the ansatz space Va := span{pj : j ∈ [da]\{0}}
and the test space Vt := Vdt for polynomial degrees da, dt ∈ N>0. With these spaces we can define
discretized versions of B and f by

Bij := (B(pj+1), pi)V and f i := (f, pi)V i ∈ [dt], j ∈ [da].

Consequently, the discretization of (2.4) reads

Bu = f .

Lemma 2.1. The operator B : X → V and the discretized operatorB : Rda → Rdt are injective for
dt > da, i.e. kerB = {0} and kerB = {0}.

Proof. The first assertion holds if and only if the solution u = 0 of the ODE B(u) = u′ − h′u = 0 is
unique. Since X ⊂ C1,0(R) we can consider this equation in the classical sense. The claim follows
because h′ is locally Lipschitz continuous and the ODE satisfies the conditions for the Picard–Lindelöf
theorem.
To prove the second assertion, first assume that deg(h) = 0. Then Bu = u′, which can only be zero
when u is constant. Since p0 6∈ Va this can only be the case for u = 0. Now assume deg(h) > 0.
Then deg(h′u) ≥ deg(u) and deg(u′) = deg(u) − 1. Consequently, deg(B(u)) ≥ deg(u) and
B(u) = 0 implies deg(u) = 0. The only polynomial of degree 0 in Va is 0. This concludes the
proof. �

Lemma 2.1 demonstrates the advantage of considering the problem with homogeneous initial condi-
tions (2.4). The condition u(y0) = exph(y0) effectively reduces the dimension of the solution space
by 1. Solving with homogeneous initial conditions over the space X makes this explicit and ensures
that the operator B is injective. This is not the case when considering B : H1(R, ρ)→ L2(R, ρ).

In the following we assume that dt = da + dh − 1. This ensures that B(ua) ∈ Vt for any ua ∈ Va

and that f ∈ Vt. Since the bound deg(B(u)) ≤ deg(u) + deg(h)− 1 is sharp, this is the smallest
natural number with this property. The resulting system Bu = f is overdetermined and can only be
solved in a least-squares sense. This can be obtained by performing a QR-factorization of the form

B =
(
Q Q⊥

)(R
0

)
and by solving the regular linear system QᵀBu = Qᵀf . From this it can be seen that solving
Bu = f is equivalent to a standard Galerkin method with the reduced test space Ṽt = QVt. This
test space is optimal in the sense that it minimizes the residual over Ṽ⊥t .

2.2. A posteriori error bounds. We are now interested in relating the discrete residual of the varia-
tional form (2.4) to the error in an appropriate norm. As it turns out, the dynamical system (2.4) induces
a norm which we may use for this purpose.

We begin by considering the following lemma about injective linear operators.

Lemma 2.2. Let V be a normed space and W : X → V be an injective linear operator. Then
‖v‖W := ‖W (v)‖V defines a norm on X .

Proof. Absolute homogeneity and the triangle inequality follow directly from the linearity ofW and from
the fact that ‖ • ‖V is a norm. To show positive definiteness, let v ∈ X be such that ‖W (v)‖V = 0.
With the injectivity of W , which yields kerW = {0}, there directly follows v ≡ 0. �

Since B is injective by Lemma 2.1, it follows from Lemma 2.2 that ‖ • ‖B is a norm. In the broader
context of variational methods for elliptic PDEs, we refer to this norm as the energy norm induced by
the system (2.4). With this we are subsequently able to prove that the discrete residual ‖f−Bua‖2 is
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equivalent to the error ‖u−ua‖B in the energy norm for any discrete object ua ∈ Va. This is important
for mainly two reasons. First, by minimizing the discrete residual in the least-squares sense, we get a
guarantee that the distance to the exact solution in the energy norm is minimized as well. Second, for
any discrete approximation ua ∈ Va, the discrete residual represents a reliable and efficient estimator
for the approximation error in the energy norm. This in principle allows to adaptively control the number
of steps of an iterative solver without any computational overhead.

To show the equivalence, we first establish the relation of the discrete and continuous residual in the
following lemma.

Lemma 2.3. Let V be a Hilbert space and Vt ⊆ V . It holds for any R ∈ V∗ that

‖R‖V∗t = ‖PVtr‖V ,
where r ∈ V denotes the Riesz representative ofR in V andPVt is the orthogonal projection V → Vt.

Proof. With the orthogonal projection PVt and the dual pairing 〈•, •〉V∗t ,Vt , we have

‖R‖V∗t = sup
v∈S(Vt)

|〈R, v〉V∗t ,Vt| = sup
v∈S(Vt)

| (r, v)V | = sup
v∈S(Vt)

| (PVtr, v)V |.

Since the supremum in the last equation is attained for v = ‖PVtr‖−1
V PVtr ∈ S(Vt), this directly

shows the claim. �

As a consequence, it holds that ‖R(va)‖V∗t = ‖f − Bva‖2, where for any w ∈ X , R(w) :=
(f − B(w), •)V ∈ V∗ is the residual of (2.4). What remains is to prove the equivalence of the
continuous residual and the energy error, which is achieved with the following theorem.

Theorem 2.4. Let u ∈ X be the unique solution of (2.4), let va ∈ Va be arbitrary and assume that
B(Va) ⊆ Vt. Then it holds that

‖R(va)‖V∗ = ‖u− va‖B and ‖R(va)‖V∗t ≤ ‖u− va‖B ≤ ‖R(va)‖V∗t + ‖PV⊥t f‖V .

Proof. The first assertion follows from the definition of the energy norm and the residual, i.e.

‖R(va)‖V∗ = ‖r‖V = ‖B(u− va)‖V = ‖u− va‖B,
where r = f − B(va) is the Riesz representative of the residual R(va) in V . To show the first
inequality of the second assertion, note that Lemma 2.3 directly yields

‖R(va)‖V∗t = ‖PVtr‖V = ‖PVtB(u− va)‖V ≤ ‖B(u− va)‖V = ‖u− va‖B.
The second inequality holds since B(va) ∈ Vt, which implies (r, PV⊥t v)V = (f, PV⊥t v)V and thus

‖R(va)‖V∗ ≤ sup
v∈S(V)

| (r, PVtv)V |+ sup
v∈S(V)

|(r, PV⊥t v)V | = ‖R(va)‖V∗t + ‖PV⊥t f‖V . �

Remark 2.5. Theorem 2.4 is similar to well known results for a posteriori error control in the context of
elliptic PDEs [39–41] in the sense that estimating the residual in the dual norm of the discrete space
Vt introduces an additional data oscillation term. To guarantee the efficiency of the residual estimator,
the right-hand side f hence has to be resolved adequately. However, even if the data oscillation fails
to be of higher order, it is always strictly efficient in the sense that

‖PV⊥t f‖V = ‖PV⊥t B(u− va)‖V ≤ ‖u− va‖B.

