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Inexact tensor methods and their application to stochastic
convex optimization

Artem Agafonov, Dmitry Kamzolov, Pavel Dvurechensky, Alexander Gasnikov

Abstract

We propose a general non-accelerated tensor method under inexact information on higher-
order derivatives, analyze its convergence rate, and provide sufficient conditions for this method to
have similar complexity as the exact tensor method. As a corollary, we propose the first stochastic
tensor method for convex optimization and obtain sufficient mini-batch sizes for each derivative.

1 Introduction

The idea of using the derivatives of the order p higher than two in optimization methods is known
at least since 1970’s [33]. In numerical analysis it was used much earlier, see the student work of
P.L. Chebyshev [12] and more recent reviews [21], 59]. Despite theoretical advantages, the practical
application of such tensor methods was limited until recent work [43] since each iteration of such
methods includes minimization of a polynomial with degree larger than 3, which may be non-convex
even for convex optimization problems. As it was shown in [43] if the minimization problem is convex,
then in each iteration of the tensor method one needs to minimize a convex polynomial, and, for p = 3
this can be done with approximately the same cost as the step of the Cubic regularized Newton’s
method in the convex case [48]. This leads to a method with faster convergence than that of the
accelerated Cubic regularized Newton’s method with approximately the same cost of one iteration.
These ideas were further developed to obtain accelerated versions of tensor methods [25] 146] and very
fast second-order methods [47,, 35 146].

At the same time, many optimization problems in machine learning or image analysis have the form
of minimization of a finite sum of functions and are solved by second-order methods [63, 51]. A
more general setting, which contains the finite-sum setting as a special case, is the setting of general
stochastic optimization, for which second-order methods are also developed in the literature [60]. Tensor
methods for such problems are also developed, but with the focus on non-convex problems [6, [39].
Thus, motivated by the lack of results on tensor methods for stochastic convex optimization, in this
paper we study stochastic convex optimization problems, develop tensor methods for this setting. We do
this by a more general framework of Inexact Tensor Methods, which use inexact values of higher-order
derivatives. First, we analyze such methods under a particular condition for the inexactness in the
derivatives, and, then, we show how to satisfy this condition in the setting of stochastic optimization
and propose a stochastic tensor method for convex optimization.

1.1 Problem Statement
We consider convex optimization problems of the following form

min f(x) (1)

xeR”
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under inexact information on its derivatives. We are motivated by two particular cases of this problem in
the stochastic optimization setting, which we refer to as online and offline settings. In the online setting
we assume that f(x) is given as

f(x) == E¢up[f(x;6)], (2)

where the random variable & is sampled from distribution D and an optimization procedure has access
only to stochastic realizations of the function f(x; &) via its high-order derivatives. In the offline setting
the function f has finite-sum form:

fx)= > Jix) )

with available derivatives of the order p> 2 for each function f;. Clearly, the offline setting can be
considered as a particular case of the online setting if we set £ to be uniformly distributed over
1 =1, ..., m. At the same time, we distinguish these two settings since the analysis of the proposed
methods in the second setting can be made under different assumptions.

1.2 Related Work
1.2.1 Second-order methods

Beyond first-order methods, the most developed methods are maybe second-order methods, among
which the closest to our setting are cubic-regularized Newton methods originating from [48]. This line
of works includes the development of accelerated methods [41), 40, 142], extensions of trust region
methods [14, 19, 18] [10, [11], methods with inexact evaluations of gradients and Hessians [29! 61}, 5] [18]
with application to stochastic optimization in the online and offline settings. Stochastic second-order
methods for convex optimization [51} 37} [31] and non-convex optimization [60], (65} [62, 49] have been
extensively studied in the recent literature. The difference with our setting is that these works consider
a particular case of p = 2.

1.2.2 Tensor methods

To distinguish the general methods which use the derivative of the order p higher than 2, we refer to
them as tensor methods. The idea of such methods was proposed quite long ago [33], and accelerated
methods for convex optimization were also proposed in [4]. Recent interest to this type of methods
in convex optimization was probably motivated by the lower bounds obtained in [3, [1]. In [43] it was
shown that appropriately regularized Taylor expansion of a convex function is convex, which leads to
implementability of such methods which minimize this regularized Taylor expansion. Accelerated tensor
methods were also proposed, yet with a remaining gap between upper and lower complexity bounds.
In the same paper the author also shows how tensor methods with p = 3 can be implemented when
one solves the auxiliary problem with Bregman projected gradient method in the relative smoothness
setting. Near-optimal, i.e. optimal up to a logarithmic factor, tensor methods for convex optimization
were recently proposed in a number of works [26, |28, 25| 24} [7, 134} [27,, 146, 23]. These developments
allowed to propose faster second-order methods via implementing third-order methods with inexact
third derivative [47, [35, 46], which lead to an improvement of the complexity bound from O(s~1/3:%)
to 0(5_1/5). Stochastic tensor methods were developed for non-convex smooth enough problems
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Inexact tensor methods and their application to stochastic convex optimization 3

in [6, [39]. To the best of our knowledge, there is no analysis of tensor methods in the literature for
stochastic convex smooth enough problems.

