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Variational structures beyond gradient flows:
A macroscopic fluctuation-theory perspective

Robert I.A. Patterson, D.R. Michiel Renger,

Upanshu Sharma

Abstract

Macroscopic equations arising out of stochastic particle systems in detailed balance (called
dissipative systems or gradient flows) have a natural variational structure, which can be derived
from the large-deviation rate functional for the density of the particle system. While large devia-
tions can be studied in considerable generality, these variational structures are often restricted to
systems in detailed balance. Using insights from macroscopic fluctuation theory, in this work we
aim to generalise this variational connection beyond dissipative systems by augmenting densities
with fluxes, which encode non-dissipative effects. Our main contribution is an abstract framework,
which for a given flux-density cost and a quasipotential, provides a decomposition into dissipative
and non-dissipative components and a generalised orthogonality relation between them. We then
apply this abstract theory to various stochastic particle systems – independent copies of jump
processes, zero-range processes, chemical-reaction networks in complex balance and lattice-gas
models.

1 Introduction

When studying an evolution equation, it is often helpful to know if it has an associated variational
structure, in order to obtain physical insight and tools for mathematical analysis. An important example
of such a structure is a gradient flow or dissipative system; in this case the structure consists of an
energy functional and a dissipation mechanism, and the evolution equation is completely characterised
by a corresponding minimisation problem involving these two objects. From a thermodynamic point of
view, such a variational structure is often related to random fluctuations of an underlying microscopic
particle system via a large-deviation principle — examples include the Boltzmann–Gibbs–Helmholtz
free energy and the Onsager–Machlup theory.

It has recently become clear that macroscopic equations are always dissipative if the underly-
ing microscopic stochastic system is in detailed balance. The energy functional and the dissipation
mechanism for such macroscopic equations are then uniquely derived by an appropriate decomposi-
tion of the large-deviation rate functional associated to the microscopic systems [ADPZ11, ADPZ13,
MPR14, PRV14]. These observations have provided a canonical approach to constructing a variational
structure for such macroscopic equations. In addition to having a clear physical interpretation, these
variational structures have been used to isolate interesting features of the macroscopic equations and
study singular-limit problems arising therein.

So far, this approach has largely been limited to particle systems in detailed balance and cor-
responding macroscopic dissipative systems. Since a large deviation study is possible far beyond
detailed balance, this leads to the following natural question.

DOI 10.20347/WIAS.PREPRINT.2826 Berlin 2021



R. I. A. Patterson, D. R. M. Renger, U. Sharma 2

Do the large deviations of the underlying particle systems provide a variational structure beyond
detailed balance?

While this is a hard question to answer in general, considerable progress has been made in the case
of some specific systems in two seemingly independent directions.

One direction that is tailored to allow for non-dissipative effects is the study of so-called FIR in-
equalities, first introduced for the many-particle limit of Vlasov-type nonlinear diffusions [DLPS17],
independent particles on a graph [HPST20] and chemical reactions [RZ21, Sec. 5]. These inequal-
ities bound the free-energy difference and Fisher information by the large-deviation rate functional,
providing a useful tool to study singular-limit problems and to derive error estimates [DLP+18, PR20].
Strictly speaking, these inequalities are not variational structures in the sense that they do not fully
determine the macroscopic dynamics. However, in this paper we will construct a variational structure
which generalises these inequalities and completely characterises the macroscopic dynamics.

Another direction of generalising dissipative systems is by using Macroscopic Fluctuation Theory
(MFT) [BDSG+15]. The main idea here is to consider, in addition to the usual density of the par-
ticle system, the particle fluxes at the microscopic level, and to study the large deviations of these
fluxes. Consequently using time-reversal arguments, MFT explicitly captures the dissipative and non-
dissipative effects in the system. However, most MFT literature has been devoted to diffusive scaling
of particle systems and corresponding quadratic rate functions. Such rate functions define a Hilbert
space with a natural orthogonal decomposition into dissipative and non-dissipative components. Re-
cently non-quadratic rate functions and connections to MFT have been explored in the case of inde-
pendent particles on a graph [KJZ18] and chemical reaction networks [RZ21], but a general MFT for
non-quadratic rate functions is largely open.

Spurred on by these exciting new developments, we provide a partial but affirmative answer
to the question posed above. The basis of our analysis is an abstract action functional (ρ, j) 7→∫ T

0
L(ρ(t), j(t)) dt. This functional will correspond to the large deviations of random particle sys-

tems, but this identification is not necessary for our analysis; in this sense our approach is purely
macroscopic. Inspired by FIR-inequalities and MFT, we set up an abstract framework whose cen-
tral outcome will be a series of decompositions of the integrand L into distinct dissipative and non-
dissipative components. These decompositions generalise: (1) the connection between large devia-
tions and dissipative systems from [MPR14] to include non-dissipative effects, (2) the known cases of
FIR inequalities [HPST20] to a general setting, and (3) MFT to non-quadratic action functions.

Finally we illustrate our abstract framework by applying it to various examples.

1.1 Summary of results

Abstract results. Consider the macroscopic densities and fluxes [0, T ] 3 t 7→ (ρ(t), j(t)) that are
evolving according to a coupled system of evolution equations:

ρ̇(t) = − div j(t), (1.1a)

j(t) = j0(ρ(t)), (1.1b)

with an associated action functional

(ρ, j) 7→
∫ T

0

L(ρ(t), j(t)) dt, (1.2)
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Variational structures beyond gradient flows 3

where the non-negative cost function L has the crucial property that for any (ρ, j),

j = j0(ρ) ⇐⇒ L
(
ρ, j
)

= 0,

and hence the action (1.2) is minimised by the trajectory (1.1b). We will interpret equation (1.1a) as a
continuity equation and call j0(ρ) the zero-cost flux associated to L. Equation (1.1) often describes
the macroscopic dynamics arising from a microscopic stochastic particle system and (1.2) is typically
the corresponding large-deviation rate functional.

Although writing the flux explicitly in (1.1b) instead of directly studying ρ̇(t) = − div j0(ρ(t))
might seem superfluous at first sight, it is motivated by the fact that fluxes can encode information
on non-dissipative, for instance divergence-free, effects in the system. Consequently, while studying
densities is usually sufficient for dissipative systems [Ons31a, Ons31b, OM53, MPR14, MPPR17] (see
Section 1.2 below for more details), the inclusion of fluxes is better suited to describe non-dissipative
effects at the macroscopic level [BDSG+15, Mae18].

Our abstract framework assumes the existence of three objects: a sufficiently regular density-
flux cost function L(ρ, j), an operator that will play the role of divergence and as such defines the
continuity equation (1.1a) and a non-negative quasipotential V associated to L. The basis of our
approach will be the unique decomposition L(ρ, j) = Φ(ρ, j) + Φ∗(ρ, F (ρ))− 〈F (ρ), j〉, for some
corresponding driving force F (ρ) := −dL(ρ, 0) and dissipation potential Φ with convex dual Φ∗ (see
Theorem 2.7 for details). Borrowing ideas from MFT, we uniquely decompose this driving force into a
symmetric and antisymmetric part

F (ρ) = F sym(ρ) + F asym(ρ).

In the context of MFT and large deviations of microscopic systems, the symmetry refers to a
time-reversal argument. In particular, if the microscopic system is in detailed balance, then F (ρ) =
F sym(ρ) and the (macroscopic) dynamics is purely dissipative, i.e. described by a gradient flow of V
[MPR14]. As such one can think of F sym(ρ) as the dissipative part of the force. More generally, from a
physical point of view, a purely dissipative system is thermodynamically closed, so that the work done
is related to the free energy or quasipotential via∫ T

0

〈
F sym(ρ(t)), j(t)

〉
dt = −1

2
V(ρ(T )) +

1

2
V(ρ(0)),

or formulated locally in time for the power〈
F sym(ρ(t)), j(t)

〉
= −1

2

d

dt
V(ρ(t)). (1.3)

Thus for non-closed systems one can think of F sym(ρ) as an internally generated force and the
remainder, F asym(ρ), as the force exerted by the system upon the environment. While〈

F asym(ρ(t)), j(t)
〉

and
〈
F (ρ(t)), j(t)

〉
(1.4)

can be understood as expressions of power or rates of work, they are generally not exact differentials.

In our main result, Theorem 2.27, we relate the cost function L to the three powers from (1.3) and
(1.4). Specifically, for any λ ∈ [0, 1], the cost function L admits the following decompositions

L(ρ, j) = L(1−2λ)F (ρ, j) +Rλ
F (ρ)− 2λ〈F (ρ), j〉, with Rλ

F (ρ) ≥ 0, (1.5a)

L(ρ, j) = LF−2λF sym(ρ, j) +Rλ
F sym(ρ)− 2λ〈F sym(ρ), j〉, with Rλ

F sym(ρ) ≥ 0, (1.5b)

L(ρ, j) = LF−2λF asym(ρ, j) +Rλ
F asym(ρ)− 2λ〈F asym(ρ), j〉, with Rλ

F asym(ρ) ≥ 0. (1.5c)
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The parameter λ can be used to switch between different forces and the non-negative terms LG(ρ, j)
are modified versions of L where the driving force F (ρ) is replaced by a different covector field
G(ρ). Consequently, the zero-cost flux of LG will be a modified dynamics, different from (1.1b). Of
particular interest is the case λ = 1

2
, where the decompositions (1.5b) and (1.5c) can be seen as two

different ways to split L into purely dissipative and purely non-dissipative components. Indeed, the
modified cost LF sym is related to a purely dissipative system that can be formalised as a gradient flow
(see Section 1.2.1). By contrast, we interpret the zero-cost flux of LF asym as purely non-dissipative.
Although the variational structure and physical interpretation ofLF asym remains an open question (see
discussion in Section 6), we show for certain examples that its zero-cost behaviour corresponds to a
purely Hamiltonian macroscopic evolution. This idea is clearly illustrated by Figure 1, where we plot the
phase digram for the zero-cost flux associated with LF , LF sym and LF asym in the case of independent
Markov jump particles on a three-point state space. For details on this example see Section 2.6 and 4.

ρ1

ρ2

π

(a)

ρ1

ρ2

π

(b)

ρ1

ρ2

π

(c)

Figure 1: Consider the setting of independent and irreducible Markov jump particles on a three-point
state space with invariant measure π = (1

3
, 1

3
, 1

3
). Phase digram for the (zero-cost) trajectories ρ(t)

associated to (a) L(ρ(t), j(t)) = 0; (b) LF sym(ρ(t), j(t)) = 0; (c) LF asym(ρ(t), j(t)) = 0. Here ρi
is the mass at point i and we do not plot ρ3 since

∑
i ρi = 1. The zero-cost trajectories for LF sym and

LF asym follow a purely dissipative and Hamiltonian dynamics respectively.

The middle terms in the right hand side of (1.5) are inspired by [HPST20, Def. 1.5], [RZ21,
Sec. 5], and are called generalised Fisher informations. For λ ∈ [0, 1] and covector fields G =
F, F sym, F asym, they are defined as

Rλ
G(ρ) = −H

(
ρ,−2λG(ρ)

)
, (1.6)

whereH is the convex dual of L. The terminology is motivated by the fact that (see Proposition 2.16)

lim
λ→0

1

λ
Rλ
G(ρ) = 〈G(ρ), j0(ρ)〉,

which in the case G = F sym is the time derivative or dissipation rate of the quasipotential along the
zero-cost path, i.e. in the limit λ→ 0,Rλ

F sym coincides with the classical Fisher information [HPST20].
The non-negativity of the generalised Fisher informations in (1.5) is essential, since it shows that the
three powers in (1.3) and (1.4) are non-negative along the zero-cost flux, thus generalising the second
law of thermodynamics.

From a physical point of view, all three decompositions (1.5) are in fact power balances. Math-
ematically, since the modified cost functions LG are non-negative, the decompositions (1.5) can be
exploited to estimate the three powers and Fisher informations by the action, thus generalising FIR
inequalities as we explain below.
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Applications. Above we discussed the abstract framework and results derived from it – and this is
purely macroscopic in that we do not require any connection to particle systems and large deviations.
In the latter part of this paper we apply this abstract theory to several microscopic particle systems.

First, we focus on independent Markov jump particles on a finite graph as a guiding example
throughout this paper, and generalise the results of [KJZ18]. Second, we study zero-range processes
in a scaling which leads to an ordinary differential equation (ODE) in the limit. Third, we study chemical
reaction networks in complex balance [AK11] and generalise the results in [RZ21]. In all these three
examples the macroscopic dynamics are ODEs and the large-deviation principle yields a exponential
rate functional.

Finally, we focus on the setting of particles that hop on a lattice in a diffusive limit, which leads to
convection-diffusion equation as the macroscopic evolution. These particles can either be independent
random walkers or interact via exclusion. In this setting, the large-deviation principle yields a quadratic
rate functional, and we recover the classical MFT results [BDSG+15].

Boundary issues and global-in-time decompositions. The decompositions (1.5) do not involve
time, and therefore when considering trajectories t 7→ (ρ(t), j(t)), they should be considered as
local-in-time or instantaneous decompositions of L(ρ(t), j(t)) at time t. Naively, one would simply

integrate in time to obtain global decompositions of the rate functional
∫ T

0
L(ρ(t), j(t)) dt for arbitrary

trajectories (ρ, j). This argument is formal since, strictly speaking, the decompositions (1.5) hold only
for ρ, j for which the required terms are defined. More precisely, it turns out that the forces F , F sym

and F asym are well-defined only on a proper subset of the domain of definition for the modified cost
functionsLG and generalised Fisher informationsRλ

G. This issue is often ignored in the MFT literature.

This issue becomes clear in the various examples we consider. For instance when dealing with
independent jump processes on a finite lattice X , the large-deviation cost is well defined for any
trajectory in the space of probability measures i.e. ρ(t) ∈ P(X ) (see Example 2.1), whereas the
symmetric force is only well-defined for trajectories in the space of strictly positive probability mea-
sures, i.e. ρ(t) ∈ P+(X ) (see (2.27)). This difference in the domains arises due to the logarithm
present in the definition of the symmetric force. Such issues are typically dealt by first extending the
domains of definition of the forces involved by appropriately regularising them, second by proving the
decompositions on these extended domains, and finally passing to the limit in the regularisations (see
for instance the proof of [HPST20, Thm. 1.6]). Although we expect that similar arguments can be ap-
plied to (1.5) to arrive at global-in-time decompositions, in this first study we focus on local-in-time
results.

1.2 Related work

As mentioned earlier, this work connects and generalises existing literature in various directions. Bar-
ring fairly recent works [KJZ18, Ren18b, RZ21] which deal with particular examples, the connections
between MFT, dissipative systems and FIR inequalities have largely been unexplored in the literature.
Not all of these works consider fluxes, and so we will also make use of a ‘contracted’ cost function,

L̂(ρ, u) := inf{L(ρ, j) : u = − div j}, (1.7)

where the velocity u is a placeholder for ρ̇(t) and − div is the abstract operator that maps fluxes to
velocities as in (1.1a). This construction is consistent with the notion of contraction in large deviations
(see Example 2.1). Since L̂(ρ,− div j0(ρ)) = 0, we refer to u0(ρ) := − div j0(ρ) as the zero-cost
velocity.

DOI 10.20347/WIAS.PREPRINT.2826 Berlin 2021
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1.2.1 Dissipative/Gradient systems

In the case of dissipative systems F = F sym and F asym = 0, and therefore with λ = 1
2

both (1.5a)
and (1.5b) become

L(ρ, j) = L0(ρ, j) +R
1
2
F sym(ρ)− 〈F sym(ρ), j〉

= Φ(ρ, j) + Φ∗
(
ρ, F sym(ρ)

)
− 〈F sym(ρ), j〉, (1.8)

with the convex dual pair of dissipation potentials defined as Φ(ρ, j) := L0(ρ, j) and Φ∗(ρ, ζ) :=
supj〈ζ, j〉 − Φ(ρ, j). This decomposition of L is exactly the characterisation of dissipative systems
in the density-flux setting [Mae18, Ren18b]; see Section 2.6 for a further elaboration.

Using (1.3), F sym = −1
2
∇dV (see Corollary 2.19 for definition) and applying the contraction (1.7),

we switch to the density setting

L̂(ρ, u) = inf
{

Φ(ρ, j) : u = − div j
}

+ Φ∗
(
ρ, F sym(ρ)

)
+
〈

1
2
dV(ρ), u

〉
=: Ψ(ρ, u) + Ψ∗

(
ρ,−1

2
dV(ρ)

)
+
〈

1
2
dV(ρ), u

〉
, (1.9)

where Ψ is the contraction of Φ and Ψ,Ψ∗ are convex duals of each other (see [Ren18b, Thm. 3] for
details).

The identity (1.9) is the standard decomposition of the density cost function that characterises
a dissipative system or generalised gradient flow in the following sense. For the zero-cost velocity,
the left-hand side satisfies L̂(ρ, u0(ρ)) = 0, and the right-hand side of (1.9) is the Energy–Energy-
Dissipation identity (EDI) [SS04, AGS08, RMS08], which is equivalent by convex duality to

u0(ρ) = dξΨ
∗(ρ,−1

2
dV(ρ)

)
, (1.10)

where dξ is the derivative with respect to the second argument. In the special case when Ψ∗(ρ, ξ) =
1
2
〈K(ρ)ξ, ξ〉 is a quadratic form with an inverse metric tensor K(ρ) of a manifold, we arrive at the

usual gradient-flow representation of the zero-cost velocity on that manifold

u0(ρ) = −1

2
K(ρ)dV(ρ) =: −1

2
gradρ V(ρ).

This connection between generalised gradient flows and the symmetry F = F sym at the level of
densities has been explored more directly in [MPR14], where it was shown that this symmetry holds if
L̂ corresponds to the large-deviation principle of a Markov process in detailed balance. The density-
flux formulation (1.8) of a dissipative system with quadratic dissipation has also been investigated
extensively in the literature, see for instance [BDSG+15, Mae18, Ren18b]. Since we derived this
decomposition from (1.5a) and (1.5b), these two decompositions can be thought of as the natural
generalisations of the EDI to non-dissipative systems.

1.2.2 GENERIC

The GENERIC framework is specifically designed as a coupling between dissipative and non-dissipative
effects in a thermodynamically consistent way [GÖ97, ÖG97, Ött05]. Although originally meant to de-
scribe evolution equations, recent work has also studied the following natural connection between
GENERIC and large deviations from a variational perspective (see (1.9)),

L̂(ρ, u) = Ψ
(
ρ, u− J(ρ)dE(ρ)

)
+ Ψ∗

(
ρ,−1

2
dV(ρ)

)
+
〈

1
2
dV(ρ), u

〉
, (1.11)
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where the Poisson structure J and energy E define the Hamiltonian part of the dynamics, and addi-
tional non-interaction conditions are required to ensure that the zero-cost velocity

u0(ρ) = dΨ∗
(
ρ,−1

2
dV(ρ)

)
+ J(ρ)dE(ρ) (1.12)

dissipates V and conserves E .

Such a connection is discussed in [DPZ13] in the particular setting of weakly interacting diffusions.
More generally, the recent paper [KLMP20] shows that (1.11) can only hold if the underlying micro-
scopic system consists of stochastic dynamics in detailed balance combined with a deterministic drift.
The drift may be replaced by stochastic fluctuations as long as they appear deterministic on the large-
deviation scale [Ren18b], but any larger scale fluctuations that are not in detailed balance will break
down the GENERIC structure. Therefore, the class of large-deviation cost functions with a GENERIC
structure is rather limited.

By contrast, the decompositions (1.5) always hold as soon as the quasipotential V is identified.
The crucial difference is that our decompositions are based on a decomposition of forces, i.e.

u0(ρ) = − div j0(ρ) = − div dΦ∗
(
ρ, F sym(ρ) + F asym(ρ)

)
,

rather than a decomposition of fluxes or velocities as in GENERIC (1.12). Furthermore, generalised
orthogonality between F sym and F asym (see Subsection 2.4) are a natural analogue of the non-
interaction conditions used in GENERIC.

1.2.3 FIR inequalities

Using LF−2λF sym ≥ 0 and F sym = −1
2
∇dV (as above) in the decomposition (1.5b), we find

1
λ
L(ρ, j) ≥ 1

λ
Rλ
F sym(ρ) + 〈∇dV , j〉.