Note that in our setting the right-hand side f can be chosen rather freely. Hence, without loss of gen-
erality we may assume that the data oscillation term can be neglected in applications. Indeed, for the
choice f(y) = exph(y0)h′(y) it holds that f ∈ Vt and thus ‖PV⊥t f‖V = 0.
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The following is an observation on how certain properties of the exponent h such as regularity influ-
ence the boundedness of the energy error with respect to other more meaningful or practical norms.

Corollary 2.6. Let u ∈ X be the solution of (2.4) and let h ∈ W 1,∞(R). Then there exists C > 0
such that

‖u− va‖B ≤ C‖u− va‖H1(R,ρ) for all va ∈ Va.

If additionally there exists ε > 0, such that either h′(y) ≤ y
2

+ ε or y
2

+ ε ≤ h′(y) for all y ∈ R, then
for c = 1

ε
it holds that

‖u− va‖L2(R,ρ) ≤ c‖u− va‖B for all va ∈ Va.

Proof. The upper bound follows directly from the definition of the H1 norm and the essential bound-
edness of h′ for C =

√
2 max{1, ‖h′‖L∞(R)}. To show the lower bound, let ĉ(y) = y

2
−h′(y). From

the assumptions on h′ it follows that |ĉ(y)| ≥ ε for all y ∈ R. Integrating by parts yields

(v′, v)L2(R,ρ) = (ρ, v′v) =
1

2

(
ρ, (v2)′

)
= −1

2

(
ρ′, v2

)
=

1

2

(
y, v2

)
L2(R,ρ)

.

In combination with the boundedness of ĉ this implies

| (B(v), v)L2(R,ρ) | = |
(
ĉ(y), v2

)
L2(R,ρ)

| ≥ ε‖v‖2
L2(R,ρ).

Since V = L2(R, ρ), the residual can be bounded from below. For any v ∈ X it holds that

‖R(v)‖V∗ = sup
w∈V\{0}

| (B(u− v), w)V |
‖w‖V

≥ | (B(u− v), u− v)V |
‖u− v‖V

≥ ε‖u− v‖V .

Theorem 2.4 then concludes the proof with ‖u− va‖L2(R,ρ) ≤ ε−1‖R(va)‖V∗ = ε−1‖u− va‖B for
all va ∈ Va. �

Remark 2.7. The choice of the dynamical system for the approximation of u is not unique and it
determines the induced energy norm. A different choice of dynamical system may thus lead to more
reasonable assumptions on the exponent h then suggested by Corollary 2.6 to obtain bounds of the
energy error by different norms.

To illustrate this, consider for x ∈ D = (0, 1) the second order ODE

u′′ = (h′′ + (h′)2)u in D,

u(y) = exph(y) on ∂D.

Homogenization and standard arguments for elliptic PDEs yield ‖u − va‖B ≈ ‖u − va‖H1
0

for all

va ∈ Va ⊂ X = H1
0 (D) if there exist 0 < ȟ ≤ ĥ <∞ such that ȟ ≤ (h′′+ (h′)2) ≤ ĥ. This is the

case for many affine and quadratic exponents.

2.3. Generalization to multivariate exponentials. In the multivariate setting we assume that for
some M,dh ∈ N the exponent h is given by an expansion

(2.5) h(y) =
∑

µ∈[dh]M

h[µ]Pµ(y), where Pµ(y) =
M∏
m=1

pµm(ym).

Here, the orthonormal basis {Pµ}µ∈NM
0

of the space L2(RM , %) for %(y) =
∏M

m=1 ρ(ym) is chosen
as the tensorization of the univariate orthonormal basis {pj}j∈N0 of L2(R; ρ).

The aim of this section is to generalize the univariate results from Section 2.2 to the multivariate setting
by considering a gradient system of differential equations.
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Definition 2.8 (Gradient system). A system of first order linear differential equations of the form

Find u ∈ C1(RM) such that ∇u(y) = A(y)u(y) + F (y),

with A,F ∈ C(RM ;RM) is called a gradient system with M component equations

∂mu(y) = Am(y)u(y) + Fm(y).

For M = 2, the simple example A ≡ 0 and F (y1, y2) = (y2 0)ᵀ shows that an arbitrary gradient
system may not have a solution. However, the following theorem guarantees that the existence of a
solution to a gradient system implies its uniqueness under suitable assumptions.

Theorem 2.9. Consider the gradient system∇u(y) = A(y)u(y)+F (y) on the domain Ω with initial
condition u(y0) = 0. Assume that Ω is star-shaped with center y0 and that supy∈Ω̃ ‖A(y)‖ < ∞
for any closed subset Ω̃ ⊆ Ω. Then, if there exists a classical solution u to the gradient system, it is
unique.

Proof. To prove uniqueness, let u1 and u2 be two solutions to the gradient system. For an arbitrary y ∈
RM and m = 0, . . . ,M define ym[t] := (y1, . . . , ym−1, t, y

0
m+1, . . . , y

0
M) and ym := ym[ym] and

note that ym+1[y0
m] = ym. Now consider the ordinary differential equation ∂tu(y1[t]) = A1(y1[t]) +

F1(y1[t]) with initial condition u(y1[y0
1]) = u(y0) = 0. The assumption that supy∈Ω̃ ‖A(y)‖ < ∞

for any closed subset Ω̃ ⊆ Ω guarantees that the conditions of the Picard–Lindelöf theorem are
satisfied and the solution is (globally) unique. Since both u1 and u2 satisfy the equation it follows
that u1(y1[t]) = u2(y1[t]) for all t ∈ R and in particular u1(y1) = u2(y1). This argument can
be iterated. By considering the equation ∂tu(ym+1[t]) = Am+1(ym+1[t]) + Fm+1(ym+1[t]) with
initial condition u(ym+1[y0

m]) = u(ym) = u1(ym) = u2(ym) it follows that u1(ym+1) = u2(ym+1).
Finally, u1(y) = u1(yM) = u2(yM) = u2(y). This implies u1 ≡ u2 since y ∈ RM was arbitrary. �

We now define the multivariate formulation of (2.3) as

(2.6)
∇u− u∇h = f,

u(y0) = 0,

where we choose f(y) = exp(h(y0))∇h(y) and set y0 = 0 ∈ RM as before. Observe that
u(y) = exph(y) is a classical solution of (2.6) and since the gradient system satisfies the conditions
of Theorem 2.9, this solution is unique. For k =

⌈
M
2

⌉
+ 1, let X = {u ∈ Hk(RM , %) : u(y0) = 0}

and V = L2(RM , %)M and define the operator B : X → V by B(v) = ∇v − v∇h. Here,
dxe = min{n ∈ Z : n ≥ x} denotes the ceiling function. The variational form of this equation then
reads: Find u ∈ X such that

(B(u)m, v)L2(RM ,%) = (fm, v)L2(RM ,%) for all m ∈ [M ] and v ∈ L2(RM , %).(2.7)

To formulate the Galerkin approximation of equation (2.7), we define the ansatz space Va by

Va := span{Pµ : µ ∈ [da]M \ {0}},
and set Vdt as test space. Note that Vdt is the test space for the operators Bm. The test space for
the complete operator B is given by the Cartesian product Vt := VMdt . As above, we denote the
discretized versions of u by u and define the discretization of B and f as

B =
(
B1 . . . BM

)ᵀ
and f =

(
f 1 . . . fM

)ᵀ
for

Bm[µ, ν] = (B(Pν)m, Pµ)L2(RM ,%) and fm[µ] = (fm, Pµ)L2(RM ,%),

where µ ∈ [dt]
M and ν ∈ [da]M \ {0}.
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Remark 2.10. Observe that by the Sobolev inequality we have Hk(U) ↪→ C1(U) for k =
⌈
M
2

⌉
+ 1

and that ZU := infy∈U %(y) > 0 for any bounded open subset of RM with C1 boundary. Then, for
any f ∈ Hk(RM , %),

‖f‖2
Hk(U) =

∑
|µ|≤k

∫
U

|f (µ)(y)|2 dy ≤
∑
|µ|≤k

∫
U

|f (µ)(y)|2Z−1
U %(y) dy = Z−1

U ‖f‖
2
Hk(U,%).