Our analysis is based on inexact versions of tensor methods for convex optimization, which use
inexact derivatives of higher-order. First-order methods with inexact gradients are well-developed in
the literature, see, for example, [50, [15, 16, 20, 22, 13| [19, 57] and references therein. Some results
on inexact second-order methods are listed above. The paper [46] proposes an analysis of third-order
method for convex optimization with inexact third derivative. In [6] the authors analyze inexact tensor
methods for non-convex optimization. The general theory of inexact tensor methods of an arbitrary
order p for convex problems still has to be developed and we make a step in this direction.

1.3 Our contribution

Motivated by stochastic optimization methods, we propose and analyze Inexact Tensor Method of the
general order p > 2. The idea of the algorithm is to use inexact values of the derivatives up to the order
p to construct a regularized inexact Taylor expansion. For the resulting method we provide sufficient
conditions for the inexactness of the derivatives for this method in order to have similar complexity as
the exact tensor method. This allows to prove sublinear O(1/kP) convergence rate and corresponding
O(&?_l/”) iteration complexity, which are the same as for the non-accelerated exact tensor methods.

As a corollary, we propose a stochastic tensor method for stochastic convex optimization problems in
the online and offline settings. The idea of the algorithm is to sample in each iteration mini-batches of
derivatives up to the order p and use them to construct regularized stochastic Taylor expansion. For the
resulting method we prove sublinear O(1/kP) convergence rate and corresponding O (e ~1/?) iteration
complexity, which are the same as for the deterministic tensor methods. Interestingly, we show that to
reach this, the sufficient mini-batch size decreases as the order of the derivative increases.

We also consider a particular case p = 3, for which in the spirit of [43], we describe how to implement
the resulting inexact tensor method.

1.4 Paper Organization

The remaining part of the paper is organized as follows. In Section 2, we introduce main notations and
assumptions. Then, in Section [3]we present an inexact tensor model of function. We prove its convexity
and show that it majorizes the objective function. Section 4 is dedicated to the Inexact Tensor Method
itself and its convergence. Next, in Section[5] we introduce the smooth version of the Inexact Tensor
Method. Then, we discuss implementation details (Section[6). And finally, in Section [7]we introduce the
Stochastic Tensor Method and prove how to satisfy sampling conditions. Future work is discussed in
the very last Section.

2 Preliminaries
We consider stochastic convex optimization problems of the form

min f(x) = Eeop|[f(x;8)]. (4)

xeR”
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We refer to this problem as online setting. As a particular case of this problem, we consider the following
problem with the objective given as a finite-sum, which we call offline setting,

1 m
i = — (x). 5
min f(x) = — z; fi(x) (5)
1=
We denote the i-th directional derivative of function f at x along directions s, ...,s; € R" as

Vif(X)[Sl, Ce ,Si].
For example, V f(x)[s1] = (V f(x),s1) and V2 f(x)[s1, 82] = (V2 f(x)s1,sy). If all directions are

the same we write V' f(x)[s]’. By || - || we denote the tensor norm recursively induced by the Euclidean
norm on the space of p-th order tensors

It = max ATl sl

s1f|=...=llspl|=1
where T is p-th order tensor [10].

Assumption 1. Function f is convex and p times differentiable on R™ and its p-th derivative is Lipschitz
continuous, i.e. for all x, y € L(zo)}

IVPf(x) = VPE(Y)I < Lyllx =y,
where £ (x0) £ {x e R": f(x) < f (x0)}.

Following the previous works, we construct Tensor methods based on the Taylor approximation of the
function f(x), which can be written as follows:

Dep(s) 2 F0) + D0 AVl s € R ®)
i=1

Since the full Taylor expansion of f requires computing high-order derivatives which could be expensive
to calculate, it is natural to use their approximations to construct an inexact model of the objective:

p
1 i
Pxp(s) = [ (x) + Z EGx,i s, 7)
i=1
where G ; are approximations to the derivatives Vif (x). Inspired by the work [39] for the non-convex

setting, we consider the following condition on the accuracy of the approximations for the derivatives

Condition 1. Given the target accuracy ¢ for the solution of the problem (T), there exist numbers
ki >0,i=1,...,psuchthatforalls € L(xp):

(@i = V' F(x))[8] M| < mie® D2 |s| i =1, . (8)

