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Absolute stability and absolute hyperbolicity in systems with
discrete time-delays

Serhiy Yanchuk, Matthias Wolfrum, Tiago Pereira, Dmitry Turaev

ABSTRACT. An equilibrium of a delay differential equation (DDE) is absolutely stable, if it is locally
asymptotically stable for all delays. We present criteria for absolute stability of DDEs with discrete time-
delays. In the case of a single delay, the absolute stability is shown to be equivalent to asymptotic
stability for sufficiently large delays. Similarly, for multiple delays, the absolute stability is equivalent to
asymptotic stability for hierarchically large delays. Additionally, we give necessary and sufficient condi-
tions for a linear DDE to be hyperbolic for all delays. The latter conditions are crucial for determining
whether a system can have stabilizing or destabilizing bifurcations by varying time delays.
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1. INTRODUCTION

Delay differential equations (DDE) play an important role in modeling various processes in nature
and technology. Examples are optoelectronic systems [18–20,57,62,66,67], population and infections
disease modeling [1,15,18,26,35,42,51,55,56,71], neuroscience [32,33,49,64,70], machine learning
[3,21,36,37,58], mechanics [26,29,30,45,46,60], and other fields. Driven by industrial developments
and automatic control devices, DDE theory was rapidly developing since the middle of the 20th century
[7,43,48]. Several monographs have been published, see, for example, [4,6,16,18,22,25,59].
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S. Yanchuk, M. Wolfrum, T. Pereira, D. Turaev 2

It is a basic fact that the equilibria of a DDE do not change under variations of the delay time. In general,
their stability properties may change under such variations. Indeed, in many cases increasing delay
is known to induce additional instabilities. However, there is also the case, called absolute stability,
where the stability of an equilibrium remains unchanged for all possible non-negative delay times.
Considering linear DDEs with discrete delays

(1.1)
dx

dt
(t) = A0x(t) +

m∑
k=1

Akx(t− τk),

with x ∈ Rn, τk ≥ 0, A0, Ak ∈ Cn×n, k = 1, . . . ,m. System (1.1) is the linearization at an equi-
librium of autonomous DDEs. The stability of DDE (1.1) is described by the roots of the characteristic
quasipolynomial

(1.2) Q(λ) = P (λ, e−λτ1 , . . . , e−λτk) = det

[
λ · I− A0 −

m∑
k=1

Ake
−λτk

]
= 0,

where I is the identity matrix.

We present a new criterion for the absolute stability of Eq. (1.1), i.e., a necessary and sufficient
condition on the matrices Ak such that all roots λ of the quasipolynomial (1.2) have negative
real parts for arbitrary non-negative delays τk. Our Theorems 2 and 3 generalize known results
[2,5,6,8,10,11,14,17,27,34,38,44,48,50,56,61,63,72] and have three main advantages:

� simple to check (conditions on compact sets);
� they give necessary and sufficient conditions;
� geometric interpretation using certain limiting spectral sets.

Moreover, the absolute stability appears to be equivalent to the asymptotic stability for hierarchically
large delays 1� τ1 � · · · � τm, which, for the case m = 1, is the asymptotic stability for a single
large delay.

Additionally, we provide a criterion for system (1.1) to be hyperbolic for all time delays, i.e., the condition
for the absence of the roots of the characteristic polynomial λ with zero real parts. In particular, this
means that under the obtained conditions one cannot change the stability of the equilibrium in (1.1); it
remains either asymptotically stable or unstable for all delays.

Let us first give a brief overview of the known results on the absolute stability. One of the first con-
ditions is due to Pontryagin [48]. This criterium involves the verification of certain properties of the
characteristic equation evaluated along the whole imaginary axis ∆(iy) as well as some additional
implicit conditions. The Potryagin conditions have been used in many applications [6,24].

In [11], Brauer gave sufficient conditions for the absolute stability of the characteristic equation

(1.3) F (λ) +G(λ)e−λτ = 0,

which is a polynomial of the first order in e−λτ . Comparing it with (1.2), this corresponds to a single
delay and a rank one matrix A1. On the other hand, equation (1.3) can appear in some cases with
distributed delays, which we do not consider here. The Brauer’s conditions have been applied in,
e.g. [14,56].

Cooke and van der Driessche also considered Eq. (1.3) as well as a generalization to multiple delays
in [14]; they provided sufficient conditions for the absolute stability. Chin Yuang-Shun [72] gave criterion
for the case of one delay. This criterion requiresQ(iy) 6= 0 for all y ∈ R and all τ1 ≥ 0, which includes
the time-delay as a parameter. Instead, a practically employable criterion for absolute stability in the
case of a single delay should be delay-independent and given by an at most one-parameter condition.
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Absolute stability and absolute hyperbolicity in systems with discrete time-delays 3

In section 4, we provide such a criterion and explain its geometrical meaning. The Pontryagin type
conditions, in contrast, are hard to check, and in the case of multiple delays they are very laborious.

Several other sufficient conditions are given in [17, 34], for the case of two delays in [50], neutral
equations in [9], and some special types of equations in [2,5,8,10,27,44]. In [12,38], a strong delay-
independent stability is used to give sufficient conditions for the absolute stability, which is called there
weak delay-independent stability. Applications to control problems are considered in [61,63].

2. GENERAL CRITERION FOR ABSOLUTE STABILITY

First, we introduce some notation and definitions. Our notation is that of Ref. [25]. Given a bounded
linear operator A, its spectrum is denoted by σ(A) and its spectral radius is denoted by ρ(A). An
n× n matrix A is Hurwitz if <σ(A) < 0.

Given a finite family of operators Ak : Cn → Cn for k = {0, 1, . . . ,m} of Eq. (1.1), we consider
feedback phases Φ = (ϕ1, . . . , ϕm) ∈ Tm and

S(Φ) = A0 +
m∑
k=1

Ake
iϕk .

Our key object is the phase dependent spectrum σ(S(Φ)) ⊂ C, which will contain key information
about the stability of the system.

Definition 1. System (1.1) is absolutely stable if all roots λ of the characteristic equation (1.2) possess
negative real parts < (λ) < 0 for all τk ≥ 0, k = 1, . . . ,m. Similarly, we call (1.1) absolutely
hyperbolic if all roots have nonzero real parts for all delays.

As follows from the general DDE theory [25], in case of absolute stability, all solutions of the initial
value problem for DDE (1.1) are exponentially asymptotically stable, i.e. x(t;ϕ) → 0 exponentially
fast with t→∞ for any initial function ϕ(θ) = x(θ;ϕ), θ ∈ [−maxk τk, 0].

The following theorem provides a general criterion for the absolute stability in the case of multiple
discrete delays.

