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Flexible modification of Gauss—Newton method and its
stochastic extension

Nikita Yudin, Alexander Gasnikov

Abstract

This work presents a novel version of recently developed Gauss—Newton method for solving
systems of nonlinear equations, based on upper bound of solution residual and quadratic reg-
ularization ideas. We obtained for such method global convergence bounds and under natural
non—degeneracy assumptions we present local quadratic convergence results. We developed
stochastic optimization algorithms for presented Gauss—Newton method and justified sub—linear
and linear convergence rates for these algorithms using weak growth condition (WGC) and
Polyak—Lojasiewicz (PL) inequality. We show that Gauss—Newton method in stochastic setting can
effectively find solution under WGC and PL condition matching convergence rate of the determin-
istic optimization method. The suggested method unifies most practically used Gauss—Newton
method modifications and can easily interpolate between them providing flexible and convenient
method easily implementable using standard techniques of convex optimization.

1 Introduction

1.1 Motivation

We consider the problem of solving systems of nonlinear equations, which is one of the most funda-
mental in numerical methods. Corresponding problems are widespread among various works and
monographs dedicated to numerical methods and optimization methods [26) 23] 122, 9]]. The general
form of system of nonlinear equations is defined via multidimensional mapping ' : R" — R

F(x) =0y, 0, = (0, ...,0)". )

The next minimization problem of merit function is considered as a relaxation of the problem of solving
systems of equations:

. def
min { £i(x) £ [F )|} @
xeR”
where || || is the standard Euclidean norm (it can be straightforwardly generalized to other types of

merit functions). This is quite typical way of dealing with problems like (1) [12,[15, 3} 5, 25]. The most
standard way to solve (2) is to perform direct minimization of

AEE (HE)?,

which can cause some numerical instability and losses of performance, e.g. in case of linear F' this
transformation leads to squaring of the condition number of system (). The direct optimization of
J> is usually considered within trust region methods and quasi-Newton methods using variety of
heuristics [30, 18l 28], [6]. However, it is possible to alleviate usage of iterative minimization schemes by
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N. Yudin, A. Gasnikov 2

applying the Gauss—Newton method to the original problem (2), in which every iteration represents the
following auxiliary optimization task

Zn]iél {HF(x) +F (x)h ‘ s x+he D(x)},
e n
/ JF; m.n (3)
F (x) def ( ! (x)) € R™" — Jacobian,
9x;j i.j=1
J
s0 we require smoothness for each function F;, i € {1, ...,m}, D(x) is an appropriate neighborhood

of point x € R”. This scheme allows us to optimize (2) with local quadratic speed under some natural
non-degeneracy conditions [23].

Our work establish different approach to problem (2). First of all we define normalized merit function,
and it stands for the standard Euclidean norm divided by square root of the number of coordinates in this
norm. Then, we construct iterative scheme in which the problem (3) is replaced by minimization problem
of parameterized local upper model of the introduced merit function. Our upper model represents
development of the idea of quadratic regularization of functionals, so auxiliary problem in our scheme
can be seen as some parametrized proximal mapping. Our local model unifies previously introduced
models [20, [21] and has undoubtedly convenient ability to interpolate between them smoothly.

We also consider different variants of relation between task dimensions m and n: m < n and m > n.
The first case is related to the classical setting for problems of solving systems of nonlinear equations.
The second case is usually described as the least—squares regression problem. For both cases we
established global and local convergence properties, for each case we developed stochastic algorithms
to solve (2). The whole analysis performed is applicable to various empirical risk minimization problems,
and optimized functional f> possesses weak growth condition (IWGC) [27, 29, [1]. The WGC states the
majorization of squared norm of the gradient of f> by proportional to f, function value, in stochastic
setting the gradient is replaced by its stochastic estimate and expectation is taken. Besides WGC
we consider Polyak—Lojasiewicz condition (PL) [24], which forces domination of squared norm of
the gradient of f> over f> value multiplied by some constant, so in stochastic setting PL condition
is satisfied for expected squared norm of stochastic gradient and f, value. WGC and PL condition
combined in case of m < n allow us to establish the existence of solution for the problem (), moreover
we proved the existence of stochastic iterative scheme with arbitrary batch size, which converges
linearly to the solution of (1). The existence of such schemes is deeply connected to properties of
overparameterized models in statistical learning theory, these properties are usually called interpolation
conditions [2, 19, 11,10, [17, 18} 31, [16].

1.2 Main results

Our main contribution consists of designed algorithms and its analysis in both deterministic and stochas-
tic settings of Gauss—Newton method, we consider different relations between the most important
parameters of related tasks and offer a solution for each case. Our contribution is summarized as
follows:

B We develop general Gauss—Newton method with inexact proximal map, our analysis has conver-
gence guarantees for provided algorithm.

B We characterize difference between convergence types for developed methods. We elaborate
conditions for sublinear, linear and superlinear convergence within developed Gauss—Newton
framework.
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Flexible modification of Gauss-Newton method and its stochastic extension 3

B We propose stochastic algorithms for solving merit optimization problems and derive convergence
conditions for each algorithm.

B We establish existence of stochastic algorithms with convergence rate of the deterministic
optimization method under WGC and PL condition.

1.3 Contents

The next subsection recall the most used and crucial mathematical terms and tools for theoretical
background. Section |2 describes Gauss—Newton framework with inexact oracle and describes its
convergence. Section (3| states stochastic algorithms for Gauss—Newton framework. Section |4] is
dedicated to analysis of proposed stochastic algorithms. Section [5|demonstrates experimental results
of developed algorithms. All proofs and auxiliary discussion are placed into Appendix (Supplementary
material).

1.4 Notation

Let us denote finite Euclidean space using letter E (we also equally use symbols subscripts to
denote other Euclidean spaces) with standard Euclidean norm || ||. Denote Euclidean spaces E; with
dim(E|) = n and E; with dim(E,) = m. The dual space for E is denoted as E* and represents the
space of linear functions over E, the value of function u € E*, evaluated at point x € E, equals inner
(scalar) product (u,x). Norms ||x|[,x € E and ||u||,u € E* are connected via following relation:
[x[] = max {{u,x) : [juf| <1};
uck

[Jull = max {(u,x) : [lx]| < 1}.
xekE

Consequently, these relations state Cauchy—Schwarz inequality: (i, x) < ||u||||x||-

For a smooth function f : E; — E» we denote first and second derivatives, evaluated at x € E: fo(x)
and V)ZC f(x) respectively (in case of unambiguity we drop subscripted x). For E; = R first and second
derivatives are called gradient and hessian respectively. Note that V £ (x) € E}, V2 f(x) : E| — E} is
a self—adjoint operator.

Further, for linear operator A : E; — E» we denote its adjoint A* : E; — E}:
(u,Ax) = (A*u,x), u € E5,x € EJ.
Introduce for linear operator A : E| — E its operator norm as maximal singular value Opax(A):
|A[] = Omax(A) = max {||Ax[| : [lx]| <1} =
x€E;

= V/Amax (AA*) =/ Amax (A*A),

where Amax (+) is maximal eigenvalue. In addition, for operator A with corresponding matrix (aif)T}il
we denote Frobenius norm as ||A||

m,n

Y laij? = V/Tr(AA*) = \/Tr (A*A).

ij=1

1Al =
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N. Yudin, A. Gasnikov 4

Clearly, ||A|| < ||A]| according to the property of trace Tr(-) of self-adjoint operator. We also define
minimal singular value for operator A:

Omin(A) = min {|JAx| - [|x|| < 1}.

For multidimensional map F : E; — E; we introduce Jacobian (x), evaluated at a point x € E using
linear operator from E; to E5:

F'(x)h = lim (% (F(x+th) —F(x))) €Ey, heE;.

t—0

For linear self-adjoint operators and its corresponding matrices we define partial order on positive

semi—definite cone:
A<A, A\ =AJAE—-E" A E—SE&

< (A —A)x, x) >0, Vx € E,;
B=<B|,Bi=B,B:E* -E,B|.:E" - E&

< (u, (By—B)u) >0,Vu e E*.

Notice that it is easy to establish for linear operator A : E; — E» these relations:
{AA* 2~ Omin (A*)zldim(Ez);
A*A = Omin(A)Lgim(E, -

Denote set of integers form 1 to m inclusively as 1,m. Notation f(x) = O(h(x)) means upper estimate
of function f using function & up to positive constant and possible polylogarithmic factors. In similar

manner f(x) = Q(h(x)) defines lower estimate of f using function & up to positive constant and
possible polylogarithmic factors. Finally, we introduce

f*=min f(x), g"(y) = ming(x,y),

x€E] xek

to define minimal values w.r.t. x for functions f and g respectively.

2 Modified Gauss—Newton method

2.1 Local upper model
Let us restate the problem of finding solution x* € E; of the smooth nonlinear system of equations:
F(x) =0, (4)

where F : E| — E, is smooth multidimensional map with Jacobian F'(x), x € E|. To estimate
closeness to the solution of system of equations (4) we consider the following merit function depending

on £ (x) € L F (x): 1
fi(x) "éfﬁ IF @) = [[F)]-
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Flexible modification of Gauss-Newton method and its stochastic extension 5

Clearly it is possible to solve (@) using £} (x) in the following optimization problem:

fi = min {70 = = 1Pl = = [0, Ene) . ®)

Existence of solution of (4) is equivalent to ff‘ = f1 (x*) = 0. We consider an iterative procedure to
construct solution of (5), based on minimization of local model:

6xy) ™ | P +F ()=, (ey) € B
Flx)= Ly (x).

Jm
Classical Gauss—Newton method uses the following mapping at each iteration k € Z to construct
minimization scheme for (4) through sequence of convex problems:

X1 € Argmin{@ (x,y)}
YEE)

However, simple additive regularization for ¢ allows us to establish global convergence properties in
addition to local properties. In this section we consider a unified modification of local models considered
in [20, [21]. First of all, we introduce some basic assumptions about the problem. Consider .% C E| —
closed convex set with non-empty interior.

Assumption 1. Multidimensional map F (x) is smooth on .7 with Lipschitz continuous Jacobian:

L >0 HF’(y) —F’(x)HF 2

(x,y) €7

Assumption [1]leads to the following Lipschitz property:
Fy)-F ) <

Denote level set .Z(v) of function fi:

(v,y) € 72,

V) def {x : fl(x) < v},
supposing that .% is large enough:
ZL(fi(x0)) C.F, xg € .F — initialization.
Assumption 2. Suppose the following PL condition is satisfied:

I >0, Omin(F'(x)") = Vi, Vx € F

Assumption [2|is a PL-type condition because the inequality below is consequent from this assumption:

Al

VA =4|F H > 4pfo(x), Vx e 7.

Note that assumption [2| implicitly requires dim(E;) < dim(E,). Based on these assumptions, we
consider the following general modification of local model in the Gauss—Newton method recently
introduced by Yurii Nesterov [21]:

7 aer T ($(x,)°
N0) S WeLely) = 5+

7>0, (x,y) € F2.

L 2
+§||y—x|| , L>Lg,
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N. Yudin, A. Gasnikov 6

Algorithm 1 General method of Normalized Squares with an inexact proximal map

1: Input: setting (6).
2: fork=0,1,toN—1do
3: define 7y = <7()61(,Lk,<€‘k), & = 5(k,xk,xk_1).
4:  compute such x| € Eq,

that Y, 1,z (Xk+1) — W Ly m (T (5)) < &

if /1 (k1) > W 1y 5 (Vk41) then

define L := min {2Lk, 2Lﬁ} and return

to step 3.
7:  endif
8  Lpy :max{%", L}.
9: end for

10: Output: xy.

This local model provides a natural way of updating approximation of the solution:

def .
Ty (x) = argmin{y, 1 (y)}:
YEE;

Al

Al _l Al A
Tpo(x) =x— (F (x)*F (x) + TLI,,> P () F(x).