"Here and later in other assumptions we require x to be from Lebesgue set £ (X ), since the Stochastic Tensor Method
is monotone under Condition[] In Section[7]we will show that Condition [f]can be satisfied with a high probability in both
online and offline settings.
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Inexact tensor methods and their application to stochastic convex optimization 5

First, we analyze inexact Tensor methods under this condition. Then, motivated by stochastic opti-
mization problems, we focus on stochastic approximations of the derivatives through sampling. More

precisely, for S1, Sa, . .., S, being sample sets, we construct the sampled approximations as
ZV}CX&] izl,..,p. (9)
]ES

In Section [7| we show how to choose the size of sample sets S; to satisfy Condition [1| with high
probability without requiring knowledge of the length of the step ||s||. This allows us to construct the
desired Stochastic Tensor Method and analyze its complexity.

In our methods we use the following power prox funtions:
1
dy(x) = ~[|x[]”, p > 2. (10)
p
Note that

Vdy(x) = [Ix|""*x,

V2d,(x) = (p = 2)||x[[P~ 5™ + [|x|P72T = [|x [P, (11)
where [ is the identity matrix in R"

As it is shown, e.g. in [43], Assumption [1] allows to control the quality of the approximation of the
objective f by its Taylor polynomial:

(@ +5) = Beyfs)] < 2 lsl, x5 € R (12
If p > 2, the same can be done with the first and second derivatives:
V5o +5) = Vau, )] < 28l (13
2 2 Ly ~1
IVEf(z 48) = Vi p(s)| < MHSHP : (14)

forallx,s € R".

3 Inexact Tensor Model

In this section, we analyze inexact Taylor polynomial (7) first to show under Condition [T]approximation
bounds in the spirit of (12), (13), but on the quality of the approximation of f by ¢x ,, and, then,
based on such bounds to construct a regularized inexact Taylor polynomial and show that it is a global
upper bound for the objective function f. The latter is the key to construct the proposed Inexact Tensor
Method, which we analyze in the next section.

The following lemma gives a counterpart of when the inexact derivatives are used and shows that
we can bound the residual between function f and the p-th order inexact Taylor polynomial ¢x ,(s).

Lemma 3.1. Foranyx, s € R" we have

pH—

[F(x+8) = dxpls |<Z arie v sl + 5 lIsI (15)

L,
(p+1)!
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Proof. Forany x,s € R™:

L,
1 048) = ($)] < 17 0+8) =Py (8) 1P (8)—6s(8)] < 22y,

Let us bound the second term in the right hand side of the inequality above:

90 (5) — ()] B2 |3 3 (Gos = V()]

"1 i i1 P10 pin ;
<) G = V() [s]lIsl] = > arie 7 sl
i=1 i=1
Combining both inequalities above finishes the proof. O

The following lemma gives a counterpart of (13), when the inexact derivatives are used.

Lemma 3.2. Foranyx, s € R" we have

p

1 p—itl - L
V10 +8) = Vplo)]| < 3 g™ sl + s 1)
=1
V24 8) = V2op@)] € 3w sl s a7)
2 (=) -1

Proof. Firstly, let us prove the bound for the first derivatives. For any x,s € R™:

IVF(x+8) = Voup(s)l| S [[VF(x+8) = VOsup(s)[| + [[VOx () = Ve (s)l

L
< p—fHSH” + [[VPrp(s) — V,(s)ll

Let us bound the second term in the right hand side of the inequality above:

Vs (8) = Ty ()] B2 |3 (G = V1 G0l
<2 (i - i (G = VSN 2 (i - 1)!“@'517;“ Isfl**.

Combining both inequalities above we get (16).
Now, we will obtain the bound for the second derivatives. For any x, s € R" we have
IV2f(x +5) = V()| < [VEf(x+8) = VEDxp(8)]| + |V P p(s) = Ve (s)|

@ L B
< Gl 120 (5) = Vo (o))

Let us bound the second term in the right hand side of the inequality above:

|V2®y (5) — V36 (s)]| &2 |Z - _12)! (Gus — Vi ()82
p —1 2 —2 & 1 p—itl 9

DOI 10.20347/WIAS.PREPRINT.2818 Berlin 2021
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Inexact tensor methods and their application to stochastic convex optimization 7

where the last inequality is valid due to conditions (8) and the definition of the matrix norm:

1(Gos — V£ 2) & sup LG = VFO)ISI ) s

p—i+1 .
s||2.

< K P

Thus, we have obtained (17).
O

We finish this section by constructing a global upper bound for the objective f based on the inexact
Taylor expansion ¢, which is regularized by functions d;, © = 1, ..., p.