Theorem 2. System (1.1) is absolutely stable if and only if the following conditions are satisfied:
(A1.1) [instantaneous stability]: A0 is Hurwitz.
(A1.2) [nonsingular S(0)]: S(0) is nonsingular.
(A1.3) [no resonance]: iω /∈ σ(S(Φ)) for all Φ ∈ Tm and ω 6= 0.

Moreover, the conditions (A1.2) and (A1.3) are necessary and sufficient for system (1.1) to be abso-
lutely hyperbolic.

Let us discuss the meaning of the above conditions. Condition (A1.1) [instantaneous stability] means
that the corresponding instantaneous ODE system ẋ = A0x must be exponentially stable. Condition
(A1.2) [nonsingular S(0)] is equivalent to the requirement that the characteristic quasipolynomial (1.2)
does not possess a zero root. We will later show that, taking into account (A1.1) [instantaneous sta-
bility] and (A1.3) [no resonance], the condition (A1.2) can be replaced by the requirement that S(0) is
Hurwitz. Hence, (A1.2) [nonsingular S(0)] contributes to the exponential stability of the ODE system
ẋ = S(0)x obtained from (1.1) for zero delays.

Condition (A1.3) [no resonance] means that the spectrum of the m-parametric set of matrices S(Φ)
cannot cross the imaginary axis apart from the origin. We will show later that, taking into account
(A1.1) [instantaneous stability], the condition (A1.3) is equivalent of having S(Φ) “almost Hurwitz”,
i.e., <σ (S(Φ)) < 0 except that the possible zero eigenvalue. We will also show that σ (S(Φ)) can
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be in a certain sense related to the asymptotic spectrum in delay systems with hierarchically long
delays. Moreover, purely imaginary eigenvalues iω of σ(S(Φ)), which we call resonances, appear as
characteristic roots of (1.2) at an infinite sequence of resonant delay times.

Moreover, purely imaginary values iω ∈ σ(S(Φ)) correspond to certain ”resonances” and the ap-
pearance of critical characteristic roots for countable number of delays.

The three conditions (A1.1), (A1.2), and (A1.3) are finite-dimensional problems involving the calcula-
tion of the spectrum of some n×n matrices. The condition (A1.3) [no resonance] contains a compact
m-parameter family of matrices.

The conditions for absolute stability can be equivalently formulated as follows.

Theorem 3. System (1.1) is absolutely stable if and only if the following conditions are satisfied:
(A1.2) [nonsingular S(0)]: S(0) is nonsingular.
(A2.2) [almost Hurwitz S(Φ)]: S(Φ) is Hurwitz, except for a possible zero eigenvalue.

The proof will be given in Sec. 6.

Combining the asymptotic spectral theory from [39, 54] for the case of one delay with Theorem 2, we
can show that the absolute stability is determined by the stability at large delays. In particular, we
obtain the following

Corollary 4. System (1.1) with one delay is absolutely stable if and only if it is asymptotically exponen-
tially stable for all sufficiently large delays, i.e. there exists τL such that <(λ) < 0 for all characteristic
roots and all τ > τL.

In fact, Corollary 4 is a consequence of the following more general statement for the case of multiple
delays.

Theorem 5. System (1.1) is absolutely stable if and only if the system with hierarchical time delays

(2.1) τ1 = ε−1, τk = νkε
−k, k = 2, . . . ,m,

is asymptotically exponentially stable for all sufficiently small ε� 1 and all νk ∈ [1, 1 + εk−1).

The stability for one large delay has a useful interpretation from the point of view of a singular map. By
rescaling the time t = T/ε with ε = 1/τ , we obtain

(2.2) εẋ(T ) = A0x(T ) + A1x(T − 1).

By neglecting formally the left-hand side, we obtain the singular map

(2.3) x(T ) = −A−10 A1x(T − 1),

This hints that the stability of the system can be obtained at a formal level by a discrete dynamical
system. There are many publications devoted to relations between the DDE (2.2) and the singular
map (2.3), see [13, 23, 25, 28, 31, 40, 41, 47, 52, 65, 68]. In fact, in order to obtain equivalent stability
conditions, one should consider an extended singular map

(2.4) x(T ) = (iωI− A0)
−1A1e

iϕx(T − 1).

We will provide a discussion about this form in Sec. 4.5. Using this dynamical system we can conclude
absolute stability as shown in the following

Corollary 6. System (1.1) for one delay is absolutely stable if and only if

� A0 is Hurwitz;
� the discrete dynamical system (2.4) is asymptotically exponentially stable for ω 6= 0;

DOI 10.20347/WIAS.PREPRINT.2824 Berlin 2021
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� for ω = 0, the discrete dynamical system (2.4) possesses multipliers µ with |µ| ≤ 1 and µ 6= 1,
i.e., it is either asymptotically exponentially stable or neutral with µ = eiϕ, ϕ 6= 2πk.

Organisation of the manuscript. We provide examples of the application of Theorem 2 to scalar
DDE with multiple delays in Sec. 3 and give a geometric interpretation of the obtained criterion for one
delay in a system of DDE’s in Sec. 4 emphasising the role of asymptotic spectrum for large delays.
We consider the case of multiple hierarchical delays in Sec. 5. We offer proofs of Theorems 2 and 3
in Sec 6. Finally, we provide conclusions and some open problems in Sec. 7.

3. SCALAR DDES

In the case of scalar DDEs

(3.1) ẋ(t) = a0x(t) +
m∑
k=1

akx(t− τk), aj ∈ C, j = 1, . . . ,m,

the absolute stability conditions can be significantly simplified.

Corollary 7. System (3.1) is absolutely stable if and only if the following conditions are satisfied

(3.2) < (a0) +
m∑
k=1

|ak| < 0 for =(a0) 6= 0,

(3.3) a0 +
m∑
k=1

|ak| ≤ 0 and
m∑
k=0

ak 6= 0 for =(a0) = 0.

Proof. We verify that the conditions of Theorem 3 are equivalent to (3.2)–(3.3). In order to simplify the
condition (A2.2) [almost Hurwitz S(Φ)] for the scalar case, we observe that the maximum of the real
part of a0 +

∑m
k=1 ake

iϕk is achieved at ϕk = − arg ak, k = 1, . . . ,m, and it equals

(3.4) max
ϕ1,,...,ϕm

(
<

(
a0 +

m∑
k=1

ake
iϕk

))
= < (a0) +

m∑
k=1

|ak|.

For =(a0) 6= 0, this isolated maximum has nonzero imaginary part and must be negative accordingly
to (A2.2). Therefore, we obtain (3.2) with strict inequality as an equivalent to (A2.2).