Since ∇ is the dual of − div, using the contraction principle (1.7) and the definition of the Fisher
information (1.6) it follows that (see Corollary 2.32 for details)

1
λ
L̂(ρ, u) ≥ − 1

λ
Ĥ(ρ, dV(ρ)) + 〈dV(ρ), u〉, (1.13)

where Ĥ is the convex dual of L̂. This is a local-in-time version of the FIR inequality.

Assume that a smooth trajectory [0, T ] 3 t 7→ ρ(t) satisfies (1.13) for every t. Substituting u = ρ̇,
formally applying the chain rule 〈dV(ρ), ρ̇〉 = d

dt
V(ρ), and integrating in time over [0, T ] we arrive at

the F(“free energy”)-I(“rate functional”)-R(“Fisher information”) inequality [HPST20, Thm. 1.6]

1

λ

∫ T

0

L̂(ρ(t), ρ̇(t))dt+ V(ρ(t)) ≥ V(ρ(T ))− 1

λ

∫ T

0

Ĥ
(
ρ(t), dV(ρ(t))

)
dt. (1.14)

Therefore, the decomposition (1.5b) can be thought of as a generalisation of [HPST20] in various
ways. First, (1.5b) holds fairly generally (in the abstract framework) and can be applied to systems well
beyond independent copies of Markov jump processes studied in [HPST20]. Second, (1.5b) exactly
characterises the gap in the inequality (1.13) viaLF−2λF sym which we discarded in this discussion due
to its non-negativity. And third, a different version of the FIR inequality can also be derived from (1.5c).

It should be noted that the FIR inequalities have been used in the literature as a priori estimates to
study singular limits, and we expect that the decomposition (1.5b) and inequality (1.5b) will serve the
same purpose for a considerably larger class of systems. However, in this paper we limit ourselves to
the local-in-time decompositions (1.5b) as opposed to the global-in-time inequality (1.14) discussed
in [HPST20], since moving from local to global descriptions is a nontrivial technical step outside the
scope of this work.
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1.2.4 MFT and (non-)quadratic cost function

As stated earlier, most MFT literature is concerned with the diffusive scaling of underlying stochas-
tic particle systems which converge to diffusion-type macroscopic partial differential equations and
corresponds to quadratic cost functions of the form [BDSG+15]

L(ρ, j) =
1

2
‖j − j0(ρ)‖2

ρ, for some Hilbert norm ‖ · ‖ρ.

Crucial arguments in MFT are based on the fact that the dissipative and the non-dissipative effects
are orthogonal in this Hilbert space, i.e.

〈F sym(ρ), F asym(ρ)〉ρ ≡ 0.

However, even the simple example of independent particles on a finite graph (see Example 2.1)
yields a non-quadratic cost function L, and the aforementioned orthogonality arguments break down.
In [KJZ18] (for independent jump processes) and [RZ21] (for chemical reactions) these ideas are
ported to the non-quadratic setting by introducing a generalised notion of orthogonality, where the
pairing is no longer bilinear, and rather satisfies a relation of the form

θρ(F
sym(ρ), F asym(ρ)) ≡ 0. (1.15)

By contrast, the abstract framework that we develop is not necessarily based on such orthogonality
relations, although we do borrow many notions such as time-reversed cost-functions and forces from
MFT. However we will show that within our framework, one can also construct a generalised orthogo-
nality pairing θρ (fully characterised by L) that satisfies (1.15), and coincides with the bilinear pairings
〈·, ·〉ρ in case of quadratic cost functions and with θρ(·, ·) from [KJZ18, RZ21] in the case of specific
non-quadratic cost functions. This will be the content of Subsection 2.4.

1.3 Summary of notation and outline of the article

X 2/2 Half the edges on a finite graph X (2.2)
s(·|·) Relative Boltzmann function (integrand/summand in relative entropy) (2.7)
Z,W , φ State-flux triple Def. 2.2
TZ , T ∗Z Tangent and cotangent bundle associated to Z
TρZ , T ∗ρZ Tangent and cotangent space at ρ ∈ Z
L,H L-function and its convex dual Def. 2.4
L̂, Ĥ Contracted L-function and its convex dual (2.38)
V Quasipotential Def. 2.5
dF Gateaux derivative of a functional F
χT dual operator χT :M∗ → N ∗ for χ : N →M

Dom(A) domain of an operator A
F Driving force Def. 2.8

Φ∗, Φ Dissipation potential and its dual Def. 2.8
Ψ∗, Ψ Contracted dissipation potential and its dual (2.40)
LG,HG Tilted L-function and its convex dual Def. 2.12

Domsymdiss(A) Subset of Dom(A) where the dissipation potential is symmetric (2.16)
Rλ
ζ Generalised Fisher information Def. 2.15
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←−
L ,
←−
H Reversed L-function and its convex dual Def. 2.17

F sym, F asym Symmetric and antisymmetric force Cor. 2.19
M(X ) Space of signed measures on X
P(X ) Space of probability measures on X
P+(X ) Space of strictly positive prob. measures on a discr. state space X
∇, div Discrete/continuous gradient and divergence
1x Indicator function associated to {x}

In Section 2 we present the abstract framework and in Section 3 we connect the abstract framework
to large deviations. In Section 4 we analyse the zero-cost velocity for the antisymmetric L-function in
the setting of independent particles on a finite graph. In Section 5 we apply the abstract framework to
various stochastic particle systems and conclude with discussion in Section 6.

2 Abstract framework

In the introduction we worked with the large-deviation cost; we now work with its abstraction, the
so-called the L-function1. In what follows we first introduce the L-function and other key ingredients
of the abstract framework in Section 2.1. Using these objects we introduce dissipation potentials,
tilted L-functions and Fisher information in Section 2.2. Using time-reversal-type arguments from MFT,
in Section 2.3 we introduce time-reversed L-functions, symmetric and antisymmetric forces, and in
Section 2.4 we introduce a generalised notion of orthogonality satisfied by these forces. Section 2.5
contains various decompositions of the L-function and in Section 2.6 we study the symmetric and
antisymmetric L-function. Throughout this section we will use the guiding example of Independent
Markovian Particles on a Finite Graph (IPFG), which we now introduce.

Example (IPFG). 2.1. Consider n independent Markovian particles X1(t), . . . Xn(t) on a finite
graph X , with irreducible generator Q ∈ RX×X . The particle density (also called empirical mea-
sure or mean-field), defined as ρ(n)(t) := n−1

∑n
i=1 δXi(t), is a Markov process on the space of

probability measures P(X ) ⊆ RX with generator

(Q̂(n)f)(ρ) = n
∑∑

(x,y)∈X×X

ρxQxy

[
f(ρ− 1

n
1x + 1

n
1y)− f(ρ)

]
,

where 1x is the indicator function for x ∈ X . With a suitable initial condition, Varadarajan’s
Theorem implies that the random process ρ(n) converges in the many-particle limit n → ∞ to
the deterministic solution of the ODE

ρ̇(t) = QTρ(t). (2.1)

In addition to the empirical measure, we will also track the number of jumps through each
edge, which characterises the flux over an edge. For reasons that will be clarified in Section 2.2, it
is important to consider net fluxes (over the usual one-sided fluxes), defined on half of the edges

X 2/2 :=
{

(x, y) ∈ X × X : x < y
}
. (2.2)

1We use the terminology “L-function” from [MPR14, Def. 1.1] as opposed to ‘Lagrangian’ or ‘cost’, since in practice L
need not correspond to a large-deviation principle, and it often plays a different role to the Lagrangian in mechanics.
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More precisely, the so-called integrated net flux W (n)
xy (t) over the edge connecting x, y ∈ X , is

defined as the difference between the number of jumps from x→ y and in the opposite direction
from y → x in the time interval [0, t], all rescaled by 1

n
. Then the pair (ρ(n)(t),W (n)(t)) is again

a Markov process, now in P(X )× RX
2/2 with the generator

(Q(n)f)(ρ, w) = n
∑∑

(x,y)∈X 2/2

ρxQxy

[
f(ρ− 1

n
1x + 1

n
1y, w + 1

n
1xy)− f(ρ)

]
+ ρyQyx

[
f(ρ− 1

n
1y + 1

n
1x, w − 1

n
1xy)− f(ρ)

]
.

This process converges as n→∞ to the solution of the macroscopic system{
ẇxy(t) = ρx(t)Qxy − ρy(t)Qyx, (x, y) ∈ X 2/2,

ρ̇x(t) = − divx ẇ(t), x ∈ X ,
(2.3)

where the operator
divx j :=

∑
y∈X :y>x

jxy −
∑

y∈X :y<x

jyx, (2.4)

is the discrete divergence for net fluxes. Indeed the system (2.3) is of the form (1.1).

In the many-particle limit (n → ∞), the random fluctuations around the mean behaviour
decay fast due to averaging effects. The unlikeliness to observe an atypical flux for large but finite
n is quantified by the large-deviation principle, formally written as

Prob
(

(ρ(n),W (n)) ≈ (ρ, w)
)
n→∞∼ e−nI0(ρ)−nJ (ρ,w), J (ρ, w) :=

{∫ T
0
L
(
ρ(t), ẇ(t)

)
dt, ρ̇ = − div ẇ,

∞, otherwise,
(2.5)

where the L is given by [Ren18a, Kra17] (we use j as a placeholder for ẇ)

L(ρ, j) := inf
j+∈RX

2/2
≥0

∑∑
(x,y)∈X 2/2

[
s(j+

xy | ρxQxy) + s(j+
xy − jxy | ρyQyx)

]
, (2.6)

s(a | b) :=


a log a

b
− a+ b, a, b > 0,

b, a = 0,

∞, b ≤ 0, a > 0 or a < 0,

(2.7)

and I0 is the large-deviation rate functional corresponding to the initial distribution of ρ(n)(0).
Indeed L(ρ, j) is non-negative and minimised by (2.3). Due to the contraction principle [DZ09,
Thm. 4.2.1], the infimum is taken over all non-negative one-way fluxes (j+

xy)x<y and (j+
yx −

jyx)x>y.

Applying the contraction principle, the empirical measure satisfies the following large-deviation
principle, where L̂ is related to L via (1.7),

Prob
(
ρ(n) ≈ ρ

)
n→∞∼ exp

[
− nI0(ρ(0))− n

∫ T

0

L̂(ρ(t), ρ̇(t)) dt
]
.
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2.1 Setup

We now introduce state-flux triples, L-functions and quasipotentials, which are the key ingredients of
the abstract framework .

Definition 2.2 ([Ren18b, Sec. 4.1]). A triple (Z,W , φ) is called a state-flux triple if

(i) The state-space Z and the flux-spaceW are differentiable Banach manifolds.

(ii) φ :W → Z is a surjective differentiable operator φ :W → Z .

(iii) TwW depends on w only through ρ = φ[w], so that by a slight abuse of notation we can
replace TwW by TρW and write TW := {(ρ, j) : ρ ∈ Z, j ∈ TρW}.

(iv) φ has a linear bounded differential that depends on w only through ρ = φ[w], so that by a
slight abuse of notation we write dφρ : TρW → TρZ .

(v) TρW , TρZ have Banach pre-duals T ∗ρW , T ∗ρZ respectively, paired by the duality pairing 〈·, ·〉,
where we omit the indices since it will be clear to which spaces the elements belong. Analo-
gously we write T ∗W := {(ρ, ζ) : ρ ∈ Z, ζ ∈ T ∗ρW} and T ∗Z := {(ρ, ξ) : ρ ∈ Z, ξ ∈
T ∗ρZ}.

The Banach structure should be seen as a reference norm only required for example to define the
dual pairing 〈·, ·〉, or the Gateaux derivative dF(ρ) of a functional F : Z → R ∪ {∞}. Observe
that T ∗ρW , T ∗ρZ as pre-duals is a slight abuse of notation. The choice to work with pre-duals instead
of dual spaces is rather arbitrary, but fits better with the applications that we have in mind. In order to
avoid confusion with convex duality, we will denote adjoint operators by T, e.g. dφT

ρ : T ∗ρZ → T ∗ρW .
Note that here we choose to work with Banach manifolds Z,W , but this can be generalised to more
general structures which allow for derivatives in tangent vector spaces. Usually, a continuity equation
satisfies u = div j, and connects a tangent vector u to a tangent vector j via the div operator. As
will become clear in the following discussion, the purpose of φ is to abstractly define the notion of div
operator via dφρ. The assumption that dφ is bounded, ensures the existence of a well-defined adjoint.

Example (IPFG). 2.3. Consider the example of the independent particles on a finite graph X .
Due to mass conservation, the state space is

Z := P(X ) :=
{
ρ ∈ RX≥0 :

∑
x∈X ρx = 1

}
, with tangent space

TρZ =
{
u ∈ RX : ρx = 0 =⇒ ux ≥ 0 for all x ∈ X

}
.

The restriction in TρZ is easily understood in the case when X contains only two points and
therefore Z is the line connecting (1, 0) and (0, 1). The requirement that ` ≥ 0 corresponds to
these two end-points of the line, and states that the tangents are contained within the line. For the
dual space we choose T ∗ρZ = RX , paired with TρZ via the usual Euclidean inner product.

Recall that net fluxes do not necessarily have non-negative coordinates; the only restriction
is that fluxes which push the state out the manifold Z are not allowed. For an arbitrary but fixed
reference point ρ0 ∈ Z , this yields the manifold of integrated fluxes that preserveZ when starting
from ρ0

W :=
{
w ∈ RX

2/2 : ρ0 − divw ∈ Z
}
, with tangent space

TρW =
{
j ∈ RX

2/2 : − div j ∈ TρZ},
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where div is defined in (2.4). Again, T ∗ρW = RX
2/2, paired with TρW via the Euclidean inner

product. In practice, one usually works with j ∈ RX
2/2, setting L(ρ, j) =∞ when j /∈ TρW .

The map φ :W → Z is defined by φ[w] = ρ0−divw, and has the differential dφρ = − div
and adjoint dφT

ρ = ∇ where ∇xyζ = ζy − ζx. Note that dφρ, dφT
ρ depend on ρ only via their

domain of definition TρW .

Definition 2.4. For any S ⊆ Z define DS := {(ρ, j) : ρ ∈ S, j ∈ TρW}. Then L : DS →
R ∪ {∞} is called an L-function on S , if for all ρ ∈ S we have

(i) inf L(ρ, ·) = 0,

(ii) there exists a unique j0(ρ) ∈ TρW , called the zero-cost flow, which satisfiesL
(
ρ, j0(ρ)

)
= 0,

(iii) L(ρ, ·) is convex and lower semicontinuous (with respect to the Banach norm on TρW).

For the simplicity of notation, we will often drop the explicit dependence of the zero-cost flux j0

on ρ. While this definition allows for flexibility in the domain, throughout this paper we will reserve the
symbol L for L-functions on the full space S = Z . Section 2.2 onwards we will encounter functions
LG which are L-functions on proper subsets of Z .

By lower semicontinuity and convexity, L(ρ, ·) is its own convex bidual with respect to the second
variable [Pey15, Prop. 3.56], i.e. there exists anH : T ∗W → R ∪ {∞} such that

H(ρ, ζ) := sup
j∈TρW

〈ζ, j〉 − L(ρ, j) and L(ρ, j) = sup
ζ∈T ∗ρW

〈ζ, j〉 − H(ρ, ζ). (2.8)

It is easy to see that L is an L-function if and only if for any ρ ∈ Z , H(ρ, 0) = 0, H(ρ, ·) is convex,
lower semicontinuous, proper and bounded from below by an affine function. Typically L(ρ, 0) <∞,
so thatH(ρ, ·) is bounded from below.

We use the following notion of the quasipotential.

Definition 2.5. A function V : Z → R ∪ {∞} is called a quasipotential (corresponding to L) if

(i) inf V = 0,

(ii) for any ρ ∈ Z where the Gateaux derivative dV is well defined, we have

H
(
ρ, dφT

ρ dV(ρ)
)

= 0. (2.9)

We stress that this notion of a quasipotential is only related to the convex dualH of some abstract
function L, where a priori no stochastic particle system is involved. Both nowhere differentiable func-
tions and the zero function are quasipotentials by definition, and our results are true but mostly trivial in
this setting. In all the examples we consider, (2.9) will have at least one non-trivial solution and in fact
this definition is consistent with the the usual definition from statistical physics when large deviations
are involved (see Section 3.2). We envisage that (2.9) should be understood in the sense of viscosity
solutions, however it is not clear how one can define a viscosity solution in the general setup of this
section.
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Example (IPFG). 2.6. In Example 2.1, the processes X1(t), X2(t), . . . are irreducible and X is
finite which ensures the existence of an invariant measure π ∈ P+(X ) (space of strictly positive
probability measures). Consequently, the n-particle density ρ(n)(t) admits an invariant measure
Π(n) ∈ P(P(X )), where

Π(n) =
(⊗n

i=1 π
)
◦ η−1

n , ηn(x1, . . . , xn) := 1
n

n∑
i=1

δxi .

By Sanov’s theorem, the large-deviation rate functional corresponding to Π(n) is

V(ρ) :=
∑
x∈X

s(ρx | πx),

where s(· | ·) is defined in (2.7), and hence V is indeed the quasipotential corresponding to L in
the classical large-deviation sense (see Theorem 3.6).

This can also be checked macroscopically by verifying (2.9), without invoking any connection
to large deviations of a microscopic particle system. The convex dual of L (2.6) is explicitly given
by

H(ρ, ζ) :=
∑∑

(x,y)∈X 2/2

[
ρxQxy

(
eζxy − 1

)
+ ρyQyx

(
e−ζxy − 1

)]
.

Since πx > 0 for every x ∈ X , at points of differentiability of V , i.e. when ρ ∈ P+(Z) ⊆ Z ,
using QTπ = 0 and

∑
yQxy = 0 we find

H
(
ρ, dφT

ρ dV(ρ)
)

= H
(
ρ,∇ log

ρ

π

)
=
∑∑

(x,y)∈X 2/2

(
ρxQxy

[
ρyπx
ρxπy

− 1
]

+ ρyQyx

[
ρxπy
ρyπx

− 1
])

=
∑∑
x,y∈X
x6=y

ρy
πy

(Qxyπx −Qyxπy) =
∑∑
x,y∈X

Qxyπx
(ρy
πy
− ρx

πx

)
=
∑
y∈X

(QTπ)y
ρy
πy

= 0,

where the third and fourth inequality follows by interchanging the indices in the second terms of
the summation.

2.2 Dissipation potentials, tilted L-functions and Fisher information

While the concept of a dissipation potential is standard [CV90, LS95, Mie11], the connection to convex
analysis [MPR14] and the application to flux spaces is more recent [MN08, Mae17, KJZ18, Ren18a,
Ren18b]. Classically, a dissipation potential Φ(ρ, j) is convex, lower semicontinuous in the second
variable, and satisfies inf Φ(ρ, ·) = 0 = Φ(ρ, 0). To define the dissipation potential in our context,
we first present the following basic result on L, which was originally derived in the context of gradient
flows [MPR14, Lem. 2.1 & Prop. 2.1], where the driving force is the derivative of a certain free energy.
As in the literature [Sch76, MN08, Mae17, KJZ18, Ren18a, RZ21], the setting with fluxes allows for
more general driving forces. We first focus on a driving force ζ̂ ∈ T ∗ρW for a fixed ρ; and later introduce
it as a ρ-dependent force field F (ρ).

Theorem 2.7. [MPR14, Prop. 2.1(i)] Let L be an L-function on Z and fix ρ ∈ Z . For any ζ̂ ∈ T ∗ρW
and convex lower-semicontinuous Φ(ρ, ·) : TρW → R ∪ {∞} with convex dual Φ∗, the following
statements are equivalent
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(i) inf Φ(ρ, ·) = 0 = Φ(ρ, 0), and for any j ∈ TρW

L(ρ, j) = Φ(ρ, j) + Φ∗(ρ, ζ̂)− 〈ζ̂ , j〉. (2.10)

(ii) −ζ̂ ∈ ∂L(ρ, 0) with
Φ∗(ρ, ζ) = H(ρ, ζ − ζ̂)−H

(
ρ,−ζ̂

)
. (2.11)

Proof. The result is mathematically the same as the cited one, but applied to the context of the state-
flux triple (Z,W , φ). We provide a short proof for convenience and completeness. For the forward
implication, by Fermat’s rule 0 ∈ ∂Φ(ρ, 0), and calculating the subdifferential of (2.10) at j = 0 yields
−ζ̂ ∈ ∂L(ρ, 0) as claimed. The convex dual of (2.10) is

H(ρ, ζ) = Φ∗(ρ, ζ + ζ̂)− Φ∗(ρ, ζ̂). (2.12)

ThereforeH(ρ,−ζ̂) = Φ∗(ρ, 0)−Φ∗(ρ, ζ̂) = −Φ∗(ρ, ζ̂) andH(ρ, ζ−ζ̂) = Φ∗(ρ, ζ)−Φ∗(ρ, ζ̂) =
Φ∗(ρ, ζ) +H(ρ,−ζ̂). Here we have used Φ∗(ρ, 0) = − inf Φ(ρ, ·) = 0.