2.2 Analysis of the scheme

The designed scheme of iterations in deterministic setting naturally unifies a variety of Gauss—Newton
methods and possesses some convenient properties, such as strong convexity of the local model
l;/LL,T(y) w.r.t. y and strict convexity w.r.t. T. It results into the uniqueness of optimal y at every iteration
and even allows us to find approximation of the closest local model to our criterion w.r.t. 7. The
developed optimization scheme is presented as algorithm [1} and because of f; structure we call the
corresponding method as Method of Normalized Squares, the name we adopted from Yurii Nesterov’s
preprint [21]. This method requires objects outlined below:

(%0 € Ei, Z(fi(x0)) C .F — initialization, x_| = xo;
& () — error value function;
N € N — number of outer iterations; ()
L — local Lipschitz constant estimate, L € (0, L], Lo = L;

| 7 (+) — function to specify .

Algorithm [1|is quite conceptual as it has some degrees of freedom in (i, &) selection, and this
algorithm also exploits the idea of binary search of appropriate Lipschitz constant, which adaptively
exploits geometric properties of a merit function surface. Note that the presented method uses an
inexact oracle with some computational error &, of x;4; and such error should be small enough to
ensure x; | € % . We established global convergence properties for this method in listed below terms:

B norm of the proximal gradient mapping: ||Li (77,7, (xx) — X&) |I;

B local decclzrfe'c}se: N def ; » 2
Ar(x) = fz(xk)—;g}g{w(xk,y))z: [y — x| < r}, r>0; A(x) = (AK), x€EL.

DOI 10.20347/WIAS.PREPRINT.2813 Berlin 2021



Flexible modification of Gauss-Newton method and its stochastic extension 7

These values equivalently represent sets of stationary points in the following way:

B {x":x"€E, |[L(T:(x")—x")||=0, VL >0, VT > 0};

B {x":x"€E, A(X)=0, Vr>0}.

Formally convergence to these stationary points is justified in theorem

Theorem 1. Suppose that assumption|1| is satisfied, k € N, r > 0. Then Gauss—Newton method,
implemented using scheme with T, = f1(xy), & = € > 0, has the following estimates:

e 0500) 2 g 10 )

Ly (8+ k ZiGI(?Ilcnl{z(LFa %(4f1(xz‘)Lﬁ’2>}’

where %(l‘) = tjz]l{te[o,l]} + (t - %) ]l{f>1}'

Theorem [1] states global sublinear rates of convergence, and does not imply existence of the solution of
(B). The next theorem establish local superlinear convergence under natural non—degeneracy conditions
for solvable systems ().

Theorem 2. Suppose that assumption is satisfied, Jacobian is bounded: Hﬁ / (x) H < My for all

x € .F, and the solution x* € Z(f1(x0)), F(x*) = 0,, with Gin (ﬁ /(x*)> > ¢ > 0 exists. Then
Gauss—Newton method I with T, = f1(x¢), & = 0 in region

N ) 26 1 2
[ — x7| Smln{ﬂ, L, ((3Mﬁ+5g)—\/(3Mﬁ+5g) —24g2)}, k €Z,

superlinearly converges

w I\Xk_x*l\2

- *Wfl ()L +

x|

X1 € L (fi(x0)), Fi(xe) = O(flae —x*) -

< e —x7,

ey r ="l <

Singular value bounds in theorem [2| require structural limitation dim(E;) < dim(Ej3), so in case of
dim(E,) > dim(E») there is no ¢ > 0 exists, however, assumption 2| can be held for @) according to
the theorem below.

Theorem 3. Assume that assumptions and@ are held for Gauss—Newton method with T, = fi (xx).
Then any sequence {xy } . 7., has the property:

fw) | Le p 32 .2 u
» + o 2() < 10, if fi(a) < g2
Ji(1) < &+ AZ 4 4Lg
Ji(x) — 16L , otherwise.

Theorem|3|reveals a quite important property of independence of linear convergence rate from u for
Gauss—Newton method.

DOI 10.20347/WIAS.PREPRINT.2813 Berlin 2021



N. Yudin, A. Gasnikov 8

3 Stochastic modification of Gauss—Newton method

3.1 Stochastic local model

We consider the only two sources of randomness: sampling of initialization xg € E; and independent
sampling of batches By, of functions from () at each iteration of Gauss—Newton method. Batch By, at
each iteration k has size |By| = b € {1, ...,m} and is sampled without replacement, independently
and from random uniform distribution g over subsets of size b:

Bi={F;(x)| je{1,....b}, ije{1, ....m}}.
The whole set (finite population) of functions from F is denoted as

B F(x)|ie{l, ... ,m}}.

Based on sampling strategy we define following stochastic estimates of F and £’ w.rt. batch B of size
b:

G(x,B) dzef%ml(x), By ()
¢ (x,B) d:ef%(w;l(x), VE, (X))

These multidimensional maps define corresponding stochastic optimization criteria:

. def
$1(x,B) =

22(x,B) € (81 (x,B))%.

And for such functions we are able to deduce the stochastic local model:

G(x,B)

2

o

A . det T L 1A N
§100B) SV (0B) = S+ 5 [y =l + 52 ||Gx,B) + 6 (x,B) (y—x)|

(x,y) EE%, T>0,BC A

2
, L>Lg,

This local model offers directly convenient proximal map for construction iterative optimization schemes:

A def . ~
Xk+1 = TLkﬂ'k (xk7Bk) = argrgln{kalkﬂk(yaBk)}v ke Z-f—;
yeL

Al

Al Al _1 A
Xyl = Xk — (G (xx, Bx)*G (xx, Bx) + TkLkIn) G (xk, By) " G(xy, By).

3.2 Used assumptions

The stochastic version of Gauss—Newton method uses the next set of assumptions instead of the
previous one to extend all main optimization criteria properties up to stochastic settings.

Assumption 3. There are exist Ly > 0, I > 0, for which the following is satisfied
IVFi(x) = VE(y)|l < Lg

(F(x)* = (R()* <1z

X—yH,
x—yl, V(x,y) €Ef, Vie T,m.

DOI 10.20347/WIAS.PREPRINT.2813 Berlin 2021



Flexible modification of Gauss-Newton method and its stochastic extension 9

Unlike assumption |1} the lipschitzness is considered relatively F; and not over the whole set of functions

from (4).

Assumption 4. Let My > 0, for which HCA?I(x,B)H <M forallx € E; andBC %, |B|=b¢c 1,m.

In case of b = m exists Mp > 0, for which HF/(x)H <M atallx € Ej.

Assumption 5. Let P;, > 0, for which §1(x,B) < P;, forallx € Ey and BC %, |B|=b e 1,m. In
case of b = m exists P; >0, for which || fi(x)|| < P;, atallx € Ey.

Assumptionsand mean lipschitzness of (F;(x))? and &> (x, B). By Lipschitz continuity the best (the

least) value of the Lipschitz constant equals sup {||V,£2(x,B)||} [14] and this value is bounded:
x€E

sup {||Vx§2(x,B)||} S min{lp, 2MGP§1}a VB g :@,
xeE,

because

182(2,B) = §2(¥,B)| < sup {IViéa(x,B) |1} Iz —=yl, ¥(3,2) € ET, VB C 2
XEE]

J/

~
<lg (lemmal[7)

and

sup {|[V,@2(x,B) [} = sup { [26'(x,8)6(x.B) |} <2 sup { |6 (. B)|| |G x.B) | } <

xeky xek x€E;
< ZMGPgl, VB C A.

Assumption 6. There is exists ¢ > 0, for which Ep [|§2(x,B) —fz(x)}z] < o’ atallx € E, and
BC %, Bl =1.

Assumption 6] is automatically satisfied under assumption [5|and it is introduced due to convenience
reason.

Assumption 7. Let it > 0, for which G (x,B)G (x,B)* = jul, atallx € Ey and BC B, |B| = b <
min{m, n}.

Assumptionintroduces lower bound for singular values of jacobian G (x,B)*. Usually it is satisfied for
cases with m < n, but theoretically it can be true for systems (4) with m > n.

3.3 Optimization scheme

According to stochastic local model lfixk,Lk’fk (y, Bx) the next update rule uses scaled descent direction
to find another approximation of solution:

Al Al Al

_l R
Xkl =Xk — M (G (xx,Bx)*G (xk, Bx) + TkLk1n> G (xx,Bx)"G(x, Bi), Mk > 0. (7)

DOI 10.20347/WIAS.PREPRINT.2813 Berlin 2021
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Algorithm 2 General Three Stochastic Squares method with an inexact proximal map
1: Input: settings (9).
2: fork=0,1,toN—1do
3:  sample batch By of size b from .

4: define 7, = ﬂ(xk,Lk,Bk).

5:  compute x;11 € Eq using (7).

6:  if &1 (%t 1,Bk) > Wy 1y (Xkt1,By) then

7: set L := min {2Lk, yLF} and return
to step 4.

8: end if

9 Lpy :max{%", L}.

10: end for

11: Output: xy.

The rule below is called doubly stochastic and is derived from stochastic local model, for which gradient
and hessian are estimated using independently sampled batches while x; 1 is computed via scaled
Newton method step:

Al Al 1 Al

X1 = Xp — Mk (G (xk, Br)*G (xk, B) + kak1n> G (x, Br)*G(xx, By), M > 0,

By C % and By are independent samples, %, > 0.

(8)

The developed optimization scheme is a straightforward modification of scheme [f]and is present as
algorithm 2| All presented stochastic Gauss—Newton methods are named with infix three stochastic
squares because the local model is fully estimated on batches, unlike the Method of Stochastic Squares
developed in [21], for which only the hessian of local model is batched. The whole process depends on
the settings listed below:

(xo € E; — initialization, x_1 = xg;
N € N — number of outer iterations;
Y > 1 — upper factor for Lz search;
L — local Lipschitz constant estimate, L € (0, YLz,
Lo=1L;
T () — function to specify T;
% — population;
| b €1,m— size of batch By C B, k € Z..

Scheme [2Juses more flexible upper bound of Lipschitz constant search, its typical value is no less than
2L in case of unknown L. Doubly stochastic step is used in another stochastic gradient-like strategy,
based on the next settings:

'xo € E| — initialization;
N € N — number of iterations;
T (+) — function to specify TL;
. (10)
2 — population;
b,b € 1,m — sizes of batches By, By C A,

respectively, k € Z .

DOI 10.20347/WIAS.PREPRINT.2813 Berlin 2021



Flexible modification of Gauss-Newton method and its stochastic extension 11

Algorithm 3 General Three Stochastic Squares method with a doubly stochastic step

1: Input: settings (10).

2: fork=0,1,toN—1do

3:  sample batches By, By from 2 of corresponding sizes b,l;.
4:  determine FLy = 7 (xi, By).

5:  compute x;11 € Eq using (8).

6: end for

7: Output: xy.

And corresponding scheme [3|does not contain adaptive Lipschitz constant search procedures, it only
relies on step scale 7.

4 Convergence analysis

4.1 Scaled step usage
Theorem [4] states general convergence result to approximate stationary point in mean.

Theorem 4. Suppose assumptions|3,[4,[5, [6 are satisfied. Consider Stochastic Gauss—Newton method
[Bwith T, = &1 (xx, Bx), Mk € [11,1], 1 € (0,1] and some finite & > ©. Then:

8(MZ+7vPuls) (E[} M
. e 2 G 81-F fz(Xo)] o 2Pg1 MG
i teel] <=t (S s {2 i

1 1
+6\/———>,keN.
b m

Expectation operator E [-] averages over all randomness in optimization procedure.

The following proposition states linear convergence in mean in case of PL condition (assumption|7).

Theorem 5. Suppose assumptions (3, [4, [3, [6, 1 are satisfied. Consider Stochastic Gauss—Newton
method[d with Ty = &1 (xx, B), Tk € [N, 1], N € (0, 1] and some finite & > o. Then:

(E[VA00|] <4M2A

E[A(x)] < 5+ Ay
Ak e [/2(x0)] exp <— kn(2—n)p )) +4 <lﬁ min{ 2F ) %} Lipamy+

Z(YLﬁPgl—i—,LL L L
/11 VLﬁP§1+N) —
46— — | (ZEB TR keZ., beT, min{m,nl.
\ b m)(n@—n)u * tm;n

Expectation operator E -] averages over all randomness in optimization procedure.