For =(a0) = 0, the maximum (3.4) is a0 +
∑m

k=1 |ak|. As zero is allowed accordingly to the condition
(A2.2) [almost Hurwitz S(Φ)], we obtain non-strict inequality in (3.3).

Finally, we observe that
∑m

k=0 ak 6= 0 is equivalent to (A1.2) [nonsingular S(0)]. This inequality must
be added in (3.3) only, since

∑m
k=0 ak 6= 0 is satisfied under the condition (3.2). �

Numerical examples with scalar DDEs will be presented in Secs. 4.4 and 5.3.

4. THE CASE OF ONE DELAY, GEOMETRIC INTERPRETATION

Since the case of one discrete delay appears most often in applications, we discuss it here in more
detail. In particular, we give a geometric interpretation using the asymptotic spectrum for large delay.

DOI 10.20347/WIAS.PREPRINT.2824 Berlin 2021
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4.1. Auxiliary results. The following technical Lemmas will be needed.

Lemma 8. Let A,B ∈ Cn×n. If A+Beiϕ is Hurwitz for all ϕ ∈ T, then A is Hurwitz.

Proof. Assume the opposite, that is λ0 ∈ σ(A) with < (λ0) ≥ 0. Consider the function

P (λ, z) = det
(
−λI + A+ zBeiϕ

)
,

which is a polynomial in λ. There exists a continuous branch of complex roots λ(z) of this polynomial
such that λ(0) = λ0,<(λ(0)) ≥ 0 and <(λ(1)) < 0. Due to continuity, there exists a real number
ẑ ∈ [0, 1) such that λ(ẑ) = iω̂. Hence, we have P (iω̂, ẑ) = 0. Consider P (iω, z) = 0 as a
polynomial in z. If this polynomial depends trivially on z at ω = ω̂, then P (iω̂, 1) = 0 and we
immediately obtain the contradiction to the Hurwitz property of A + Beiϕ. If P (iω, z) is a nontrivial
polynomial in z at ω = ω̂, then there exists a continuous branch of complex roots z(ω) such that
z(ω̂) = ẑ, |z(ω̂)| < 1, and |z(ω)| → ∞ as ω → ∞. Hence, there exists ω̃ > ω̂ such that
|z(ω̃)| = 1. This means that P (iω̃, ei arg z(ω̃)) = 0, and the matrixA+Bei(ϕ+arg z(ω̃)) is not Hurwitz.
The contradiction proves the Lemma. �

Lemma 9. Let A ∈ Cn×n be Hurwitz. Then, for any B ∈ Cn×n, one of the following three mutually
exclusive cases occurs:
I. A+Beiϕ is Hurwitz for all ϕ ∈ T;
II. There exist ω̃ 6= 0 and ϕ̃ such that iω̃ ∈ σ

(
A+Beiϕ̃

)
;

III. There exist one or several values ϕ̃1, . . . , ϕ̃l (l ≤ n) such that 0 ∈ σ
(
A+Beiϕ̃j

)
, j = 1, . . . , l,

and A+Beiϕ is Hurwitz for all ϕ 6= ϕ̃j , j = 1, . . . , l.

Proof. We must show that if A + Beiϕ is not Hurwitz for some ϕ, then either the case II or III is
realized.

Assume that A+Beiϕ0 is not Hurwitz, i.e.,

(4.1) det
(
−λ1I + A+Beiϕ0

)
= 0 with <(λ1) ≥ 0.

Consider the function
Q(λ, z) = det

(
−λI + A+ zBeiϕ0

)
,

which is a polynomial in λ. There exists a continuous branch of complex roots λ(z), z ∈ C, which
solves the polynomialQ(λ(z), z) = 0 and satisfies λ(1) = λ1,<(λ(1)) ≥ 0. Moreover,< (λ(0)) <
0 due to the fact that A is Hurwitz. Hence, due to continuity of λ(z), there exists ẑ with |ẑ| ≤ 1 such
that λ(ẑ) = iω̂ and < (λ(z)) < 0 for all |z| < |ẑ|. That is, we obtain

Q(iω̂, ẑ) = det
(
−iω̂I + A+ ẑBeiϕ0

)
= 0, |ẑ| ≤ 1,(4.2)

< (λ(z)) < 0 for all |z| < |ẑ|.(4.3)

Consider the case |ẑ| = 1 and denote ẑ = eiϕ̂. For convenience, we rewrite Eqs. (4.2)–(4.3) for this
case:

det
(
−iω̂I + A+Bei(ϕ0+ϕ̂)

)
= 0,(4.4)

< (λ(z)) < 0 for all |z| < 1.(4.5)

Due to (4.5), by continuity, we obtain < (λ(eiϕ)) ≤ 0 for all ϕ. Hence, it holds that either iω̂ ∈
σ
(
A+Bei(ϕ0+ϕ̂)

)
or A + Beiϕ is Hurwitz for all ϕ 6= ϕ0 + ϕ̂. There can be up to n isolated pairs

(ω̂, ϕ̂) satisfying (4.4).

If there are ω̂ 6= 0 among the solutions of (4.4), then we immediately obtain the case II of Lemma with
ω̃ = ω̂ and ϕ̃ = ϕ0 + ϕ̂. If there are only zero values ω̂ = 0, we obtain the case III of Lemma with
ϕ̃ = ϕ0 + ϕ̄.
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Consider the case |ẑ| < 1 and the function

Q(iω, z) = det
(
−iωI + A+ zBeiϕ

)
as a polynomial in z. We have, in particular, from (4.2), that z(ω̂) = ẑ, |ẑ| < 1. The polynomial
Q(iω̂, z) depends non-trivially on z, i.e., some coefficient of this polynomial does not vanish. Indeed,
otherwise we obtain det (−iω̂I + A) = Q(iω̂, 0) = Q(iω̂, ẑ) = 0, which contradicts the assumption
that A is Hurwitz. Therefore, there exists a branch of complex roots z(ω) of Q(iω, z), which depends
continuously on ω, and z(ω̂) = ẑ, |ẑ| < 1. Moreover, it is easy to see that |z| → ∞ as |ω| → ∞.
Due to continuity, there exist ω̃1 ∈ (ω̂,∞) and ω̃2 ∈ (−∞, ω̂) such that |z(ω̃1,2)| = 1. The two
points ω̃1,2 cannot be zero at the same time. Let ω̃ be such nonzero point. Therefore, we have shown
that iω̃ ∈ σ

(
A+Beiϕ̃

)
with ϕ̃ = ϕ0 + arg z(ω̃). This corresponds to the case II. �

4.2. Absolute stability conditions in terms of extended singular maps (2.4). The following lemma
shows that condition (A2.2) [almost Hurwitz S(Φ)] can be recast in terms of a spectral radius criterion.