Next we prove the backward implication. By (2.11) and H(ρ, 0) = inf L(ρ, ·) = 0, we find
Φ∗(ρ, 0) = 0 and Φ∗(ρ, ζ̂) = −H(ρ,−ζ̂). Since −ζ̂ ∈ ∂L(ρ, 0), we have 0 ∈ ∂H(ρ,−ζ̂),
which by Fermat’s rule implies that −ζ̂ is a minimiser of H(ρ, ·), and using (2.11) it follows that 0
is a minimiser of Φ∗(ρ, ·). Therefore we have inf Φ∗(ρ, ·) = 0 = Φ∗(ρ, 0), which is equivalent to
inf Φ(ρ, ·) = 0 = Φ(ρ, 0) as claimed. Taking the convex dual of (2.11) yields

Φ(ρ, j) = L(ρ, j) +H(ρ,−ζ̂) + 〈ζ̂ , j〉 = L(ρ, j)− Φ∗(ρ, ζ̂) + 〈ζ̂ , j〉.

We would like to define the driving force as F (ρ) = ζ̂ and the dissipation potential Φ(ρ, j) as
above. However these exist uniquely only if the subdifferential ∂L(ρ, 0) consists of a singleton, i.e.
L(ρ, ·) is Gateaux differentiable at 0, which motivates the following definitions.

Definition 2.8. Let L be an L-function on Z . The driving force F and dissipation potentials (corre-
sponding to L) are defined as

Dom(F ) 3 ρ 7→F (ρ) := −dL(ρ, 0) ∈ T ∗ρW , (2.13)

T ∗Dom(F )W 3 (ρ, ζ) 7→Φ∗(ρ, ζ) := H
(
ρ, ζ − F (ρ)

)
−H

(
ρ,−F (ρ)

)
, (2.14)

TDom(F )W 3 (ρ, j) 7→Φ(ρ, j) := sup
ζ∈T ∗ρW

〈ζ, j〉 − Φ∗(ρ, ζ).

where

Dom(F ) :=
{
ρ ∈ Z : j 7→ L(ρ, j) is Gateaux differentiable at j = 0

}
,

T ∗Dom(F )W :=
{

(ρ, ζ) ∈ T ∗W : ρ ∈ Dom(F )
}
,

TDom(F )W :=
{

(ρ, j) ∈ TW : ρ ∈ Dom(F )
}
.

Note that, Φ∗ as defined in (2.14) indeed satisfies inf Φ∗(ρ, ·) = 0 = Φ(ρ, 0), since −F is a
minimiser of H(ρ, ·) by (2.13), and consequently it is a dissipation potential in the classical sense.
Furthermore combining Theorem 2.7 with Definition 2.8, for any ρ ∈ Dom(F ) and j ∈ TρW we
have the decomposition

L(ρ, j) = Φ(ρ, j) + Φ∗(ρ, F )− 〈F, j〉. (2.15)
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In what follows we will make use of

Domsymdiss(F ) :={
ρ ∈ Dom(F ) : H

(
ρ, ζ + dL(ρ, 0)

)
= H

(
ρ,−ζ + dL(ρ, 0)

)
for all (ρ, ζ) ∈ T ∗Dom(F )W

}
.

(2.16)

The following lemma states that the dissipation potential is indeed symmetric in Domsymdiss(F ).

Lemma 2.9 ([MPR14, Prop. 2.1(ii)]). Let L be a L-function on Z . For ρ ∈ Domsymdiss(F ) the follow-
ing statements are equivalent

(i) H
(
ρ, ζ − F (ρ)

)
= H

(
ρ,−ζ − F (ρ)

)
for all ζ ∈ T ∗ρW ,

(ii) L(ρ, j) = L(ρ,−j)− 2〈F (ρ), j〉 for all j ∈ TρW ,

(iii) Φ∗(ρ, ζ) = Φ∗(ρ,−ζ) for all ζ ∈ T ∗ρW ,

(iv) Φ(ρ, j) = Φ(ρ,−j) for all j ∈ TρW .

Example (IPFG). 2.10. In practice the force (2.13) is more easily calculated via the equivalent
statement dH(ρ,−F (ρ)) = 0. Since ξ = 1

2
log d

c
minimises ξ 7→ c(eξ − 1) + d(e−ξ − 1), we

find

Fxy(ρ) =
1

2
log

ρxQxy

ρyQyx

, Dom(F ) = P+(X ).

This definition of the driving force has been introduced in [KJZ18, Sec. 2.2]. Using (2.14), the
dissipation potentials are given by

Φ∗(ρ, ζ) =
∑∑

(x,y)∈X 2/2

2
√
ρxQxyρyQyx

(
cosh(ζxy)− 1

)
, (2.17)

Φ(ρ, j) =
∑∑

(x,y)∈X 2/2

2
√
ρxQxyρyQyx

(
cosh∗

( jxy

2
√
ρxQxyρyQyx

)
− 1
)
.

These dissipation potentials are indeed symmetric (since cosh is an even function), and therefore
Domsymdiss(F ) = Dom(F ). Note that, while a priori Φ and Φ∗ are only defined for strictly
positive probability measures, they can easily be extended to the full space Z = P(X ). For
instance, the observation that lima→0 a cosh∗(x

a
) = 0 if x = 0 and +∞ otherwise, offers a

trivial extension of Φ∗ to Z , which also reflects the idea that 0 rates guarantee no flux.

We note that the Hamiltonian corresponding to one-way fluxes is given by

Hone-way(ρ, ζ) :=
∑∑
x,y∈X×X

x 6=y

ρxQxy(e
ζxy − 1),

for which the corresponding driving force does not exist at all, i.e. Dom(F one-way) = ∅ (also
see [Ren18a, Rem. 4.10]). Hence one can only construct a meaningful macroscopic fluctuation
theory for net fluxes. This further justifies the net-flux approach used in this paper, as opposed to
the one-way fluxes typically used for Markov jump processes.
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Note that in the IPFG example above and in all the other examples considered in Section 5,
Domsymdiss(F ) = Dom(F ), i.e. the dissipation potential is symmetric. However as discussed in
the following remark, it is possible to construct non-symmetric dissipation potentials, and therefore in
general Domsymdiss(F ) is a subset of Dom(F ).

Remark 2.11. ConsiderZ =W = R and φ = id. LetH(ρ, ζ) = −ζ+eζ−1, which corresponds to
a real-valued Markov process with generator (Q(n)f)(ρ, w) := −∂ρf(ρ, w)−∂wf(ρ, w)+n(f(ρ+
1
n
, w+ 1

n
)−f(ρ, w)). Then F ≡ 0 and clearlyH(ρ,−ζ−F (ρ)) 6= H(ρ, ζ−F (ρ)), which implies

that Domsymdiss(F ) = ∅.

So far we have dealt with L-functions on Z . Using (2.11), we now introduce L-functions defined on
subsets of Z . For a given L and an appropriate cotangent field G(ρ), using (2.11) we can define a
(G-tilted) L-function LG defined on a subset of Z . We call this a ‘tilted’ L-function since its definition is
motivated by tilted Markov processes (see Section 3.1). Although, technically G is a cotangent field,
in this paper we will often refer to it as a force field due to physical considerations.

Definition 2.12. For any G : Dom(G) → T ∗Dom(G)W with Dom(G) ⊆ Z , the tilted function
HG : T ∗Dom(F )∩Dom(G)W → R ∪ {∞} is defined as

HG(ρ, ζ) := H
(
ρ, ζ +G(ρ)− F (ρ)

)
−H

(
ρ,G(ρ)− F (ρ)

)
, (2.18)

and LG : TDom(F )∩Dom(G)W → R ∪ {∞} denotes its convex dual in the second variable.

Lemma 2.13. The tilted function LG is an L-function on Dom(F ) ∩ Dom(G), and satisfies the
decomposition

LG(ρ, j) = L(ρ, j) +H
(
ρ,G(ρ)− F (ρ)

)
+ 〈F (ρ)−G(ρ), j〉 (2.19)

= Φ(ρ, j) + Φ∗
(
ρ,G(ρ)

)
− 〈G(ρ), j〉.

The two equalities follow by using convex duality and (2.10), (2.11) with ζ̂ = F . For special choices
of G(ρ) we obtain

LF (ρ, j) = L(ρ, j) and L0(ρ, j) = Φ(ρ, j). (2.20)

Example (IPFG). 2.14. For any force field G(ρ) ∈ RX
2/2 we have

LG(ρ, j) = inf
j+∈RX2/2

∑∑
(x,y)∈X 2/2

s
(
j+
xy |

√
ρxQxyρyQyxe

Gxy(ρ)
)

+ s
(
j+
xy − jxy |

√
ρxQxyρyQyxe

−Gxy(ρ)
)
,

HG(ρ, ζ) =
∑∑

(x,y)∈X 2/2

√
ρxQxyρyQyx

[
eGxy(ρ)(eζxy − 1) + e−Gxy(ρ)(e−ζxy − 1)

]
.

We now define the notion of generalised Fisher information which was introduced in Section 1.1.

Definition 2.15. Let L be an L-function on Z . For any ρ ∈ Z , ζ ∈ T ∗ρW , and λ ∈ [0, 1], the
generalised Fisher information is

Rλ
ζ (ρ) = −H(ρ,−2λζ).
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As discussed in Section 1.1, it is important to choose λ and ζ such that Rλ
ζ is non-negative, as

this guarantees that the corresponding powers are non-negative along the zero-cost flux. The following
result explores the set of force fields for which this is true (also see Figure 2).

Proposition 2.16. Let L be a L-function on Z . For any ρ ∈ Z we have

(i) The set {ζ ∈ T ∗ρW : R
1
2
ζ (ρ) ≥ 0} is convex and includes ζ = 0.

(ii) In particular, if ζ ∈ T ∗ρW such that

R
1
2
ζ (ρ) ≥ 0, (2.21)

then for any λ ∈ [0, 1]
Rλ

1
2
ζ
(ρ) ≥ 0. (2.22)

(iii) For any ζ ∈ T ∗ρW we have

lim
λ↓0

1
λ
Rλ
ζ (ρ) = 2〈ζ, j0(ρ)〉. (2.23)

where j0 is the zero-cost flux for L (see Definition 2.4).

Proof. (i) Since L is an L-function,H(ρ, ·) is convex withH(ρ, 0) = 0 and the assertion follows.
(ii) Using convexity, −Rλ

1
2
ζ
(ρ) = H(ρ,−λζ) = H(ρ,−λζ + (1 − λ)0) ≤ λH(ρ,−ζ) + (1 −

λ)H(ρ, 0) ≤ 0.
(iii) By definition of L-functions,L(ρ, ·) has unique minimiser j0(ρ), which is equivalent to ∂H(ρ, 0) =
{j0(ρ)} = {dH(ρ, 0)}. The claim then follows from the definition of the Gateaux derivative.

Note that [HPST20, Thm. 1.7] is a special case of this result for the IPFG example. Follow-
ing [HPST20], we call Rλ the generalised Fisher information since it generalises the classical notion
of Fisher information as the dissipation rate of free energy along the solutions of the zero-cost flux of
the L-function. This property follows by using (2.23) with appropriate choices for ζ . In the next section

we construct ζ for whichR
1
2
ζ (ρ) = 0 and the above result can be applied.

2.3 Reversed L-function, symmetric and antisymmetric forces

Inspired by the notion of time-reversibility in MFT we now introduce the reversed L-function which will
then be used to define symmetric and antisymmetric forces. From now on we assume that V is a
quasi-potential associated to L in the sense of Definition 2.5.

Definition 2.17. Let L be a L-function on Z . For any ρ ∈ Z where V is Gateaux differentiable and
any j ∈ TρW , we define the reversed L-function as

←−
L (ρ, j) := L(ρ,−j) + 〈dφT

ρ dV(ρ), j〉.

This notion of the reversed L-function is motivated by the large-deviations of time-reversed Markov
processes (see Section 3.3 for details). Note that we use the name reversed L-function as opposed to
time-reversed L-function since there is no time variable in this abstract setup.

The following result states that
←−
L is indeed a L-function, and discusses the driving force and

dissipation potential associated to it.
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Proposition 2.18. Let L be a L-function on Z . For any ρ ∈ Z where V is Gateaux differentiable we
have

(i) The convex dual of
←−
L(ρ, ·) is

←−
H(ρ, ζ) = H

(
ρ, dφT

ρ dV(ρ)− ζ
)
.

(ii) If←− 0(ρ) is the zero-cost flux (that is,
←−
L
(
ρ,←− 0(ρ)

)
= 0), then−←− 0(ρ) ∈ ∂H

(
ρ, dφT

ρ dV(ρ)
)
,

and it is unique ifH(ρ, ·) is Gateaux differentiable at dφT
ρ dV(ρ). Furthermore

←−
L is a L-function

on Dom(F sym), i.e. any ρ ∈ Z for which dφT
ρ dV(ρ) is well defined (see (2.24), (2.25) for def-

inition) and V is a quasipotential corresponding to
←−
L .

(iii) Additionally, if ρ ∈ Dom(F ), then the driving force and dissipation potentials corresponding to
←−
L are given by

←−
F(ρ) = −F (ρ)− dφT

ρ dV(ρ),
←−
Φ(ρ, j) = Φ(ρ,−j),

←−
Φ∗(ρ, ζ) = Φ∗(ρ,−ζ).

Proof. (i) Follows by a straightforward calculation of the convex dual.

(ii) Using the Fermat’s rule 0 ∈ ∂
←−
L(ρ,←− 0(ρ)), and therefore ←− 0(ρ) ∈ ∂

←−
H(ρ, 0). Using Defini-

tion 2.17 and since L is a L-function,
←−
L is convex, lower semicontinuous and using (2.9) satisfies

inf
←−
L (ρ, ·) = 0. Consequently

←−
L is a L-function on Dom(F sym) (see (2.25) below) and V is a

quasipotential associated to
←−
L .

(iii) Using (2.13) we find

−
←−
F(ρ) := d

←−
L(ρ, 0) = −dL(ρ, 0) + dφT

ρ dV(ρ) = F (ρ) + dφT
ρ dV(ρ)

and using (2.14) we find

←−
Φ∗(ρ, ζ) :=

←−
H
(
ρ, ζ −

←−
F(ρ)

)
−
←−
H
(
ρ,−
←−
F(ρ)

)
= H

(
ρ, dφT

ρ dV(ρ) +
←−
F(ρ)− ζ

)
−H

(
ρ, dφT

ρ dV(ρ) +
←−
F(ρ)

)
= H

(
ρ,−F (ρ)− ζ

)
−H

(
ρ,−F (ρ)

)
= Φ∗(ρ,−ζ).

Consequently
←−
Φ(ρ, j) = Φ(ρ,−j).

Motivated by this result, we decompose the driving force F (recall (2.13)) into a symmetric and

antisymmetric part with respect to the reversal, i.e. F sym = 1
2
(F +

←−
F ) and F asym = 1

2
(F −

←−
F ).

The following result summarises these ideas.

Corollary 2.19. Let L be a L-function on Z . Define

Dom(F sym) 3 ρ 7→ F sym(ρ) := −1
2
dφT

ρ dV(ρ), (2.24)

Dom(F asym) 3 ρ 7→ F asym(ρ) := F (ρ) + 1
2
dφT

ρ dV(ρ),

where

Dom(F sym) := {ρ ∈ Z : V is Gateaux differentiable at ρ}, (2.25)

Dom(F asym) := Dom(F ) ∩Dom(F sym).

Then for any ρ ∈ Dom(F asym),

F (ρ) = F sym(ρ) + F asym(ρ), and
←−
F (ρ) = F sym(ρ)− F asym(ρ). (2.26)
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Note that while we make use of the reversed L-function to construct the symmetric and antisym-
metric force, it does not explicitly appear in their definition. In the case of zero antisymmetric force, i.e.
F asym(ρ) = 0, the driving forces satisfy F (ρ) =

←−
F (ρ) = F sym(ρ), which is the setting of dissipative

systems (see Section 2.6).

Example (IPFG). 2.20. We have

←−
H(ρ, ζ) =

∑∑
(x,y)∈X 2/2

ρx
πy
πx
Qyx(e

ζxy − 1) + ρy
πx
πy
Qxy(e

−ζxy − 1),

←−
L(ρ, j) = inf

j+∈RX
2/2
≥0

∑∑
(x,y)∈X 2/2

s
(
j+
xy | ρx

πy
πx
Qyx

)
+ s
(
j+
xy − jxy | ρy

πx
πy
Qxy

)
,

←−
Fxy(ρ) =

1

2
log

ρx
πy
πx
Qyx

ρy
πx
πy
Qxy

.

The expression πx
πy
Qxy is the generator matrix for a single time-reversed jump process [Nor98,

Thm. 3.7.1]. Again, beware that a priori
←−
H and

←−
L are only defined on Z = Dom(F ), but can

be continuously extended to P(X ) in a straightforward manner.

The symmetric and antisymmetric (with respect to the reversal) components of the driving
force are (also see [KJZ18])

F sym
xy (ρ) =

1

2
log

πyρx
πxρy

and F asym
xy (ρ) =

1

2
log

πxQxy

πyQyx

, (2.27)

with Dom(F ) = Dom(F sym) = Dom(F asym) = P+(X ). Note that for reversible Markov
chains, i.e. those satisfying detailed balance, F asym = 0.

Recall the generalised Fisher information Rλ
ζ from Definition 2.15, and that we are looking for

force fields that make this quantity non-negative. The following result shows that R
1
2
ζ (ρ) = 0 for

ζ = 2F (ρ), 2F sym(ρ), 2F asym(ρ). This will be crucial to derive the key decompositions of L in
Section 2.5.

In this result we make use of

Domsymdiss(F
asym)

:=
{
ρ ∈ Dom(F asym) : H

(
ρ, ζ + dL(ρ, 0)

)
= H

(
ρ,−ζ + dL(ρ, 0)

)
, ∀ζ ∈ T ∗ρW

}
. (2.28)

Note that Domsymdiss(F
asym) ⊆ Domsymdiss(F ) since Dom(F asym) ⊆ DomF .

Lemma 2.21. Let L be a L-function on Z . We have

(i) ∀ρ ∈ Dom(F ) : R
1
2
F (ρ) ≥ 0 and ∀ρ ∈ Domsymdiss(F ) : R

1
2
2F (ρ) = 0,

(ii) ∀ρ ∈ Dom(F sym) : R
1
2
2F sym(ρ) = 0,

(iii) ∀ρ ∈ Domsymdiss(F
asym) : R

1
2
2F asym(ρ) = 0.

Proof. (i) Since−F minimisesH, it follows thatH(ρ,−F ) = infH(ρ, ·) ≤ H(ρ, 0) = − inf L(ρ, ·) =

0, and therefore R
1
2
F (ρ) = −H(ρ,−F ) ≥ 0. If the dissipation potential is symmetric, the choice
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ζ = −F (ρ) in Lemma 2.9(i) givesR
1
2
2F (ρ) = H

(
ρ,−2F (ρ)

)
= H(ρ, 0) = 0.

(ii) The claim follows since (2.9) holds for all ρ ∈ Dom(F sym).

(iii) With ζ =
←−
F (ρ) = F sym(ρ) − F asym(ρ) in Lemma 2.9(i) we find H

(
ρ,−2F asym(ρ)

)
=

H
(
ρ,−2F sym(ρ)

)
= 0.

Figure 2 is a schematic digram of force fields ζ for which Rλ
ζ is non-negative. Note that, while

there are various possibilities for such ζ , we focus on ζ = 2F (ρ), 2F sym(ρ), 2F asym(ρ) since they
correspond to the physically relevant powers defined in (1.3) and (1.4).