Thus, f ∈ Hk(U) and consequently f ∈ C1(U) for any U in a countable covering of RM by open
sets with C1 boundary. This shows that f ∈ C1(RM) and hence every function in X is differentiable
in the classical sense. This means that the weak solution of (2.7) coincides with the classical solution
and that B is injective. Choosing dt ≥ da + dh − 1 ensures B(ua) ∈ Vt for all ua ∈ Va. ThenB is
the matrix representation of the restriction of B onto Va and thus injective.

Remark 2.10 guarantees that the energy norm is well-defined and implies that ‖R(va)‖V∗t = ‖f −
Bva‖2 where the residual is again defined by R(va) := (f − B(va), •)V . To show equivalence
of the residual to the energy norm and to obtain a posteriori error control note that Lemma 2.3 and
Theorem 2.4 also hold for the multivariate case.

To conclude this section we note that it is possible to generalize Theorem 2.9 to a larger set of what
we refer to as multivariate holonomic functions, which is shown in the following proposition.

Proposition 2.11. Let w be a holonomic function and h be a polynomial. Then w ◦ h is the unique
solution to a gradient system.

Proof. Recall that a holonomic functionw of order r is the solution to an rth order homogeneous linear
differential equation with polynomial coefficients. This means that there exist matrices A(t), B(t) ∈
Rr×r such that

A(t)v′(t) +B(t)v(t) = 0

and w = v1. Let ∂mf(y) denote the partial derivative of the function f with respect to ym in y and
define V := v ◦ h. Then ∂mV (y) = ∂mh(y)v′(h(y)) for any y ∈ RM . This means that V is the
solution to the system of ordinary differential equations

A(h(y))∂mV (y) + ∂mh(y)B(h(y))V (y) = 0.

To show uniqueness, let ξ ∈ C1(R;RM) and observe that the preceding system of equations implies

A(h(ξ(t)))∂mV (ξ(t))ξ′m(t) + ∂mh(ξ(t))B(h(ξ(t)))V (ξ(t))ξ′m(t) = 0

for all m = 1, . . . ,M . Summing over m, the equation can be reformulated equivalently as

A(h(ξ(t)))(V (ξ(t)))′ + (h(ξ(t)))′B(h(ξ(t)))V (ξ(t)) = 0

or in shorter notation as [A ◦ h ◦ ξ][V ◦ ξ]′ + [h ◦ ξ]′[B ◦ h ◦ ξ][V ◦ ξ] = 0. This is a first order
homogeneous linear differential equation for the function V ◦ ξ = v ◦ [h ◦ ξ]. If h is a polynomial
and if ξ(t) = ξy(t) := y0 + (y − y0)t, this is a first order homogeneous linear differential equation
with polynomial coefficients and exhibits a unique solution. Thus, if we are given an initial condition
V (y0) = V0 and we set the initial condition [V ◦ ξ](0) = V0 then V (y) = [V ◦ ξ](1) is uniquely
defined for any y ∈ RM . �

3. LOW-RANK REPRESENTATION OF THE OPERATOR EQUATION

This section is concerned with a low-rank discretization of the multivariate systemBu = f in order to
make computations become feasible. We first briefly illustrate how the ALS can be employed to solve
the high-dimensional linear systemBu = f in the TT format.
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3.1. The Alternating Linear Scheme. For the representation of a function va ∈ Va in the tensor
train format, we use the space Vda and enforce the homogenous boundary condition va(y0) = 0 via
a regularizer. Since the initial point y0 can be chosen arbitrarily, it would be disproportionate to strictly
enforce the condition u(y0) = 0 when solving Bu = f . Instead, we incorporate the initial condition
by means of a regularization term.

Denote by P ∈ RdMa the vector of basis functions evaluated in y0, i.e. P [µ] := Pµ(y0) for any
µ ∈ [da]

M . Since ‖Bu− f‖2
2 =

∑M
m=1 ‖Bmu− fm‖2

2, the regularized problem reads

argmin
u∈RdMa

‖Pu‖2
2 +

M∑
m=1

‖Bmu− fm‖2
2.(3.1)

Note that the convergence of the residual implies that the initial condition is enforced. Inspired by the
ALS, this functional can be minimized in an alternating fashion. Recall from Section 1.1 that the tensor
u can be written in the tensor train format as u := QkCk where Ck is the kth component tensor
andQk an operator that represents the contraction of this component tensor with the remaining tensor
network. The ALS then solves (3.1) by optimizing

argmin
Ck∈Rrk×da×rk+1

‖PQkCk‖2
2 +

M∑
m=1

‖BmQkCk − fm‖2
2(3.2)

cyclically for each k = 1, . . . ,M , until some convergence criterion is satisfied. Each cycle is re-
ferred to as an ALS iteration step or sweep. The first order optimality condition of the optimization
problem (3.2) reads(

QᵀkP
ᵀPQk +

M∑
m=1

QᵀkB
ᵀ
mBmQk

)
Ck =

M∑
m=1

QᵀkB
ᵀ
mfm.

Given the operator and right-hand side

W := P ᵀP +
M∑
m=1

BᵀmBm and b :=
M∑
m=1

Bᵀmfm,(3.3)

it is easy to find the minimum in (3.2) by cyclically solving the linear system

QᵀkWQkCk = Qᵀkb(3.4)

for each k = 1, . . . ,M .

3.2. Low-rank representation of operator and right-hand side. To construct an efficient represen-
tation of W and b, we start by assembling Bm and fm. For this we first define the partial derivative
operator

Dm = I⊗(m−1) ⊗D ⊗ I⊗(M−m)(3.5)

with the univariate differentiation operator D[i, j] := (pi, p
′
j)V . Now assume that the coefficient

tensor h of (2.5) can be represented in the TT format as

h[µ] =
r∑

k=1

M∏
j=1

hj[kj, µj, kj+1]

and define the multiplication operator

Hm[µ, ν] =
r∑

k=1

M∏
j=1

Hm,j[kj, µj, νj, kj+1](3.6)
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with the component tensors

Hm,j[kj, µj, νj, kj+1] =

dh∑
i1=1

τ [µj, νj, i1]hj[kj, i1, kj+1] for j 6= m and(3.7)

Hm,m[km, µm, νm, km+1] =

dh∑
i1=1

dh∑
i2=1

τ [µm, νm, i1]D[i1, i2]hm[km, i2, km+1],(3.8)

where τ [i, j, k] = (pipj, pk)V denotes the triple product tensor. Since the operators (3.5) are of rank
1 and the operators (3.6) are of rank r, the operators Bm := Dm −Hm are of rank (r + 1) and
fm := Dmh are of rank r. For the initial condition, note that P = P 1 ⊗ · · · ⊗ PM constitutes a
rank one tensor with component tensors P j = (p0(y0,j), . . . , pda(y0,j))

ᵀ.