DOI 10.20347/WIAS.PREPRINT.2813 Berlin 2021



N. Yudin, A. Gasnikov 12

4.2 Doubly stochastic step usage

The whole convergence of doubly stochastic step is justified using local model of fz, denoted as @, ;.
Schemeis used to optimize in mean the following @, ; function:

2 def 2 2 l 2
H0) £0i(0) = L)+ (V) y=x)+ Sy =%,
def 2 2
121, <2 (MF +Lﬁpfl>  (x,y) € E2.
So, that's why the value 7Ly is less principal and it is enough for appropriate 1), just to ensure that
TL; > 0.
Now consider solving nonlinear equation regime in problem (5):
dlm(El) > dim(Ez), n> n,
the structure of used functions allows us to use weak growth condition (WGC) alongside PL condition
in current regime in context of assumptions [4]and[7}
2
A 2 A/ A A
1Vi2(x B)IP = |26 (x,B) G, B) | < 4MZga(x. B):
2
A 2 A/ A A
Vo B> = 4|6 (x,B) Glx,B) || = 4pga(x,B).
After averaging over batches B C % these inequalities lead to the following bounds:

41 fo(x) < Bp [ IV.82(x,B) 2] < 4M2fa(x), (1)

Together WGC and PL condition mean for function fz satisfaction of so called strong growth condition
(SGC):

A 2 M?; A 2
= By [IVta(oB)| < =2 VA0
These conditions forces all sampled gradients to be equal zero in stationary points, which are also
global minimizers:
V8o (x*;B)=0,, BC B, x*: F(x*) =0,,.
Thus, WGC and PL condition cause possibility to solve problem in stochastic regime with arbitrary

batch size and arbitrary accuracy, as the theorem below states.

Theorem 6. Suppose that assumptions(3,[4, (5, [7 are satisfied. Consider Stochastic Gauss—Newton
method[3 with Ty > T > 0, Ly > L > 0. Then, for sequence
=7 \2
2%
Me= 77— N keZy
(M 2+ TkLk> (LﬁPfl +Mﬁ) M2

the next estimate holds

2
N N k UuTL
Elnw)] <ElnGo)] e | - <LﬁPf +M%>M% (Mé+%L> ,
1 F G

keZ,.
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In case of N, = 1, k € Z convergence estimate is no better than
A N 2
E[AG)] <E[Ao) exp | - 2 — 1 ;
A)] <E{fa(x0)] exp ( M, (;H(Lﬁpfl +M2)e  (LpPy+M3)2

def 2 3/4743/93
c—3(1—|—7‘3/47+3\/9>3+\/ 5 ),kEZ+.

Expectation operator E [-] averages over all randomness in optimization procedure.

Theorem [6] states linear convergence for all considered cases. As corollary, the most optimal choice
in the worst case scenario for T and L is TL — oo, which morphs Gauss—Newton step into gradient
method step, if we use dynamic 1. In case of 1 = 1 convergence speed is slower in the worst case
scenario.

5 Experiments

We conduct numerical experiments to evaluate performance of algorithm |1}, algorithm [2|and algorithm
The whole set of algorithms is implemented in Python 3.8 running on a Linux—based ASUS laptop
with Intel Core i5-4200H CPU @ 2.80GHz x 4 processor and 16 Gb RAM. The estimated runtime for
experiments is 6 hours, 5 minutes and 46 seconds. Details of our experiments are in supplementary
material.

We consider three benchmark functions to test main features of presented methods. The main task
is unconstrained minimization, which is achievable for smooth convex functions using equivalence
between unconstrained minimization task and solving system of equations, which represents first order
optimality conditions. More formally, it means V f(x) = F(x), if we have to minimize function f(x)
using optimization of merit ||F (x)||. So, we have to find a solution for this task:

min f(x).

xek

But our benchmark functions are non—convex, so our solution of the system of equations F(x) =0,
can represent a local minimum point or even a saddle point.

We test the following three different doubly smooth functions f(x), x = (x!, ... x"):
B Nesterov—Skokov function [9]:
n—1 . . 2
fvs(x) =1 (x! - 1)2 + Y (x’+1 -2 (x’)2+ 1) ;
i=1
B Hat function: fi(x) = (||x||> — 1)?;

n .
B PL function: fpy (x) = ||x||> +3 ¥ sin?(x).
i=1

Clearly, in such conditions we always have m = n.

Function fys is one of the hardest to optimize because of its fluctuating landscape, achieved using
superpositions with Chebyshev polynomials of first kind P (x) = 2 (x")2 — 1. Function fg is non—
convex and possesses quadratic growth property:

Iv>0: fx)—f* z§y|x—9(x)y|2, Vx e Ej,
P E|—E,
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Figure 1: Performance of deterministic Gauss—Newton method on Nesterov—Skokov function

L -e- nN=
\\\ n 10
o\‘ '0\\‘ -e- n=100
101 T‘ el S -e- n=1000
‘1\ .\\ e
g ‘ - ~
R ‘\\:.\\ \‘\ ‘\‘Q.\
-1 N SO p
10 N o -
N ‘ ~ .\\
\ N, -
= “e X \\
5 10_3 \\ .\ \.
— \ \ \
<N \ \
\‘ \\ \
1073 % \
\ \ A
\\ \\ ‘\
-7 \ \ \
10 | A A \
\ \
| \ \
9 ‘ \ \
10 3 )
2 4 6

8 10 12 14
Number of outer iterations, k

Figure 2: Performance of deterministic Gauss—Newton method on Hat function

minimum equal 0.

where &7 is the projection of x onto set of global minimizers of f. Function fpy is non—convex, bounded
by two paraboloids and also satisfies quadratic growth property. All of three functions have global
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Figure 3: Performance of deterministic Gauss—Newton method on PL function

For deterministic Gauss—Newton method we use 7, = f1 (xz) and test three different values of dimen-
sion n: 10, 100 and 1000. We use the exact proximal map: &, = 0. All settings are averaged over 5
random initializations. Depicted uncertainty intervals have two standard deviations width.

All test runs show us the hardness of optimization fys (figure dispite having a unique global minimum,
the convergence speed is sublinear. fpy (figure [3) demonstrates linear speed of convergence to a
saddle point, however, trigonometric fluctuations slow down the whole process. And fy (figure
shows the best properties to achieve even superlinear speed of convergence to the global minimum
in later iterations demonstrating typical change of slope between linear and superlinear regions of
convergence.

Results of stochastic algorithms performance are in supplementary material.
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SUPPLEMENTARY MATERIAL

A The proof of auxiliary results for Gauss—Newton method

The next lemma derives the local upper model for problem (5).

Lemma 1 ([21]). Let (x,y) € .F2 L > Ly, T > 0 and assumption |1| is satisfied. Then Al <
Vier(y)-

A/

Proof. We deduce an upper estimate for Hﬁ(y) —F(x)—F (x)(y —x) H

1
PO) =P F 000 = F0) =P+ [ F (et ey ) -x)dr =
0

1
= / <F (x+t(y—x)) —F/(x)) (y—x)dt|| <A{]| - | is convex, Jensen’s inequality } <
0

! I
< [ (F oot —0) =) 0= ar < [ |[F e eo—) = F )| Iy —lar <
0 0

I
L.
< {assumption[]} < /LF y—x|*tdr = 7F\|y—x||2.
0

Consider an auxiliary inequality:

- N 1

2 T 2
F(x)—l—F(x)(y—x)H) =2+ ﬁ(x)+ﬁ’(x)(y_x)H _

- [P+ F -] z0=

| , (13)
= §+§ HF(X)JrF/(X)(y—X)H >

> Hﬁ(x)+ﬁ’(x)(y—x>H.

Then forfl we have

A

L) =|FO)| =

<||P6) = )~ ' (@) =) + | () + ' ()~ )| < {inequality from ()} <

F) =)~ F (00— + P+ F () - )| <

Ly f i T  Lg

< —lly=xl?+ HF(X) +F (x)(y—x)H < {inequality from (73)} < 5T 7F||y_x||2+
| BTN N 2

52 [P+ F 0= = vy 0) < pirel).

O

Corollary 1.1. For T = ¢(x,y) the gap between f(y) and Wy 1. () is minimal, according to (T3).
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The following lemma characterizes decrease relatively to the point of minimum of local model. The
decrease is measured proportional to the squared norm of proximal gradient map.

Lemma 2. Suppose that assumption holds andx € .F, Ty (x) € #,T >0, L> Lp. Then

T folx A L
L R B e )
Proof. Consider function
() = min {00} =mind Tt L7+ £ 00|+ gy
— _ = — —_— X X —X -— —X .
yei, W e W =M 2 7 o7 Y 20

The local model ¥, -1 .(y) is convex w.rt. (7,y,t) on convex set
{(,7,1,a) € Ey x RS fly —x|* < at}.

The function A(t) has convex epigraph as the result of convex set projection, therefore, A(t) is convex
(Theorem 3.1.7, [22]). So we have for convex function

/

h(0) > h(t)+ 1 (t)(0—1) = h(t) —h (1)t

l 2 a ol d 1 (X
h(t) = <%F (x)* <F(x)—|—F (x) (z;,lﬂ(x)_x)) +;(Tt1,1(x)—x), Ta; ( )>_

-~

1 1
=5 1T 20 = = =55 [T () = o]

Using the main property of proximal map respectively ¢ we have lin(l) argmin{l//x fllf(y)} =x=
t— yeE; o
2 A

h(0) = Z+ 1520 — 24 Bl yg,

> Yt T () [Tt o)l > {lemmall) > fi(T1 () +

1 - "
o [T () =P = {1 lzL}:%fzz(;c)

A L
—Mi(Tee(@) > 5 | Tee(x) =]
O

Corollary 2.1. The results of lemma also mean the inequality below:

T h)
§+ 2t

L
Vara(Tre(x) 2 5 [1TLe(x) —%,

which is true for L > 0 and x € E].

Corollary 2.2. T; ;(x) = argmin{y, . :(y)} has explicit form for L > 0:
YEE|

Al

N -1,
Tpo(x) =x— (F (x)*F (x) + TLI,,> P (x) P (x).
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That's why lim T :(x) =x and
L—+4oe

C B iz L im (L0 -
1 Al Al -1 N A 2
= ELErEM (LH(F (x)*F (x)—|—‘L'LIn> F (x)"F(x) ) =
1 U RV &
=5 Jim_ (EF (x)*F (x)+r\/ZIn) Fx)*F)| =o0.

However, the value ||L(Tf, ¢(x) — x)|| converges to the norm of gradient of W, 1 +(y) w.r.t. y evaluated
aty = x when taking the limitin L — +-oo:

'"11>
—
=
*
3
=
N—

L (ﬁ’ (x)*F (x) + LI )_1

Jim [[L(Tyz() =) = lim

3
=
~—

*
o
~~

B

= lim
L—+o0

(%F%x)*ﬁ’(x)wn)l

The function || Ty z(x) — x||? is decreasing of L and T.