Lemma 10. Assume A0 is Hurwitz. Then the following statements hold:

(I) e−iϕ ∈ σ
(
(iωI− A0)

−1A1

)
if and only if iω ∈ σ (A0 + A1e

iϕ).

(II) ρ
[
(iωI− A0)

−1A1

]
< 1 for all ω ∈ R if and only if A0 + A1e

iϕ is Hurwitz for all ϕ ∈ S1.

(III) ρ
[
(iωI− A0)

−1A1

]
< 1 for all ω 6= 0 if and only if < [σ (A0 + A1e

iϕ) \ {0}] < 0 for all
ϕ ∈ S1.

Proof. (I) follows from the equivalent expressions

det
[
e−iϕI− (iω − A0)

−1A1

]
= 0,

det
[
iωI− A0 − A1e

iϕ
]

= 0.

(II) Assume ρ
[
(iω − A0)

−1A1

]
< 1 for all ω ∈ R. Then (I) implies that the matrix A0 + A1e

iϕ

possesses no purely imaginary eigenvalues. Since A0 is Hurwitz, Lemma 9 implies that A0 + A1e
iϕ

is also Hurwitz.

To prove the converse, assume A0 + A1e
iϕ is Hurwitz and let us show that the condition

ρ
[
(iω − A0)

−1A1

]
< 1 holds for all ω. It clearly holds for sufficiently large ω. If, it fails for some

ω, then, there must exist ω = ω0 such that eiϕ ∈ σ
[
(iω0 − A0)

−1A1

]
= 1. However, the statement

(I) implies that A0 + A1e
iϕ is not Hurwitz.

(III) This statement follows from the continuity of eigenvalues as functions of ω and statements (I) and
(II). �

With Lemma 10 we obtain that for systems with one delay the criteria for absolute stability from Theo-
rems 2 and 3 can be equivalently reformulated as follows.

Lemma 11. System (1.1) with a single delay is absolutely stable if and only if the following conditions
are satisfied:

(A): A0 is Hurwitz.

(B): A0 + A1 is nonsingular

(C)

(4.6) ρ
(
(iωI − A0)

−1A1

)
< 1 for all ω 6= 0.

Lemma 11 implies immediately the statement of Corollary 6.
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4.3. Absolute stability and asymptotic spectrum. In view of Corollary 4, the stability for large de-
lays and the absolute stability are equivalent. In this section, we discuss this relation in more details.
The spectrum of DDEs can be well approximated in the limit τ →∞. More specifically, the spectrum
of DDEs with one large discrete delay can be generically divided into two parts [39,54,68]:

(i) The strongly unstable part Ssu, which is approximated by the unstable spectrum of A0, i.e. σ(A0)
with <σ (A0) > 0, and

(ii) the pseudo-continuous spectrum Spc, which is approximated by the curves

(4.7) B1 =

{
z ∈ C : z =

1

τ
γj(ω) + iω, ω ∈ R, j = 1, . . . ,m1

}
in the complex plane. The functions γj(ω) are given by

(4.8) γj(ω) = − ln |Yj(ω)| ,
where Yj(ω), j = 1, rankA1, are the roots of the spectral polynomial

(4.9) p(iω, Y ) = det [iω · I− A0 − A1Y ] .

In particular, the functions γj(ω) are continuous except for the isolated points ωs where
limω→ωs γj(ω) = ±∞. The points ωs where limω→ωs γj(ω) = +∞ are determined by the con-
dition iωs ∈ σ(A0). Clearly, if such a point exists, it leads to an instability for large delays.

Definition 12. The set (4.7) is called the asymptotic continuous spectrum [39].

We are now ready to provide an interpretation of the conditions of Lemma 11 in terms of the asymptotic
spectrum. Condition (A), i.e. < (σ(A0)) < 0, is also the same as (A1.1) [instantaneous stability] in
Theorems 2 and 3. It guarantees that, first, the strongly unstable spectrum is absent, and, second, the
asymptotic continuous spectrum possess no singularities, see Fig. 4.1. Condition (B) is the same as
(A1.2) [nonsingular S(0)] in Theorems 2 and 3, and it excludes the existence of the trivial eigenvalue
λ = 0. Condition (C) guarantees that the asymptotic continuous spectrum is located in the open left
half of the complex plane <(λ) < 0, possibly touching the origin, see Fig. 4.1. Indeed, let µ be an
eigenvalue of (iωI − A0)

−1A1. Then the condition (C) from Theorem 11 can be rewritten as

det
[
iωI − A0 − µ−1A1

]
= 0, |µ| < 1, ω 6= 0,

which means that all roots Yj(ω), j = 1, rankA1, of the spectral polynomial (4.9) satisfy |Yj(ω)| > 1
for ω 6= 0, implying γj(ω) < 0 for all ω 6= 0.

4.4. Scalar DDEs with one delay. As a simple illustration, we present the complex scalar DDE

(4.10) ẋ(t) = a0x(t) + a1x(t− τ)

with the characteristic equation

(4.11) λ− a0 − a1e−λτ = 0,

a0, a1 ∈ C. For this case, the real part of the asymptotic continuous spectrum has a unique global
maximum at ω = =(a0). Indeed, the spectral polynomial (4.9) has one root Y = (iω − a0)/a1
leading to

γ(ω) = −1

2
ln
(
(ω −=(a0))

2 + (<(a0))
2)+ ln |a1|

with

(4.12) max
ω∈R

γ(ω) = γ(=(a0)) = − ln

∣∣∣∣<(a0)

a1

∣∣∣∣ .
The absolute stability criterion for (4.10) follows form Theorem 7:
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FIGURE 4.1. Spectrum (blue points) and the asymptotic continuous spectrum (4.7)
(orange lines) of the scalar system (4.10). The upper panels (a-c) correspond to an
absolutely stable case for the parameter values a0 = −1 + i and a1 = 0.5. Time-
delay is increasing from (a) to (c): τ = 0.5 (a), τ = 5 (b), and τ = 20 (c). Similarly, the
lower panels (d-f) illustrate a case without absolute stability for the parameter values
a0 = −1 and a1 = −1.5. Time-delays are: τ = 0.5 (d); τ = 5 (e), and τ = 20 (f).

Corollary 13. The DDE (4.10) is absolutely stable if and only if the following conditions are satisfied:

(4.13)

{
<(a0) + |a1| < 0, =(a0) 6= 0

a0 + |a1| ≤ 0 and a0 + a1 6= 0, =(a0) = 0.