F (ρ)

2F (ρ)

F sym(ρ)

2F sym(ρ)

F asym(ρ)

2F asym(ρ)

0

Figure 2: Contour lines of a possible concave function ζ 7→ R
1
2
ζ (ρ) for a fixed ρ, where the superlevel

set {ζ ∈ T ∗ρW : R
1
2
ζ (ρ) ≥ 0} is depicted in gray. By Definitions 2.8 and 2.15, F (ρ) is a maximiser

for ζ 7→ R
1
2
ζ (ρ), and assuming ρ ∈ Domsymdiss(F

asym), Lemma 2.21 says that 2F (ρ), 2F sym(ρ)

and 2F asym(ρ) all lie on the 0-contour line. By the convexity of the superlevel set {R
1
2
ζ (ρ) ≥ 0} (see

Proposition 2.16), any convex combination ζ between 0 and 2F (ρ), 2F sym(ρ) or 2F asym(ρ), drawn

by the three lines, yield non-negativeR
1
2
ζ (ρ) ≥ 0. This picture should be seen as a schematic sketch;

it is difficult to construct a two-dimensional example with a non-trivial asymmetric force.

Remark 2.22. For all ρ ∈ Dom(F asym), we can write the reversed function as a tilting in the sense
of (2.18) ←−

H(ρ, ζ) = H−←−F (ρ,−ζ).

Using (2.19), the corresponding reversed L-function then satisfies

←−
L (ρ, j) = L−←−F (ρ, j) = L(ρ, j) +H

(
ρ, dφT

ρ dV(ρ)
)
− 〈dφT

ρ dV(ρ), j〉

= Φ(ρ, j) + Φ∗
(
ρ,−
←−
F
)

+ 〈−
←−
F , j〉,

where we have used F +
←−
F = −dφT

ρ dV(ρ).

2.4 Generalised orthogonality

Before we continue with deriving the main decompositions (1.5) of the L-function, we elaborate further
on the decomposition of the driving force F into the symmetric force F sym and antisymmetric force
F asym, and investigate the natural question whether these forces are orthogonal in some sense. It
turns out that they are indeed orthogonal in a generalised sense, and using this notion of orthogonality
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we can already derive decompositions (1.5) for λ = 1
2
. As discussed in the introduction, in MFT the

dissipation potentials are often squares of appropriate Hilbert norms ‖ · ‖ρ, and in that setting one can
write

Φ∗
(
ρ, ζ1 + ζ2

)
:= 1

2
‖ζ1 + ζ2‖2

ρ = 1
2
‖ζ1‖2

ρ + 〈ζ1, ζ2〉ρ + 1
2
‖ζ2‖2

ρ

= Φ∗
(
ρ, ζ1

)
+ 〈ζ1, ζ2〉ρ + Φ∗

(
ρ, ζ2

)
,

where 〈·, ·〉ρ is the inner product induced by the norm. Typically F sym and F asym are orthogonal in the
sense that 〈F sym, F asym〉ρ = 0. We reiterate these ideas more clearly in Section 5.3 which deals with
the classical MFT setting of lattice gases. However this orthogonality relation is specific to the quadratic
setting. A generalised notion of orthogonality was introduced in [KJZ18] for non-quadratic dissipation
potential (2.17) corresponding to independent Markov chains which have cosh-type structure (see
Example 2.10) and this principle was further generalised to chemical reaction networks in [RZ21] (see
Section 5.2 for details). Based on these results, we now provide a notion of generalised orthogonality
which applies to arbitrary dissipation potentials arising within the abstract framework of this section
(and does not require any specific structure).

Definition 2.23. For any ρ ∈ Dom(F ) and ζ2 ∈ T ∗ρW , define the modified dissipation potential
Φ∗ζ2 : T ∗ρW → R∪ {∞} and the generalised orthogonality pairing θρ : T ∗ρW × T ∗ρW → R∪ {∞}
as

Φ∗ζ2(ρ, ζ
1) := 1

2

[
H
(
ρ, ζ1 + ζ2 − F (ρ)

)
+H

(
ρ,−ζ1 + ζ2 − F (ρ)

)]
−H

(
ρ, ζ2 − F (ρ)

)
,

= 1
2

[
Φ∗(ρ, ζ1 + ζ2) + Φ∗(ρ,−ζ1 + ζ2)

]
− Φ∗(ρ, ζ2),

θρ(ζ
1, ζ2) := 1

2

[
H
(
ρ, ζ1 + ζ2 − F (ρ)

)
−H

(
ρ,−ζ1 + ζ2 − F (ρ)

)]
= 1

2

[
Φ∗(ρ, ζ1 + ζ2)− Φ∗(ρ,−ζ1 + ζ2)

]
,

where we have used (2.14) to arrive at the equalities.

The following result collects the properties of Φζ2 and θρ clarifying the notion of orthogonality in
the abstract setup. Recall the definition of Domsymdiss(F

asym) from (2.28).

Proposition 2.24. LetL be a L-function onZ . For any ρ ∈ Dom(F ), Φ∗ζ2(ρ, ·) is convex, lower semi-

continuous and inf Φ∗ζ2(ρ, ·) = 0 = Φ∗ζ2(ρ, 0). Furthermore, for any ζ1, ζ2 ∈ T ∗ρW , the dissipation
potential Φ∗ admits the decomposition

Φ∗(ρ, ζ1 + ζ2) = Φ∗(ρ, ζ1) + θρ(ζ
2, ζ1) + Φ∗ζ1(ρ, ζ

2) = Φ∗(ρ, ζ2) + θρ(ζ
1, ζ2) + Φ∗ζ2(ρ, ζ

1).

Moreover the generalised orthogonality pairing satisfies

∀ρ ∈ Dom(F asym) : θρ
(
F sym(ρ), F asym(ρ)

)
= 0,

∀ρ ∈ Domsymdiss(F
asym) : θρ

(
F asym(ρ), F sym(ρ)

)
= 0,

and therefore we have

∀ρ ∈ Dom(F asym) : Φ∗
(
ρ, F (ρ)

)
= Φ∗

(
ρ, F asym(ρ)

)
+ Φ∗F asym(ρ)

(
F sym(ρ)

)
,

∀ρ ∈ Domsymdiss(F
asym) : Φ∗

(
ρ, F (ρ)

)
= Φ∗

(
ρ, F sym(ρ)

)
+ Φ∗F sym(ρ)

(
F asym(ρ)

)
.

(2.29)

Proof. The convexity, lower semicontinuity of Φ∗ζ2 follows from the convexity, lower semicontinuity of
Φ∗ and Φ∗ζ2(ρ, 0) = 0 follows from the definition. Using convexity of Φ∗ we find

Φ∗ζ2(ρ, ζ
1) ≥ Φ∗

(
ρ, 1

2
(ζ1 + ζ2) + 1

2
(−ζ1 + ζ2)

)
− Φ∗(ρ, ζ2) = 0,
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and therefore inf Φ∗ζ2(ρ, ·) = 0. The two decompositions follow immediately by adding Φ∗ζ2 and θρ.
Using Lemma 2.21 we find

2θρ
(
F sym(ρ), F asym(ρ)

)
= H

(
ρ, F sym(ρ) + F asym(ρ)− F (ρ)

)
−H

(
ρ,−F sym(ρ) + F asym(ρ)− F (ρ)

)
= H(ρ, 0)−H

(
ρ− 2F sym(ρ)

)
= 0,

2θρ
(
F asym(ρ), F sym(ρ)

)
= H

(
ρ, F sym(ρ) + F asym(ρ)− F (ρ)

)
−H

(
ρ, F sym(ρ)− F asym(ρ)− F (ρ)

)
= H(ρ, 0)−H

(
ρ− 2F asym(ρ)

)
= 0.

where the second decomposition additionally requires that ρ ∈ Domsymdiss(F
asym).

From the general decomposition (2.15) and the generalised orthogonality result above, we can al-
ready provide two distinct decompositions of L, as derived in [RZ21, Cor. 4.3] for the case of chemical
reactions.

Corollary 2.25. Let L be an L-function on Z . Then for all ρ ∈ Dom(F asym(ρ)), j ∈ TρW ,

L(ρ, j) = Φ(ρ, j) + Φ∗
(
ρ, F asym(ρ)

)
− 〈F asym(ρ), j〉+ Φ∗F asym

(
ρ, F sym(ρ)

)
− 〈F sym(ρ), j〉,

and for all ρ ∈ Domsymdiss(F
asym(ρ)), j ∈ TρW ,

L(ρ, j) = Φ(ρ, j) + Φ∗
(
ρ, F sym(ρ)

)
− 〈F sym(ρ), j〉+ Φ∗F sym

(
ρ, F asym(ρ)

)
− 〈F asym(ρ), j〉.

In both decompositions, we may interpret the first three terms as an L-function with a modified
force, the fourth term as a Fisher information, and the last term as a power (see Remark 2.30 for
details).

Example (IPFG). 2.26. Using Definition 2.23 we have (see also [KJZ18])

Φ∗ζ2(ρ, ζ
1) = 2

∑∑
(x,y)∈X 2/2

√
ρxQxyρyQyx cosh(ζ2

xy)
(

cosh(ζ1
xy)− 1

)
,

θρ(ζ
1, ζ2) = 2

∑∑
(x,y)∈X 2/2

√
ρxQxyρyQyx sinh(ζ2

xy) sinh(ζ1
xy).

2.5 Decomposing the L-function

We now present decompositions of the L-function, which are the main results of the abstract framework
presented so far. Using G = F, F sym, F asym in (2.19) and encoding convex combinations via the
parameter λ, we arrive at three distinct decompositions of L; this corresponds to all the points on the
three lines depicted in Figure 2.

Theorem 2.27. Let L be an L-function on Z . It admits the following decompositions

(i) For any ρ ∈ Domsymdiss(F ), j ∈ TρW and λ ∈ [0, 1],

L(ρ, j) = L(1−2λ)F (ρ, j) +Rλ
F (ρ)− 2λ〈F (ρ), j〉 withRλ

F (ρ) ≥ 0. (2.30)
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(ii) For any ρ ∈ Dom(F asym), j ∈ TρW and λ ∈ [0, 1],

L(ρ, j) = LF−2λF sym(ρ, j) +Rλ
F sym(ρ)− 2λ〈F sym(ρ), j〉 withRλ

F sym(ρ) ≥ 0. (2.31)

(iii) For any ρ ∈ Domsymdiss(F
asym) and all j ∈ TρW and λ ∈ [0, 1],

L(ρ, j) = LF−2λF asym(ρ, j) +Rλ
F asym(ρ)− 2λ〈F asym(ρ), j〉 withRλ

F asym(ρ) ≥ 0. (2.32)

Proof. The decompositions follow directly from Lemma 2.13. The non-negativity of the Fisher infor-
mations follows from Proposition 2.16 and Lemma 2.21.

Remark 2.28. The decomposition (2.30) holds for ρ ∈ Domsymdiss(F ). Since by Lemma 2.21(i),

R
1
2
F (ρ) ≥ 0 for any ρ ∈ Dom(F ), we also have the following decomposition for any ρ ∈ Dom(F ),

j ∈ TρW and λ ∈ [0, 1
2
]

L(ρ, j) = L(1−λ)F (ρ, j) +Rλ
F (ρ)− λ〈F (ρ), j〉 withRλ

F (ρ) ≥ 0.

The non-negativity ofRλ
F (ρ) follows by repeating the proof of Proposition 2.16(ii) for λ ∈ [0, 1

2
].

The following result exhibits the significance of the choices λ = 1
2
, 1, and that the decompositions

for other values can be seen as generalisations.

Corollary 2.29 (λ = 1
2
, 1). With the choice λ = 1

2
, the decompositions (2.30), (2.31) and (2.32)

respectively become

L(ρ, j) = L0(ρ, j) +R
1
2
F (ρ)− 〈F (ρ), j〉 = Φ(ρ, j) + Φ∗

(
ρ, F (ρ)

)
− 〈F (ρ), j〉, (2.33)

L(ρ, j) = LF asym(ρ, j) +R
1
2
F sym(ρ)− 〈F sym(ρ), j〉, (2.34)

L(ρ, j) = LF sym(ρ, j) +R
1
2
F asym(ρ)− 〈F asym(ρ), j〉. (2.35)

With the choice λ = 1, the decompositions (2.30), (2.31) and (2.32) respectively become

L(ρ, j) = L−F (ρ, j)− 2〈F (ρ), j〉, (2.36)

L(ρ, j) = L−←−F (ρ, j)− 2〈F sym(ρ), j〉 =
←−
L (ρ,−j)− 2〈F sym(ρ), j〉,

L(ρ, j) = L←−
F

(ρ, j)− 2〈F asym(ρ), j〉,

where F,
←−
F satisfy the relations (2.26).

The second equality in (2.33) follows from (2.20) and (2.14) where we use H(ρ, 0) = 0 and
the Fisher-information term vanishes by Lemma 2.21. The second equality in (2.36) follows by Re-
mark 2.22. A careful analysis of the zero-cost flux for LF sym and LF asym will be presented in Subsec-
tion 2.6 and Section 4.

Remark 2.30. Using (2.15), we see that (2.34) and (2.35) are the same decompositions as those in
Corollary 2.25 which use generalised orthogonality, and that the two corresponding Fisher informations
are in fact modified dissipation potentials (as introduced in Section 2.4)

R
1
2
F sym(ρ) = Φ∗F asym

(
ρ, F sym(ρ)

)
, R

1
2
F asym(ρ) = Φ∗F sym

(
ρ, F asym(ρ)

)
.

This also explains the non-negativity of these Fisher informations for λ = 1
2
.
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Example (IPFG). 2.31. Decompositions (2.30), (2.31) and (2.32) hold with the tilted L-functions

L(1−2λ)F (ρ, j) = inf
j+∈RX

2/2
≥0

∑∑
(x,y)∈X 2/2

s
(
j+
xy | (ρxQxy)

1−λ(ρyQyx)
λ
)

+ s
(
j+
xy − jxy | (ρyQyx)

1−λ(ρxQxy)
λ
)
,

LF−2λF sym(ρ, j) = inf
j+∈RX

2/2
≥0

∑∑
(x,y)∈X 2/2

s
(
j+
xy | (ρxQxy)

1−λ(ρy
πx
πy
Qxy)

λ
)

+ s
(
j+
xy − jxy | (ρyQyx)

1−λ(ρx
πy
πx
Qyx)

λ
)
,

LF−2λF asym(ρ, j) = inf
j+∈RX

2/2
≥0

∑∑
(x,y)∈X 2/2

s
(
j+
xy | (ρxQxy)

1−λ(ρx
πy
πx
Qyx)

λ
)

+ s
(
j+
xy − jxy | (ρyQyx)

1−λ(ρy
πx
πy
Qxy)

λ
)
,

and the corresponding Fisher informations

Rλ
F (ρ) = −H

(
ρ,−2λF (ρ)

)
=
∑∑
x,y∈X
x 6=y

ρxQxy − (ρxQxy)
1−λ(ρyQyx)

λ,

Rλ
F sym(ρ) = −H

(
ρ,−2λF sym(ρ)

)
=
∑∑
x,y∈X
x 6=y

ρxQxy − (ρxQxy)
1−λ(ρy

πx
πy
Qxy)

λ,

Rλ
F asym(ρ) = −H

(
ρ,−2λF asym(ρ)

)
=
∑∑
x,y∈X
x 6=y

ρxQxy − (ρxQxy)
1−λ(ρx

πy
πx
Qyx)

λ.

While non-negativity of these Fisher informations is guaranteed by construction, it can also be
proven directly by using (1 − λ)a + λb ≥ a1−λbλ. For λ = 1

2
, all three Fisher informations are

of the form
∑∑

x 6=y(
√
·−
√
·)2; interpreting the difference as an abstract discrete gradient, this

is reminiscent of the usual Fisher information in continuous space 1
2

∫
(∇
√
ρ(x))2 dx.

All three L-functions L(1−2λ)F , LF−2λF sym and LF−2λF asym are the large-deviation cost func-
tions for processes with altered jump rates. In particular,LF sym = LF−F asym is the large-deviation
cost function corresponding to the jump process with jump rates for a particle to jump from x to y
given by

κsym
xy (ρ) := ρx

√
QxyQyx

πy
πx

= ρx

√
Qxy
←−
Qxy,

where we write←−v xy := vyx
πy
πx

for the jump rate of a single time-reversed jump process [Nor98,
Thm. 3.7.1]. The linearity in ρx reflects that the system consists of independent Markov particles

with generator
√
Qxy

←−
Qxy [Ren18a, Kra17].

Similarly, LF asym = LF−F sym is the large-deviation cost function corresponding to a system
with jump rates for one particle to jump from x to y given by [PR19]

κasym
xy (ρ) := Qxy

√
ρxρy

πx
πy

=
√
ρxρy

√
Qxy
←−
Q yx. (2.37)

We can interpret LF asym(ρ, j) as the flux large-deviation cost function corresponding to a system
of interacting particles with jump rates nκasym

xy (ρ) [AAPR21]. It should be noted that the usual
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large-deviation proof techniques break down in this particular case due to the non-uniqueness of
solution to the limiting antisymmetric ODE (see Theorem 4.2).

The next corollary connects the decomposition (2.31) to an (abstract-)FIR inequality (recall Sec-
tion 1.2.3) only defined on the state-space Z and with no dependence on the flux-spaceW . In order
to make this connection we introduce the contracted L-function L̂ : TρZ → R ∪ {∞} defined as

L̂(ρ, u) := inf
j∈TρW:u=dφρj

L(ρ, j). (2.38)

The definition of L̂ is inspired by the contraction principle in large-deviation theory, where L̂ is the
large-deviation rate functional only on the state space (recall Example 2.1). This connection will be
further clarified in Proposition 3.3.

Corollary 2.32 (FIR inequality). Let L be an L-function on Z . For any ρ ∈ Dom(F asym), u ∈ TρZ
and λ ∈ [0, 1] we have

L̂(ρ, u) ≥ Rλ
F sym(ρ) + λ〈dV(ρ), u〉,

where L̂ (with convex dual Ĥ) is defined in (2.38) andRλ
F sym(ρ) = −Ĥ(ρ, λdV).

Proof. Using convex duality and (2.38) it follows thatRλ
F sym(ρ) = −H(ρ, λdφT

ρ dV) = −Ĥ(ρ, λdV).
Using (2.31) and the definition of F sym (2.24) we find

L̂(ρ, u) = inf
j∈TρW:u=dφρj

[
LF−2λF sym(ρ, j)− 2λ〈F sym(ρ), j〉

]
+Rλ

F sym(ρ)

= inf
j∈TρW:u=dφρj

[
LF−2λF sym(ρ, j)

]
+Rλ

F sym(ρ) + λ〈dV(ρ), u〉

≥ Rλ
F sym(ρ) + λ〈dV(ρ), u〉,

where the second equality follows since 〈dφT
ρ η, j〉 = 〈η, dφρj〉 and the inequality follows since tilted

L-functions are non-negative by definition (see Lemma 2.13 & Definition 2.4).

Example (IPFG). 2.33. We now comment on the connection with the FIR inequality in [HPST20].
Let ρ ∈ C1([0, T ]; Dom(F sym)), where we have abused notation so that ρ is now a trajectory,
and recall that Dom(F sym) = P+(X ). Since ρ̇(t) ∈ Tρ(t)Z , using Corollary 2.32, for any
t ∈ [0, T ] and λ ∈ [0, 1] we have

L̂(ρ(t), ρ̇(t)) ≥ Rλ
F sym(ρ(t)) + λ d

dt
V(ρ(t)),

where we have used 〈dV(ρ(t)), ρ̇(t)〉 = d
dt
V(ρ(t)). Integrating in time, which is allowed since ρ

is a sufficiently smooth curve we find

1

λ

∫ T

0

L̂(ρ(t), ρ̇(t))dt+ V(ρ(0)) ≥ 1

λ

∫ T

0

Rλ
F sym(ρ(t))dt+ V(ρ(T )).