Corollary 2.3. If we set T = f)(x) > 0, then forx € Z(f1(x)) C .F the proved inequality means

Tp fix) (x) € Z(h (x)):

B i The0) 2 5 Weel) P = {5 = i)} =
_2\\”1 0 =] 202 i) 2 ATy 0 (0) =

= Tp o) € LT, f () € L (fi(x))-

_|_

A

The lemma below estimates local decrease of the optimized functional using A (x)

Lemma 3. Let assumption holds andx € %, T (x) € #, 1 >0, L> Lp. Then, forany r > 0 the

next inequality holds

f A A,
% 420 — fiTLe(x) > Lrs (2,53)2) ,
where

1‘2

5,t€ |0, 1];
(1) def 12 | 0, 1]

t—4 > 1.
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Proof. We introduce h, = argmin{(¢(x,x+h))2 A < r}. Express local model at 77, 7(x):
heE,

fl(TLJ(X)) < {lemmafll} < i1 7(TLc(x)) <
< min E+iH1‘7‘( )+tF (x)h 2—|-—(tr)2 =1
Treo, 1] 2 27 x ) 2
+ min {iH(1—t)ﬁ(x)+r<ﬁ(x)+ﬁ’(x)h,) ‘2+£(tr)2 < {]|-11? convex} < =+
relo,1] | 27 2 -
(=1, r 2, Lol 7 h(x)
+ min {8000+ o n)+ o2 = 4 204
. L.\ T J?Z(x)_A 2 Arx) 1,
+,£€&nu{ A+ 5 ) }: 2 T NTLe)) 2 L max 4 5ot =5ty

The RHS of the inequality above hides under max operator a quadratic polynomial with negative

coefficient at the highest degree term and with roots ¢ € {0, A’L( 2)} which means two cases for the
computation of point of maximal value ¢*: o 2( z < 1and % 2( 2 > 1. In the first case t* ZAT’S)Z in the

second one t* = 1. The estimate obtained has the following expression:

s | Ar<x>)2 for 1* — M),
T X " E( 5 , fort” = ——;
Y ) = Lo [P o (14)
2 27 A (x) 1 for i — 1
2tLr2 27 ort- = 1.
12
. . 2 re [07 1]9 . . . .
Define function s(1) = 1 ) Express the estimate using this function:
I—5,t> 1.
29
T h) 2 ( Ar(x)
= — f1(T] >L .
2t e NIl 2 Lo o
Note that /> (x) > Aw(x) > Ar(x) > Ag(x) = 0 and 2(t) > 0 by construction. O

Corollary 3.1. The proved results hide the following inequality:

T Hk) 2 [ Arlx)
- — T 7(x)) > Lrox | —=
2T Vere(lie) 2 2012 )
which holds for L > 0 and x € E|. Moreover, for sufficiently small values of Lr?, that IE )2 > 1, we

have:

T Hx) A(x) Lr?
— — T -(x)) > - —.
5 + 27 Viro(Tee(x)) > >z >
For great values of L2, for which 3 £ )2 < 1, we have different estimate:
2
2(x) (Ar(x))
— > Y/
3t Wealliel) 2 Sgars
Corollary 3.2. For sufficiently great values of L#2, for which é )2 < 1, the obtained estimate simplifies:

B s 80)°

— 872Lr?
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For sufficiently small values of r, for which Ar(x) > 1, the other estimate holds:

27Lr2
’L' 2(x) 4 A(x)  Lr?
— T > -
2 ZT f ( Lt (.X)) - ZT 2
In these inequalities the function Lr*s <2A—£2> is decreasing of L and 7.

Corollary 3.3. For T = f|(x) > O the obtained estimates forx € £ (f1(x)) C .# meanT, LX) €
ZL(fi(x):

%+f22(:)—f1(TL,r(x))>L2 (QAI(JZ):{T_]CI X} = 1) = (T () 2

Ar(x A
zLﬂ%(Zﬁ#)zo;»ﬁ<>>fl<m (x)) =

x)Lr?
=T,

(
L) €L (T, @) € L(A).

Lemma bounds the local model for function . As corollary, this lemma also bounds the local model
with distance to solution of the system of equations (4).

Lemmad. Letxe .F, Ty (x) € #,L>0, T>0. Then

T Lly—x|* | AO) | AO)Lsly - L2 ||y —x||*
T < i .
Vere(TLe(2) < ;{2+ il £20) | SiOMely =l | LD

Proof. By definition of W 1 ¢(-):

(To(x)) =mind T+ 1
Yy Lo\l t(X —;TEH;} T

1
+;25£{21(

+mi;z{5 (AG)+]F0)-Fe —F’<x><y—x>H)2+§||y—x||2} <

PG+ F @00 + 51} =T+

N

FO) = (FO) -~ F ()~ F (x)(y—x)>H)2+I§Hy—X||2} < §+

yeF
< {inequality (2)} <

T Ls 2 L T
<t Fiiy,  vl12 “lv—x12\ <« =
_2+;r€11§{ (fl() > [y x||> +2||y x|| }_2+

Ly=x? , h0) , Sib)Ls L
2 27 27 8T '

Corollary 4.1. Suppose x* € .Z s the solution of @): F (x*) = 0,,, Z(f1(x)) C.Z. Then

Lily—x? , / AL Lily—xI*] _ =
=" L0, AO)Ls L LE <7t

yeF 2 27 27 87

K
Vi Lo(TL2(x)) < min {E +

A A 2
Liy—x|>  AO)  AO)Lplly—xI*  Lg e
t ot T 27 T =lr=x=
T Llx—x*|]? L%|\x—x*\|4
_T I | Lo ‘

2 2 87
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B The proof of main results for Gauss—Newton method

The deterministic Gauss—Newton method is considered within settings (6). The general deterministic
Gauss—Newton framework is conceptually described as algorithm |1l However, the scheme above
deserves some criticism. Values &, can’t be arbitrary big and we either should choose small enough
values for & or design procedures to force x; | € % for scheme correctness reason. The main and
maybe already conventional ways are listed below:

B add auxiliary rule for x| € .Z search: f](x;) > Ui L. (Xk+1) and force xgy1 1= xy in case
of inability to achieve strict inequality;

B choose small enough & > 0 to guarantee x| € Z: . Z(fi(x;) + &) C F;

B introduce "correction procedure”, e.g. projection onto .7 for every obtained X 1.

B.1 The proof of theorem 1

Theorem 1| states global sublinear convergence rate to approximate stationary point.

Theorem 1. Suppose that assumption |1| is satisfied, k € N, r > 0. Then Gauss—Newton method,
implemented using scheme with T, = f1(xi), & = € > 0, has the following estimates:

BIL‘—‘% (S—I—M) > min {HZLF (TZLﬁ,fl(xl‘)(xi) _xi> HZ};

i€0,k—1
R (/i (x0)—f1(x0)) . 32 A (x;) .
Le (8 * k = ,-er(l)]’}{rll {2 (LFr> % <4f1 (xi)Lﬁ’2> } ’

where (t) = tjz]l{ze[o,l]} + (1 - %) L1y

Proof. According to Iemmas and corollaries for 7= fi(xx), L = L, x = x; we have
2

v

Ly
2

fl (k) — VLo i (Xk)(Tkal (Xk)(xk)) TLk7fl (xk)(xk) _xk‘ ’
7 Ar(x
Jila) = VL fi () (Tkafl (xk)(xk)> > Lyrs <2fl (xi)kL)krz) ’

Add and subtract ¥/, ; - ., (Xk1):

/

h (k) + (ka7Lkafl(xk)(xk+l) - kavavfl(xk)(TLkvfl (Xk)(xk)>> - kavavfl(xk)(xk+l) =
Ly 2

>
-2

b

T () (k) — ‘

File) + <ka?ka1 (xk)(xk+1) ~ VL i (Xk)(Tkal (xk)(xk))) = Vi Lo fi () (Hie1) =

2 Ar(xk) )
\ Z Lkl” a4 (—2f1 (xk)Lkr2 .

We use conditions

ll/xk7Lk71’-k (xk+1) - kaaLk7Tk(TLk7Tk (xk)) S 8k =E&
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and =V, ;. 7o) (k1) < = Fi(ug):

2

b

N A L
Ji(x) + &= fi(xesr) = 7k HTLkvfl(xk)(xk) _xk‘

Ar(xk) ) ‘

2 g P
fi(xe) +€— fi1(xeg1) > Ler %(2fl(xk)Lk7'2

We average both parts of inequalities over first & iterations:

2

)

€+

filxo) = fila) _ 1L
k = % Z 5 |7z (xi)(xi) _xi‘

Fi(x0) — fi(xe) ) Ar(x;)
e k ZL (2]?1()@')141'?2).

2
and

Using the following restriction L; > L in scheme (1| and monotonicity of HTL; Aix) (xi) —x;i

2 Ar(xi) . : .
Lirc s <—2f1(x,~)L,»r2) over L; (corollarlesand .

(i) = Ailw) >lk_l£i
k k&2

2
>

€+ TLiufl (%) (X,‘) —Xi

> . LHT ( )
min < — . i) — x;
= ic0T | 2 117 2Lp i)

1 2 )
k }
fi(xo) — f1 Xk) Z ’ ( Ar(x;) )

7 hir 2 /1 (xi)Lir? -

1 k—1 A . A ]
> - 2Lﬁr2% ALZ)Z > min 2Lﬁr2% ALI)Z .
= 4f1(x;))Lpr i€0k—1 4f1(xi)Lgr

Finally, we multiply both sides of the inequalities above by constants to obtain bounds on generalized
proximal gradients:
2}

2 f X - X, .
T (o U R0 > min { ot (1, 50 - x)

i€0,k—1
X (fi(xo)—Fi (%)) . )2 Ar(x;)
L (e B0} > min {1 (72005 ) ).

Corollary 1.1. In case of adaptive accuracy for x4+, computation, such as & = € fl (x0), & =
€ (fi(xe—1) — fi(xk)), k €N, € >0, it is possible to achieve approximation of solution for [@) with
arbitrary low approximation error. To prove that we consider use the defined above &, computation
Strategy:

et +fl<x0>;f“’“k> 8 4 st
£ (2f1(x0) = A1) | filxo) - f x Ar(xi)
1 k — = ZL e (2]?1()51')[4”2).
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Using the proof scheme of theorem|1| we get:

)

L]j ((1+28)f1(x0)_Sfl(xk—l)—ﬁ(xk)) > min {2(14157')2% <M> } .

8L 5 :
A E((1+2€)fi(x0) — /i (x-1) = fi () 21,6%17]1(111{“2% (TzLﬁ,fl(xi)(xi)_x")

i€0,k—1 41 (xi)LFrz

Corollary 1.2. If we substitute the initial iteration with the k—th one and substitute k—th iteration with
(k+ N+ 1) € N iteration, we obtain estimate for the tail of optimization procedure k € Z. :

(g2 ,\ A ) )
ﬁ (& (/1 (1) = f1Geen)) + f1 () = fi(oeav1)) >

'}
Y (& (f1 (k1) = f1 () 4+ F1 (k) = fi (i) =

. . 2 Ar(xi)
\ = Rk {2 (Ler) <4f1 (Xi)LFr2> } '

Unrolling theorem(1] proof for initial iteration k > 0 and final iteration k + N we have estimate for the
sum of inequalities in (15):

> min {H2L <2LF,f1( ) (xi) = xi)

ick,k+N

( L k+N

A

Fi0a) = filaensn) + & (fi(o—1) = fi(an) 23 H 2Ly () (Ki) — i

l

2
>

2

9

L
= 2 HT2Lﬁfl () (i) _xk‘

7 7 7 v A (xi)
FiGa) = AiGaani) e (Alat) = Ailuen)) = Y 2Lprtsc | | >

i=k 4f1(xz) Lpr?
22Lﬁr2% M .
4f1(xk)L[:~V2

In the limit N — +oc0 we get

b

A n 2
R = Fi + € (Rlse) = Fr) 2 5| Togy gy () =

(16)
; Py o (F A,
Frlow) = i + € (ilnen) = ) = 2Lpr (2 ).
Inequalities in (T6) conditioned on lim & = lim &€ ( Silxe—1) — A (xk)) =0 mean
k—>+o0 k—>+o0
khT Xjy1 = kllT 2LF7f1(xk)(xk) =x"
and
lim ka+1 —ka =0
i s _ (17)
k_lglw filw) —
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Limits in are deduced as consequence after taking limits in over k — oo, these limits bound
variation for sequence {x;} keZ., and state connectivity for the set of limit points

{x*: x* € E, Ar(x") =0}
of sequence {xt } ez, -

Corollary 1.3. Formally, convergence condition up to the level € > O for the norm of proximal gradient
map is presented below:

min 2L ( >H} < E.
i€0k—T {H 2L, i)

And such condition puts limitations for k and €:
8L%e
£ <ré?, re(0,1);

SL%_(fl (Xo)—fl (xk))
Lk

< (1-r)82.