It is easy to see that the conditions of the Corollary 13 imply the stability of the asymptotic spectrum.
The asymptotic continuous spectrum is allowed to touch the imaginary axis at the origin, and this is
the case when a0 + |a1| = 0, however, the additional condition a0 + a2 6= 0 forbids the appearance
of the trivial eigenvalue.

Finally, we notice that the asymptotic continuous spectrum crosses the imaginary axis at the points

ωH = =(a1)±
√
|a2|2 − (<(a1))

2

in the unstable case. The values ωH are possible frequencies of the Hopf bifurcations in corresponding
nonlinear systems.

4.5. Discussion of Corollary 6. Here we explain the physical meaning of the extended singular map
(2.4), which appears in Corollary 6 and determines the absolute stability. According to the corollary
assumptions, it must be exponentially stable for all ω 6= 0 and any ϕ ∈ T. The map (2.4) can
be obtained form the single-delay DDE by substituting x(t) = y(t)eiωt/ε, ϕ =ω/ε, and formally
neglecting the term εẏ. From the physical point of view, equation (2.4) regulates the amplification or
damping of rapid oscillations with frequency ω/ε. By rescaling the time back to the original form, these
are frequencies ω.
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5. MULTIPLE DELAYS

5.1. Equivalence of absolute stability and asymptotic stability for hierarchically large delays. In
this section we show that the criterium for the absolute stability for arbitrary positive delays is equivalent
to the stability for hierarchically large time-delays, i.e., the asymptotic stability for 1 � τ1 � · · · �
τm. Such an equivalence is a generalization of Corollary 4 for one large delay. Interestingly, due to the
symmetry of the conditions for the absolute stability with respect to the numbering of the delays, the
order τk in this case does not play any role.

For the proof, we will need several Lemmas.

Lemma 14. Let A ∈ Cn×n and iω0 ∈ σ(A). Then, for any B ∈ Cn×n, one of the following two
mutually exclusive cases occurs:
I. There exist ω̃ 6= 0 and ϕ̃ ∈ T such that iω̃ ∈ σ

(
A+Beiϕ̃

)
.

II. ω0 = 0 and 0 ∈ σ (A+Beiϕ) for all ϕ ∈ T.

Proof. Consider the function

Q(iω, z) = det (−iωI + A+ zB) .

The Lemma’s assumption implies Q(iω0, 0) = 0. Two cases are possible:
1. The polynomial Q(iω0, z) does not depend on z. In such a case, for arbitrary z, we have
Q(iω0, z) = Q(iω0, 0) = 0. In particular, it holds Q(iω0, e

iϕ) = 0, hence, iω0 ∈ σ (A+Beiϕ) for
all ϕ. If ω0 = 0, then the case II is realized. For ω0 6= 0, the case I is realized.
2) The polynomial Q(iω0, z) depends non-trivially on z. Then, there exists a branch of complex roots
z(ω) solvingQ(iω, z(ω)) = 0, which depends continuously on ω, and z(ω0) = 0. Moreover, it holds
|z(ω)| → ∞ as |ω| → ∞. Due to continuity, there exist ω̃1 ∈ (ω0,∞) and ω̃2 ∈ (−∞, ω0) such
that |z(ω̃1,2)| = 1. Hence, we obtain iω̃1,2 ∈ σ

(
A+Beiϕ̃1,2

)
with ϕ̃1,2 = arg(z(ω̃1,2)). Since the

two values ω̃1,2 cannot be zero simultaneously, we obtain the case I of the Lemma. �

Lemma 15. Let A0 ∈ Cn×n be Hurwitz and Ak ∈ Cn×n, k = 1, . . . ,m. Then, one of the following
three mutually exclusive cases occurs:
I. S(Φ) is Hurwitz for all Φ ∈ Tm;

II. There exist ω̃ 6= 0 and Φ̃ ∈ Tm such that iω̃ ∈ σ
(
S(Φ̃)

)
;

III. There exists a nonempty set T0 ⊂ Tm, T0 6= Tm, such that 0 ∈ σ (S(Φ)) for Φ ∈ T0, and S(Φ)
is Hurwitz for all Φ ∈ Tm \ T0.

Proof. The proof follows from the consecutive application Lemmas 9 and 14 to the matrices

(5.1) Mr = A0 +
r∑

k=1

Ake
iφk , r = 0, ...,m,

where Mr−1, r = 1, ..,m, plays the role of A and Ar plays the role of B. Note that in this way Case
I of Lemma 9 transfers the Hurwitz property to the next level r, while Case II of Lemma 9 provides a
resonance, which is then by Lemma 14 transfers to the next level. Case III of Lemma 9 detects a zero
eigenvalue, which is transferred by Case II of Lemma 14. By considering all possible logical chains,
wee see that I-III are the only possibilities that can be realized.

I: Case I of Lemma 9 for all r = 1, . . . ,m. In this case, all matrices are Hurwitz for all Φ.
II: Case I of Lemma 9, followed by Case II of Lemma 9, possibly followed by Case I of Lemma 14.

Here, we have iω ∈ σ (Mr) for some r ≤ m, ω 6= 0. Then the sequential application of
Lemma 14 m− r times leads to iω̃ ∈ σ(S(Φ̃)) with ω̃ 6= 0 and some Φ̃.
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II: Case I of Lemma 9, followed by Case III of Lemma 9, followed by Case I of Lemma 14. Here,
the matrix Mr contains zero eigenvalue for some Φ and otherwise it is Hurwitz for all other
Φ. At some further application of Lemma 14 on some level r1 > r, there appears a resonance
ω 6= 0 such that iω ∈ σ

(
A0 +

∑r1
k=1Ake

iϕ̃k
)
, r < r1 ≤ m. Further application of Lemma 14

m− r1 times leads to the statement II of this Lemma.
III: Case I of Lemma 9, followed by Case III of Lemma 9, followed by Case II of Lemma 14. Similarly

to the previous case, some matrix Mr contains zero eigenvalue and otherwise it is Hurwitz for
all other Φ. At some further applications of Lemma 14, only case II of Lemma 14 is realized. We
must only show that T0 6= Tm. Indeed, assuming opposite, we have 0 ∈ S(Φ) for all Φ, which
implies 0 ∈ A0 and contradicts the assumption of A0 Hurwitz.

II: Case I of Lemma 9, followed by Case III of Lemma 9, followed by Case II of Lemma 14, followed
by Case I of Lemma 14. This logical chain is similar to the previous one, with only difference
that the case I of Lemma 14 is realized at some later iteration.