This is exactly the FIR inequality in [HPST20, Thm. 1.6] with two crucial differences. First, us-
ing approximation arguments, in [HPST20] the class of admissible curves is extended to ρ ∈
AC([0, T ];Z), i.e. absolutely continuous curves in Z = P(X ) instead of P+(X ) discussed
above (recall the discussion in Section 1.2.3). Second, in the same paper the relative entropy
RelEnt(ρ(t)|µ(t)) with respect to any time-dependent solution µ of the corresponding macro-
scopic dynamics (which is the forward Kolmogorov equation)

µ̇(t) = QTµ(t), (2.39)
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is used as opposed to the quasipotential V(ρ) = RelEnt(ρ(t)|π), where π is the invariant
measure of (2.39). We believe that this generalisation from the invariant measure π to any time
dependent solution µ(t) is a feature of the linear forward Kolmogorov equations (similar results
also hold for linear Fokker-Planck equations [BRS16, Thm. 1.1], [DLP+18, Thm. 4.18] arising
from diffusion processes), and cannot be expected to hold in the setup of our paper where we
are interested in nonlinear macroscopic equations. This is also the case for nonlinear diffusion
processes [DLPS17, Thm. 2.3].

2.6 Symmetric and antisymmetric L-functions

In this section we focus on the two terms LF sym and LF asym in the decompositions (2.35) and (2.34)
respectively. Observe that L = LF sym if F asym = 0, and therefore LF sym corresponds to a system
with a purely symmetric force. The relation between such systems with gradient flows is well known
and follows from the theory in the previous sections, but for completeness we will make this connection
explicit here. Similarly, LF asym corresponds to a system with a purely antisymmetric force; in the level
of abstraction of our current paper such systems are less understood. Motivated by our analysis in
Section 4 and the examples in Section 5 we conjecture below that these L-functions are related to
Hamiltonian systems.

We first discuss the purely symmetric case. Note that when particle systems and large-deviations
are involved, LF sym is the large-deviation cost function of a microscopic system in detailed balance
(see Corollary 3.10). In what follows we will make use of the contracted dissipation potential Ψ :
TρZ → R ∪ {∞} defined as

Ψ(ρ, u) := inf
j∈TρW:u=dφρj

Φ(ρ, j). (2.40)

Corollary 2.34 (EDI). Let L be an L-function on Z and ρ ∈ Dom(F asym). For any j ∈ TρW we
have

LF sym(ρ, j) = Φ(ρ, j) + Φ∗(ρ,−1
2
dφT

ρ dV(ρ)) + 1
2
〈dφT

ρ dV(ρ), j〉, (2.41)

and for any u ∈ TρZ we have

L̂F sym(ρ, u) = Ψ(ρ, u) + Ψ∗
(
ρ,−1

2
dV(ρ)

)
+ 1

2
〈dV(ρ), u〉, (2.42)

where L̂F sym , Ψ are defined in (2.38), (2.40) and Ψ∗(ρ, ξ) = Φ∗(ρ, dφT
ρ ξ) is the convex dual of Ψ.

Additionally if ρ ∈ Domsymdiss(F
asym), then for any j ∈ TρW and u ∈ TρZ we have the symmetry

relations

LF sym(ρ, j)− LF sym(ρ,−j) = 〈dφT
ρ dV(ρ), j〉, L̂(ρ, u)− L̂(ρ,−u) = 〈dV(ρ), u〉. (2.43)

Proof. Using F asym = 0 we have F (ρ) = F sym(ρ), and the decomposition (2.41) then follows

from (2.34) since L0(ρ, j) = Φ(ρ, j) (see (2.20)), R
1
2
F sym(ρ) = Φ∗(ρ, F sym(ρ)) and using the

definition of F sym (2.24). The decomposition (2.42) follows by applying the infimum in (2.38) to (2.41)
and noting that by definition of convex duality Ψ∗(ρ, ξ) = Φ∗(ρ, dφTξ) for any ξ ∈ T ∗ρZ . The first
symmetry relation follows by Lemma 2.9(ii) and the second symmetry relation following by taking the
infimum of the first symmetry relation on both sides.

Note that the decomposition (2.41) also follows from (2.35) by using (2.10), but only for ρ ∈
Domsymdiss(F

asym). Let us first comment on the contracted symmetric function L̂F sym . Clearly, its
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zero-cost velocity u0(ρ) satisfies the EDI

Ψ
(
ρ, u0(ρ)

)
+ Ψ∗

(
ρ,−1

2
dV(ρ)

)
+ 1

2
〈dV(ρ), u0(ρ)〉 = 0,

which is equivalent by convex duality to a generalised gradient flow (1.10). Summarising Corollar-
ies 3.10 and 2.34, if a microscopic system is in detailed balance, the large-deviation cost function
L = LF sym has a purely symmetric force, and hence induces a generalised gradient flow. This con-
nection between gradient flows and detailed balance was first discussed in this generality in [MPR14].
For the IPFG example, the second symmetry relation in (2.43) correspond to the classical gradient
structure for finite-state Markov chains in detailed balance [MPR14, Sec. 4.1] and the decomposi-
tion (2.41) is the corresponding flux formulation of the gradient structure for this example [Ren18a,
Sec. 4.5]. Note that, strictly speaking (2.41) is not a gradient flow in the density-flux space. However a
careful rewriting allows us to see LF sym as a gradient flow, as summarised in the following remark.

Remark 2.35. With LWF sym(w, j) := LF sym(φ[w], j), and applying the chain rule dwVW(w) =
dφT

φ[w]dρV(φ[w]), we arrive at

LWF sym(w, j) = ΦW(w, j) + ΦW
∗(
w,−1

2
dwVW(w)

)
+ 1

2
〈dwVW(ρ), j〉. (2.44)

In this formulation LF sym is indeed a gradient flow in the density-flux space [Ren18b].

As far as we are aware, the purely antisymmetric costLF asym has not been studied in the literature,
and we could not produce rigorous results for it in the abstract setting of this section. However, as will
be discussed in forthcoming sections, we are able to show that for certain examples the zero-cost
velocity associated to LF asym is non-dissipative, in the sense that one can associate a non-trivial
conserved energy and a skew-symmetric operator to it, which motivates the following conjecture.

Conjecture 2.36. LetL be an L-function onZ and L̂F asym be the contracted L-function corresponding
to L̂F asym , i.e.

L̂F asym(ρ, u) := inf
j∈TρW:u=dφρj

LF asym(ρ, j).

Then there exists an energy E : Z → R and a skew-symmetric operator J : ρ 7→ (T ∗ρZ → TρZ)

such that the zero-cost velocity of L̂F asym can be written as

u0(ρ) = J(ρ)DE(ρ).

Clearly, the skew-symmetry of J(ρ) implies that the energy E(ρ(t)) will be conserved along solu-
tions of ρ̇(t) = J(ρ(t))DE(ρ(t)). In fact, for the IPFG and lattice gas examples, the corresponding J
even satisfies the Jacobi identity, so that the purely antisymmetric velocity has a Hamiltonian structure
(see Sections 4, 5.3 for details).

3 Large deviations and dynamics

In Section 2 we focussed on the purely macroscopic setting. In this section we motivate the abstract
structures introduced therein by connecting them to Markov processes and their large deviations.
Although the results presented in this section are largely known in the literature in specific settings, we
include them here in a more general setting to provide rationale for the abstract framework discussed
in the last section. While these results are formal due to the level of generality at which we work, they
can be made rigorous case by case.
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Throughout this section we assume a microscopic dynamics described by a sequence of Markov
processes (ρ(n)(t),W (n)(t)

)
defined on Z ×W . Typically, ρ(n)(t) is the empirical measure, concen-

tration or density corresponding to O(n) particles, and W (n)(t) is the integrated/cumulative particle
flux (recall Example 2.1 and see Section 5 for further examples). For now, we assume a fixed de-
terministic initial condition ρ(n)(0) for the empirical measure; this will be relaxed later on. We always
assume that the initial condition for the flux satisfies W (n)(0) = 0 almost surely, since the particles
have not moved yet at initial time. For any t ≥ 0, the integrated flux W (n)(t) contains all information
required to reconstruct the current state of the system, i.e. almost surely

ρ(n)(t) = φ[W (n)(t)].

Equivalently, if the random paths allow for a notion of (measure-valued) time-integration, we write

ρ̇(n)(dt) = dφρ(n)(t)Ẇ
(n)(dt).

We assume that the sequence (ρ(n)(t),W (n)(t)
)

satisfies a law of large numbers, whereby the mi-
croscopic process

(
ρ(n)(t),W (n)(t)

)
converges to a macroscopic, deterministic trajectory (ρ(t), w(t)),

which satisfies an equation of the form (1.1), where at this stage we are only interested in the instanta-
neous flux j = ẇ. Consequently, the corresponding path probability measures P(n) = law(ρ(n),W (n))
will concentrate on that path (ρ, w) as n→∞.

Finally we assume that the sequence (ρ(n)(t),W (n)(t)
)

satisfies a corresponding large-deviation
principle, which can informally be written as

P(n)
(
(ρ(n),W (n)) ≈ (ρ, w)

)
∼ e−n

∫ T
0 L(ρ(t),ẇ(t)) dt. (3.1)

This large-deviation principle characterises the exponentially vanishing probability of paths starting
from the fixed deterministic initial conditions which do not converge to the macroscopic path (ρ, w).
The function L is non-negative and its zero-cost flux corresponds to the macroscopic path, since for
that path P(n) ∼ 1.

In what follows, we first focus on the classical technique for proving the aforementioned large-
deviation statement, using which we motivate the tilted L-function introduced in Lemma 2.13. Con-
sequently we motivate the Definition 2.5 of the quasipotential via the large deviations of invariant
measures, and the Definition 2.17 of the reversed L-function using time-reversal.

3.1 Tilting, contraction and mixture

Rigorous proofs of large-deviation principles for Markov processes tend to be rather technical. We
nevertheless briefly review the classical proof technique, since it is closely related to the macroscopic
framework introduced in Subsection 2.2. For an example of this technique see [KL99, Chap. 10].

Formal Theorem 3.1. LetQ(n) be the generator of the Markov process (ρ(n)(t),W (n)(t)), define

H(n)(ρ, w, ζ) :=
1

n
e−n〈ζ,w〉Q(n)en〈ζ,w〉,

and let the limitH(ρ, ζ) = limn→∞H(n)(ρ, w, ζ) exist and be dependent on w only via the relation
ρ = φ[w]. Then the process (ρ(n),W (n)) satisfies the large-deviation principle (3.1) with

L(ρ, j) := sup
ζ∈T ∗ρW

〈ζ, j〉 − H(ρ, ζ).
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The assumption thatH depends on w only via ρ = φ[w] will generally be justified if the noise only
depends on the state ρ of the system.

Main proof technique. In order to derive the large deviations (3.1) for a given, atypical path (ρ, w),
one changes the probability measure P(n) to a tilted probability measure P(n)

ζ . The tilting is defined via
a time-dependent force field ζ(t) to be chosen later, and the Radon-Nikodym derivative is explicitly
given by (see [PR02] for the generator of the tilted process and related technical details)

dP(n)

ζ

dP(n)
(ρ̂, ŵ) = exp

[
n

∫ T

0

(
〈ζ(t), ˙̂w(dt)〉 − H(n)

(
ρ̂(t), ŵ(t), ζ(t)

))
dt
]
. (3.2)

One can then (formally) estimate, for a small ball Bε(ρ, w) around the given atypical path (ρ, w),

− 1

n
log P(n)

(
Bε(ρ, w)

)
= − 1

n
log

∫
Bε(ρ,w)

dP(n)

dP(n)

ζ

(ρ̂, ŵ) P(n)

ζ

(
d(ρ̂, ŵ)

)
≈ 1

n
log

dP(n)

ζ

dP(n)
(ρ, w)− 1

n
log P(n)

ζ

(
Bε(ρ, w)

)
(for small ε)

=

∫ T

0

(
〈ζ(t), ẇ(dt)〉 − H(n)

(
ρ(t), w(t), ζ(t)

))
dt− 1

n
log P(n)

ζ

(
Bε(ρ, w)

)
.

We choose ζ(t) to be optimum in supζ̂〈ζ̂ , ẇ(t)〉 − H(ρ(t), ζ̂). It turns out that with this choice, the

tilted probability P(n)

ζ will concentrate on the given path (ρ, w) and therefore the final term in the right
hand side vanishes (even for small ε), which results in

− 1

n
log P(n)

(
Bε(ρ, w)

) n→∞
≈

∫ T

0

sup
ζ

(
〈ζ, ẇ(dt)〉 − H

(
ρ(t), ζ

))
dt =

∫ T

0

L
(
ρ(t), ẇ(t)

)
dt.

Following similar arguments one can derive the large deviations of the tilted measures.

Corollary 3.2. For a given path ζ(t), the tilted probability P(n)

ζ from (3.2) satisfies the large-deviation
principle

P(n)

ζ

(
(ρ(n),W (n)) ≈ (ρ, w)

)
∼ e−n

∫ T
0 Lζ(t)(ρ(t),ẇ(t)) dt, (3.3)

where Lζ is the convex dual of

Hζ(ρ, ζ̂) := H(ρ, ζ + ζ̂)−H(ρ, ζ).

The proof follows from the same arguments as Formal Theorem 3.1, with (3.2) replaced by

dP(n)

ζ+ζ̂

dP(n)

ζ

(ρ̂, ŵ) =
dP(n)

ζ+ζ̂

dP(n)
(ρ̂, ŵ)

dP(n)

dP(n)

ζ

(ρ̂, ŵ)

= exp
[
n

∫ T

0

(
〈ζ̂(t), ˙̂w(dt)〉 − H(n)

(
ρ̂(t), ŵ(t), ζ(t) + ζ̂(t)

)
+H(n)

(
ρ̂(t), ŵ(t), ζ(t)

))
dt
]
.

Note thatHζ−F is exactly as in (2.12) and consequently we interpret the tilted L-functions introduced
in Definition 2.12 as the large-deviation cost functions for the tilted probability measures.

From the Formal Theorem 3.1, one immediately obtains the following large-deviation principle for
the state by applying the contraction principle [DZ09, Thm. 4.2.1], which motivates the definition (1.7).
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Proposition 3.3. Assume that the large-deviation principle (3.1) holds for the pair (ρ(n),W (n)). Then
the large-deviation principle also holds for ρ(n), i.e.

P(n)(ρ(n) ≈ ρ
)
∼ e−n

∫ T
0 L̂(ρ(t),ρ̇(t)) dt, with L̂(ρ, ρ̇) := inf

j:ρ̇=dφρj
L(ρ, j). (3.4)

Moreover, Ĥ(ρ, ξ) := supρ̇∈TρZ〈ξ, ρ̇〉 − L̂(ρ, ρ̇) = H(ρ, dφT
ρ ξ).

So far we have assumed that the initial condition ρ(n)(0) is fixed and deterministic. If the initial
condition is random then we have the following result, which will be useful in what follows.

Proposition 3.4 (Mixing [Big04]). Assume that the large-deviation principle (3.1) holds for the pair
(ρ(n),W (n)) with a deterministic initial condition. If the initial condition is replaced by a sequence
ρ(n)(0) ∈ Z which satisfies the large-deviation principle

P(n)
(
ρ(n)(0) ≈ ρ

)
∼ e−nI0(ρ)

for some functional I0 : Z → [0,∞] and W (n)(0) = 0 almost surely, then the pair (ρ(n),W (n)) with
random initial condition ρ(n)(0) ∈ Z satisfies the large deviation principle

P(n)
(
(ρ(n),W (n)) ≈ (ρ, w)

)
∼ e−nI0(ρ(0))−n

∫ T
0 L(ρ(t),ẇ(t)) dt. (3.5)

Remark 3.5. The abstract setup introduced in Subsection 2.1 automatically fixes the state ρ(0) =
φ[0], which coincides with deterministic initial conditions in context of large deviations. Strictly speak-
ing, to work with varying random initial conditions would require additional flexibility in the abstract
framework. This can be achieved by either replacing the mapping φ (recall Definition 2.2) by a family
of mappings (φρ(0))ρ(0), or by keeping a fixed reference state φ[0], and redefining the initial integrated
flux as w(0) ∈ φ−1[ρ(0)], exploiting the surjectivity of φ. To keep the notation simple, we stick to the
setup of a deterministic initial condition, and with a slight abuse of notation always tacitly assume that
ρ(t) = φ(w(t)) = φρ(0)(w(t)).

3.2 Quasipotential

We now motivate Definition 2.5 of the quasipotential V . The following result is largely known in the
literature, see for instance [BDSG+02, Sec. 2.2] and [Bou20, Sec. 3.3], although it is not often made
explicit at the level of generality used in this section.

Theorem 3.6. Assume that the Markov process ρ(n)(t) satisfies the large-deviation principle (3.4) and
has an invariant measure Π(n) ∈ P(Z) that satisfies the large-deviation principle

Π(n)
(
µ(n) ≈ µ

)
∼ e−nV(µ), (3.6)

where µ(n) denotes a random variable distributed with Π(n). Then we have

(i) V(µ) ≡ inf
ρ̂∈C1

b ([0,T ];Z):
ρ̂(T )=µ

{
V
(
ρ̂(0)

)
+

∫ T

0

L̂
(
ρ̂(t), ˙̂ρ(t)

)
dt
}

for any T ≥ 0,

(ii) H
(
µ, dφT

µdV(µ)
)

= Ĥ
(
µ, dV(µ)

)
≡ 0,

where L̂, Ĥ are defined in Proposition 3.3.

DOI 10.20347/WIAS.PREPRINT.2826 Berlin 2021



Variational structures beyond gradient flows 31

Formal proof. For arbitrary T > 0 and fixed deterministic initial condition ρ(n)(0) = ρ(0), the state
ρ(n)

T satisfies the large-deviation principle [DZ09, Thm. 4.2.1],

P (n)

T

(
dµ | ρ(0)

)
:= P(n)

(
ρ(n)(T ) ≈ µ | ρ(n)(0) = ρ(0)

)
∼ e−nIT (µ|ρ(0)), with

IT (µ | ρ(0)) := inf
ρ̂∈C1

b ([0,T ];Z):
ρ̂(0)=ρ(0),ρ̂(T )=µ

∫ T

0

L̂
(
ρ̂(t), ˙̂ρ(t)

)
dt. (3.7)

By definition the invariant measure is invariant under the transition probability, i.e. for any T > 0,

Π(n)(dµ) =

∫
P (n)

T (dµ | ρ(0))Π(n)(dρ(0)).

Hence the large-deviation functional of the left-hand side is equal to the large-deviation rate of the
right-hand side, which using a mixing argument [Big04] is given by

V(µ) = inf
ρ(0)∈Z

{
V(ρ(0)) + IT

(
µ | ρ(0)

)}
= inf

ρ(0)∈Z
inf

ρ̂∈C1
b ([0,T ];Z):

ρ̂(0)=ρ(0),ρ̂(T )=µ

{
V(ρ(0)) +

∫ T

0

L̂
(
ρ̂(t), ˙̂ρ(t)

)
dt
}

which proves the first claim. From here on the arguments are purely macroscopic. We proceed by
noting that

ΞT (ρ) := inf
ρ̂∈C1

b ([0,T ];Z):
ρ̂(T )=ρ

V
(
ρ̂(0)

)
+

∫ T

0

L̂
(
ρ̂(t), ˙̂ρ(t)

)
dt,

which has the form of the value function from classical control theory, and hence solves the Hamilton-
Jacobi-Bellman equation

Ξ̇T (ρ) = −Ĥ
(
ρ, dΞT (ρ)

)
, Ξ0(ρ) = V(ρ). (3.8)

We have already shown that ΞT ≡ V does not depend on T , and therefore Ξ̇T (ρ) ≡ 0, which proves
the second claim.

Remark 3.7. Strictly speaking, V should be a viscosity solution of the Hamilton-Jacobi-Bellman (3.8)
and hence also of the stationary version Theorem 3.6(ii). However, it is not precisely clear to us which
boundary conditions should be imposed in the definition of the viscosity solution. This issue is par-
ticularly challenging since most classical Hamilton-Jacobi-Bellman theory is developed for quadratic
Ĥ only. Therefore, Theorem 3.6(ii) should be seen as formal. We remind the reader that a viscosity
solution V(ρ) is a solution in the classical sense at points of differentiability. At least on a formal level,
this already suffices for the applications in this paper.

Remark 3.8. In Theorem 3.6(ii) we do not require that the invariant measure is unique, neither do we
claim that the quasipotential V(ρ) will be unique. In particular, we do not require stable points π ∈ Z
for which L̂(π, 0) = 0 to be unique. In case of uniqueness, the quasipotential from Theorem 3.6(ii)
will also satisfy the classical definition of the quasipotential [FW94]

V(ρ) = inf
ρ̂∈C1

b (−∞,0;Z):
ρ̂(0)=ρ

∫ 0

−∞
L̂
(
ρ̂(t), ˙̂ρ(t)

)
dt.