Theorem 3.3. Foranys, x € R":

p
1 il . L
0= V2F(x+8) < Vioep(s) + Y ——=—hkie v |IsI21+ —2—||s|""'1.  (18)
— (i —2)! (p—1)
Moreover, for any s, x € R" , and o > L, the function
p 1+1 ag
Wx,p(8) = Pxp(s) Z di(s) + mdpﬂ(s) (19)
is convex and it majorizes the function f:
f(x+8) <wx,y(s) Vs e R™. (20)

Proof. Forany h € R™:

((V2f(x+8) = Voxp(s)) hh) < ||[V2f(x+58) — Vox,(s)|| - [|h]

L i+1 L
’” 12 p p—1 hll2
(232_2 I8l + o =55 sl )HH

1=2
Further,
2 2 - 1 P i—2 Ly p—1
0= Vif(x+s) <X Vipx,(s) + mnzs I+ = 1)'||s|| I
— (i ! P !
P .
S )2 4 — T[T = R ().
— (i —2)! (p—1)! ”

Therefore, wy ,(s) is convex. Finally,

p
1 p i1 .
— K P ? p+1
f(X+S d)x,p E: P s i +1) 7lIsll

p z+1 L
= ¢x,p Z di(s) + p_fdp—i-l(s)

p—itl g

p 1 pitl
< Pxp(s) + ; GonE T di(s) + M%H(S) = Wxp(s).

DOI 10.20347/WIAS.PREPRINT.2818 Berlin 2021
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Thus, we have build a regularized inexact Taylor polynomial wy ,(s) defined in as an model of the
objective f. Theorem [3.3|claims that this model satisfies two main conditions:
B Model wy ,(s) is a global upper bound for the function f:

(20)
f(x+8) < wxp(s). (21)

B Model wy ,(s) is convex.

4 Inexact Tensor Method

Based on the inexact regularized Taylor polynomial wx ,(s) defined in the previous section, in this
section, we present the Inexact Tensor Method. Each step of this algorithm uses minimization of our
model wx ,(s) to make a step. To be more precise we define an operator T'(x) as

T (x)= argmin wy ,(s). (22)

seR”

Let us prove the next technical lemma.

Lemma4.1. Foranyx € R" ando > L,

i pitl L o
fx+Tx) < min {f(X +8) + 2; ﬁm@pdi(s) + ﬁdpﬂ(s)} (23)

Proof.

(21)

f(x+T(x)) < min {qﬁx,p(s) + Z ﬁniapzﬁ“di(s) + Z%dpﬂ(s)}

seR™

[62)

<

p
) 1 p—itl L, + po
gel]g% {f(X + S) + 2 ZE 1 mlizé dz(S) + mdp—l—l(S)} .

Now we are in a position to estimate the convergence rate of the Inexact Tensor Method.

Algorithm 1 Inexact Tensor Method
1: Input: convex function f such that V? f is L,-Lipschitz; ¢ is target objective residual; z is starting
point; constant o > L,,.
2: for k > 0 do
3:  Call the inexact oracle to compute Gy, ; fori = 1,. .., p such that Condition|1|is satisfied.
4:  Obtain s; and make the step:

Sk = argmin wy ,(s)
seR” (24)
Xk+1 = Xj T Sg.

5: end for

In the view of Eq. the process x + T'(x) guarantees that f(x + T'(x)) < f(x), i.e. Algorithm
is monotone. Therefore, in Assumption [Tjwe can only require x to be from the Lebesgue set of the
objective function f or a vicinity of it if the method is stochastic.

DOI 10.20347/WIAS.PREPRINT.2818 Berlin 2021



Inexact tensor methods and their application to stochastic convex optimization 9

Theorem 4.2. If Condition is satisfied and f (x) is convex p times differentiable function with Lipschitz
constant L,, for p-th derivative and o > L,, then after I" + 1 iterations of Algorithm |1| we have the
following bound for the objective residual:

X*<2§:H€p D' (p+1) (Lp+po) (p+1)""
7!

Jxeria) = (T+p+1)t " (p+1)! (T+p+1yp

(25)

where D = max ||x — x,]|.

x€L(X0)
Proof.
@ d 1 p—itl L, + po
f(x1) < o {f(Xl +s)+2 22:1: mﬁlﬂ rdi(s) + mdpﬂ(s)
P
1 pmin o Ly+po o
Sf(x* +2;Z‘/ﬁ?€ D WD s
Forany t > 1:

p—i+1 L,+ po

f(Xe1) 2 mnin {f(Xt+1 +5s)+2 ; ﬁffﬂpdi(s) + hdpﬂ(s)}

a€l0,1 — 1l (p+ 1!

L, + po
(p+ 1!

(OétD)p+1 .