�

Lemma 16. Let Ak ∈ Cn×n, k = 1, . . . ,m, and iω0 ∈ σ(A0). Then, one of the following two
mutually exclusive cases occurs:
I. There exist ω̃ 6= 0 and Φ̃ such that iω̃ ∈ σ(S(Φ̃));
II. ω0 = 0 and 0 ∈ σ(S(Φ)) for all Φ ∈ Tm.

Proof. The proof follows from the sequential application of Lemma 14 in a similar way as above. �

Lemma 17 (Reappearance of resonances). Let Ak ∈ Cn×n, k = 0, . . . ,m, and iω0 ∈ σ(S(Φ)),
ω0 6= 0. Then, it holds

(5.2) det

[
−iω0I + A0 +

m∑
k=1

Ake
−iω0τk

]
= 0

with

(5.3) τk =
2π

ω0

nk −
ϕk
ω0

, nk ∈ Z.

That is, iω0 solves the characteristic equation (1.2) for countably many time-delays (5.3).
In particular, among these time-delays, one can choose the set {τ1, . . . , τm} of hierarchically large
delays, which satisfy the condition (2.1) with arbitrary small ε > 0. Such delays are hierarchically
ordered so that τk/τk+1 = ε(νk/νk+1).

Proof. The fact that Eq. (5.2) holds for time-delays (5.3) can be checked by substitution.

Let us show that time delays can be chosen to be hierarchical, i.e., satisfy the condition (2.1) with
arbitrary small ε > 0. We denote

ε =
1

τ1
=

ω0

2πn1 − ϕ1

,

which is a small parameter for sufficiently large n1. We assume, in particular, that n1 � ω0. Such a
definition of ε implies equality (2.1) for k = 1.

Let us show that nk, and, hence τk, can be chosen in such a way that (2.1) holds for some νk ∈
[1, 1 + εk−1). The equality

τk =
2πnk − ϕk

ω0

= νkε
−k

leads to

(5.4) nk =
ϕk
2π

+
ω0νk
2πεk

.
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By increasing νk from 1 to 1 + 2πεk

|ω0| , the value of nk in Eq. (5.4) changes by 1. Hence, there exists

such νk ∈ [1, 1 + 2πεk

|ω0| ) that nk admits an integer value. Finally, by choosing ε sufficiently small such

that 2πε
|ω0| < 1, we obtain that νk ∈ [1, 1 + εk−1). �

We remark that Lemma (17) generalizes some of the statements shown for one delay in [69].

Proof of Theorem 5. It is clear that the absolute stability implies the stability for hierarchically large
time delays. Therefore, it remains to show that conditions (A1.1) [instantaneous stability], (A1.2) [non-
singular S(0)], and (A1.3) [no resonance] of Theorem 2 are necessary for the stability of the systems
with hierarchically large time delays (2.1).

1. First, we show that (A1.1) [instantaneous stability] is necessary. Assume the opposite, i.e., the
condition (A1.1) of Theorem 2 does not hold. Then either iω0 ∈ σ (A0) or λ0 ∈ σ (A0) with<(λ0) >
0.

1a: Consider the case iω0 ∈ σ (A0). Then, Lemma 16 implies that one of the two cases can occur:

1aa: iω̃ ∈ σ(S(Φ̃)) with some ω̃ 6= 0. In such a case, Lemma 17 implies that iω̃ is a solution of
the characteristic equation for hierarchically large time delays (2.1). We obtain the contradiction to the
absolute stability and, hence, (A1.1) holds.

1ab: ω0 = 0 and 0 ∈ σ(S(Φ)) for all Φ ∈ Tm. In particular, it holds 0 ∈ σ(S(0)), which means that
λ = 0 is an eigenvalue for arbitrary time-delays. This contradicts the absolute stability assumption for
hierarchically large delays, hence, (A1.1) holds.

1b: Consider the case λ0 ∈ σ (A0) with <(λ0) > 0. Let τk = νkε
−k be hierarchically large delays,

and the corresponding characteristic equation

(5.5) Pm(λ) = det

[
−λI + A0 +

m∑
k=1

Ake
−λνkε−k

]
= 0.

Let U(λ0) be a sufficiently small open neighborhood of λ0 such that it does not contain other eigen-
values of A0, and <(U(λ0)) > 0. Then, the holomorphic function Pm(λ) converges uniformly to
det [−λI + A0] for ε → 0. According to the Hurwitz theorem, the characteristic equation (5.5) has
an unstable root in λ ∈ U(λ0) for all sufficiently small ε. This contradicts the asymptotic stability
assumption for hierarchically large delays, and, hence, (A1.1) holds.

2. We show that (A1.2) [nonsingular S(0)] is necessary. Assume that the condition (A1.2) of Theorem
2 does not hold. Then 0 ∈ σ(S(0)) and, hence the characteristic root λ = 0 solves Eq. (1.2) for all
delays. This contradicts the asymptotic stability assumption for hierarchically large delays, and, hence,
(A1.2) holds.

3. We show that (A1.3) [no resonance] is necessary for the stability of systems with hierarchically
large time delays. Assume (A1.3) does not hold. Then there exists

iω0 ∈ σ (S(Φ)) , ω0 6= 0.

Lemma 17 implies that there are hierarchically large time delays, for which there exists the eigenvalue
iω0. This contradicts the asymptotic stability assumption and, hence, (A1.3) holds. �

5.2. Asymptotic spectrum for multiple hierarchically large delays and its relation to the condi-
tions for absolute stability. Let us briefly review some concepts for the spectrum of systems with
hierarchically large time-delays τk = νkε

−k from [53]. This spectrum can be generically divided into
m+ 1 parts corresponding to different timescales:
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(i) The strongly unstable part Ssu, which is approximated by the unstable spectrum of A0, i.e. σ(A0)
with < (A0) > 0.

(ii) The asymptotic continuous spectrum on different timescales can be described by the following sets

(5.6) Bk,j =
{
z ∈ C : − ln |Yk,j(ω, ϕ1, . . . , ϕk−1)| εk + iω, ω ∈ R

}
,

where k = 1, . . . ,m. The functions Yk,j(ω, ϕ1, . . . , ϕk−1) are the j-th roots of the spectral polyno-
mial

(5.7) Pk(ω, ϕ1, . . . , ϕk−1, Y ) = det

[
iω · I− A0 −

k−1∑
l=1

Ale
iϕj − AkY

]
,

where the index j numbers the roots. The sets Bk,j correspond to the eigenvalues with the real parts
converging to zero as εk. For m = 1, the the sets B1,j contain the asymptotic continuous spectrum
of systems with one large delay τ1.