In case of multiple stable points, one usually defines a family of non-equilibrium quasipotentials in-
dexed by the stable points [FW94]. Any one of these will also satisfy Theorem 3.6(ii), which is sufficient
for our purpose. Therefore the abstract framework from Section 2 can be constructed with any of these
quasipotentials.
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3.3 Time reversal

In the following proposition we relate the large-deviation rate functions for Markov processes and their
time-reversed counterparts, which motivates the notion of reversed L-function introduced in Defini-
tion 2.17. Since the proof below is standard in MFT, we only outline the proof idea for completeness.

Proposition 3.9 ([BDSG+15, Sec. II.C], [Ren18a, Sec. 4.2]). Let
(
ρ(n)(t),W (n)(t)

)
be a Markov

process with random initial distribution Π(n) for ρ(n)(0) and W (n)(0) = 0 almost surely, where Π(n) ∈
P(Z) is the invariant measure of ρ(n)(t). Define the time-reversed process 2

←−ρ (n)(t) := ρ(n)(T − t),
←−
W (n)(t) := W (n)(T − t)−W (n)(T ).

Assume that Π(n) satisfies a large-deviation principle (3.6),
(
ρ(n)(t),W (n)(t)

)
with deterministic initial

condition satisfies a large-deviation principle (3.1) with cost function L, and
(←−ρ (n)(t),

←−
W (n)(t)

)
with

deterministic initial condition satisfies a large-deviation principle (3.1) with cost function
←−
L . Then for

any (µ, j) ∈ Z ×W ,
←−
L is related to L and V via the relation

←−
L (µ, j) = L(µ,−j) + 〈dφT

ρ dV(µ), j〉.

Proof. Note that if ρ(n)(0) is distributed according to Π(n), then so is←−ρ (n)(0), and if W (n)(0) = 0

almost surely, then
←−
W (n)(0) = 0 almost surely as well. Since

P(n)
((
ρ(n),W (n)

)
∈ (dρ, dW )

)
= P(n)

((←−ρ (n),
←−
W (n)

)
∈ (d←−ρ , d

←−
W )
)
,

using Proposition 3.4, we find for all paths (ρ, w),

V(ρ(0)) +

∫ T

0

L
(
ρ(t), ẇ(t)

)
dt = V(ρ(T )) +

∫ T

0

←−
L
(
ρ(t),−ẇ(t)

)
dt.

Since the equality above holds for any T > 0, we can write〈
dφT

ρ(0)dV(ρ(0)), ẇ(0)
〉

=
〈
dV(ρ(0)), ρ̇(0)

〉
= lim

T→0

V(ρ(T ))− V(ρ(0))

T

= lim
T→0

1

T

∫ T

0

[
L(ρ(t), ẇ(t))−

←−
L (ρ(t),−ẇ(t))

]
dt

= L
(
ρ(0), ẇ(0))−

←−
L
(
ρ(0),−ẇ(0)

)
,

for any ρ(0) and ẇ(0) (assuming sufficient regularity on t 7→ L(ρ(t), ẇ(t))−
←−
L (ρ(t),−ẇ(t))). The

claimed result then follows by choosing any path ρ, w for which ρ(0) = µ and ẇ(0) = j.

A special and important case of the previous result pertains to detailed balance.

Corollary 3.10. Let
(
ρ(n)(t),W (n)(t)

)
and

(←−ρ (n)(t),
←−
W (n)(t)

)
be as in Proposition 3.9. If, under

initial distribution Π(n) ∈ P(Z) of ρ(n)(0) and←−ρ (n)(0) and W (n)(0) =
←−
W (n)(0) = 0 almost surely,

P(n)
((
ρ(n),W (n)

)
∈ (dρ, dW )

)
= P(n)

((←−ρ (n),
←−
W (n)

)
∈ (dρ, dW )

)
, (3.9)

then L =
←−
L .

2This construction requires a vector structure on the manifoldW . For all applications that we have in mind this holds
trivially, as long as we work with net fluxes (see the discussion in Example 2.10).
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For the applications that we have in mind, the condition (3.9) holds precisely when ρ(n)(t) is in

detailed balance with respect to Π(n), see for example [Ren18a, Prop. 4.1]. The relation L =
←−
L is the

time-reversal symmetry from [MPR14], which implies that L induces a gradient flow, or F asym = 0 in
the context of this paper.

4 Zero-cost velocity for IPFG antisymmetric L-function

In Subsection 2.6 we argued that the both the purely symmetric flux and velocity are dissipative, that
is, they are generalised gradient flows of the energy 1

2
V (and 1

2
VW respectively). Moreover, LF sym

defines the variational structure of those gradient flows via the equalities (2.41) and (2.44).

The interpretation of LF asym is more complicated. In general LF asym will not have V as its quasipo-
tential, and using Lemmas 2.9 and 2.13 for any ρ ∈ Domsymdiss(F

asym) and j ∈ TρW it satisfies
the time-reversal relation

L−F asym(ρ, j) = LF asym(ρ,−j).

This relation in fact holds for any tilted L-function, but−F asym can be interpreted as the time-reversed
counterpart of F asym in the sense that

←−−−−−−−−−
F sym + F asym = F sym−F asym (see Remark 2.22). Formally

this means that time-reversal reverses the fluxes, which is a physical indication that LF asym might
correspond to Hamiltonian dynamics, as stated in Conjecture 2.36.

In this section we illustrate this principle for the IPFG example with L-function L from Example 2.3.
As far as we are aware this is has not been studied in the literature, and as a first step we will focus
solely on the trajectories of the zero-cost velocity u(t) = ρ̇(t) = u0(ρ(t)) of LF asym , largely ignoring
fluxes as well as the variational structure.

Let (ρ, j) satisfy LF asym

(
ρ(t), j(t)

)
= 0 or equivalently j(t) ∈ ∂Φ∗

(
ρ(t), F asym(ρ(t))

)
, where

the subdifferential is with respect to the second variable. Substituting λ = 1
2

in LF−2λF sym (defined in
Example 2.31), for any x ∈ X , ρ : [0, T ]→ P(X ) satisfies the ODE

ρ̇x(t) = − divx j(t) =
∑
y∈X
y 6=x

(
Qyx

√
πy
πx
−Qxy

√
πx
πy

)√
ρx(t) ρy(t). (4.1)

Introducing the change of variables ωx(t) :=
√
ρx(t), the zero-cost velocity (4.1) transforms into

a linear ODE with a matrix A ∈ R|X |×|X |, i.e.

ω̇(t) =
1

2
Aω(t), with Axy := Qyx

√
πy
πx
−Qxy

√
πx
πy
. (4.2)

Solutions to this equation have a nice geometric interpretation, see Figure 3 for an example in three
dimensions. Clearly, |ω(t)|22 = |ρ(t)|1 = 1 and so the solutions are confined to (the positive octant
of) the unit sphere SX−1. On the other hand, the matrix A is skewsymmetric with imaginary eigen-
values and represents rotations around the axis

√
π, implying that the solutions are confined to a

plane perpendicular to
√
π. Therefore, solutions ω(t) lie on the intersection of these planes with the

unit sphere, resulting in periodic orbits that conserve the distance of the plane to the origin. In the
following result we show that this transformed system is indeed a Hamiltonian system with a suitable
energy and Poisson structure which satisfies the Jacobi identity (see Lemma A.1 for a useful alternate
characterisation of the Jacobi identity in our context).
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Proposition 4.1. The ODE (4.2) admits a Hamiltonian structure (R|X |×|X |, Ẽ , J̃), i.e. ω̇ = J̃(ω)DẼ(ω),
where the linear energy Ẽ : R|X | → R and Poisson structure J̃ : R|X | → R|X |×|X | are given by

Ẽ(ω) := 1−
√
π · ω, J̃(ω) :=

1

2

(√
π ⊗ (Aω)− (Aω)⊗

√
π
)
.

Here ω · v is the standard Euclidean inner product and ω ⊗ v is the outer product of vectors ω, v.

Proof. In Appendix A we present a Hamiltonian structure for a general class of ODEs, which includes
the transformed system (4.2). The proof of Proposition 4.2 follows directly from Theorem A.2 with the
choice n = |X |, ω∗ =

√
π and observing that |ω∗|2 =

∑
x πx = 1 and A

√
π = AT

√
π = 0 since

π is the invariant solution corresponding to the original dynamics (4.1).

We would now like to transform the Hamiltonian structure of the transformed ODE (4.2) back to
obtain a Hamiltonian structure for the original non-linear equation (4.1). This transforms the positive
octant of the sphere in Figure 3 to the simplex in Figure 1(c). However, transforming back via ωx(t) =√
ρ
x
(t) is valid only if ωx(t) ≥ 0 for every x ∈ X . In the following result we state the criterion for this

to hold.

Proposition 4.2. Define the threshold

σ := min
x∈X

(
1−
√

1− πx
)
,

the energy E : R|X | → R and the Poisson structure J : R|X | → R|X |×|X | as

E(ρ) := 1−
√
π · √ρ, (J(ρ))xy := 2

∑
z∈X

(√
πxAyz −

√
πyAxz

)√
ρxρyρz,

where A is defined in (4.2). If the energy of the initial distribution ρ0 ∈ P(X ) for the ODE (4.1)
satisfies 0 ≤ E(ρ0) < σ, then (4.1) has a unique solution and admits a Hamiltonian structure
(R|X |×|X |, E ,J), i.e. ρ̇ = J(ρ)DE(ρ). If the energy of the initial distribution satisfies E(ρ0) ≥ σ,
then (4.1) has non-unique, non-energy-conserving solutions.

Proof. We first analyse the critical case, where the periodic orbit ω(t) of (4.2) touches one of the
boundaries of SX−1 ∩ RX≥0. The energy level of such an orbit can be calculated by solving the con-
strained minimisation problem

min
{
Ẽ(ω) : ω ∈ SX−1, ωx = 0 for some x ∈ X

}
= min

x∈X
min

{
Ẽ(ω) : ω ∈ SX−1, ωx = 0

}
.

For the interior minimisation problem, the optimal ω with ωx = 0 solves

0 = ∂ωy
[
Ẽ(ω) + 1

2
λ|ω|22

]
= −√πy + λωy, for all y 6= x,

where the Lagrange multiplier λ ≥ 0 is such that the constraint |ω|22 = 1 holds. It follows that
ωy =

√
πy/
√

1− πx, and so Ẽ(ω) = 1−
√

1− πx =: σ, yielding the critical case.

Using Proposition 4.1 we thus find that if E(ρ0) = Ẽ(ω0) < ω, the solution ω(t) of the linear sys-
tem satisfies Ẽ(ω(t)) = Ẽ(ω0) and remains positive (coordinate-wise), so that ρ(t) =

√
ω(t) solves

(4.1), and has the corresponding transformed Hamiltonian structure. Note that this is possible since
Poisson structures are preserved by coordinate transformations [Mie91, Sec. 4.2]. The uniqueness of
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the thus constructed solution ρ(t) follows since
√
ρx(t)ρy(t) is strictly bounded away from zero, and

therefore the right hand side of (4.1) is Lipschitz.

On the other hand, if E(ρ0) ≥ σ, then after a finite time the solution ρ(t) will touch a boundary (i.e.
one of its components becomes zero), and therefore the right hand side of (4.1) fails to be Lipschitz,
allowing for multiple solutions that move along the boundary for an arbitrary time before entering the
interior of the simplex again (see Figure 1(c)).

√
π

ω1

ω3

ω2

Figure 3: For |X | = 3, the trajectories ω(t) rotate around the
√
π-axis, and lie at the intersection of the

two-dimensional sphere S2 and a plane perpendicular to the
√
π-axis. The transformation ρx =

√
ωx

maps the (octant) sphere to the simplex of Figure 1(c).

In the following remark we comment on the role of λ 6= 1
2

in LF−2λF sym .

Remark 4.3. One can also study the zero-cost velocity associated to to LF−2λF sym from (2.31) for
λ ∈ (0, 1). For λ < 1

2
, the symmetric part is dominant and the trajectories spiral inwards towards

π, i.e. π is a spiral sink, and for λ > 1
2
, the antisymmetric part is dominant and the trajectories spiral

outwards from π, i.e. π is a spiral source (compare with Figure 1(c) for λ = 1
2
).

5 Examples

Throughout Section 2 we applied the abstract framework developed therein to the example of inde-
pendent Markovian particles. We now apply the abstract framework to three examples of interacting
particle systems. In Section 5.1 we consider the example of zero-range processes with an atypical
scaling limit which leads to an ODE system in the limit as opposed to the usual parabolic scaling. Sec-
tion 5.2 deals with the case of chemical reaction networks in complex balance. Finally in Section 5.3
we consider the case of lattice gases with parabolic scaling (which lead to diffusive systems) and arrive
at well known results in MFT. While MFT often deals with additional boundary effects and consequent
non-equilibrium steady states arising from it, in our analysis we avoid these boundary effects to keep
the presentation less technical.

5.1 Zero-range processes

Microscopic particle system. To simplify and unify notation, we first consider the irreducible Markov
process on a finite graph X from the IPFG example, with generator (represented by a matrix) Q ∈
RX×X , and assume that it has a unique and coordinate-wise positive invariant measure π ∈ P+(X ).
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Similar to the setup in Example 2.1 we study the Markov process (ρ(n)(t),W (n)(t)) onP(X )×X 2/2,
where ρ(n)(t) is the particle density of interacting particles andW (n)(t) is the integrated net flux (both
defined in Example 2.1). The interaction between the particles is so that the jump rate nκxy(ρ) from
x to y only depends on the density at the source node x (“zero-range”)

κxy(ρ) = κxy(ρx) = Qxyπxηx
(ρx
πx

)
,

for a family of strictly increasing functions ηx : [0,∞) → [0,∞) with ηx(0) = 0 and ηx(1) = 1.
The condition ηx(0) = 0 ensures that ρx ≥ 0, i.e. there are no negative densities. The condition
ηx(1) = 1 ensures that π is also an invariant measure for the many-particle limit (5.1), and is assumed
only for convenience (see Remark 5.2 below). Observe that the particular choice ηx ≡ id corresponds
to the IPFG model.

The pair
(
ρ(n),W (n)(t)

)
has the n-particle generator

(Q(n)f)(ρ, w) = n
∑∑

(x,y)∈X 2/2

κxy(ρx)
[
f(ρ− 1

n
1x + 1

n
1y, w + 1

n
1xy)− f(ρ, w)

]
+ κyx(ρy)Qyx

[
f(ρ− 1

n
1y + 1

n
1x, w − 1

n
1xy)− f(ρ, w)

]
.

As opposed to the typical diffusive scaling for zero-range processes [BDSG+15], we keep the graph
X fixed. The many-particle limit for this process as n→∞ is the solution to the ODE system [RZ21,
Sec. 3.1] {

ẇxy(t) = κxy(ρx(t))− κyx(ρy(t)), (x, y) ∈ X 2/2,

ρ̇x(t) = − divx ẇ(t), x ∈ X
(5.1)

where div is again the discrete divergence defined in (2.4). The Markov process (ρ(n)(t),W (n)(t))
satisfies a large-deviation principle with the rate functional (2.5) where the corresponding L and its
dualH are now given by [PR19, GR20]

L(ρ, j) = inf
j+∈RX

2/2
≥0

∑∑
(x,y)∈X 2/2

[
s
(
j+
xy | κxy(ρx)

)
+ s
(
j+
xy − jxy | κyx(ρy)

)]
,

H(ρ, ζ) =
∑∑

(x,y)∈X 2/2

[
κxy(ρx)

(
eζxy − 1

)
+ κyx(ρy)

(
e−ζxy − 1

)]
,

(5.2)

and s(· | ·) is defined in (2.7).

State-flux triple and L-function. The manifolds Z,W with the corresponding tangent and cotan-
gent spaces and the map φ : Z → W with dφρ = − div, dφT = ∇ are exactly as in Example 2.3.

Quasipotential. Define V : Z → R ∪ {∞} as

V(ρ) =


∑
x∈X

∫ ρx

ρ̄x

log ηx

(
z

πx

)
dz + C, ρ ≥ ρ̄ coordinate-wise,

∞, otherwise,

(5.3)

where each ρ̄x ≥ 0 is chosen as small as possible so that log ηx is still integrable, and C is the
normalisation constant for which inf V = 0. Note that V does not depend on Q. This functional
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can be found as the large-deviation rate of the explicitly known invariant measure Π(n) using Theo-
rem 3.6, [KL99, Prop. 3.2] and [GR20, Sec. 4.1]. However, we can also show that it is the correct
quasipotential without any reference to a microscopic particle system, in the macroscopic sense of
Definition 2.5.

Proposition 5.1. The function V defined in (5.3) satisfies H(ρ, dφTdV(ρ)) = 0 at all points of
differentiability {ρ ∈ Z = P(X ) : ρx ≥ ρ̄x ∀x ∈ X} of V .

Proof. At the points of differentiability of V we have

H
(
ρ, dφT

ρ dV(ρ)
)

= H
(
ρ,∇ log η( ρ

π
)
)

=
∑∑

(x,y)∈X 2/2

(
κxy(ρx)

[ηy(ρy/πy)
ηx(ρx/πx)

− 1
]

+ κyx(ρy)
[ηx(ρx/πx)
ηy(ρy/πy)

− 1
])

=
∑∑
x,y∈X
x 6=y

(
πxQxyηy

( ρy
πy

)
−Qxyηx

(
ρx
πx

))
=
∑
y∈X

ηy
( ρy
πy

)∑
x∈X
x 6=y

(πxQxy − πyQyx) = 0,

where the fourth and fifth equality follows by exchanging indices and the final equality follows since
QTπ = 0.

The following remark discusses the various assumptions on ηx.

Remark 5.2. Since ηx is nonnegative and strictly increasing, it follows that V(ρ) is strictly convex
for any ρ ∈ P(X ), and consequently has a unique minimiser. The property η(1) = 1 ensures that
π is this unique minimiser of V . If this condition is not satisfied then, as we show below, one can
always construct Q ∈ RX×X , π ∈ P+(X ) and family ηx with ηx(1) = 1, such that κxy(ρ) =

Qxyπxηx
( ρx
πx

)
, Q

T
π̄ = 0, and π is the unique stable point of (5.1). To calculate these modified

objects, we minimise V(ρ) for ρ ∈ P(X ), which gives the minimiser

πx := πxη
−1
x (e−λ), where λ ∈ R satisfies

∑
x∈X

πxη
−1
x (e−λ) = 1,

and define

ηx(z) := ηx
(
zη−1

x (e0λ)
)
eλ, Qxy := Qxy

e−λ

η−1
x (e−λ)

.

It is easily checked that these modified objects satisfy all the properties described above, and one can
work with these objects instead.

Dissipation potential, forces and orthogonality. As in Example (2.10), using Definition 2.8 the
driving force is

Fxy(ρ) =
1

2
log

κxy(ρx)

κyx(ρy)
=

1

2
log

πxQxyηx(
ρx
πx

)

πyQyxηy(
ρy
πy

)
, Dom(F ) = P+(X ).
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with the dissipation potentials

Φ∗(ρ, ζ) = 2
∑∑

(x,y)∈X 2/2

√
κxy(ρx)κyx(ρy) (cosh(ζxy)− 1),

Φ(ρ, j) = 2
∑∑

(x,y)∈X 2/2

√
κxy(ρx)κyx(ρy)

(
cosh∗

( jxy

2
√
κxy(ρx)κyx(ρy)

)
+ 1
)
.

Since ` 7→ cosh(`) is an even function, using Lemma 2.9 it follows that Domsymdiss(F ) = Dom(F ),
i.e. the dissipation potential is symmetric.

Using Corollary 2.19 we find

F sym
xy (ρ) = −

(1

2
dφT

ρ dV(ρ)
)
xy

=
1

2
log

ηx(
ρx
πx

)

ηy(
ρy
πy

)
, F asym

xy (ρ) = Fxy(ρ)−F sym
xy (ρ) =

1

2
log

πxQxy

πyQyx

,

with Dom(F sym) = Dom(F asym) =
{
ρ ∈ P(X ) : ρx ≥ ρ̄x

}
. Observe that the expressions

of F sym and F asym imply that their domains can be easily extended to P+(X ) and Z = P(X )
respectively; however the theory of Section 2 will not automatically be valid on that extension. Also note
that F asym

xy = 0 if the particle system satisfies detailed balance with respect to π. The orthogonality
relations in Proposition 2.24 apply with (see [RZ21])

Φ∗ζ2(ρ, ζ
1) = 2

∑∑
(x,y)∈X 2/2

√
κxy(ρx)κyx(ρy) cosh(ζ2

xy)[cosh(ζ1
xy)− 1],

θρ(ζ
1, ζ2) = 2

∑∑
(x,y)∈X 2/2

√
κxy(ρx)κyx(ρy) sinh(ζ1

xy) sinh(ζ2
xy).