P
1 p—i ; L
< min} {f(xt + (% —x¢)) + 2 Z —Ki€ it (uD)" + ﬂ(atD)erl}

< min} {f(xt) —ay(f(xy) — f(x4)) +2 Z Z.l,/fiﬁp_;“ (uD)" +
i=1

ate[O,l

Therefore,

Flxen) — F(x) < (1= ae)(f(xe) — f(x)) + 2 Z zlv’” (xD) + % (e D)P*.

(p+1)!
(26)
Let us choose a sequence {A; } as follows:
1,6 =20
S D (RS T @)
i=1

We divide both sides of by A;:

Ait (f(xp11) — f(x4))
1 P 1 p—itl ; Lp—i—pO' -
< A, ((1 — o) (f(x) — flze)) + 2; e (awD)’ + " (a.D) )
1 1 P 1 p—itl : Lp + po ot
= A, (f(Xt) - f(x*)) + Zt <2 ZZI Eliﬁ P (OétD) + (pr)!(oztD) ) .

DOI 10.20347/WIAS.PREPRINT.2818 Berlin 2021
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Summing both sides from ¢ = 1to ¢ = T we obtain:

p— z+1

p 41
Ki€ Di~ Aral (L, + po)DPT! Apa?
fleren) = o) <23 Z O ey Z -
Let us take Y
o= 2 (28)
t+p+1

and compute the following sums

T T
t T!(p+1)! 1 (p+ 1)
=110 =1l = sy~ 0 0 2

t=1 t=1

which gives

= A I (t+P+1) ) EETR
p+1 .\ pt1
t+ 1
SASTD opr el
t=1 p t=1
(p+1)
~(T+p+1)-t
Hence,
ke v D' (pt 1) (Lp +po) (p+ 1P
) <2 - DY (2
f(XT+1) X Z i T_i_p_‘_l)zfl <p+1)| (T—l—p+1)p (29)

O

This result provides an upper bound for the objective residual after ¢ iterations of the Inexact Tensor
Method. The right term corresponds to the case of exact Tensor method, i.e. k; = 0,2 =1, ..., p, and
provides similar convergence rate as for non-accelerated Tensor method in [43]. The left terms show
how inexactness in each derivative influences the convergence rate. In particular, if x; > 0 only for
one i € [1,p], the corresponding convergence rate slows down to 1/ti_1. At the same time since
we are interested in accuracy ¢, the right term says us that we should take ¢ 4+ p + 1 of the order
(L,DP*! /&)1/P to obtain the whole r.h.s. smaller than . In this case, we obtain

ke’ DI (p+ 1) (Lp+po) (p+ D" 0
X f(xe) <2 ' b
Jf(xr41) — Z (T +p+ 1)1 P+ (T+p+1)p
p—itl 1 ( + 1)1
Ki€ P p
<2§ CT Gngen o1 1 ©

Lp” p e p

pitl im1 . (i=De+)  —i=l(p 4 1)
:2E/{i£P+PDZ P Lp(p )

+ e

p i i1 1)t
=2 kD" 7L, 7 +1) . (30)
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Inexact tensor methods and their application to stochastic convex optimization 11

We now can ask the question on how to control the parameters «;, 7 = 1, ..., p in order to achieve the
objective residual € with the same iteration complexity £~ 1/P as for the exact Tensor Method in [43].
The answer is given by the following result.

Corollary 4.3. Let us choose

L7 il
R; = p—itl - (31)
p

Then, after T' + 1 iterations of Algorithm|1| chosen such that T' satisfies

(p + 1)p+2 Lp + po

T 1)P = prtt 32
(T+p+1) T (32)
we get
f(xri1) = f(x:) <e.
Proof. From Theorem [1.2]
P etr DU (p+ 1) (L +po) (p+ 17!
X — f(x,) <2 G : P prtt
Joeria) = Jx) < ; il (TH+p+1=t (p+ D! (T+p+1)p
6 Lo T i i
oy e O e =
i=1 ) Lpp D P e b p
p . i1 ( 7
p—i+l P+ 1) £
=2 i&D L P - 33
;/{ v L, T+ | (33)

Thus, we showed that the number of steps needed for the Inexact Tensor Method to find an ¢ solution

L. Dpt+1 1/p
to the problem is O (,;_) under the appropriate assumption on the inexactness.
€

5 Smooth model

One of the inconveniences of the inexact model wy ,(s) is that it uses odd powers of ||s||, which can
lead to computationally expansive iterations (24). Thus, in this section we introduce a smooth version of
the model wy ,,(s) which uses only even powers of ||s||. We obtain the smooth model from the definition
of the model wy ,(s) (19), using the next inequality
]2
200

a
loll < 5 - +5 (35)

with o = /P,

DOI 10.20347/WIAS.PREPRINT.2818 Berlin 2021
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Firstly, let us consider the case when p is odd. Applying inequality to the definition we obtain:

p—l

1 a1 1 Ko Ka; I Koina P2l o
< — p _
wxpl(S) S Oxpls) + gme + ; (2 Qi1 (@) 2@+ 1)!) = sl