In the non-degenerate case of detAm 6= 0, the asymptotic spectrum has the form

Ssu

⋃[ ⋃
k=1,...,m−1
j=1,...,rankAk

B+
k,j

]⋃[rankAm⋃
j=1

Bm,j

]
,

where B+
k.j = Bk,j

⋂
{z : <z > 0}. That is, for all spectral components that correspond to the

convergence of real parts as O(εk) with k = 1, . . . ,m − 1, only the unstable part is included.
The stable part of the asymptotic continuous spectrum can contain only Bm,j , which has the slowest
convergence εm of the real parts to zero. This implies that the destabilization of the system with
hierarchical delays with detAm 6= 0 can occur only due to some Bm,j spectral component, which is
caused by the largest delay τm. In a degenerate case of detAm = 0, stable parts of other spectral
components may appear as well, see more details in [39,53,66,67].

Taking into account different part of the asymptotic spectra, we can interpret the role of the conditions
of Theorems 2 and 3 for the spectrum of systems with hierarchical time delays. Condition (A1.1)
[instantaneous stability] guarantees the absence of the strongly unstable spectrum. Condition (A1.2)
[nonsingular S(0)] guarantees the absence of the zero eigenvalue. Conditions (A1.3) [no resonance]
and (A2.2) [almost Hurwitz S(Φ)] guarantee that the asymptotic continuous spectrum is stable and do
not cross the imaginary axis.

5.3. Illustration in the case of two delays. Figure 5.1 illustrates the spectrum of the scalar DDE
with two delays

(5.8) ẋ(t) = a0x(t) + a1x(t− τ1) + a2x(t− τ2).
In particular, Figs. 5.1(a)-(c) show an absolutely stable case for different values of time-delays. With
the increasing of the delays, the spectrum fills certain regions of the complex plane but stays stable.
Figs. 5.1(d)-(f) illustrate the case without absolute stability. One can observes a stability for small
delays and destabilization with the increasing of the delays.

6. PROOF OF THEOREMS 2 AND 3

Lemma 18. Let A ∈ Cn×n be not Hurwitz and 0 6∈ σ(A). Then, for any B ∈ Cn×n , there exists
ϕ ∈ T such that the matrixA+Beiϕ is not Hurwitz and λ ∈ σ(A+Beiϕ) with λ 6= 0 and<(λ) ≥ 0.

Proof. 1. Consider first the case iω0 ∈ σ(A), ω0 6= 0. Then Lemma 14 implies that iω̃ ∈ A+Beiϕ̃,
ω̃ 6= 0 for some ϕ̃. Thus, the statement of the Lemma follows with λ = iω̃ and ϕ = ϕ̃.
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FIGURE 5.1. Spectrum (blue points) of the scalar system (5.8) with two delays. The
upper panel (a-c) corresponds to an absolutely stable case for the parameter values
a0 = −1 + i, a1 = 0.5, and a2 = 0.3. Time-delay is increasing from (a) to (c):
τ1 = 0.5, τ2 = 2.5 (a), τ1 = 5, τ2 = 25 (b), and τ1 = 20, τ2 = 400 (c). The lower
panel (d-f) illustrates the case without absolute stability for a0 = −1, a1 = −0.7, and
a2 = 0.5 + 0.1i. Time-delays are: τ1 = 0.5, τ2 = 2.5 (d), τ1 = 5, τ2 = 25 (e), and
τ1 = 20, τ2 = 400 (f).

2. Let λ ∈ σ(A) with <(λ) > 0. The following proof uses similar ideas as in the proof of Lemma 9.
Consider the function

Q(λ, z) = det (−λI + A+ zB) .

As a polynomial in λ, it possesses a continuous branch of roots λ(z) such that <(λ(0)) > 0. Due to
continuity of λ(z), two cases are possible:

2a.<(λ(z)) > 0 for all z with |z| ≤ 1. In this case, taking z = eiϕ, we obtain thatA+Beiϕ contains
an eigenvalue with <(λ(z)) > 0 for all ϕ.

2b. There exists ẑ such that λ(ẑ) = iω̂ and < (λ(z)) > 0 for all |z| < |ẑ|. That is, we obtain

Q(iω̂, ẑ) = det (−iω̂I + A+ ẑB) = 0, |ẑ| ≤ 1,(6.1)

< (λ(z)) > 0 for all |z| < |ẑ|.(6.2)

2b-i. Consider the case |ẑ| = 1. We denote ẑ = eiϕ̂. If ω̂ 6= 0, we obtain iω̂ ∈ A + Beiϕ̂, which is
needed for the proof. If ω̂ 6= 0, we observe that < (λ(z)) ≥ 0 for all z = eiϕ. Moreover, the equality
λ(eiϕ) = 0 cannot hold for all ϕ, since, otherwise, 0 ∈ σ (A+Beiϕ) for all ϕ, which is only possible
for 0 ∈ σ(A). Therefore, there exists ϕ̃ such that λ ∈ σ

(
A+Beiϕ̃

)
with λ 6= 0 and <(λ) ≥ 0.

2b-ii. In the case |ẑ| < 1, consider the function

Q(iω, z) = det (−iωI + A+ zB)

as a polynomial in z. It is nontrivial in z at ω = ω̂ and z = ẑ, and there exists a continuous branch
of roots such that z(ω̂) = ẑ, |ẑ| < 1, and |z(ω)| → ∞ as |ω| → ∞. By continuity, we obtain the
existence of ω̃1,2 with z(ω̃1,2) = eiϕ̃1,2 . Hence, we have iω̃1,2 ∈ σ

(
A+Beiϕ̃1,2

)
. Since ω̃1 and ω̃2

belong to disjoint intervals (−∞, ω̂) and (ω̂,+∞), at least one of them is nonzero. �
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Proof of Theorems 2 and 3. Firstly, we show that the conditions of Theorems 2 and 3 are equivalent.

1. The conditions (A2.2) [almost Hurwitz S(Φ)] and (A1.2) [nonsingular S(0)] imply thatA0 is Hurwitz,
i.e., (A1.1) [instantaneous stability] holds. Assume the opposite, i.e., A0 is not Hurwitz.

When iω0 ∈ σ(A0), Lemma 16 implies that one of the following two cases occur:

I. There exists ω 6= 0 such that iω ∈ σ(S(Φ)) for some Φ. This contradicts the condition (A2.2)
[almost Hurwitz S(Φ)].

II. ω0 = 0 and 0 ∈ σ(S(Φ)) for all Φ ∈ Tm. Substituting Φ = 0, we obtain 0 ∈ σ(S(0)), which
contradicts the condition (A1.2) [nonsingular S(0)].