A naive computation of the sums in (3.3) would result in representation ranks that increase linearly in
the number of parameters M . However, we can exploit the structure of the operators W and right-
hand side b which resembles the structure of Laplace-like operators [38]. This allows to bound the
ranks ofW and b independent of the dimension. For any j = 1, . . . ,M and allm1,m2 ∈ [M ]\{j},
note that the component tensors of Bm1 and Bm2 satisfy Bm1,j = Bm2,j . To emphasize this, we
writeCj := Bm,j for some m 6= j. Then the component tensors ofW are given by

W 1 =
[
P ᵀ1P 1 Bᵀ1,1B1,1 Cᵀ1C1

]
,(3.9)

W j =

P ᵀjP j 0 0
0 CᵀjCj 0
0 Bᵀj,jBj,j CᵀjCj

 for j = 2, . . . ,M − 1,(3.10)

WM =

 P ᵀMPM

CᵀMCM

BᵀM,MBM,M

 .(3.11)

From this it is easy to see that the rank of W is given by 2(r + 1)2 + 1 and is thus independent of
M . In an analogous way, the component tensors of b are given by

b1 =
[
Bᵀ1,1f 1,1 Cᵀ1g1

]
, bj =

[
Cᵀjgj 0
Bᵀj,jf j,j Cᵀjgj

]
and bM =

[
CᵀMgM

BᵀM,MfM,M

]
,(3.12)

where again j = 2, . . . ,M − 1 and we again define gj := fm,j for some m 6= j. This shows that b
can be represented in the TT format with rank 2r(r + 1) and is independent of the dimension M as
well.

Finally, observe that the constant function exph(y0) can be represented by a TT tensor of rank one.
This means that the TT representation of the solution u + exph(y0) to the original problem can be
computed in a straight-forward manner and the rank will increase by at most one.

3.3. Algorithmic realization. In the following we discuss some intricacies that arise in the application
of an ALS to compute the Galerkin approximation (3.4) in the TT format. The method itself is rather
straight-forward and we provide pseudo-code in Algorithm 1. Investigating the algorithm, the method
ALSsweep(W , b,ua) in line 8 realizes one complete sweep of the ALS algorithm (3.2), i.e. it solves
the local linear system (3.4) for each component tensor C1, . . . , CM .

To assess the convergence of the algorithm, we need to compute the discrete residual ‖Bu − f‖2

(Lines 6 and 9). For this, the operator B and right-hand side f (Line 4) have to be assembled in
addition to W and b. The assembly can be performed in a dimension independent low-rank manner
similar to (3.9)–(3.12) sinceB and f inherit the same Laplace-like structure asW and b. In particular,
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the TT components ofB and f are given by

BTT,1 =
[
B1,1 C1

]
, BTT,j =

[
Cj 0
Bj,j Cj

]
and BTT,M =

[
CM

BM,M

]
(3.13)

and

fTT,1 =
[
f 1,1 g1

]
, fTT,j =

[
gj 0
f j,j gj

]
and fTT,M =

[
gM
fM,M

]
.(3.14)

Algorithm 1: Low-rank exponential approximation via Galerkin projection (ExpTT)
Input: TT representation of the exponent h; ansatz space dimension da; initial point y0; stopping

tolerance ε; maximum number of iterations NITER

Output: TT approximation ua of exph; discrete relative residual res
1 Build operatorsDm andHm for m = 1, . . . ,M according to (3.5) and (3.7)–(3.8);
2 UseDm,Hm to assemble coresBm,m,Cm, Pm, fm,m and gm;
3 Construct low-rank operatorW and right-hand side b according to (3.9)–(3.12);
4 Construct low-rank operatorB and right-hand side f according to (3.13)–(3.14);
5 Initialize random start vector ua of dimension da;
6 Set res← ‖Bua − f‖2/‖f‖2;
7 for j = 1, . . . , NITER do
8 ua ← ALSsweep(W , b,ua);
9 res← ‖Bua − f‖2/‖f‖2;

10 Break if ‖Wua − b‖2 ≤ ε‖b‖2;

11 Build constant TT tensor c = exph(y0);
12 Set ua ← ua + c;
13 return ua, res

Although our theory guarantees a (quasi-)best approximation for any polynomial exponent h, the re-
sulting exponential might require large ansatz space dimensions and ranks. This is a general problem
of approximation methods and results in larger memory requirements and increase computational
costs.

We propose to circumvent this problem by utilizing a simple trick. For a given scaling s ∈ N>0,
we apply Algorithm 1 to the scaled exponent h̃ := s−1h and compute the sought exponential via
exp(h(y)) = exp(h̃(y))s. Since exp ◦h̃ grows at a slower rate than exp ◦h, this reduces the required
ansatz space dimension. The resulting pseudo code is presented in Algorithm 2. Note that the output
of Algorithm 2 exhibits the same ansatz space dimension as the one of Algorithm 1. Nonetheless, this
approach should be preferred because of two reasons. First, the memory complexity of the TT tensor
ũa depends only linearly on the dimension d̃a while the complexity of the TT operator W depends
quadratically on the dimension. This reduces the computational cost of applying Algorithm 1 in line 2
of Algorithm 2. Second, multiplication can be performed efficiently in the TT format and it is easy
to balance accuracy and computational cost. This can be done by performing projections to lower
dimensional discrete spaces or by rounding via a truncated SVD as in line 5 of Algorithm 2. Scaling
h works well to reduce the ansatz space dimension and the rank of exponentials but may not work
for other holonomic functions. However, we expect that similar tricks can be applied in these cases.
For sin and cos for example a simple approach could be to reduce the frequency by approximating
u(h(sy)) instead of u(h(y)) and to scale the basis functions afterwards.
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Algorithm 2: Scaled ExpTT
Input: TT representation of the exponent h; approximation dimensions da; scaling number s;

approximation dimensions for scaled problem d̃a; initial condition y0; stopping tolerance ε;
rescaling tolerance εs; maximum number of iterations NITER

Output: TT approximation ua of exph
1 Set h̃← s−1h;

2 Compute ũa, res← ExpTT(h̃, d̃a, y0, ε, NITER);
3 Set ua ← ũa;
4 for j = 1, . . . , s do
5 ua ← ua · ũa;
6 project ua onto Vda and round to tolerance εs;

7 return ua

4. NUMERICAL EXPERIMENTS

In this section we examine the numerical performance of the proposed Galerkin method to approxi-
mate the exponential of a function in TT format. To assess its practical potential, we investigate two
benchmark problems common in Uncertainty Quantification.