The system of inequalities results into these asymptotics:

A 2 7
:rgzL:O(éz),k: BLphto) | (LY,
8L (1—r)&2L 82

B.2 The proof of theorem 2

Theorem [2] states local superlinear convergence rate to solution of problem (5).

Theorem 2. Suppose that assumption is satisfied, Jacobian is bounded: HF" / (x) H < My for all

x € .F, and the solution x* € Z(f1(x0)), F(x*) = 0,, with Gpin (F /(x*)> > ¢ > 0 exists. Then

Gauss—Newton method I with T, = f) (x%), & = 0 in region

. ) 26 1 2

superlinearly converges

3Lp ||xk —x*|? LFka—X*Hz

- *Wfl ()L +

x|

X1 € Z(fi(x0)), Fi(xe) = O(fJae —x*).

k1 — x| < <o — 7],
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Proof. According to lemma 4] (corollary [4.1) v, 1, 7 (77, 5 (Xx)) has upper bound:

%, Lillw—x"[? | Lpllwe— |
2 2 STk
= {add Wi L, T (xk—H) - ka:Lka(TkaTk (xk)) < sk} =
2
Ly~ |
2 8Tk

Wk, Lie, T (Tkafk () <

xk—X*||4

|

_I_

= ka,Lk,‘Ck (xk+1) S + & =

)

T (O (XK, Xit1 Ly
= WYy Lt (k1) = 5t % + ?ka—i—l —x? <
2 *||4
T | Ll — x| | Lplla—x7|
— &g =
=5 + > + 87, + &

. 2
(9 (xx,2x41))° < Ll —x \!2+Lﬁ
27 - 2 8T

xk_x*H4

+ & =

L3 | — x*|[*
= TkLkak—X*Hz—Ff—I-QTkSkZ

L || —x+||2

2T, & >
1 >+ %€k =

> O (X, X 1) = 4| Nl — x| (TkLk—l-

Al

> VF (o) + F (o) (o1 —Xk)H :

Now we rewrite @ (xy, X1 1) in a different way:

Al Al

B )+ F () (s = x0)| = {|F () Gon =)+ (Floxe) = PGe) = B () (=2 ) +

[\

vV A g
def M
= def

(B () = B () (o1 = 20)

-~

def

Using triangle inequality for norm || - ||:
|All=lA+B+C—B—C| <[|A+B+C|+|[|-Bl|+-C| =
= [[A+B+C[ = [|A] - [1B] - IC];
|A|| > {using minimal singular value definition} > ¢||xx+1 —x*||;

La
Bl < {inequality [} < — | —x"

|C]| < {submultiplicativity of norm} < Hﬁl (x) — F' (x*)

2.

)

’ |xx41 — x¢|| < {assumption[i]} <

<Lp X —x||* 4+ Lp

X = X[ = X" 2" — x| < Lp X = X" [ 1 — X7
Combining the inequalities above we get the lower bound for ¢ (x, x4 1)

3Lz
=) s = x| = Z2E [ — x|

¢ (o, xk1) > (g — Ly
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Now we link lower and upper bounds for ¢ (x,x+ 1) into the inequality below:

: L2 e — =2
o= et E ) +2me >

3Lp| | —x*||?

) e = x| = ———=
L —x*||2 w12
\/ka— *||2 Ly + F”" |>+2rs + el =l
¢—Lp x| > [l — x|

To prove the theorem for specific 7, we deduce upper bound for fl (xx) using local model
Yok Lp 0 (x* ) (xk):

ﬁ/(x*)(xk—x*)‘ +

=0, e
" <Mp|pa—x|

n ~ N Lz
filxe) < {lemmalll} < ||£(x*) +F (x*) (xx — x*)|| + =L ||l — x> <
N—— 2

J/

La
o)+ g | <

LF *(12
+ x| <

S
<o g I < £ < (M) =] <
F

IA

Al Al 3MA
{& < omnlF' () < omn(F' () < Mg} < =] =
= fi(a) =0 ([ —x"])).
(18)
In limit, the inequality above is nonstrict. We substitute values T and g into the convergence estimate
using alias t; = [|xx — x*||:

3L A1 A L2172
% + tk\/fl (Xk)Lk + FTk
x|
L2 2
3L tk+\/3M L l’k—|— Zl‘k
S — LFtk

trp1 < < {Ly <2Lp, estimate ({8) } <

<1t

€[0,1] by theorem conditions

Let us describe possible values for #;, form the limitations above:

L} tk 5Lﬁl‘k

3Lpti L2
3MLFtk+ 4 <g—Lpty = 0 <\[3MpLpty + —— 4 <¢— 5

0<

26
=1 < —2
“=5L

the first condition is obtained. We square the inequality above to get rest of conditions:

Lt 5Lpt
3MpLpty + 4" <g—TF) = —6L%1; + (3MpLp +5Lpg) tx —¢° < 0= {1, > 0} =

1 2
=0< < oL ((3Mﬁ+5g) — \/(3Mﬁ+5g) —24g2) :
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Combining restrictions for t;, > 0 we justify lower bound for the region of superlinear convergence:

N ) 2¢ 1 2
o — 7] Smln{ﬁ, L ((3Mp+5g) /M + 5) _24gz)}.

Corollary 2.1. The statement of theorem implicitly put restrictions for system of equations (4):

B the nondegeneracy of (@) in the point of minimum G (F / (x*)) > ¢ > 0 means dim(E,) >
dim (E 1 ) ;

B the solvability of the system of equations {@) F (x*) = 0,,, is usually meet the following limitation:
dim(E;) < dim(E)).

So, typically we can achieve local superlinear convergence solving the system of equations with
dlm(El) = dlm(Ez)

B.3 The proof of theorem 3

Theorem [3]states global sublinear and local linear convergence rates to approximate solution of problem

(-

Theorem 3. Assume that assumptions and@ are held for Gauss—Newton method with T, = fi (xg).
Then any sequence {x } . 7., has the property:

>

filo) <&+ | .

Ly 2 A A

) 4 2 £ () < 3 A1 (w0, if fi() < i
__H ;

f1(%) = 1o otherwise.

Proof. Consider system of linear equations £ (x) + F' (x)h = 0,,, x € .Z. Thereis h € Ey: F(x) +
F (x)h = 0, x € .¥ according to PL condition and

A

h=—F (o (F (x)F’(x)*)_1 F ).

Then, using assumption [2)we have

Nry N N " -1, . ~, A . 1A A F(X)H .

Il = | ) (F @F @) £ —\/<(F(x)F(x)) oo, o) <201
_ i)
VB
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By definition of the local model for x 1, k € Z:

Ailoe) < Vi Lifi (xk)(xk+1) = Vi L. i (Xk)(Tkal (Xk)<xk)) T <ka7Lk7]?l (xk)(xk+1)_
VL (xk)(Tkal (xk)(xk))> S E&FVy 1 (xk)(TLk»fl (xk)<xk)) = &t

A | Oeaty)’ Lo
+§2}£{ S+ 2710 +2||y||}§

N At -1
< {instead of y we substitute thy = —tF (x;)* (F (xx)F (xk)*> F(xy), t €0, 1]} <

f1<xk) X 1 A N 2 ¢ Lk 2
< ~ F F h —||h
) +tg[10m1 2 ) (xx) +1F (xx) kH + 7|
~ A 2
N Ax) . flla=0F (Xk)H L
< lity (19) } < D = <
< {inequality {9} < &+ — + i, 271 o0 falx) ¢ <

f 11, 2Ly
< {H . H2 is convex} < &+ hi (2xk) + rr[gnl] {—fl (xx) + t—fz(xk)}
1€l0,

A fz(xk)Lk . { —t“ tz}
=g+ LEe— it 2f T
%+ 1) 0 o 2fi(a)Le - 2 '

2 () Ly { tu 12 } .
— = — = {{d),! 3 =¢ -
+ f1(xx) TR il 2 {9, lemma 3} = & + f1(x)
— fz(Xk)Lk% ( - H > < {monotone decrease over L; } <
u 2 f1(xx) Ly
A 2fA2(xk)LF U

< &+ f1(xx) — x| — .

et i) i 4f1(xx)Lg

We express using the explicit form of s(-) considering monotone decrease of fZ()Z‘)L"% (2f (‘; I >
1\ Xk ) ke
over Ly (corollary[3.2):

. fl(xk) 16L ; ffl(xk) > %;
fi(xes) <&+ |, N
Al) 1 POOLE < 3 7 (), if fi () <

U
O
Corollary 3.1. An adaptive choice of & > 0 allows us to solve (5 . With arbitrary precision. As an
example for such choice define the following sequence {8} keZ, 3k >841>0,61=3 8&%,
lim &, = 0 and additionally define
k— oo
def ‘LL
xX_
Hiln) = iL;

We define as N € Z. \U{—1} the minimal number of the iteration for which the next inequalities hold
(and set N = —1 if such iteration does not exist):
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The next strategy of €, choice allows us to achieve an arbitrary precision of the approximate solution
for @) :
. K tork —0:
0 : & < 6L, ork = 0;
& = 3k71—5k,if0<k§N—}—l;
%6]{,1 —5k, ifk>N-+1.

So the strategy states decrease of the approximation error of x| search forming the convergence
estimates below:

filo) <28y = 81+ filxo) — g O <k <N+15

A 3\k—N—1 » 3\k—N—1
filw) <(3) filans1) +6n (3)
Corollary 3.2. If we have a constant level of the approximation error €, = € > 0, we can formally
deduce necessary number of iterations and the maximal value of error in the worst case scenario to get

f] (xk) < &:

—Op_1, ifk>N+1.

-1
e u 5 . T
m ife> a; then k > ’7(16Lp _8) (fl (x0) _8) ]l{fl(xo)>§}—‘ €< 16L;’

-1
A W u ? u u
mifé< i then k > (16LF —8) <f1(xo) — 4LA> ]l{f1(xo)>4f} -l-log% <4réLF> , €<
F

U=rE e (0,1),

C The proof of auxiliary results for stochastic Gauss—Newton
method

Lemmal [5| states an important partial order for establishing linear convergence under PL condition.

Lemma 5 ([21]). Suppose the linear operator A : Ey — E, withdim(E}) =n, dim(Ey) =m, m <n
is row—nondegenerate:
AA* = ul,,

for some WL > 0. Then for any & > 0 we have

u
mIm, t €0, 1].

The partial order >~ is defined on positive semi—definite cone.

A(EL+A"A) A" =

Proof. Consider the singular value decomposition of the operator matrix A:
A=UAV*, U'U=1,, V'V =1,,

where A is a diagonal matrix, A = /1Ll (by statement of this lemma). Define matrix W with columns
as orthogonal complement of columns in V up to full basis in E;:

VV A WW =Ly WV =00 )
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Exploiting block structure as result of the identity W*V = 01— m)xm We get:

A(EL+AA) A = UAV* (E(VV* +WW*) +VA2V*) VAU =
= UAV* (V (Eby + A2) V* + EWWY) T VAU* =
=UAV* (v (EL+A2) 'V 4 éww*) VAU* =
= UA (Elu+A?) AU =
1 o

U (eaten ) o (et ﬂll_;)t’m TG

The lemma below describes main properties of the partial order on positive semi—definite cone.

=be 1,min{m,n}

Lemma®6. Let assumptions@ andB hold. Then foreveryt > 0,x € E|,
the next relations are satisfied:

( t t
I, << B)*C (x, B)—l—fIn) ~ <Mé+r> I, T>0;

(x
L1, <

, N —t1
(x,B)*G (x,B) +r1,,) < L1, T>0;

t
<M2 +r> I, >0
t

(x,B)G (x,B)* + ’L'Ib)
) =

(X,B) ) 41l Ib, T2>0.