Now assume that σ(A0) does not contain purely imaginary eigenvalues. Since A0 is not Hurwitz,
we have λ ∈ σ(A) with <(λ) > 0. Applying Lemma (18) sequentially, we obtain that there is
λ ∈ σ(S(Φ)) with some Φ with <(λ) ≥ 0 and λ 6= 0. This contradicts to the condition (A2.2)
[almost Hurwitz S(Φ)].

We have shown that A0 is Hurwitz under the assumptions of Theorem 3. Let us show that (A2.2) [al-
most Hurwitz S(Φ)] and (A1.3) [no resonance] are equivalent whenA0 is Hurwitz. Applying Lemma 15,
one can see that cases I and III of Lemma 15 correspond to the condition (A2.2) [almost Hurwitz S(Φ)]
of Theorem 3. Moreover, the condition (A1.3) [no resonance] of Theorem 2 excludes the case II of
Lemma 15, hence, it is also equivalent to the case I or III of Lemma 15. Hence, (A1.3) and (A2.2) are
equivalent.

The following steps (ii)–(iii) prove that (A1.2) [nonsingular S(0)] and (A2.2) [almost Hurwitz S(Φ)] are
sufficient for the absolute stability.

2. First notice, that (A2.2) [almost Hurwitz S(Φ)] implies that S(0) is almost Hurwitz, i.e., S(0) is
Hurwitz, except for a possible zero eigenvalue. However, zero eigenvalue is excluded by the condition
(A1.2) [nonsingular S(0)]. Hence, S(0) is Hurwitz.

The spectrum for τk = 0, k = 1, . . . ,m coincides with the spectrum of S(0), which is Hurwitz.
Hence, all roots for τk = 0 possess negative real parts. The same also holds for sufficiently small
delays, see e.g. [56].

3. Due to continuity of the roots λ with respect to τk > 0, the only possible stability loss for positive
delays is through the crossing of the imaginary axis. Let us assume that λ = iω∗ at some τk = τ ∗k >
0, k = 1, . . . ,m, and subsequently show that it leads to a contradiction. Indeed λ = iω∗ implies

iω∗ ∈ σ (S(Φ∗)) , ϕ∗k = −ω∗τ ∗k .

Due to (A2.2) [almost Hurwitz S(Φ)], it holds ω∗ = 0. However, in this case, 0 ∈ σ (S(0)), which
contradicts the assumption (A1.2) [nonsingular S(0)].

Hence, for all positive delays, the roots cannot cross the imaginary axis and the asymptotic stability
holds, i.e. the conditions (A1.2) and (A2.2) imply the absolute stability.

The following steps (iv)-(vi) prove that (A1.1) [instantaneous stability], (A1.2) [nonsingular S(0)], and
(A1.3) [no resonance] are necessary conditions for the absolute stability. We choose here the condi-
tions (A1.1), (A1.2), (A1.3) from Theorem 2, since they are equivalent to (A1.2) and (A2.2), and they
are more convenient for the proof of necessity. Hence, we assume that absolute stability holds and
show (A1.1), (A1.2), and (A1.3).

(iv) Assume (A1.1) [instantaneous stability] does not hold, then there exists λ0 ∈ σ(A0) with
< (λ0) ≥ 0.
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If < (λ0) > 0, consider the case of large delays τk = ε−1. The corresponding characteristic equation
has the form

(6.3) Pm(λ) = det

[
−λI + A0 +

m∑
k=1

Ake
−λ/ε

]
= 0.

Let U(λ0) ⊂ C be a sufficiently small open neighborhood of λ0 such that it does not contain other
eigenvalues of A0, and <(U(λ0)) > 0. Then, the holomorphic function Pm(λ) converges uniformly
to det [−λI + A0] for ε→ 0 on U(λ0). According to the Hurwitz theorem, the characteristic equation
(6.3) has an unstable root in λ ∈ U(λ0) for all sufficiently small ε. This contradicts to the absolute
stability assumption and, hence, (A1.1) is a necessary condition.

If iω0 ∈ σ (A0), Lemma 16 implies that one of the two cases can occur:

1. iω̃ ∈ σ
(
S(Φ̃)

)
with some ω̃ 6= 0. In such a case, Lemma 17 implies that iω̃ is a solution of

the characteristic equation for countable number of delays (5.3). We obtain the contradiction to the
absolute stability and, hence, (A1.1) is necessary.

2. ω0 = 0 and 0 ∈ σ (S(Φ)) for all Φ ∈ Tm. In particular, it holds 0 ∈ σ (S(0)), which means that
λ = 0 is an eigenvalue for arbitrary time-delays. This contradicts the absolute stability assumption,
hence, (A1.1) is necessary.

(v) The necessity of (A1.2) [nonsingular S(0)] is evident, since otherwise there exists a root λ = 0 for
all delays.

(vi) We show that (A1.3) [no resonance] is necessary. Assume the opposite, i.e., iω0 ∈ σ(S(Φ)),
ω0 6= 0 for some Φ. Then, accordingly to Lemma 17, systems with time-delays (5.3) possess the
eigenvalues iω0. This contradicts the absolute stability and proves that (A1.3) is necessary.

Finally, let us show the criterion for the absolute hyperbolicity from Theorem 2. We first prove that
(A1.2) [nonsingular S(0)] and (A1.3) [no resonance] imply absolute hyperbolicity. Assume the oppo-
site, so that there exists a solution λ = iω of Eq. (1.2) for some time delays. Then, if ω = 0, then we
obtain the contradiction to (A1.2); if ω 6= 0, we obtain the contradiction to (A1.3) with ϕk = −ωτk. The
backward statement “absolute hyperbolicity” ⇒ (A1.2) and (A1.3) is also straightforward. Assuming
that (A1.2) or (A1.3) does not hold, we obtain either λ = 0 or λ = iω 6= 0, respectively. �

7. CONCLUSIONS

The obtained conditions for absolute stability determine a class of linear DDEs, which are asymp-
totically exponentially stable, independently on time-delays. Such class of systems can be useful for
applications, where the robustness against time-delays is important. For nonlinear systems, these
conditions exclude the possibility of any bifurcations at the corresponding equilibrium.

Bifurcations induced by varying time delay are also excluded in the case of absolute hyperbolicity.
Linear systems that do not belong to one of these two classes have resonances, i.e. purely imaginary
eigenvalues, which occur for countably many resonant delay times in each delayed argument, and
are necessarily unstable for large delays. Note that such systems may or may not become stable
for certain ranges of small delays. Even systems with strong instabilities for large delay may become
stable for small delay, but only if they have unstable asymptotic continuous spectrum. This counter-
intuitive conclusion follows from absolute hyperbolicity, which we showed for strongly unstable systems
with stable asymptotic continuous spectrum.
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