First, we consider the reconstruction of a lognormal diffusion coefficient as it appears frequently when
modeling the porosity in the prototypical Darcy equation. This problem exhibits several complications
analytically [42] and numerically [43] and often is tackled with sampling techniques, in particular (multi-
level) Monte Carlo methods [44, 45]. Functional (polynomial chaos) approaches were e.g. examined
in [15] with an adaptive stochastic Galerkin FEM in TT format and in [27] with a randomized least
squares tensor regression. Stochastic collocation was e.g. used in [46, 47].

Second, we consider the recovery of the likelihood in the context of Bayesian inverse problems the
theory of which can e.g. be found in [5]. Usually, again sampling methods are used for this often high-
dimensional problem, the most popular of which certainly is the Markov chain Monte Carlo method.
Nevertheless, recently some developments took place which showed that functional approximations
of (posterior) densities are feasible and may prove beneficial in terms of convergence rates [11, 48],
see also [25, 49] for different low-rank techniques.

These experiments are similar to those performed in [15–18, 27] for the lognormal diffusion coefficient
and to those in [11, 48] for the likelihood reconstruction. We compare the approximation accuracy and
computational time of our method to the results of other techniques from the literature1, namely [16–
18].

As weight function ρ we choose the density of the standard Gaussian distribution. As a basis for the
trial and test spaces as well as for the parametrization of the exponent function h, we employ normal-
ized tensorized (probabilistic) Hermite polynomials. One reason for this is that the triple product tensor
κ can be computed analytically [15, 50, 51], which increases the overall computational performance.
Moreover, differentials of polynomials are explicitly known and thus cheap to compute and, in the case
of Hermite polynomials, Hermite polynomials again.

Proposition 4.1. For the normalized multivariate Hermite polynomials there holds

∂mPν =
√
νmPν−em , for all m = 1, . . . ,M,

1It has to be noted that the runtime of the previously reported experiments cannot be compared directly to what we
observe with our (unoptimized) implementation. We nevertheless think that this provides a useful indication of the required
computational effort.
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where em denotes the canonical unit vector in RM . Moreover, the univariate differentiation operator
D is given analytically byDij =

√
jδi,j−1.

Proof. The normalized (probabilistic) Hermite polynomials of degree k are given for any j = 1, . . . ,M
by P j

k = Hk/
√
k!. Since the Hermite polynomials constitute an Appell sequence, i.e. H ′k = kHk−1

for all k ∈ N, it holds (P j
k )′ =

√
kP j

k−1. Hence, (P j
k , (P

j
` )′)ρ =

√
`δk,`−1. The multiplicative struc-

ture of the tensorized Hermite polynomials completes the claim. �

We note that due to orthogonality of the polynomial basis, the triple product expansion is finite, i.e.
there holds τijk = 0 for any k > i + j. This guarantees that we can choose ansatz and test spaces
Va and Vt such that the condition B(Vt) ⊆ Vt of Theorem 2.4 is satisfied.

The finite element discretization is based on the open source package FEniCS [52] and all finite
element computations use uniform triangulations of the unit square D = [0, 1]2. The fully discretized
problemWu = b is solved in the TT format using Algorithm 2, which relies on the TT representation
and the ALS algorithm implemented in the open source tensor library xerus [53].

Our approach and the variational Monte Carlo (VMC) method [27] (a tensor regression technique
employed several times in this section) rely on the choice of an initial guess. Since this is chosen
randomly, the obtained approximation as well as the CPU time for the computation of both methods
may vary slightly for repeated runs of the same experiment. Nevertheless, the deviations are minuscule
and we hence refrain from a statistical assessment of the results.

Computation of the error. The relative discrete residual and (up to the data oscillation) the equiva-
lent relative energy error is denoted by res(ua) := ‖Bua − f‖2‖f‖−1

2 . The residual is computed
according to Algorithm 1 based on the solution of (2.7). If the exponent is scaled, i.e. if we apply
Algorithm 2, the relative residual of the scaled version of (2.7) is considered. For comparison, we ad-
ditionally compute the absolute and relative L2-errors via a Monte Carlo estimation. For this, a set of
NMC independent samples y(i) ∼ N (0, I) is drawn. The approximate solution ua ∈ Va obtained by
our algorithm evaluated in the samples y(i) is compared to the corresponding (deterministic) sampled
solution u(y(i)). The absolute and relative mean squared errors are approximated by a Monte Carlo
quadrature for each v̂ ∈ Va,

Eu(v̂) =
1

NMC

NMC∑
i=1

‖u(y(i))− v̂(y(i))‖∗ and εu(v̂) =
1

NMC

NMC∑
i=1

‖u(y(i))− v̂(y(i))‖∗
‖u(y(i))‖∗

,(4.1)

where ‖ • ‖∗ is either the absolute value if u(y) ∈ R or ‖ • ‖L2(D) if u(y) ∈ H1
0 (D). For the latter

case, we additionally introduce the relative L∞-error

ε∞u (v̂) =
1

NMC

NMC∑
i=1

‖u(y(i))− v̂(y(i))‖L∞(D)

‖u(y(i))‖L∞(D)

,(4.2)

to allow a comparison to results of previous works. The choice NMC = 103 proved to be sufficient to
obtain reliable estimates in our experiments.

The random model problem. The experiments we investigate concern the stationary random diffusion
problem as described in [54–56] on the unit square D = [0, 1]2. Concretely, for almost all y ∈ RM

we consider the random elliptic problem

(4.3)
− div(κ(x, y)∇w(x, y)) = f(x), in D,

w(x, y) = 0, on ∂D.

For the sake of a clear presentation, the source term f ∈ L2(D) and the boundary conditions are
assumed to be deterministic. The diffusion coefficient κ : D × RM → R is typically considered
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lognormal and isotropic, i.e. log κ is an isotropic Gaussian random field [16]. Pointwise solvability
of (4.3) for almost all y ∈ RM is guaranteed by a Lax–Milgram argument in [42, 56]. Well-posedness
of the variational parametric problem is way more intricate and requires a larger solution space. We
refer to [56] for a detailed discussion. Following the lines of e.g. [3], we assume a truncated Karhunen-
Loève expansion of the affine exponent γ = log κ of the form

γ(x, y) =
M∑
m=1

γm(x)ym for all x ∈ D and almost all y ∈ RM .(4.4)

The expansion coefficient functions γm enumerate all planar Fourier sine modes in increasing total
order and are given by

γm(x) =
9

10ζ(σ)
m−σ cos

(
2πβ1(m)x1

)
cos
(
2πβ2(m)x2

)
,(4.5)

where ζ is the Riemann zeta function and for k(m) = b−1
2

+
√

1
4

+ 2mc,

β1(m) = m− k(m)
k(m) + 1

2
and β2(m) = k(m)− β1(m).