1 Ky o +1 def o
(g T ) Il 2 )

Now, assume that p is even. We are going to use the same technique, but it will lead to a slightly
different result:

Z 1 Koion Kai 1 Koita poditl, o
X < X - — - 7
“rl) = Ouale )+ 2" T ( (2 —1)! * (22)!+2(22+1)!> sl
1 Rp—1 /ip 1 o ) 1 2def
+ Er||s p+—6 v s|P* xplS

Finally,
def Cip(s), if pis odd,
Gen(s) =3 1 (), itpi
xpl8), ifpiseven.
Since the model ¢, is a global upper bound for the model wy ,,(s) (T9), the statement of Theorem
also holds for the smooth model ¢,,. Therefore, the smooth version of Algorithm ({) differs only in the
step and reads as

S = argmin Ge,(s);
seR” (36)
Xg+r1 — Xk + Sg.

The complexity of an iterative method based on these equalities is the same as the complexity of the
non-smooth version described in the previous section. The proof of this fact is exactly the same as the
proof of Theorem [4.2|up to constant coefficients of the model.

6 Implementation Details

Inexact tensor optimization methods, introduced in Sections [4] [5| are based on the solution of auxiliary
subproblems (24), in each iteration. As we already proved, these problems are convex, and,
therefore, can be solved by convex optimization methods. However, the complexity of solving these
problems can slow down the convergence of the Inexact Tensor Methods. In this section, we show how
to treat these problems in the particluar case of p = 3. To do that, we consider the third degree smooth
model {(s) which corresponds to p = 3

IS

KgE 2 K O

o(0) 22 (h) = da(b) + 22+ (2 2 S )+ (24 D) ), @7
where K1 = Ky, Ko = Ky, k3 = K. We also introduce the following notation for the first three
approximate (sampled) derivatives Gx; = g, Gx2 = B, Gyx3 = T (see Eq.(9)). In this case
formula (/) can be rewritten in the following form

dx(s) E f(x) +g"h + %hTBh + %T[h]?’. (38)
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Lemma6.1. Foranyh € R"™ and T > 0, we have
1

T

1

1
B — _Ls||h|? — ~kyet — reed | < T < =
2 T T

1
B+ gL3||h||2 + ~roed + e . (39)
Proof. From we obtain:
L 2 1
0 < (V2f(x+ hyu,w) < (V2(h)u,w) + 2 B2 Ju* + sy a4 see ] [u]

L 2 1
< ((B+ T[h))u,u) + 7?’||h||2 + et ull® + rees B[]l
Replacing h with 7h and dividing by 7, we get

1 T 1 2 1
—(Thju,u) < —(Bu, u) + 5 Ly|[h[*|[u]]* + —[lul s + w5 ][ u]*
Replacing h by —h we obtain:

1 T 1 2 1
(T[hju,u) < —(Bu, w) + S Ly|b*[[u]]® + =lul e’ + roes [ |fu]*
From the last two inequalities we get (38).

O
Let's build an analogue of Lemmal6.1for model ¢ (h).

Lemma 6.2. Foranyh € R™ and 1 > 0, we have

1 T 1 1
— “B— — (Ly+#) ||n)> = = <,ﬁ,g§ + ke
T 2 T

'

)
3
Co
T 2 1 2 1
<T< B+§(L3—|—I{t)||h|| +; Kpe3 +

5/4:755%) (40)

J/

Cy
Proof. Almost the same as the proof of Lemma Just use inequality with o = /3 for the lower
and upper bounds.

O
In the considered case of p = 3, the Algorithm (1) requires to solve the following minimization problem
on each iteration:

— min . (41)
6 2 heR»
s

2 4
§+§%Mm+<%£+%£+@ﬁ)@mwﬁﬁs
C.
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Forany h € R" :
V(¢ (h) = V?¢(h) + C,V3d,(h)C,V2dy(h) = B + T[h] + C,V?dy(h) + C,V2dy(h)
1 1~
= B+ CuV2dy(h) + (,V?dy(h) — ~B— ~C, - %(L3 + )52

(11)
~ B (1 _ %) + Mv%&(h) _ wvmdh)

L (% - %) V2dy(h) + (02 - %(2) Vdy(h)

<1 - ;> B+ (1 - —> CyV2ds(h) + (1 - %) 25024, (h)