\

Partial order < is defined on positive semi—definite cone.

Proof. Assumptionbounds maximal singular value of G (x, B) from above:

(G (x,B)) < Mg <G (x,B)*G (x,B) < M2l,,

G (x,B)G (x,B)* < M;I,.
Assumptionbounds minimal singular value of G (x, B)* from below:
G (x,B)G (x,B)" = Iy & Omin(G (x,B)*) > /i

Al Al t Al Al t
Symmetric matrices (G (x,B)*G (x,B) + *L'I,,) and (G (x,B)G (x,B)* + ‘L'Ib> have spectral de-
composition (or eigendecomposition) with corresponding diagonal matrices Af1 and A%, with corre-
sponding orthogonal matrices QO and Q5. For arbitrary v € E| we have:

<<G,(X,B)*GA/(X,B) +’L‘In)tv, v> = <Q1 (A} +‘L'I,Z)t o, v> =
<~

def

N

(A +ly) V1,V1> (M +T> [vill*, W1 € Ey;
\W_/ ,

-

2
Omax (A1) <M bounding Rayleigh quotient

(A1 +7TL) vi, v Zf[ vi]|?, Yvi € E; .

Omin(A1)>0 bounding Rayleigh
o quotient
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Analogously for arbitrary w € E3, dim(E3) = b we have:

<W, (é’<x,B>é’<x,B>*+ub)’w>: v, 0 (Aot 1) O ) =
<~

def

<W1» (A + 1) W1> (M +T> Iwi |, Yw € E3;
%,—/ R .,

2 Vv
Gmax(Az)SMG bounding Rayleigh quotient

<wh(Ay+ﬂwﬂm>2ﬂu+rYWmW,leeE§
N—— \ /

Ginin (Az)ZIJ bouncéiggtilzr?deigh

In both cases after replacement r for —f we cause inversion of the spectrum forcing to interchange
lower and upper estimates by Courant—Fischer—Weyl min—max principle. This means satisfaction for
the next relation of partial order:

( t

I, << (x,B)*C (x,B) + 71, (M2+T> Iy, ©>0;
1 y

) =
(Mé—l—‘v)tln =< (x,B)*G ( B) + 1l > In, T>0;
+h) 2

= () o ‘20)

(x,B) +TI> =< LI, T>0.

!/

The next proposition deduces lipschitzness of jacobians G and F'.

Lemma 7. Suppose assumption@ holds. Then ' and G are Lipschitz continuous:

|70 F' )| <

Hd@m—d@m(_

V(x,y) € EZ;

V(x,y) € Elz, VB C A, |B| =

Analogously functions fz and ¢, are Lipschitz continuous:
|2(x) = ()| < -
Igz(x,B) £(v,B ) <Ilp

Proof. Consider batch of functions G, for arbitrary (x,y) € El2 we express the following:

Y(x,y) € E?;
Y(x,y) €E?, VBC %,|B| =b

Al Al 1 b
HG (x,B)—G (y,B)H = \ ; Y ||VE;(x) —VE-j(y)H2 < {assumptions 3]} <
=1

Vi

<
F/(x) —F H —\/ [’VFé —VFe(y H } < {assumption 3]} <
<\Jau[o2

)=t

, g defines a distribution over 2.
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By analogy, for arbitrary (x,y) € E7 we express inequalities for ¢, and fa

|82(x,B) —§2(»,B)| =

i\ = (F,0))° =

WI'—‘

i

@‘I*—‘

1b
N

b
< {assumption3} < — Z

1520) = )] = B [ (7))’ - ()] | < H(Fa >>2— @@))zﬂ <
< {assumption @} < E, [Iz [|x—y||] = , €~

Corollary 7.1. The statement of lemma also holds for infinite population 2.

Lemma (8] deduces stochastic variant of the local model.

Lemma 8. Let (x,y) € E?, BC %, L>Lp, T >0, §1(x,B) > 0 almost sure and assumption@
holds. Then

2

2

G(x,B) +G (x,B)(y —x) )

N A 2
§10,B) < V(B =3 +L|ly—x"+ 5

A

def
FiO) < Were0) = Vere (0, 8) = F+ 5y =l + 5

, 2
)+ F'(x) (=)

Proof. The proof uses structure of the proof from Iemmawith F := G under batch B C 4 for arbitrary
(x,y) EE},L>Lp, > 0. O

The next lemma expresses main properties of scaled descend direction update in the optimization
procedure.

Lemma 9. Suppose assumption@ holds, x; € Ev, Ty >0, Ly > Ly, By € %, N > 0, initialization x
is chosen randomly and independently from By, k € Z.. Then

( —1 ~r n
Xk+1—xk—77k( (xk, Bk)* G(xk,Bk)+TkLk1n> G (xk, By)* G (xy, By);

5 5 A T  &2(xk, B
gl(xk’Bk)_gl(xk-l-lka)Zgl(xkaBk)___—( )+

2 2Tk (21)
(2 — Mk)

Al Al 71 Al A
+ 7 <<G (X, Br)"G (xkak)+TkLkIn) G (xk, By) " G(xy, By),

\ G (xkaBk)*G(xkaBk)> :

Proof. By definition of W 7, ¢(y, B):

o A N N o Tk
81 (xk, Br) — 81(Xx1,Br) > 81 (%, Bx) — Wy, 1,0, (Xk+1,Br) = &1 (xx, Br) — 5

Lk 2 1 A Al 2 (22)
—7ka+1—xk|! _Z_,L_kHG(xk»Bk>+G(xkaBk)(karl—Xk)H :
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Substitute expression of x| into (22):

1

A Al 2
o [ 6 B+ 6 G B e x| -
Tk

o o o Tk
81(xk, Br) — 81 (Xk41,Bx) > &1 (xk, Bi) — 5~

Ly 2 . Tk
-5 [xk1 —xk||” = &1 (xx, B) — 5
A Al Al * Al _l Al * A 2
“on G(xk, By) — MG (o, Bi) <Lka1n+G (X, B)"G (xk,Bk)) G (%, Bk)"G(xi, Br) || —
Ly N « A -1 5 A 2 n T 6> (X, ,B
-5 ‘ Nk (kakln +G (x,Bi)*G (xkak)) G (X%, Bt)*G(xi, B)|| = &1(xx, B) — Ek - gZ(Zkak)+

Al 71 Al

1 Al * A Al A
g (20 (Bt 6 0806 1)) 6 5B G B0, 6 33" G ) ) -

Al

27
Al * Al _l * A
- <77/< (kakln +G (x,Br)"G (xk,Bk)> G (xx,Bi)" G(xk, By),

Al Al Al

A 71 Al A
& (xx.Be) G (v B (Litidy + G (3, B G (v, B) ) G (xk,Bk)*G(xk,Bk)> -

—1

Al

G (xx,B)*G(xk, By),

Al

—LTy <11k (LkaIn +6 (x4, B1) "G (xkak)>

Al Al 71 Al A

e (Lt + 6 0080°6 (3,80) 6 B Gl ) ) =

R T &2(xk, Br)
— B, — “k _ 82V Pk)

&1(xx, By) > o +

(2 — M) N, A 1y “ A N, “ A _
o LTy +G (x4, Bu)* G (xx,Bk) ) G (xx, B)" G (xx, Bi), G (xx, Bk)" G (xx, By) ) =

. T 820, Br)
— B, — k82 2k

MW(2—1) / N B~ -1y A A
+T G (x5, Bi) ( LaTidn +G (x5, Bk)"G (xi,Bi) ) G (xx, Bi) "G (xx, Bi), G(xi, Br) ) -

O

Corollary 9.1. If we take 1. € (0,2), 7 = &1 (xx, By), we automatically obtain local decrease on
batch By :

81(xx,Br) — &1 (%11, Br) >

nk(z_nk) A/ * A A PN, * A
> ————( (G (%, Br)"'G (xk,Bk)-l-gl(xk,Bk)Lkln) G (xx,Bi)*G (xx, By),
281 (xx, By)

Al

G (xk,Bk)*é(xk,Bk)> >0,

Al N —1
because matrix (G (xt, Bi)*G (xi, Br) + 81 (xk,Bk)LkIn> is positive semi—definite.

Corollary 9.2. Corollary[9.1] also holds for §» in expectation:
§1(xk, Br) — &1(xXx1,Bx) >
Nk 2— Nk N N R N, A
> # < (G (%, Bi) "G (oxk, By) +gl(xkaBk)LkIn> G (xk, Br)" G (xk, By,
281 (xx, By)
>

G (xk,Bk)*G(xk,Bk)> > 0= &2(xx, Br) — &2(xkt1,Br)
>

82(xk, Br) — §1(xk, Bk) 81 (Xk41,Bi) >
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5y ¥ L X —1 . A
> T . M) <<G (x, Be) 6 (x4, By) + gl(xk,Bk)Lkz,,) G (v, B)*G (o, By,

Al

G (Xk,Bk)*é(xk,Bk)> > 0.

After averaging over the whole randomness we get:

E [82(xk, Bk) — 82(xk+1,B)] = E [fa(xx) — 82(tk41,B0)]| =E [fa ()] — E[82(xks1,Be)] >
1

Al

G (xk7Bk)*é(xk7Bk>7

Al Al

>E {w < (G (xx,Bx)*G (xy, By) +§1(xk,Bk)LkIn> -
GA/(xkaBk)*GA(xkaBk)ﬂ > 0.

If we average the local decrease only over batches B, we can establish the following:

VB, 82056 B0] =\ o) = fi(xx) > \ /B (821, Bi)] > {Jensen's inequaliy} >

> Eg, [v/8205%11,B0)| = fi(n) 2 B, [81(x41,B4)].
because the value xj1 depends on Bj,.

Corollary 9.3 ([21])). In deterministic settings (B, = %) we have analogous results:

/
A/ -1

xeir = xe =M (B G) F (o) + ailad ) F' (0 F (x);

File) = i (o) = i (o) — = — F) |

2 27
Al N Al

L 2= 1m0 < (F ) F o)+ adehs) F (0" F(x), F ()

Z‘L'k

T3
=
z

\/

\

Forni € (0,2), % = fi(xx) we have

f1<xk)_fl(xk+l> >

> nkz(f%l(—x:)k) <<ﬁ’(xk)*ﬁl(xk) + fi (xk)LkIn>_l F’,(xk)*ﬁ(xk)a ﬁ/(xk)*ﬁ’(xk)> >0,

A/

nt . ~1
because matrix (F (xx)*F (xx) + f1 (xk)LkIn) is also positive semi—definite.

Lemmas [10]and [T1] reveal main effects of batching in the optimization procedure relatively function
value variance.

Lemma 10. Suppose assumption [6 is satisfied. Under sampling without replacement of batches
B C %, |B| = b from uniform distribution q over subsets B we have upper bound:

E, [Léz(x,m —ﬁ(x)}z] < %2 (1 —~ %) , Vx € Ey,

for some finite 6 > ©.
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Proof. The expectation of g, (x, B) over batch sample B can be represented using dependent Bernoulli
random variables Z; € {0, 1}, which encode exclusion of F; using value 0 and inclusion of F; into batch
B using value 1:

— Ly (R EZ) =

i=1

@I*—‘

L

i=1

lb
EZ

J=1

E, [82(x, B)] E,

hx),ij~q,

EIH

because probability of picking F; for sample B equals

( ) b m—bNb-1)!  ml —ieTm
By definition of variance over finite population:
_ly 2 m—1
q ( T m ; fr(x) - (c(x))><o? E~g

o(x) — quasi-variance for sample B with |B| = 1 for arbitrary x € E;. By assumption [} o(x) <

o, /%. The variance of function g, value equals:

Vy[82(x,B)] = [‘gz x,B) fz(x)ﬂ =V

_1<
b2\ ;

where summation over empty set considered to be equal zero. Z;, i € 1,m are Bernoulli random
variables, so V and Cov are defined in the following way:

V[Zi]: (1—%);

b
n b—2
Cov(7:,2)) = E[2:Z;] ~BIZ)E [7)] = 22 — (£)" = 2b=th - (5)".

m

(F)*'VzZ]+2) i (E(x)ﬂ-(x))zf:ov(zi,z,-)) :

1 i=1 j=it+1

M=

Substitute these values into V, [82(x, B)]:
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-+(1-2) ﬁ(.i(mx»zﬁm)z Ll (-2,

1

. def
Define 6 = o # then

B a8 - o] = OO0 (122 < (12 O (2,

Vx € Ej.