For our experiments we set a slow decay rate of σ = 2. For the deterministic discretization we choose
either lowest order discontinuous Lagrange elements or continuous Lagrange elements. However,
other finite elements can be used with only slight adaptations as well.

Bayesian log-likelihoods. This section gives a short review of the Bayesian approach to inverse prob-
lems. Its aim is to illustrate how our method can be used in this setting. A comprehensive description
on the Bayesian perspective on inverse problems can e.g. be found in [5, 11, 57].

For an uncertain input y ∈ RM consider the forward map

Ĝ : RM → H1
0 (D), y 7→ w(y),

where the model output w(y) ∈ H1
0 (D) is chosen as the solution of (4.3). The inverse problem can

then be formulated as

For any given ŵ ∈ H1
0 (D), find y ∈ RM , such that Ĝ(y) = ŵ.(4.6)

In practical applications, it is not possible to directly observe ŵ ∈ H1
0 (D). Hence, we assume that the

measurement process of ŵ is given by the bounded linear observation operator O : H1
0 (D) → RJ

for some J ∈ N. These observations are usually either obtained directly from sensors or after a
postprocessing step. In our case, the observation operator describes the representation of a function
in H1

0 (D) by a finite element discretization with J degrees of freedom. When Courant FE are used,
the degrees of freedom are equivalent to point observations in the domain related to the used mesh. In
most applications, exact (deterministic) solutions to (4.6) do not exist or are not unique, which implies
that the inverse problem is ill-posed. A remedy is to introduce some kind of regularization to (4.6).
The most commonly chosen probabilistic approach introduces a random additive centered Gaussian
measurement noise η ∼ N (0,Γ) with covariance Γ ∈ RJ×J . With this, noisy observations are
defined by

δ = (O ◦ Ĝ)(y) + η =: G(y) + η.(4.7)

Under some mild assumptions on G, one can show a continuous version of the Bayes formula. This
yields the existence of a unique Radon–Nikodym derivative of the posterior measure πδ of the condi-
tional random variable y|δ with respect to the prior measure π0 of y. We refer to [5, 57] and [58] for an
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analysis in the context of parametric PDEs. Assuming the Gaussian noise η is independent of y this
writes as

dπδ
dπ0

(y) = Z−1L(y; δ) , Z := Eπ0 [L(y; δ)],(4.8)

where the likelihoodL(y; δ) := exp `(y; δ) is given by the negative Bayesian potential (log-likelihood)

`(y; δ) = −1

2
‖δ −G(y)‖2

Γ := −1

2
(δ −G(y)) · Γ−1(δ −G(y)),(4.9)

and Z is a normalization constant referred to as evidence.

A surrogate for the forward map G(y) can be computed in the TT fromat as presented in [15, 27,
33, 48]. From this it is easy to derive a representation of the log-likelihood ` in TT format by simple
algebraic operations. Our approach now provides the means to close the quite challenging, remaining
gap to compute the TT representation of the likelihood L.

Initial condition for vector valued functions. The construction of the operatorB and right-hand side f
in Section 3 is done with real-valued functions in mind. However, this is not strictly required by our
method. As an example, for some y ∈ RM consider a discretization of the exponent of the log-normal
diffusion coefficient γ(y) in a finite element space of dimension J with the expansion

γ(x, y) ≈
J∑
j=1

∑
µ∈[dh]M

γ[j, µ]ϕj(x)Pµ(y) for x ∈ D and y ∈ RM ,

where {ϕj}Jj=1 is a basis of the finite element space. The TT representation of γ then reads

γ[j, µ] =
r∑

k=1

γ0[j, k1]
M∏
m=1

γm[km, µm, km+1].

In this setting it is not straight-forward to perform the construction of the operator B as described
in (3.5)–(3.6). This is because the basis functions {ϕj}Jj=1 for the deterministic mode depend on
more than a single variable and have to be smooth enough for the operator (3.5) to be well-defined.
As an alternative, we choose a set {x(j)}Jj=1 of interpolation points for the FE space and build the

operator B and right-hand side f pointwise for each finite element node x(j). Here the interpolation
points have to be chosen in such a way that a FE function can be recovered uniquely from its values
at these points. Since we use Lagrange FEM we use the Lagrange points together with the standard
interpolation. The resulting equations can be combined in a single system, which results in a slightly
different operatorW and right-hand side b but has no effect on the ranks.

4.1. Approximation of the Darcy diffusion coefficient. In this section we investigate the approxi-
mation of the log-normal diffusion coefficient κ of (4.3), which for instance can be used in a stochastic
Galerkin scheme. For the experiments conducted in this section we choose to discretize the diffusion
field κ ∈ L2(RM , ρ;L∞(D)) with conforming first order Lagrange finite elements for varying degrees
of freedom (DoF) and stochastic dimensions M . We observe that the choice of polynomial order for
the spatial component has no influence on the approximation quality as a comparison with order zero
discontinuous and higher order continuous Lagrange elements yields similar results. The exponent
γ = log κ is approximated in the same finite element space as κ. Since γ is an affine function in the
stochastic variables y (cf. by (4.4)), we set dh = 2. To obtain an approximation of the exponent γ in
TT format we employ the variational Monte Carlo (VMC) method [27]. This method recovers the tensor
train representation f of a function f from a given set of samples {(yi, f(yi)}NVMC

i=1 by minimizing the
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least-squares loss

minimize
f

NVMC∑
i=1

‖f(yi)− f · P (yi)‖.

Here f ·P (yi) denotes the Frobenius-inner product of the tensors f andP (yi) andP (yi) is defined
asP (yi)[µ] := Pµ(yi). Besides the TT cross algorithm [18, 49], the VMC method is another versatile
way to obtain TT representations of functions in a non-intrusive sample based manner. And, in contrast
to the TT cross algorithm, convergence bounds are known in probability (cf. [27, 59]). Here, it is in
principle possible to find an exact representation of the affine exponent γ. Nevertheless, we choose
an approximation via VMC for two reasons. First, the non-intrusive character of VMC allows for easy
adaptation to other more complicated problems, which is why we expect this to be commonly done,
even if it is feasible to obtain exact representations in specific cases. Second, there might not exist
an exact TT representation for other applications or it might be very intricate to derive. The choice
of an inexact representation of γ thus demonstrates the practical relevance of our method due to a
broad applicability. Additionally, since Theorem 2.4 holds for any approximation of κ, this is a good
opportunity to confirm our theoretical results.

The VMC method only requires evaluations of γ in realizations {y(i)}NVMC
i=1 to find a low-rank approx-

imation of a function in TT format. We increase NVMC as M gets larger to obtain approximations
γVMC of γ with relative error εγ(γVMC) ≤ 10−8 for all M depicted in Tables 1 and 2. The approx-
imations of κ are computed for uniform polynomial degree da = 10 for each stochastic component
via Algorithm 2 with scaling number s = 32. We choose continuous first-order Lagrange elements
with various mesh sizes, Lagrange interpolation points x(1)

0 , . . . , x
(J)
0 and y0 = 0 ∈ RM as initial

points. As the stopping tolerance for all experiments we set ε = 10−8 and round the rescaling of the
approximation to εs = 10−7 in each iteration (cf. Algorithm 2).