N ((30 + 2Ky) —63T(L3 + m) V2, (h),

where the last inequality comes from the following inequality

20, > C. (42)

Let px(h) = 3 (1 = 2) (Bh, h) + =47d, (h) + (1 — 2) Cada(h) + (<3"+2”“‘3T<L3+”“) dy(h).
Therefore we have proved the strong relative convexity:

VZ((h) = V?py(h). (43)
On the other hand,
V2¢(h) = B + T[h] + C,V?d,(h) + C;V?dy(h)
@) 1 1 -~
< B+ 0, V2d,(h) + CoV2dy(h) + ;B + ;02 + %(Lg + k) || s|?
1
pn

wv%(h) + (02 - %O}) V¥dy(h)

< (1 + %) B+ <1 + %) CyV2dy(h) + <(30 + 2%1) _637@3 T ’“)) V2d,(h)  (44)

where the last inequality comes from (42).

Let us choose o and k; such that the following inequality holds 20 + 2k = 372(L3 + Ky) for 7 > 2
in @T). With that choice of o a model ( (h) is convex since o = 37%(Ls + k) — k¢ > L for 7 > 2.

Under the above choice of the parameters, from we have that

V2 (h) < C“_Lg) ((1 - ;> B+ <1 - —) CyVdy(h) + (1 - %) 25724, (h)

+ (0 _QTL‘?’) V2d4(h)) < (: * ;) V2p(h).

Thus, we have proved the strong relative convexity with constant 1 and relative smoothness with
constant Z£2 of {(h) w.rt. px(h).

The relative smoothness condition allows to solve the auxiliary problem very efficiently [43] [38] by
the iterates

hy. = arg muin {(V¢(he).h) + £(7), (he,h) (45)
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with linear rate of convergence.

According to [43] it is not necessary to calculate the full third derivative tensor T in the above derivations.
It is sufficient to use an automatic differentiation technique to calculate third-order derivative in a certain
direction.

7 Stochastic Tensor Methods

In this section we apply Inexact Tensor Method to solve stochastic optimization problem in the online
and offline (3) settings. The main step to do that is to find sufficient conditions for Condition [1]to be
satisfied in these two settings. To do that we first introduce an additional assumption on the objective
function f:

Assumption 2. The derivatives f(z), Vf(z), ..., VP~ f(z) are Lipschitz continious for all
i=1,....,p—landx,y € L(xp):

IV f(x) = V() < Lillx = yll.

7.1 Stochastic Tensor Method

Our stochastic version of Algorithm{i]for the stochastic optimization problem (1) in the online (2) and
offline (3) settings is the following algorithm.

Algorithm 2 Stochastic Tensor Method
1: Input: convex function f such that V” f is L,-Lipschitz; ¢ is objective residual; z is starting point;
constant o > L,
2: for k > 0 do
3:  Sample derivatives Gy, ; givenin (@) for ¢ = 1,..., p such that Condition is satisfied, see
Lemma[7.2)for the online setting and Lemma|7.4]for the offline setting.
4:  Obtain s; and make the step:

Sk = argmin wy ,(s)
seRn (46)
Xj+1 = Xj 1 Sk-

5: end for

In the next subsections we show how to choose the size of sample sets to satisfy Condition [I] for both
online and offline settings.
7.2 Online setting

In this setting we need one more assumption to be able to satisfy Condition[I]in the case of stochastic
optimization problem.

Assumption 3. Foralli =1,2,... ,pandx € L(xy):

IV f(x,6) = V' f(x)[| < M.
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From the following tensor concentration bound theorem we derive required conditions.

Theorem 7.1 (Tensor Hoeffding Inequality [39]). Let X be a sum of n i.i.d. tensors Y; € R% ¥ >k,
Letuy, ... uy be such that |[u;|| = 1 and assume that for each tensori,a < Y; (uy,...,ux) <b.
Leto := (b — a). Then we have

Pl -5 2 0 < 2o (-1

2no?

where ky = (%) .

This Theorem allows us to provide a sufficient condition on the sample sets S; in order to satisfy
Condition[Il

Lemma 7.2. Let Assumptions(1] (3, (3 be satisfied. Then, for any fixed small constants x; > 0 we can
choose the sizes of the sample sets S; in equation (9) to be

2
S| =ni= O (@1;2]”) . 5—2<p—z'+1>/p)

K;

so that with probability 1 — ¢ Condition[]is satisfied.

Proof. Using Assumptions and the triangle inequality, we obtain

|Gl = — }]W’x§H<—XXWVm§%Vv®WHWW)m<M+@1ﬁm

7j=1

Then, the proof completely replies the proof of Lemma 11 in [39]. We require the probability of a
deviation larger or equal to ¢ to be lower than § € (0, 1].