Decomposition of the L-function. The decompositions in Theorem 2.27 hold with the L-functions

L(1−2λ)F (ρ, j) = inf
j+∈RX

2/2
≥0

∑∑
(x,y)∈X 2/2

s
(
j+
xy | (πxQxyηx(

ρx
πx

))1−λ(πyQyxηy(
ρy
πy

))λ
)

+ s
(
j+
xy − jxy | (πxQxyηx(

ρx
πx

))λ(πyQyxηy(
ρy
πy

))1−λ),
LF−2λF sym(ρ, j) = inf

j+∈RX
2/2
≥0

∑∑
(x,y)∈X 2/2

s
(
j+
xy | (πxQxyηx(

ρx
πx

))1−λ(πxQxyηy(
ρy
πy

))λ
)

+ s
(
j+
xy − jxy | (πyQyxηy(

ρy
πy

))1−λ(πyQyxηx(
ρx
πx

))λ
)
,

LF−2λF asym(ρ, j) = inf
j+∈RX

2/2
≥0

∑∑
(x,y)∈X 2/2

s
(
j+
xy | (πxQxyηx(

ρx
πx

))1−λ(πyQyxηx(
ρx
πx

))λ
)

+ s
(
j+
xy − jxy | (πyQyxηy(

ρy
πy

))1−λ(πxQxyηy(
ρy
πy

))λ
)
,
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and the corresponding Fisher informations

Rλ
F (ρ) = −H

(
ρ,−2λF (ρ)

)
=
∑∑
x,y∈X
x 6=y

πxQxyηx(
ρx
πx

)− (πxQxyηx(
ρx
πx

))1−λ(πyQyxηy(
ρy
πy

))λ,

Rλ
F sym(ρ) = −H

(
ρ,−2λF sym(ρ)

)
=
∑∑
x,y∈X
x 6=y

πxQxyηx(
ρx
πx

)− (πxQxyηx(
ρx
πx

))1−λ(πxQxyηy(
ρy
πy

))λ,

Rλ
F asym(ρ) = −H

(
ρ,−2λF asym(ρ)

)
=
∑∑
x,y∈X
x 6=y

πxQxyηx(
ρx
πx

)− (πxQxyηx(
ρx
πx

))1−λ(πyQyxηx(
ρx
πx

))λ.

In particular, with ηx ≡ id, we indeed arrive at the expressions in Example 2.31.

With the expressions above the zero-range model satisfies the FIR inequality from Corollary 2.32
for λ = 1

2
, which is consistent with [RZ21, Cor. 4.3] but also holds more generally for λ ∈ [0, 1]. We

also mention that the zero-cost flux for the symmetric LF sym satisfies EDI (see Corollary 2.34), i.e. it
induces a gradient flow structure. We now turn our attention to its antisymmetric counterpart.

Zero-cost velocity for antisymmetric L-function. As in the IPFG case in Section 4, we now con-
sider the zero-cost velocity associated to LF asym which for any x ∈ X solves the ODE

ρ̇x(t) =
∑
y∈X
y 6=x

Axy

√
πxπyηx

(ρx(t)
πx

)
ηy
(ρy(t)

πy

)
, with Axy := Qyx

√
πy
πx
−Qxy

√
πx
πy
. (5.4)

Note that the corresponding ODE for IPFG (4.1) follows with ηx ≡ 1. The geometric arguments of
Section 4 cannot be fully repeated, because it is unclear how to transform (5.4) into a linear equation.
However, by analogy to that section, we make a smart guess for the energy and the Poisson structure,
which is summarised in the following result. We will make use of the following family of functions
gx : [0, 1]→ R

gx(a) :=

∫ a

0

1√
ηx(

b
πx

)
db,

for every x ∈ X . Using these functions we now show that the Conjecture 2.36 holds for the zero-range
process.

Proposition 5.3. Assume that ηx is such that gx is well defined for any x ∈ X . Define the threshold

σ := min
x∈X

[
1−
∑
z∈X

gz(ρz)+λ
(∑
z∈X
x 6=x

ρz−1
)]
, where λ ∈ R satisfies

∑
z∈X

πyη
−1
y

( 1

4λ2

)
= 1, (5.5)

and the energy E : R|X | → R ∪ {∞} and the skew-symmetric matrix field J : R|X | → R|X |×|X | as

E(ρ) := 1−
∑
x∈X

gx(ρx), (J(ρ))xy := 2
∑
z∈X

√
πxπyπzηx

(
ρx
πx

)
ηy
( ρy
πy

)
ηz
(
ρz
πz

)(√
πxAyz−

√
πyAxz

)
,

where A is defined in (5.4). If the energy of initial distribution ρ0 ∈ P(X ) for the ODE (5.4) satisfies
0 ≤ E(ρ0) < σ, then (4.1) has a unique solution and ρ̇ = J(ρ)DE(ρ). If the energy of the initial
distribution satisfies E(ρ0) ≥ σ, then (5.4) has non-unique, non-energy-conserving solutions.

DOI 10.20347/WIAS.PREPRINT.2826 Berlin 2021



R. I. A. Patterson, D. R. M. Renger, U. Sharma 40

Proof. For any x ∈ X we have

(J(ρ)DE(ρ))x =
∑
y∈X

(J(ρ))xy(DE(ρ))y =
∑
y,z∈X

√
πxπzηx

(
ρx
πx

)
ηz
(
ρz
πz

)(
πyAxz −

√
πxπyAyz

)
=
∑
z∈X

√
πxπzηx

(
ρx
πx

)
ηz
(
ρz
πz

)
Axz = ρ̇x(t),

where the third equality follows since
∑

y πy = 1 and (AT
√
π)y = 0 for any y ∈ X . Finally,

note that (5.4) has unique solutions if the right hand side is Lipschitz, which follows if ρx > 0, since
ηx(0) = 0, for every x ∈ X . The expression (5.5) for this threshold follows by solving

min
{
E(ρ) : ρ ∈ P(X ), ρx = 0 for some x ∈ X

}
= min

x∈X
min

{
E(ρ) : ρ ∈ P(X ), ρx = 0

}
,

where λ in (5.5) is the Lagrange multiplier for the constraint
∑

x ρx = 1. The non-uniqueness of
solutions follows if E(ρ0) ≥ σ due to non-Lipschitz right-hand side in (5.4).

The equation (5.4) may have an underlying Hamiltonian structure, but while the matrix field J(ρ)
proposed here is skew-symmetric, it generally does not satisfy the Jacobi identity.

5.2 Complex-balanced chemical reaction networks

Microscopic particle system. We now describe a particle system that is commonly used to model
chemical reactions. For a detailed review of this particle system with motivation and connections to
related particle systems see [AK11].

Let X be a finite set of species, R be the finite set of reactions between the species, and let the
vectors γ(r) ∈ RX denote the net number of particles of each species that are created/annihilated
during a reaction r ∈ R. Furthermore, let R = Rfw ∪ Rbw such that each forward reaction r ∈ Rfw

corresponds to a backward reaction bw(r) ∈ Rbw, meaning that γ(bw(r)) = −γ(r) for all r ∈ Rfw.
The set Rfw will play the role of X 2/2 from Example 2.1.

The microscopic model involves a finite volume V that controls the number of randomly react-
ing particles in the system. For a fixed V , we study the random concentration or empirical measure
ρ(V )
x (t), which is the number of particles belonging to species x ∈ X . Note that the total number of

particles may not be conserved here, as opposed to the setting of Example 2.1. We also consider the
integrated net reaction flux for r ∈ Rfw,

W (V )

r (t) =
1

V
#
{

reactions r occurred in time (0, t]
}
− 1

V
#
{

reactions bw(r) occurred in time (0, t]
}
.

Forward and backward microscopic reactions r take place with given microscopic jump rates V κ(V )
r

and V κ(V )

bw(r) respectively. Typically these jump rates are modelled with combinatoric terms in the so-
called chemical master equation (see [AK11]). Since our framework is purely macroscopic, the precise
expressions for the microscopic jump rates are not relevant; the only crucial point is that both converge
sufficiently strongly to macroscopic reaction rates κr and κbw(r). The pair (ρ(V )(t),W (V )(t)) is a
Markov process on RX × RRfw with generator

(Q(V )f)(ρ, w) =

V
∑
r∈Rfw

κ(V )

r (ρ)
[
f(ρ+ 1

V
γ(r), w + 1

V
1r)− f(ρ, w)

]
+ κ(V )

bw(r)(ρ)
[
f(ρ+ 1

V
γ(bw(r)), w + 1

V
1bw(r))− f(ρ, w)

]
.
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Using the matrix notation Γ := [γ(r)]r∈Rfw
∈ RX×Rfw , in the limit V → ∞ the pair (ρ(V ),W (V ))

converges to the solution of (see [Kur70] and [RZ21, Sec. 3.1]){
ẇr(t) = κr(ρ(t))− κbw(r)(ρ(t)), r ∈ Rfw

ρ̇x(t) = (Γẇ(t))x, x ∈ X .
(5.6)

The Markov process (ρ(V )(t),W (V )(t)) satisfies a large-deviation principle (2.5) where L,H are
now given by (see [PR19, Thm. 1.1] and [RZ21, Cor. 3.1])

L(ρ, j) = inf
j+∈R

Rfw
≥0

∑
r∈Rfw

s(j+
r | κr(ρ)) + s(j+

r − jr | κbw(r)(ρ)),

H(ρ, ζ) =
∑
r∈Rfw

κr(ρ)(eζr − 1) + κbw(r)(ρ)(e−ζr − 1),

and s(· | ·) is defined in (2.7). As in the IPFG and zero-range models, the infimum over one-way fluxes
j+ can be derived using the contraction principle.

We mention that at this level of generality one can already derive many interesting MFT properties,
see [RZ21]. After all, the IPFG and zero-range models fall within this class. However, in order to apply
our framework and obtain explicit results, the quasipotential needs to be known. To this aim we make
two crucial assumptions.

First, the system satisfies mass-action kinetics i.e. there exists stoichiometric vectors or complexes
α(r) ∈ RX≥0 (encoding the number of reactants involved) and reaction constants cr > 0 for each r ∈ R
such that

γ(r) = α(bw(r)) − α(r), γ(bw(r)) = α(r) − α(bw(r)),

and the forward and backward rates satisfy, setting ρα
(r)

:=
∏

x∈X ρ
α
(r)
x
x ,

κr(ρ) = crρ
α(r)

, ∀r ∈ R. (5.7)

Second, we assume that the system satisfies complex balance [ACK10, Sec. 3.2], i.e. there exists
a π ∈ RX>0 such that

∀ ψ ∈ RC :
∑
r∈Rfw

(crπ
α(r) − cbw(r)π

α(bw(r))

)(ψα(r) − ψα(bw(r))) = 0, (5.8)

where C := {α(r) : r ∈ R} signifies the set of complexes. As a consequence, this π is an equi-
librium point of the dynamics (5.6). Complex balance says that each complex is in balance, and is a
somewhat weaker condition than detailed balance and hence allows for non-dissipative effects. Since
the chemical reaction network described here is, as a graph, “reversible”, such an equilibrium point π
exists if the reaction network has deficiency zero (see [ACK10, Thm. 3.3]).

State-flux triple and L-function. Fix a reference or initial concentration ρ0 ∈ RX≥0. The state space
consists of all concentrations that can be produced from ρ0 via reactions:

Z =
{
ρ ∈ RX≥0 : ∃w ∈ RRfw so that ρ = ρ0 + Γw

}
, with tangent space

TρZ =
{
u ∈ RX : ρx = 0 =⇒ ux = 0 for all x ∈ X

}
, T ∗ρZ = RX .
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This set Z is also known in the literature as the non-negative stoichiometric compatibility class or
stoichiometric simplex 3. The flux space and the associated tangent space are

W =
{
w ∈ RRfw : ρ0 + Γw ∈ Z

}
, TρW =

{
j ∈ RRfw : Γj ∈ TρZ

}
, T ∗ρW = RRfw ,

where recall that Γw =
∑

r∈Rfw
γ(r)wr. For an arbitrary ρ0 ∈ Z , the continuity map φ : W → Z is

defined as
φ(w) = ρ0 + Γw,

with dφρ = Γ and dφT
ρ = ΓT. Note that with this setup, φ is indeed surjective.

Quasipotential. The quasipotential is again the relative entropy with respect to the invariant mea-
sure,

V(ρ) =
∑
x∈X

s(ρx | πx). (5.9)

Recall the relation between the quasipotential and the large-deviation rate functional for the invariant
measure of the microscopic system from Theorem 3.6. Whereas in the IPFG model this relative en-
tropy appears as the large-deviation rate functional for independent particles by Sanov’s Theorem, in
the complex balance case this is the rate functional of the explicitly known invariant measure of the
microscopic particle system [ACK10, Thm. 4.1]. As in the previous examples, it can also be checked
purely macroscopically that this is the correct quasipotential satisfying (2.9).

Proposition 5.4. At the points of differentiability of V , we haveH(ρ, dφT
ρ dV(ρ)) = 0.

Proof. Under the assumption of mass-action kinetics (5.7) we find4

H(ρ, dφT
ρ dV(ρ)) =

∑
r∈Rfw

κr(ρ)
[( ρ
π

)γ(r) − 1
]

+ κbw(r)(ρ)
[( ρ
π

)−γ(r) − 1
]

=
∑
r∈Rfw

cr
(
πα

(r)−α(bw(r))

ρα
(bw(r)) − ρα(r))

+ cbw(r)

(
πα

(bw(r))−α(r)

ρα
(r) − ρα(bw(r)))

=
∑
r∈Rfw

(
crπ

α(r) − cbw(r)π
α(bw(r)))[( ρ

π

)α(bw(r))

−
( ρ
π

)α(r)
]

= 0,

where the final equality follows by choosing ψα = ( ρ
π
)α in the complex-balance condition (5.8).

Dissipation potential, forces and orthogonality. The driving force is

Fr(ρ) =
1

2
log

κr(ρ)

κbw(r)(ρ)
=

1

2
log
( cr
cbw(r)

ρ−γ
(r)
)
, Dom(F ) =

{
ρ ∈ Z : ρx > 0 for all x ∈ X

}
,

where recall that κr(ρ) = crρ
α(r)

. The dissipation potentials are

Φ∗(ρ, ζ) = 2
∑
r∈Rfw

√
κr(ρ)κbw(r)(ρ) (cosh(ζr)− 1),

Φ(ρ, j) = 2
∑
r∈Rfw

√
κr(ρ)κbw(r)(ρ)

( cosh∗(jr)

2
√
κr(ρ)κbw(r)(ρ)

+ 1
)
.

3Under the complex balance assumption the equilibrium point π is unique and stable within this simplex [ACK10,
Thm. 3.2].

4The complex balance assumption (5.8) is only needed to show that (5.9) is indeed the quasipotential. However, the
proof only requires (5.8) to hold for all ψα = ( ρπ )

α .
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Note that Domsymdiss(F ) = Dom(F ), i.e. the dissipation potential is symmetric.

Following Corollary 2.19, the symmetric and antisymmetric forces are

F sym
r (ρ) = −

(1

2
dφT

ρ dV(ρ)
)
r

= −1

2
log
(
ρ

π

)γ(r)
,

F asym
r (ρ) = Fr(ρ)− F sym

r (ρ) =
1

2
log
( cr
cbw(r)

π−γ
(r)
)
,

with Dom(F sym) = Dom(F asym) = Dom(F ). The orthogonality relations in Proposition 2.24 apply
with

Φ∗ζ2(ρ, ζ
1) = 2

∑
r∈Rfw

√
κr(ρ)κbw(r)(ρ) cosh(ζ2

r )[cosh(ζ1
r )− 1],

θρ(ζ
1, ζ2) = 2

∑
r∈Rfw

√
κr(ρ)κbw(r)(ρ) sinh(ζ1r) sinh(ζ2

r ).

This notion of generalised orthogonality is consistent with the derivations in [RZ21].

Decomposition of the L-function. The decompositions in Theorem 2.27 hold with the L-functions

L(1−2λ)F (ρ, j) = inf
j+∈R

Rfw
≥0

∑
r∈Rfw

s
(
j+
r | (κr(ρ))1−λ(κbw(r)(ρ))λ

)
+ s
(
j+
r − jr | (κr(ρ))λ(κbw(r)(ρ))1−λ),

LF−2λF sym(ρ, j) = inf
j+∈R

Rfw
≥0

∑
r∈Rfw

s
(
j+
r | κr(ρ)

( ρ
π

)λγ(r))
+ s
(
j+
r − jr | κbw(r)(ρ)

( ρ
π

)−λγ(r))
,

LF−2λF asym(ρ, j) = inf
j+∈R

Rfw
≥0

∑
r∈Rfw

s
(
j+
r | (κr(ρ))1−λ(κbw(r)(ρ))λ

( ρ
π

)−λγ(r))
+ s
(
j+
r − jr | (κr(ρ))λ(κbw(r)(ρ))1−λ( ρ

π

)λγ(r))
,

with the corresponding Fisher informations

Rλ
F (ρ) = −H

(
ρ,−2λF (ρ)

)
=
∑
r∈R

κr(ρ)− (κr(ρ))1−λ(κbw(r)(ρ))λ,

Rλ
F sym(ρ) = −H

(
ρ,−2λF sym(ρ)

)
=
∑
r∈R

κr(ρ)− κr(ρ)
( ρ
π

)λγ(r)
,

Rλ
F asym(ρ) = −H

(
ρ,−2λF asym(ρ)

)
=
∑
r∈R

κr(ρ)− (κr(ρ))1−λ(κbw(r)(ρ))λ
(π
ρ

)λγ(r)
.

The zero-cost flux for LF sym is related to a gradient flow by Corollary 2.34; this has been discussed
in [Ren18a, Cor. 4.8]. As opposed to IPFG and zero-range examples, the construction of a Poisson
structure for LF asym is difficult in the chemical reaction setting due to the non-locality of the jump rates
and the interplay with the stoichiometric vectors, and remains an open question.
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5.3 Lattice gases

In this section we focus on the typical setting of MFT [BDSG+15], namely discrete state-space particle
systems whose hydrodynamic limit is the following drift-diffusion equation on the torus Td

ρ̇(t) = − div j(t),

j(t) = j0
(
ρ(t)

)
, with j0(ρ) := −∇ρ− χ(ρ)(∇U + A). (5.10)

As before ρ ∈ P(Td) is the limiting density of the particle system, but now∇, div denote the continu-
ous differential operators in Rd. We are given a smooth, strictly-positive potential U ∈ C∞(Td; R) and
a smooth divergence-free covector field A ∈ C∞(Td; Rd), i.e. divA = 0, that satisfies∇U ·A = 0.
The smooth function χ : [0,∞) → [0,∞) is called the mobility, and we assume that for some
h : [0,∞)→ [0,∞),

d2

da2
h(a) =

1

χ(a)
. (5.11)

Most results about this class of models are well known; we present them here to show that our abstract
framework is consistent with ‘classical’ MFT.

Microscopic particle system. Although the macroscopic framework works for general mobilities,
we only describe two standard microscopic particle systems that give rise to different mobilities. For
independent random walkers χ(a) = a, h(a) = a log a−a+1 and for the simple-exclusion process
χ(a) = a(1 − a), h(a) = a log a + (1 − a) log(1 − a). Since these two particle systems with
limit (5.10) have been extensively studied in the literature, we only present the essential features here.

For both particle systems, the particles can jump to neighbouring sites on the lattice Td ∩ ( 1
n
Z)d.