M εγ(γVMC) ε∞κ (κVMC) res(κ̃a) εκ(κa) ε∞κ (κa) time [s]
5 3.33 · 10−9 1.32 · 10−3 9.82 · 10−5 4.10 · 10−5 6.94 · 10−5 110.05
10 5.82 · 10−9 2.77 · 10−2 5.59 · 10−5 1.33 · 10−5 2.87 · 10−5 201.43
15 1.41 · 10−9 1.95 · 10−2 3.10 · 10−5 7.40 · 10−6 1.99 · 10−5 590.92
20 2.68 · 10−9 1.77 · 10−2 1.33 · 10−5 6.79 · 10−6 1.79 · 10−5 1865.92
TABLE 1. Relative appoximation errors and computation time for the approximation
of the log-normal diffusion coefficient κ for different numbers of stochastic parame-
ters M . The computation is done on a uniform triangulation of D with 5000 triangles
(2601 FE DoFs) and uses stochastic polynomials of degree 10 or less for each mode.
Here, κVMC is an approximation of κ obtained via direct VMC and κa is the output of
Algorithm 2. κ̃a is the scaled approximation computed in line 2 of Algorithm 2.

Table 1 shows errors of the approximations γVMC and κVMC obtained via the VMC method and of
the output κa of Algorithm 2 for different expansion lengths M . Algorithm 1 converges in less than 10
iterations to the prescribed tolerance of ε = 10−8.

When using the generic VMC approach to directly reconstruct an approximation κVMC of κ from
samples with the same stochastic dimensions and NVMC = 104, the relative error of ε∞κ (κVMC)
seems to stagnate independent of M at about 10−2, which exceeds the error of our method by three
orders of magnitude.

Even though the exponent γ does not satisfy the conditions of Corollary 2.6, the relative discrete
residual res(κ̃a) is of the same magnitude as εκ̃(κ̃a) and ε∞κ̃ (κ̃a) independent of the number of
modes M and the degrees of freedom of the FE space in our experiments. Since we do not observe
a significant change in the L2 and L∞ errors upon rescaling, we omit those values in Tables 1 and 2.
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The error ε∞κ (κa) is comparable to the approximation results of [18] and about one order of magnitude
smaller then the ones reported in [16, 17], which suggests that our method compares favourably to the
state of the art algorithms. Table 2 shows errors and computation times for the reconstruction of κ for a
fixed number of modes M = 20 and an increasing number of FE degrees of freedom. The dimension
of the finite element space does not seem to have any influence on either the relative approximation
errors εκ(κa) and ε∞κ (κa) or the discrete residual res(κ̃a).

DoF εγ(γVMC) ε∞κ (κVMC) res(κ̃a) εκ(κa) ε∞κ (κa) time [s]
441 1.83 · 10−9 1.93 · 10−2 6.41 · 10−6 2.88 · 10−6 9.49 · 10−6 1412.94
2601 2.68 · 10−9 1.77 · 10−2 1.33 · 10−5 6.79 · 10−6 1.79 · 10−5 1865.92
6561 3.71 · 10−10 2.15 · 10−2 2.12 · 10−5 8.99 · 10−6 2.22 · 10−5 4043.40
10201 1.22 · 10−9 2.49 · 10−2 3.00 · 10−5 3.60 · 10−5 9.89 · 10−5 12788.44

TABLE 2. Relative appoximation errors and computation time for the approximation of
the log-normal diffusion coefficient κ for different numbers of FE degrees of freedom.
The computation is done on uniform triangulations of D with M = 20 parameters
and uses stochastic polynomials of degree smaller or equal than 10 in each mode.
Here, κVMC is an approximation of κ obtained via direct VMC and κa is the output of
Algorithm 2. κ̃a is the scaled approximation computed in line 2 of Algorithm 2.

The computation time of our algorithm increases drastically as the number of FE DoFs get larger. How-
ever, we suspect that this behavior originates from the discretization of the FE space. As discussed
in Section 3.2, the ranks of the operator W and right-hand side b depend quadratically on the ranks
of the exponent γVMC. In our case the ranks are bounded by around r = 20 for the first component
tensor and the ranks decrease with the distance to the first component. We also observe that the max-
imal ranks of γVMC increase as M gets larger. To improve storage capacity of the ALS algorithm, we
round W to a precision of 10−12 by applying a truncated SVD to each component of the TT operator,
which significantly reduces the ranks. However, this process is computationally expensive as the finite
element component ofW consists of a high-dimensional tensor whose sparsity is lost upon rounding.
This in turn increases storage capacity and computation time of the truncated SVD. A different choice
of spatial discretization by e.g. a reduced basis approach [60] could decrease the dimension of the
deterministic approximation space and thus possibly reduce the computation time significantly. That
the computation time increases with the cardinality of the spatial discretization can also be observed
in the next section on log-likelihood reconstruction. A verification of this and possible improvements
are subject to future work.

4.2. Approximation of posterior densities. In the following experiment we examine the approxi-
mation quality of our approach for the Bayesian likelihood (4.9). The forward map Ĝ(y) = w(y) ∈
H1

0 (D) is determined by the solution of the stationary diffusion problem (4.3) with log-normal ran-
dom permeability κ ∈ L2(RM , ρ;L∞(D)) which is specified by the affine exponent (4.4)–(4.5). The
parameter to observation mapG is the FE solution of Ĝ discretized with a lowest order conforming La-
grange finite element method with J = 2601 degrees of freedom in the physical space and a maximal
polynomial chaos degree of 2 for all stochastic modes. The observation

δ = G(y∗) + η

is a perturbed realization of G for some random sample y∗ ∼ N (0, I) where the perturbation noise
η is chosen with covariance σ2I for σ = 10−3.

The absolute approximation errors for different quantities are depicted in Table 3. Relative errors are
shown in Table 4. The VMC approximation of the forward map is denoted by GVMC and with `VMC

we denote the TT representation of the log-likelihood that is computed algebraically from GVMC. The
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M EG(GVMC) E`(`VMC) res(La) EL(La) EL̂(La)
5 2.80 · 10−4 3.24 · 10−4 2.63 · 10−5 2.57 · 10−4 2.79 · 10−6

10 2.82 · 10−4 4.30 · 10−4 8.79 · 10−6 2.69 · 10−4 6.75 · 10−6

20 3.04 · 10−4 4.83 · 10−4 1.12 · 10−5 3.46 · 10−4 6.31 · 10−6

30 3.40 · 10−4 3.53 · 10−4 8.66 · 10−6 3.34 · 10−4 8.57 · 10−7

40 3.49 · 10−4 3.30 · 10−4 1.62 · 10−5 8.04 · 10−4 3.34 · 10−5

TABLE 3. Absolute appoximation errors for the approximation of the forward model
G, the log-likelihood ` and the likelihood L for different expansion dimensions M .
The forward model is discretized on a uniform triangulation with 5000 simplices. Here,
L̂ = exp `VMC is used as a reference for the error of our method.

likelihood approximations of our method is labeled by La where the stochastic discretization space for
each mode is restricted to polynomials of maximal degree 3. As stopping tolerance for our method,
we set ε = 10−8. Due to the relatively small function values of the log-likelihood, it suffices to set the
scaling to s = 1. This implies d̃a = da = 4 and renders the choice of εs irrelevant. As initial point for
the method we choose y0 = 0 ∈ RM . To determine if the approximation accuracy is limited by our
method or by the reconstruction of the forward modelG, we additionally compute the error between the
likelihood approximationLa and samples L̂(y) = exp `VMC(y) for y ∼ N (0, I). Finally, we compare
the approximation obtained by our method to a merely sample based VMC tensor reconstruction
LVMC where the stochastic discretization space for each mode is restricted to polynomials of maximal
degree 3 as well. We observe that NVMC = 103 samples seem sufficient for the reconstructions and
an increase of NVMC yields no significant improvements.