Corollary 10.1. The estimate obtained can be straightforwardly generalized for infinite population:
~ 2 ~ 2
A 2 o b (o
4 — < lim |—(1-=)|=— ,
Eq [\gz(x,B) Sa(x)] } _mlggw[ - (1 m)} - VX EE)

This estimate coincides with estimate for case of sampling with replacement:

OO B AT E

Vy[82(x,B)]

wl'ﬂ

while lim [6] = 0.
m——+oo

Corollary 10.2. The lemma conditions bounds ‘ 8 (x,B)— f» (x)‘ forallx € Ey:

E, [|82(x,8) — o] =E, N |62(x.B) —fz<x>»2] < \/Eq 220x,B) = o) <

<6 b1

- b m
Lemma 11. Let assumptions@ and@ hold for sequence {x;_1 }ren, Xk—1 € E\, obtained using one of
the rules: (7) or (). Under independent sampling without replacement of By_y C A, |By—1| = b from

uniform distribution over subsets B;_1 for each k € N we have

I 1

E [| /2 (k) — &2t Bi—1)|] < 21 E [lxe — x5 1 || Lgpcpny + 6 -

for some finite G > ©. Averaging is done over samples By, k € N and initialization.

Proof. Firstly, we express upper bound:

E [|f2(x) — &2 (5. Bi—1)|] = E[| /2 (k) — Fo (k1) + Fa(xe—1) — 82 (xk—1,Br—1)+
+82(0—1,Br—1) — &2 (0, B 1) S E [| o () — Fa ()| ] +
+E[| f2(te-1) — 82(xk—1,Bk—1)|] + E[I82(xk—1,Br—1) — §2(xx, Bx—1)[] <

" N 2
< {Ilpsch|tzness of g» and fz} <2E [ka —Xk_1||] +E |:\/‘f2(xk_1) —gz(xk_l,Bk_1)| :| <

R R 2
<20 Bl —x—1]]] + \/E [|f2(x/<—1) — & (xk—1,Bx_1)| } <

52 b 1 1
< QlmmaliD} < 278l ~xic1 ]+ 5 (1= 2) =2l — a1 4.0/~ 2 =
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1 1
= 20 [|lx — x| 1 &/ ——, (23)
FE [l = k1 [[1 L pemy + b m
because for b = m we have f>(x;) = g2(xx, B) = §2(x,Br_1). Sometimes, it is convenient to

express in the following way:

A 1 1

E [|/2(xx) — 825k, Bi—1)|] < 20 E [l — X1 | Lipcry + & P
m
(24)
1 1 ~
“\'3 m <2lﬁ m(m— DE[|]xe —xe—1][] Lip<my +G> :
O
Corollary 11.1. As in lemma|[10, the proved estimate has a natural generalization for infinite population:
N I 1
— 3% < i - — 54— — — | =
E [| f2(6) = 82(xk, Bi-1)|] < Jim A 20E [[lx—xall] 64/ m]

o]
=2I:E(|lxy —xx_1||]] + —, Vk € N.
FE (el +

Analogously this estimate coincides with the case of sampling with replacement and can be obtained
using corollary[10.1]:

E [| /2 (xx) — 8203k, Bi—1)|] < {@3)} < 20:E [|lxe —xes [|] +

+ \/E [|f2(xk—1) —§2(xk—1,Bk—1)\2} <

6
< {lemmali0, corollary[T01]} < 21K [||xx —xx—1]|] + NG

while lim [6] = 0.
m—y+oo

Corollary 11.2. For|Bi_1| =m, k € N we have E [| f2(xi) — £2(xk, Bi_1)|] = 0.

The lemma below represents local model relatively the step (7).

Lemma 12. Let assumption@ holds for sequence {xi } ez, , Xk € E obtained using (7) with T > 0,
Ly >0,B;, C A, N €(0,2). Then, for arbitrary y € E| we have

. . Ly 2
Vi Li, (y7Bk) = ka,Lk,Tk (xk+17Bk) + 5 Hy_xk-H H +

k ~
HG kaBk)(y Xk+1 H +—T:<y Xk+15 kagZ(-xkaBk)>'

Proof. Firstly, we rewrite U, 1, 7, (v, Bk):

. T Ly LA Ny 2
VeoLon (0 Br) = =+ [y — x>+ 5— HG(xkaBk) +G (%, Bi) (y — xx) H =+
2 72 21, 2

L 1 N N 2
+ ?k 1 —x1) 4+ (o —x0) 1>+ 7 HG(xk,Bk) + G (o, Bi) (v — Xp1) + (Xk41 —Xk))H =

Tk

Ly Ly
=5 + 5 [y = Xt 1P+ L (9 — a1, X1 —x) + 5 s 1 — x|+

+ Z%'k H (é(xk,Bk) + 6 (g, Br) (xit1 —xk)> +G (0, B) (v —Xk+1)H2 =

Tk Lk 1 A Al 2 Lk
= [ 2 e — )+ — HG(xk7Bk) + G (g, Br) (xk+1 —Xk)H + 2y =21 ||F
272 21, 2
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1 Al A Al
+ (v = X1, Lie(Xeq1 —xx)) + o <G (X1, Bk) (v = Xk41)5 G(xk, Bk) + G (o, Bie) (Xg41 —xk)> +

1 N 2 . Lk
+ 2—1_k HG (XkyBk)O)_karl)H = ka,Lka(XkJrl,Bk) + 3 Hy—xk+1”2+

A 2
(xkaBk)<y_xk+l)H +

27

1 Al * A Al
+ <y — X1, Lie (X1 — X)) + r_kG (xx, By) (G(xkaBk) +G (xg, By) (xp+1 —Xk)> > =

(. J/

~~

:ka+1 IAV)Ck,Lk,’L'k (xk+l 7Bk)

A~ Lk 1 Al 2
= W ok, B+ 5 Iy = P+ 5| 6 B =) |+

1 Al * Al Al * A
+ 7 <y X1, 2 <<TkLk1n +G (x,By)*G (Xk,Bk)> (Xk+1 —x) + G (xx, Bi) G(Xk,Bk)>> =

Al _l Al * A
{Xk+1 —Xp = —le< (xx, By)*G (xk7Bk)+TkLkln> G (xx, By) G(xk»Bk)} =

N Lk 1 Al 2
= W .15 (XK1, Br) + > Iy —xes1[)* + 7% HG (X%, Bk) (v — Xk41) H +
1

N A X Ly
+ o (v =1, (1=1) (26 (B Glxk, BY) ) ) = W (1 B) + 5 v =1 |+

HG (X, Bi) (y — Xk41 H +—Tg<y Xkt 1, Ve 82(xk,Bi)) -
O

Corollary 12.1. For N, = 1 the representation obtained allows us to estimate closeness to the global
minimum of Wy, 1, (-, Bk), if we define %141 € E as an approximate value of x.; computed with
error & > 0 and use the following representation of difference {y, 1, 7, (¥, Bi) — Wx,.1, 5 (Xk+1,Bk):

. . . Ly, . 2
0< llka Lt (Rt Br) = W 1y (01, Bi) = 5 [ =20 17+
2
+ P HG (X, Bi) (B — Xk+1)H < &, X1 = Tr, 7 (X, Br).
Corollary 12.2. In the deterministic case (G(x, %) = F (x), x € E}) we have an analogous represen-
tation for Wy, 1, 5 (v), y € Ey:

, 2
- (xk)(y_karl)H +

ll/xk7Lk71’-k (y) = IVXk,Lk,Tk (xk+l) +
1 .

+ 2— <y X415 sz(xk)>

Lemmadescribes bounds of variation for the sequence {xk}kez+ under considered update rules.

Lemma 13. Let assumptions B and hold for sequence {xk} kez., obtained using update rule @,
T = 81(xk, Br), Nk € (0,1], Ly > 0. Then we have bounds of sequence variation:

Vi & B 28 B M4

2 <M(2; + 81 (xx, Bk)Lk> Li Ly
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In case of update rule (8) variation ||xx11 — xi|| is bounded in the following way:

M|V 82(xe, Bio) || M 81 (xx, Br)

HXk+1—XkH € ) = N k€Z+
2 (Mé + kak) L
Proof. According to (7) we define B, = By, T = T to get
N - N - - -1 ., N
X1 — Xk || = H—nk (G (xk, Bk)*G (xx, By) + TkLk1n> G (X1, Br) G (xx, By) || =

N < A - ~ -1
= Mk (G (xk, Bx) G(xkaBk)+TkLkIn)

.

G (xk,B)*G(xi, By)|| =

S/

Y .
symmetric matrix

1
2 N, 2

=Mk << (él (xk;Bk)*é/ (xk, By) + kakIn)_ G (xi,Br)*G(xi,By), G (Xk,Bk)*G(xk,Bk)>) =

= {kagz(Xk,Bk) = Zél(xkaBk)*G(xkaBk)} =

Ay ~ A - » _9 R -

Mi |V 82 (xk, Bi) ||
2 (Mé + %kLk>

M |V 82 (X, Bi) ||
2 (M + &1 (e, Bi) L)

(25)
So, the formulas we got hold for the case of update rule (8) even for Bk # By.. Now consider the upper
bound:

> {assumption[d} (20)} >

>{% =81 (x,Br)} >

Ve, La,61 (x.Be) Xk Bi) = 81 (%, Br) = {lemmall2} = W, 1, » (x,.8,) (Xk+1,Bk)+
+ 2 = w2+

1
" 281 (xx, B)

N 2 1—nk
G (xk, Bi) (xx — xi, H + o X%k — X1, Vi 82(xk,Bi)) =
(5B ot = 10) |+ 5 = ok =1, Vi )

A (3t B8) 2 g [P+ 5 |6 o B o) |+
= ; X — |l —x — |G (x Xp— X,
W Lisg1 (xe.B) \Xk+-15 Dk 5 1%k = X1 281 (0 BY) k> Dk ) (Xk — Xk+1
(L=m)ne /[~ Y . o R
+ =5 ( (G (6, Br)*G (%, Bi) + &1 (%, Bi) Ly ) Vo €2(xk, Bi), Vi 82(xk, Bi) ) > 0.
481 (xk, Br)
(26)
The expression above leads to
. . . Ly 2
81(xk, B) > 810k, Br) — W 1,21 () (K15 Bi) > ?||xk+l —xil|” =
281 (xx, Bk
= e —xel < | 200 B,
k

There is also exists another upper bound with defined By, = By, % = T

Al Al -1

X1 — x| = H—ﬂk (G (xk, Br)*G (Xk,gk)-i-kakln)

Al

G (xx, Bi)*G(xx, By
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1
2

Al

N - A/ ~ - N A P
=k <<G (X, Br)" G (xkaBk)+TkLkIn> G (x,Bi)"G(xx,Bi), G (xk7Bk)*G(xkaBk)> <

Ek can be sampled ;rdependently from By
e ||~ A M8 (xk, Bi))
= HG (xk,Bk)*H |G (i, Be) || < —< =

< —nk Hé/(xk,Bk)*G(xk,Bk)H S

Tl T Ly T Ly
. MM
={n=8a(wBy} =, <.
k
(27)
Expressions in are applicable for the rule (8) allowing us to deduce upper bound on ||x 1 — x|
in case of (8). O

Corollary 13.1. For o € [£, 7], %€ (0, 7], Ly € [L, 7Lg], L € (0, ¥Lz], ¥ > 1 and under
assumption[5|the value ||xy+1 — xi|| obtained using update rule (7) is bounded:

5 >
e — x| € M || V82 (2, Bi) || min l(j+&> MM gP;,

2 (M2 +77L;) L

MM P ;

Lower bound is obtained from using monotone decrease over T; L. Upper bound Tl

deduced from using assumptions|4 and[3 Upper bound

1 /[ . P?
| g4-8
(%)

is expressed via for local model i, 1, (-, Bx) under assumption @

T B T, §20u,Br) _ Lk 2 L 2
5 +2—% > Y 1,0 (X, Br) = 3—’_2—% > 5 k1 — x| > ) ook y1 — x| 7

Corollary 13.2. Under assumption[§and Ly € [L, YLz, L € (0, YLz, Y > 1 we can bound the value
||xk+1 — Xk || obtained using update rule (7) in the following way:

st —xell € Mk || Vi &2 (i, Bi) | min{ /2P, leMé} ez,
) L ) ) *
2 (MZ+ P L) L

F

Corollary 13.3. In the deterministic setting G (xy, By) = F (x), By = By = % and & = 1. = fi (x¢)
we have bounded variation for the sequence {xi } ez, built using[9.3;

M ||V () || . 2f1 (k) MM
- , min ,
2 (MIZr + /1 (Xk)Lk> L L

[k — x| € L keZ,.