In order to pass to the hydrodynamic limit (5.10) and derive the corresponding large deviations, the
state space will be embedded in the continuous torus. The first particle system consists of inde-
pendent random walkers with drift. For any n ∈ N, the corresponding empirical measure-flux pair
(ρ(n)(t),W (n)(t)) is a Markov process in P(Td)×M(Td; Rd) with generator (see [Ren18b])

(Q(n)f)(ρ, w) = n2
∑
τ∈Zd
|τ |=1

∫
Td
ndρ(dx)e−[ 12U(x+ 1

n
τ)− 1

2
U(x)+ 1

2n
A(x)·τ]

×
[
f
(
ρ− 1

nd
δx + 1

nd
δx+ 1

n
τ , w + 1

nd+1 τδx+ 1
2n
τ

)
− f(ρ, w)

]
.

This system can also be derived as the spatial discretisation of interacting stochastic differential equa-
tions, although in such continuous-space setting it becomes less straight-forward how to define particle
fluxes.

The second particle system is the weakly asymmetric simple exclusion process (WASEP) which
has been extensively studied in the MFT literature (see for instance [BDSG+07, BDSG+15]). In this
case the Markov process (ρ(n)(t),W (n)(t)) has generator

(Q(n)f)(ρ, w) = n2
∑
τ∈Zd
|τ |=1

∫
Td
ndρ(dx)

(
1− ndρ({x+ 1

n
τ})
)
e−[ 12U(x+ 1

n
τ)− 1

2
U(x)+ 1

2n
A(x)·τ]

×
[
f
(
ρ− 1

nd
δx + 1

nd
δx+ 1

n
τ , w + 1

nd+1 τδx+ 1
2n
τ

)
− f(ρ, w)

]
.

Observe that in both generators, the flux w has a different scaling than the particle density ρ. This
is required to ensure that the discrete-space, finite-n continuity equation converges to the continuous-
space continuity equation with differential operator − div.
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Passing n → ∞ we arrive at the hydrodynamic limit (5.10) with χ(a) := a for the first particle
system and χ(a) := a(1− a) for the second particle system. The corresponding large-deviation cost
function and its dual are

L(ρ, j) =
1

4
‖j − j0(ρ)‖2

L2(1/χ(ρ)), H(ρ, ζ) = ‖ζ‖2
L2(χ(ρ)) +

∫
Td
ζ(x)j0(ρ)(x) dx. (5.12)

See [Ren18b, Sec. 5] for the large-deviations of the random walkers (with A = 0), [KL99, Chap. 10]
for exclusion process without fluxes, and [BDSG+07, Thm. 2.1] for exclusion process with fluxes (with
A = 0).

State-flux triple and L-function. The exact form of the state-flux triple is implied by (5.12). How-
ever, as opposed to the finite-dimensional examples discussed earlier, here we are dealing infinite-
dimensional spaces, which severely complicates the definition of Banach manifolds Z , W and the
mapping φ. Therefore in what follows we will only formally define these objects. The only formality
will be that Z,W are not true manifolds, in the sense that their tangent spaces TρZ, TwW are not
isometrically isomorphic to some fixed Banach space, but rather depend on the points ρ, w. This does
not pose a big problem, as long as we are able to identify the local tangent and cotangent spaces
TρZ, TwW , T ∗ρZ, T ∗ρW , differential dφ and its adjoint dφT that are needed to decompose L locally.

For the state space we choose Z = (P(Td),W2), the space of probability measures on the
(compact) torus, endowed with the Wasserstein-2 metric W2. For any ρ ∈ Z , the corresponding
cotangent and tangent spaces are

T ∗ρZ := {C∞(Td)}
‖·‖1,χ(ρ)

,

TρZ =
{
− div(χ(ρ)h) (in distr. sense) : h ∈ {∇ϕ : ϕ ∈ C∞(Td)}

‖·‖L2(χ(ρ))

}
.

with the standard (semi)norms from Wasserstein-2 geometry [Pel14, Sec. 3.4.2]

‖ξ‖2
1,χ(ρ) := ‖∇ξ‖2

L2(χ(ρ)), ‖u‖2
−1,χ(ρ) := inf

j∈TρW
u=− div j

‖j‖2
L2(1/χ(ρ)).

As in the other examples we fix a reference point ρ0 ∈ Z . For the flux space we then choose

W =
{
w ∈M(Td; Rd) : ρ0 − divw (in distr. sense) ∈ P(Td)

}
endowed with the metric

∀w1, w2 ∈ W , d2
W(w1, w2) := inf

ŵ:[0,1]→W
ŵ(0)=w1,ŵ(1)=w2

∫ 1

0

‖ŵ(t)‖2
L2(1/χ(ρ0−div ŵ(t))) dt.

The corresponding (co-)tangent spaces are

T ∗ρW = L2(χ(ρ)), TρW = L2(1/χ(ρ)),

which is indeed consistent with the structure of (5.12). With these definition we can now write 〈ζ, j〉 =∫
Tdζ(x)j(x) dx for the pairing between any ζ ∈ L2(χ(ρ)) and j ∈ L2(1/χ(ρ)).

Finally we define φ :W → Z as

φ(w) := ρ0 − divw,
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and therefore dφρ = − div : TρW → TρZ is indeed a bounded linear operator with bounded linear
adjoint dφT

ρ = ∇ : T ∗ρZ → T ∗ρW .

Note that this setup is slightly different from the standard Wasserstein geometry, where the fluxes
are defined so as to satisfy ρ̇ = div(ρ j), while in our context the fluxes satisfy ρ̇ = div j. This
difference is merely a convention, and we will see below that the contraction onto Z with χ(ρ) = ρ
leads to the classical Wasserstein setting via the EDI.

Quasipotential. The quasipotential V : Z → R is defined as, recalling (5.11),

V(ρ) =

∫
Td

[
h(ρ(x)) + U(x)ρ(x)

]
dx,

Note that V(ρ) is well-defined for ρ ∈ Z which are absolutely continuous with respect to the uniform
measure on the torus, i.e. ρ(dx) = ρ(x)dx. Using

dV(ρ) = h′(ρ) + U, ∇dV(ρ) = (χ(ρ))−1∇ρ+∇U,

its easy to verify that H(ρ, dφT
ρ dV(ρ)) = 0 and therefore V is indeed a quasipotential in the sense

of Definition 2.5. Note that in the case χ(a) = a, V is the relative entropy with respect to the Gibbs-
Boltzmann measure µ(dx) = Z−1e−U(x) dx.

Dissipation potential, forces and orthogonality. Using Definition (2.8) the driving force is

F (ρ) =
1

2
(χ(ρ))−1j0(ρ),

Dom(F ) =
{
ρ ∈ Z : ρ(dx) = ρ(x)dx, χ(ρ(x)) > 0 almost everywhere

}
.

The dissipation potential and its dual are

Φ∗(ρ, ζ) = ‖ζ‖2
L2(χ(ρ)) + 〈ζ, j0(ρ)− 2χ(ρ)F (ρ)〉 = ‖ζ‖2

L2(χ(ρ)), Φ(ρ, j) =
1

4
‖j‖2

L2(1/χ(ρ)).

Observe that Domsymdiss(F ) = Dom(F ), i.e. the dissipation potential is symmetric. Following Corol-
lary 2.19, the symmetric and antisymmetric forces are

F sym(ρ) = −1

2
dφT

ρ dV(ρ) = −1

2

[
(χ(ρ))−1∇ρ+∇U

]
, F asym(ρ) = F (ρ)− F sym(ρ) = −1

2
A,

with Dom(F sym) = Dom(F ). Note that the antisymmetric force F asym is independent of ρ.

The generalised orthogonality relations in Proposition 2.24 apply with

Φ∗ζ2(ρ, ζ
1) = ‖ζ1‖2

L2(χ(ρ)), θρ(ζ
1, ζ2) = 2(ζ1, ζ2)L2(χ(ρ)),

where (·, ·)L2(χ(ρ)) is the χ(ρ)-weighted L2 norm. This shows that for quadratic dissipation potentials,
the generalised expansion of Proposition 2.24 indeed collapses to the usual expansion of squares,
i.e.:

Φ∗(ρ, ζ1 + ζ2) = ‖ζ1 + ζ2‖2
L2(χ(ρ)) = ‖ζ1‖2

L2(χ(ρ)) + 2(ζ1, ζ2)L2(χ(ρ)) + ‖ζ2‖2
L2(χ(ρ))

= Φ∗(ρ, ζ1) + θρ(ζ
2, ζ1) + Φ∗ζ1(ρ, ζ

2).
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Decomposition of the Lagrangian. The decompositions in Theorem 2.27 hold with the L-functions

L2λF (ρ, j) =
1

4
‖j − 4λχ(ρ)F (ρ)‖2

L2(1/χ(ρ)),

LF−2λF sym(ρ, j) =
1

4
‖j − 2χ(ρ)F asym − 2(1− 2λ)χ(ρ)F sym(ρ)‖2

L2(1/χ(ρ)), (5.13)

LF−2λF asym(ρ, j) =
1

4
‖j − 2(1− 2λ)χ(ρ)F asym − 2χ(ρ)F sym(ρ)‖2

L2(1/χ(ρ)), (5.14)

and the corresponding Fisher informations

Rλ
F (ρ) = H(ρ,−2λF (ρ)) = λ(1− λ) ‖−2F (ρ)‖2

L2(χ(ρ)) ,

Rλ
F sym(ρ) = H(ρ,−2λF sym(ρ)) = λ(1− λ) ‖−2F sym(ρ)‖2

L2(χ(ρ)) ,

Rλ
F asym(ρ) = H(ρ,−2λF asym) = λ(1− λ) ‖−2F asym‖2

L2(χ(ρ)) .

The positivity of these Fisher informations is obvious from the definition. In this setting, the decompo-
sitions in Theorem 2.27 can be derived simply by expanding the squares in the the L-function.

Repeating the calculations in Corollary 2.32 for χ(a) = a, we arrive at the local FIR equality for
diffusion processes (with u as a placeholder for ρ̇) [HPST20, Eq. (14)]

〈dRelEnt(ρ|µ), u〉+
∥∥∥∇ log

ρ

µ

∥∥∥
L2(ρ)

≤ L̂(ρ, j),

where the contracted L-function L̂ is defined in (2.38), the relative entropy with respect to µ is defined
as RelEnt(·|µ) := V(·).

We now briefly comment on the symmetric and antisymmetric L-functions. Substituting λ = 1
2

in (5.14) and expanding the square we find

LF sym(ρ, j) =
1

4
‖j‖2

L2(1/χ(ρ)) +
1

4
‖ − 2χ(ρ)F sym(ρ)‖2

L2(1/χ(ρ)) −
1

2
〈j,−2F sym(ρ)〉

=
1

4
‖j‖2

L2(1/χ(ρ)) +
1

4
‖∇dV(ρ)‖2

L2(χ(ρ)) −
1

2
〈div j, dV(ρ)〉,

where we have used −2F asym(ρ) = ∇dV(ρ) and the definition of ‖ · ‖−1,χ(ρ). Using this decompo-
sition of LF sym , the contracted symmetric L-function

L̂F sym(ρ, u) := inf
j∈TρW:u=− div j

LF sym(ρ, j),

admits the decomposition

L̂F sym(ρ, u) = Ψ(ρ, u) + Ψ∗(ρ,−1
2
dV(ρ)) +

1

2
〈dV(ρ), u〉, (5.15)

where the contracted dissipation potential Ψ(ρ, u) =
1

4
‖u‖2

−1,χ(ρ) and its dual Ψ∗(ρ, s) = ‖s‖2
1,χ(ρ)

(recall abstract definition in (2.40)). The decomposition (5.15) is the standard Wasserstein-based EDI
for the drift-diffusion equation (5.10) (see for instance [MPR14, Sec. 4.2]).

Similarly, the purely antisymmetric L-function and its contraction read

LF asym(ρ, j) =
1

4
‖j + χ(ρ)A‖2

L2(1/χ(ρ)), L̂F asym(ρ, u) =
1

4
‖u+ div(χ(ρ)A)‖2

−1,χ(ρ),

with zero-cost velocity u0(ρ) = − div(χ(ρ)A) = −∇(χ(ρ)) ·A. While the corresponding evolution
equation ρ̇(t) = div(χ(ρ)A) preserves the energy

E : Z → R, E(ρ) :=

∫
Td
U(x) dρ(x),
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it is not clear if we can define an operator J such that Conjecture 2.36 holds. However in the case
A = J∇U where J ∈ Rd×d is a constant skew-symmetric matrix, we define the operator

J : Z → (T ∗ρZ → TρZ), J(ρ)(ζ) := div(ρJ∇ζ).

Using the antisymmetry of J it follows that

〈ζ1,J(ρ)ζ2〉 =

∫
Td
ζ1 div(ρJ∇ζ2) = −

∫
Td
∇ζ1 · J∇ζ2ρ = −〈J(ρ)ζ1, ζ2〉,

i.e. J is a skew-symmetric operator. Furthermore J satisfies the Jacobi identity by an elementary
but tedious calculation which we skip. Therefore the antisymmetric zero-cost velocity indeed evolves
according to the standard Hamiltonian system (see for instance [DPZ13, Section 3.2]) with energy E
and Poisson structure J.

6 Conclusion and discussion

In this paper we have presented an abstract macroscopic framework, which, for a given flux-density
L-function, provides its decomposition into dissipative and non-dissipative components and a gen-
eralised notion of orthogonality between them. This decomposition provides a natural generalisation
of the gradient-flow framework to systems with non-dissipative effects. Specifically we prove that the
symmetric component of the L-function corresponds to a purely dissipative system and conjecture that
the antisymmetric component corresponds to a Hamiltonian system, which has been verified in several
examples. We then apply this framework to various examples, both with quadratic and non-quadratic
L-functions.

We now comment on several related issues and open questions.

Why does the density-flux description work? While at the level of the evolution equations which
are of continuity-type, the density-flux description does not offer any advantage (recall (1.1)), at the
level of the cost functions it allows us to naturally encode divergence-free effects. This is clearly visible
for instance in Theorem 2.27, where the evolutions corresponding to LF sym , LF asym are dissipative
and energy-preserving respectively, while the zero of the full L-function characterises the macroscopic
evolution. A simple contraction argument allows us to retrieve the classical gradient-flow structure as
well as the FIR inequalities in a fairly general setting, which further reveals the power of this description.

Antisymmetric force and L-function. While in the abstract framework the antisymmetric forceF asym =
F asym(ρ) is a function of ρ ∈ Dom(F asym), in all the concrete examples studied in this paper, F asym

is independent of ρ. It is not clear to us if this is a general property of the antisymmetric force or a
special characteristic of the examples studied in this paper.

In Section 2.6 we conjectured that the zero-velocity flux for the contracted antisymmetric L-function
admits a Hamiltonian structure, which was concretely proved for IPFG and zero-range process in
Proposition 4.2, 5.3 respectively. While this gives insight into the associated zero-flows, it is not clear
if LF asym admits a variational formulation akin to the gradient-flow structure for LF sym discussed in
Corollory 2.34.

Chemical-reaction networks. Complex balance (5.8) has been assumed in the literature to ensure
the existence of an invariant measure in the chemical-reaction network (see for instance [ACK10,
Thm. 3.3]). However the proof of Proposition 5.4, which states that the relative entropy is the quasipo-
tential, uses a weaker assumption than complex balance (see footnote 4). An important open question
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is whether this weaker assumption is a substantial relaxation of the complex balance assumption and
whether it is sufficient to prove the existence of an invariant measure.

Furthermore, the Hamiltonian structure of the zero-velocity for LF asym in the chemical-reaction
setting is open. As pointed out in Section 5.2, the non-locality of the jump rates for chemical-reaction
networks offers a challenge as opposed to the local jump rates for IPFG and zero-range process.

Generalised orthogonality. The notion of generalised orthogonality as introduced in Section 2.4
allows us to decompose the L-function as in Theorem 2.27 for the special case λ = 1

2
. However a

natural question is whether this notion of orthogonality encoded via θρ can be generalised to allow for
any λ ∈ [0, 1]. This would provide a deeper understanding of our main decomposition Theorem 2.27
as well as a clear interpretation of the Fisher information in terms of a modified dissipation potential.

Quasipotentials for multiple invariant measures. In Remark 3.8 we discussed the possibility of hav-
ing multiple quasipotentials. On a macroscopic level, forcing uniqueness for non-quadratic Hamilton-
Jacobi equations is generally challenging. This is not merely a technical issue, since even on a mi-
croscopic level there may be multiple invariant measures; we have not pursued this possibility any
further.

Global-in-time decompositions. In this paper we have focussed on the local-in-time description of
the L-function as opposed to working with time-dependent trajectories. While it is not obvious how to
generalise the various abstract results to allow for global-in-time descriptions, we expect that it can
be worked out case by case for the examples presented in this paper. The main difficulty here is that
the time-dependent trajectories are allowed to explore the boundary of the domain where the forces
are not well-defined, and therefore an appropriate regularisation procedure is required to extend the
domain of definition of these forces.
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Appendices

A Hamiltonian structure for linear antisymmetric flow

For the ease of notation, throughout this appendix we will use 〈·, ·〉 to denote the standard inner
product of vectors in Rd. We study the linear ODEs of the form

ω̇ =
1

2
Aω ∈ Rd with ATω∗ = Aω∗ = 0 for some ω∗ 6= 0. (A.1)
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In Theorem A.2 we provide a complete characterisation of a natural Hamiltonian structure for these
ODEs. In contrast to the typical settings of Hamiltonian systems, where A ∈ Rd×d is assumed to
be skew-symmetric, here we assume the existence of an invariant vector ω∗ for the dynamics. The
zero-cost antisymmetric flux for the IPFG system discussed in Section 4 is of the form (A.1).

The following lemma provides a useful alternate characterisation of the Jacobi identity for Poisson
structures which will be used to prove Theorem A.2 below.

Lemma A.1. For any x ∈ Rd, define {·, ·} : Rd × Rd → R by

{G1(x),G2(x)} := 〈DG1, J̃DG2〉, (A.2)

where G1,G2 : Rd → R are C2-mappings, D is the Jacobian, and the C1 matrix-valued function
x → J̃(x) ∈ Rd×d is antisymmetric, i.e. J̃T = −J̃. The bracket (A.2) satisfies the Jacobi identity if
and only if for any smooth G1,G2,G3 : Rd → R we have

〈G1, DJ̃[J̃G2]G3〉+ 〈G2, DJ̃[J̃G3]G1〉+ 〈G3, DJ̃[J̃G1]G2〉 = 0, (A.3)

where Df [v] is the directional derivative of f along the vector v and the identity holds for every
x ∈ Rd.

The proof follows by straightforward manipulation of the Jacobi identity. We now present the Hamil-
tonian structure for (A.1).

Theorem A.2. The linear ODE (A.1) admits the Hamiltonian system (Rd, Ẽ , J̃) with the linear energy
and the linear Poisson structure

Ẽ(ω) = c− 〈ω∗, ω〉, J̃(ω) =
1

2|ω∗|2
(
ω∗ ⊗ (Aω)− (Aω)⊗ ω∗

)
,

for any c ∈ R. Consequently ω̇ = J̃(ω)DẼ(ω).

Proof. For any b ∈ Rd we have

J̃(ω)b =
1

2|ω∗|2
(〈Aω, b〉ω∗ − 〈ω∗, b〉Aω) =

1

2|ω∗|2
(
〈ω,ATb〉ω∗ − 〈ω∗, b〉Aω

)
and inserting b = ω∗ in this relation and using ATω∗ = 0 it follows that 1

2
Aω = −J̃(ω)ω∗ =

J̃(ω)DẼ(ω). Since J̃(ω)T = −J̃(ω) be definition, we only need to prove the Jacobi identity (A.3) to
prove this result. Using the linearity of J̃ we find DJ̃(ω)[v] = J̃(v), and therefore for any G ∈ Rd we
have

DJ̃(ω)[J̃(ω)G] = J̃(J̃(ω)G) =
1

2|ω∗|2
(
ω∗ ⊗

(
AJ̃(ω)G

)
−
(
AJ̃(ω)G

)
⊗ ω∗

)
.

Using Aω∗ = 0 we find

AJ̃(ω)G = − 1

2|ω∗|2
〈G, ω∗〉A2ω.

Using the above two relations we arrive at

〈G1, DJ̃(ω)[J̃(ω)G2]G3〉 =
1

4|ω∗|4
(
〈G1, A

2ω〉〈G2, ω∗〉〈ω∗,G3〉 − 〈G1, ω∗〉〈G2, ω∗〉〈A2ω,G3〉
)
.

Similarly computing the remaining two terms in the left hand side of (A.3) and adding we have the
required result.
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