M εG(GVMC) ε`(`VMC) εL(LVMC) εL(La) εL̂(La) time [s]
5 1.86 · 10−2 85.7 1.19 · 10−4 2.57 · 10−4 2.79 · 10−6 0.09
10 1.87 · 10−2 86.3 1.13 · 10−4 2.69 · 10−4 6.75 · 10−6 0.78
20 2.02 · 10−2 84.7 9.66 · 10−5 3.46 · 10−4 6.31 · 10−6 0.29
30 2.26 · 10−2 87.0 9.36 · 10−5 3.34 · 10−4 8.57 · 10−7 0.77
40 2.32 · 10−2 87.2 7.57 · 10−5 8.04 · 10−4 3.34 · 10−5 1.67

TABLE 4. Relative approximation errors for the approximation of the forward model
G, the log-likelihood ` and the likelihood L for different expansion dimensions M .
The forward model is discretized on a uniform triangulation with 5000 simplices. Here,
L̂ = exp `VMC is used as a reference for the error of our method. The last column is
the measured time our algorithm requires to compute the likelihood La.

In Table 3 it can be seen that the approximation of the forward model G and the approximation of
the log-likelihood ` seem to stagnate at an error of 10−4 independent of the number of modes. Note
that the error of the latter directly depends on the error of the former. The absolute approximation
quality of La has the same order of magnitude as the one of GVMC, which is expected. However,
the residual res(La) of the problem and thus the error in the energy norm is smaller and suggests
that a significantly better approximation is obtained. This is verified by the last column of Table 3
where it can be seen that the main contribution of the approximation error originates from the error
of the approximation of the forward map G. Here we assume the log-likelihood `VMC to be exact and
compute the error with respect to L̂ = exp `VMC instead of L = exp `.

It can be seen that the error of GVMC in Table 4 is of the same order of magnitude as that of κVMC

in Table 1. This indicates that VMC is not capable of recovering the exponential of a function with
sufficient accuracy. This entails a large approximation error for `VMC. In conjunction with the fact that
E[|`|]� 1 this explains the large relative error (> 80) of the log-likelihood approximation. The relative
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error of the sample based tensor regression LVMC is only slightly smaller than the approximation error
of our method. However, it is worth mentioning that the experiments suggest that our method only
takes about one tenth of the computation time. The last column of Table 4 shows the measured time
of our algorithm to compute the approximation La from `VMC. Similar to the approximation errors, the
runtime seems to be rather independent from the number of expansion dimensions M or increases
only slightly as M increases. This is a very different behaviour when compared to the results of
Section 4.1. However, as mentioned before, the computation time seems to be correlated to (due to
our “naive” implementation) the dimension of the deterministic component, which explains the short
running times of our algorithm for the approximation of the real-valued likelihood L.

5. CONCLUSION

We derive a novel numerical approach to compute a low-rank approximation of the exponential of a
multivariate function. We assume that the exponent is given with respect to an orthonormal basis of
(tensor product Hermite) polynomials and that the coefficient tensor of the expansion is in the tensor
train (TT) format. It is the central notion to consider the exponential as the solution of a system of ordi-
nary differential equations. This allows to approximate the function via a Galerkin projection method.
The Laplace-like structure of the resulting operator and right-hand side make an efficient representa-
tion in the TT format possible, which renders the problem amenable to the ALS. We establish that the
residual minimized by the ALS is equivalent to a certain energy norm up to a data oscillation term.
This not only implies that the ALS minimizes the distance to the exact solution in the energy norm but
also that the resulting residual provides an error estimator for the solution, which in principle could be
used for an adaptive refinement algorithm.

The algorithm is tested for the reconstruction of the log-normal diffusion coefficient of a random elliptic
PDE and a Bayesian likelihood, where the forward map is given by a polynomial chaos surrogate in
TT format. We compare our results to established methods and to a black-box sample based recon-
struction algorithm. We observe that the performance of our approach is state-of-the-art with respect
to the approximation accuracy, computation time and storage capacity for up to M = 40 stochastic
dimensions and large polynomial degrees up to p = 10. Almost all computations are carried out on
a common desktop computer2 with the exception of the experiments with large FE dimensions (last
two rows in Table 2), for which slightly more memory was required to assemble the operatorW . How-
ever, it should be noted that the computation of an approximation of the log-normal diffusion field is
quite expensive computationally. In particular, our choice of spatial discretization in conjunction with
our unoptimized implementation leads to long computations as the spatial dimension or the number
of stochastic modes increase. Nevertheless, we are confident that this can be alleviated by a more
appropriate choice of discretization of the physical space and an optimized implementation for the
assembly of the operator, which will be subject to future work.

It should be emphasized that in principle the scope of our method reaches far beyond what is dis-
cussed and illustrated in this work. The proposed method is applicable to a wide range of holonomic-
like functions such as algebraic functions, sine and cosine, the error function, Bessel functions and
hypergeometric functions. Moreover, since the sought function may satisfy multiple differential equa-
tions it is possible to choose one for which the induced energy norm is best suited for the problem at
hand. This may also be obtained by considering other orthogonal bases, e.g. from the Askey scheme.
The dependence of the energy norm on the dynamical system clearly highlights a limitation of our
current theory and it would be interesting to investigate for which classes of dynamical systems an
equivalence of the energy norm to a more convenient norm like the L2 or H1 norm can be estab-
lished.

22.1GHz Intel Core i3 processor and 16GB of memory.
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The exponential field approximation discussed here could be used to develop fully adaptive approx-
imation schemes for the solutions of parametric PDEs similar to [15] with the crucial advantage that
only pointwise evaluations of the solution of the considered PDE are required. In contrast to the in-
volved intrusive stochastic Galerkin methods of [15, 33], a black-box adaptive non-intrusive method
could be devised which still yields the Galerkin solution with high probability.

On a more practical side, it is possible to apply our algorithm to obtain a functional representation of a
Bayesian posterior density. This allows, among other things, a very efficient computation of statistical
quantities such as mean, variance, higher order moments and marginals (cf. [11]) or fast generation
of independent posterior samples (cf. [10]). This is important in many reconstruction tasks such as [7,
24].
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