, , t’n;
P{||Gx; — V' f(x)|| >t} < ki’ - 2exp (—2n2> <9
0;
Taking the log of both sides, we get
tn; <1
207 = 08 i

which is equivalent to
202 2ky
n; > ¥l log 5
p—itl

Finally, we can simply choose t = k;¢ » in order to satisfy Eq. (8) since Vs € R”

[Goils] ™ = Vi)Y < |G — VEF)| [Is]

Pz-‘r

< e v [s['
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7.3 Offline setting

In this setting we use the following result to provide a sufficient condition for Condition [I] to hold.

Theorem 7.3 (Tensor Hoeffding-Serfling Inequality [39]). Let X be a sum of n tensors Y; € R *>dk,
sampled without replacement from a finite population A of size N . Let u, ..., uy, be such that ||u;|| = 1
and assume that for each tensor i, a < Y;(u;, ..., u) < b. Leto := (b — a), then we have

P(]|Xx —EX| >1t) < ka—l 4 94 202 .
_ SN -
2 1) S Ry p 202(n+1)(1 —n/N) )’ (47)

2

where ko = m.

The next lemma follows from Theorem The proof can be found in [39].

Lemma 7.4. Let Assumptions[1 [4 be satisfied. Then, for any fixed small constants k; > 0 we can
choose the sizes |S;| of sample sets S; in (@) to be

L [ R2e20—-i+1)/p 1\ !
=S| =0 —75—+—
m =15 < L7, i m)

so that with probability 1 — § Condition[1] holds.

8 Future Work

The most interesting and natural generalization of the results mentioned above is their generalization
to accelerated tensor methods [41}, 142, 143, [26, 28|, 25| 17, 127, 147, 144! 135, |46/ |23]. For second-order
tensor methods this was partially done in [29].

Below we briefly formulate the main scheme of the paper and discuss possible accelerated generaliza-
tions. Assume that (see (8))

1(Gxi = VI fx)ISI T = O (alls™ ) i=1,....p.

Then, our result in this paper shows that for an inexact non accelerated tensor method which uses Gy ;
instead of Vif(x), we can obtain the following convergence guarantee (see also [27] for p = 1 and
[29] 18] for p = 2):

L,DPtt 5 DP 63D §,D*
p 4 p + 3 + 2

f(xr) — f(x:) =0 ( v To1 T + T 7

+aD),

where D is a diameter of the ball (with center at x,) that contains all {x;}’_,. The best rate of

convergence takes place when §; = 0, i = 1, ..., p, which makes it sufficient to make 7' ~ £~ 1/?
—i41
steps to obtain f(x7) — f(x,) < e.1§d; ~ & »  we still can take T ~ £~ /7 and achieve the same
error €. In the stochastic optimization setting, the sufficient batch sizes r; for i-th derivatives can be
1

obtained from these bounds by using a quite expected result, that 9; ~ NG

For the accelerated tensor methods introduced in [41], 14} 143], i.e. the ones which have convergence
rate 1/kPT! instead of 1/kP, we may expect that (see [15,13,[19] for p = 1 and [29] for p = 2):

L,RP*Y 6, RP R3S 5, R?
o) = ) =0 (Ll 2 L B i),
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where R>||x¢ — x,|| and T is not very large.

For optimal (near-optimal) accelerated tensor methods [40, 25], i.e. the ones which have convergence
rate 1/k(P1)/2 instead of 1/k?, the conjectured bound is

L,RP+Y G, RP 53R 5, R?
T% + T3(p721)+1 +...+ T% + T2 +61R .

) = 702 =0

There are several arguments from [36], that allow to understand this result as oracle complexity
separation result for the function of sum-type with different oracles for different terms. These terms have
corresponding constants L;_; = J;. So we can consider the considered result to be generalization of
[386].

Another possible generalization is strongly convex and uniformly convex optimization problems [24]
and also Holder higher-order derivatives setting [56]. We expect that the results for strongly convex
problems allow to make this technique more applicable in Machine Learning due to regularization
arguments [54], [53].

One more direction of possible generalizations is the statistical preconditioning of centralized distributed
methods with tensor algorithm used by a master node [55, 63}, 64} [32]. Here we have exact gradient
and statistically estimated Hessian and third-order derivatives. Moreover, we expect that these results
can be generalized to decentralized setup by using the approach of [52]. So, this may improve the best
known bounds in (strongly) convex decentralized distributed optimization with similar terms [58] and
makes the bounds close to the lower bounds [2], see also [30] for discussion and more references.

Finally, we note that all the results described above can be obtained under an assumption of inexact
solution to auxiliary problems in the described methods [45] 17,136, 44/, |35 46, 23].
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