Corollary 13.4. Under constant step scale )y = 1 = const, 0 < Ly < YLg, Yy > 1,k € Z and under
assumptions|3,[4 and(§ the lower bound for ||x;1 — x| obtained using update rule (7) is proportional
to the norm of gradient of optimization criterion and can be used as stopping criterion to achieve level
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€ > 0 of the gradient norm:

E[|VA|] < JE VA7) < \/E [E [V 820 B 2] | =
M +7’P§1LA)

#E[Hvxgz(xk,m)uﬂs2< & B [ — ] <

it means

£
B s —5l] < | [t —xil?] £ S
2 (M3 + vPo L)

where we average over the whole randomness of the optimization procedure. In cases of update rule
with T, < .7 this condition transforms in the following way:

€
Bl ) < B [l —xl?] < —— 1.
2 (M3 +yTL;)

Lemmapresents the lipschitzness of gradients of bounded functions fz and g;.

Lemma 14. Let assumptions[3, [4, [9 hold. Then function ¢, has Lipschitz gradient with an upper
estimate of the Lipschitz constant g, =2 ( M% + Ly P,

Proof. We compute /3, — an upper estimate for the best (the lowest) Lipschitz constant for arbitrary
(x,y) € E} and B C %:

|9362(8) = Vo (. B)|| = 26 (0:B)* 60, B) — 26 (v, B) "G (x,B) | =

=2 (607 Gl03) -6 ) Gl + (6187 Gl ) -6 8 Gl ) <
(|6 0:8760.8) ~ 6 (v.8)"G0B)|| + |6 (5.8 60.B) ~ & (x.B) G B) ) <

<2
<2 (HG y.B —é’(xB |1166.8) H+HG (B[ ||6¢ y,B)—é(x,B)H> <
< 2<Lp“y—XHPg1 +M3 ) < (2 <LﬁPg1 +M?;>> [y —xll = g, —Z(L Pg, +M§;)-

We use the lipschitzness of multidimensional map G from above:

HG(y,B) x—Hy x),B)(y—x)dt|| <

- O\_

x +1t(y—x), ‘
0
O
Corollary 14.1. For B = % function fz has Lipschitz gradient with the Lipschitz constant estimate
1, <0 <M§+L Pf1>
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Lemma [15]justifies local model used in doubly stochastic step analysis.

Lemma 15. Suppose assumptions(3,[4, (5 hold. Then there is exists the following stochastic local model
for function g, :

. N . . )
g2(y7B> < (Px,l()’aB) :gZ(xaB) + <ng2(x7B)7 y_x> +§ ||y—x||2, Vi > lg'za
V(x,y) € E}, VB C A.

Proof. Consider an upper estimate for $>(x, B) under arbitrary (x,y) € E? and B C %:

82(3B) = 82(y, B) — §2(x, B) — (Vixg2(x, B), y —x) +82(x, B) + (Vada(x, B), y —x) <
< &(x,B) + (Vida(x,B), y —x) +82(, B) — &2(x, B) — (V&2 (x, B), y —x)| =
= &(x,B) + (Vada(x,B), y—x) +

<Vx+t(yfx)g,\2(x+t(y_x)uB)u y_x> dr — <ng2(qu)7 y_x> =
(x B) + <Vx§2(x7B)7 y_x> +

<Vx+t(y—x)g2(x+t(y_x)73) —ngz(x7B), y_x>dt <

+

+
\ 00) o\ 09) %)

2(x,B) +(Vi&a(x,B), y —x) +

+

O\H ()Q O\H QQ> >

|<Vx+t(y—x)§2(x+t(y_x)73) —Vx§2(x,B), y_x>‘dt <
(X B) + <ng2(va)7 y—X> +

||Vx+l (y— x)g2(x+t(y )C) B) _ngAZ(va)H ||y_x||dt <

< 0200 B)+ (Vuga(w.B), y =)+ [ tlg [y —xl*dr =

. lg
82(x,B)+ (V 82(x,B), y—x) + % ly —x|* <

J/

:(Px,lg,z (Y7B)

R R [
S g2(x7B)+ <ng2(va)7 y_x> +§ ”y_tz’ l 2 l§2

Corollary 15.1. In case of B = 2 the local model for §; morphs into the local model for fz:
A d f A A l 2
L) < 0u() = LX) +(V(x), y—x>+§ ly—x|*, VI > 13, ¥(x,y) € ET.

Lemma/[16|bounds of the gradient norm under WGC and PL condition.
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Lemma 16. Let assumptions|4 and(7 are satisfied. Then the squared norm of gradient of g, is bounded
from both sides with &, :

4ug2(x,B) < |[Viba(x,B)||* < 4MZg2(x,B), Vx € Ey, VB C 2.
Proof. Conditions [4] and [7] state the following inequalities:
N A 2
41> (x, B) < {assumption[7]} < 4 HG (x,B)*G(x,B)H — ||V (x,B)|* <

<4 Hél(%B)Hz HG(X,B)HZ < {assumptiond]} < (28)

<4M38:(x,B), Vx € E{,VB C % = i < M3, 41$:(x,B) < [|Vag2(x, B)|*.
O

Corollary 16.1. The averaged over batches B squared norm of the gradient of function g, is also
bounded from both sides:

4ufa(x) < Ep |[Via(rB)|| < 4MLfo(x), ¥ € Ey.

D The proof of results for stochastic Gauss—Newton method

The general Gauss—Newton method with scaled step uses the update rule based on direct minimization
of the local model V¥, 1, ¢ (v, Bi) over y € E; (7), where the minimal value of W, 1, 7, (xk+1,Bk)
is obtained at 1y = 1. This framework is described via settings (9), and conceptual scheme of the
framework forms up algorithm

D.1 The proof of theorem 4

Theorem [4] proves sublinear global convergence rate to approximate stationary point in mean.

Theorem 4. Suppose assumptions|3,[4,[5, [6 are satisfied. Consider Stochastic Gauss—Newton method
[Bwith T, = &1 (xx, Br), Nk € [11,1], 1 € (0,1] and some finite & > ©. Then:

S(MZA—%}/PALA) E[f X .
_ N ¢ T VEalr hxo)] 2P, Mg
B | i VGl } =T e ( +21me{ Lo f et

1 1
-I—Cﬂ/———),kGN.
b m

Expectation operator E -] averages over all randomness in optimization procedure.

Proof. According to update rule for x; (7), (21):
X R X T &2, By)
81(xk, Bi) — 81 (xkr1,Br) = §1 (x5, Be) — 5 — == ——+

2 2Tk
2 o 1, A
nk(sznk) < (X, Br)*G (xkaBk)+TkLkIn> G (xx,By)" G(xy, By),

(Xk,Bk)*G(Xk,Bk)> 2

G
{ 81(x, Be), Mk > M, Vo (xi, B) = 26 (xi,, By)* G (xi,, By, COFOMW@]} >
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2 ) ; 'vos
= 8291( (xk,gz) <<G (¥, B)*G (XkaBngl(xk’Bk)L"I”) Va2 By,
V. 82(xx,By)) >0

= &2(xx,Bx) — &2 (xk+1,Bk) > 82 (xx,Bg) — &1(xk, Bk) &1 (Xk+1,Br) >
2 — N x A n -1 ~ N
> ne=m <<G (xk,Bx)*G (xx, By) +g1(xk,Bk)Lk1n) V.82 (xx, Br), kagZ(xk7Bk)> >

- 8
N(2—1)||Va82 (v, B>

8( &t P k)

> {using assumptions @ and[5, @20)} > > {Ly <yLg} >

A 2
o N2=n) [V (i, By |
—_— 2 .
8 (M2 + 7Py Ly )
We sum the inequalities above for the first k iterations and average it using EE -] operator:

k—1

E Z (82(xi,Bi) — §2(xiy1,Bi)) | =

—1
Z (falxi) — §2(Xi+1,Bi))] >

l:

i=0 8 (Mé + ’)/PglLF)

_ k—1 B 1
(2 nA)LF> iZOE[E [\|Vx,-§z(x,~,Bi)H2H > 8<A;72(iy;7)L ; [vaz x)|| ]

i=0

>E[Z N0 [Vaols B |

n(2-n) . ’ kn(2—n) in |[V7
>y i (I > LA e o]

Now we rewrite the obtained inequality:

kn(2—n) E{

min_ |V/s(0) | <

8 (Mé-f"}’Pg Lﬁ) i€0,k—1
k—1

<E|/f2(x0)+ Z(fz(xz) §2(xini1))_§2(xkyBk—l>] <
k-1 k-1

<E[f2(x0)] + Y E[fa(x) =&, Bi1)] =

fo(xi) = &2(xi, Bicy)|] -

=

<E[fa(x0)] + ) E[
1
According to lemma([{T]the expression above is bounded:

kn(2—n)
8 (M% + Py L

ic0k—1

k-1
>E [l min Hsz(x,-)Hzl <E[f(x0)] + ;E [| f2(xi) — &2(x1,Bi1)|] <

b m

1 1
E [f2(xo) +Z(2l i =xic1 ] Lpciny + & ———> <

< {lemma[f3] corollary[13:2, Ly > L, m; < 1} <
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o . 2P;, M . /11 .
E [f2(x0)] + (k—1) (2lﬁmm{\/%» TG}]l{b<m}+G B_E> = IE[82(x0,Bo)] +
M
+(k—1)<2lﬁmin{ %,f}n{kmﬁ& %—%) <

2 . 2P; Mea 11
]E[fz(xo)]Jrk(Zlﬁmm{\/%,TG}]l{b<m}+G 5_%)_

kn(2—mn)
8 <Mé+YPg1Lﬁ)

8(MZ+7PuLs) (E[} )
. T ¢tV ake L) | 2Py Mg
. Le%l,irilHVﬁ(x’)H } = n2-n) ( k +21me{ L' L ]l{b<m}+

1 1
+6\/———> , keN.
b m
Corollary 4.1. The proved estimate has irreducible term

160 (M2 +vPol)  ( [apy M,
min iU G | b
n(z_ n) L ’ L { <m}7

So it is more convenient to use inequality to get an upper estimate for the batch size. And to
achieve an € > 0 level for minimal value of norm of gradient in expectation we consider the system of
inequalities below:

So, dividing by we get the desired estimate (29):

8(MZ+YPy, Ly )E[$2(x0,Bo)]
kn(2—m)

8(M2+yPy Lg) . 2P;  Mn ~ A
ML) (stp = i {2 e by 0 ) E <

Inequalities put the following restrictions for the number of iterations and for the batch size:

<(1— r)éz;

(1 ’78(Mé+YP§1Lﬁ)E[§2(Xo7Bo)]-‘ € (0.1):

&2 (1-r)n(2-n)
64 (M +YPs. Lp ) s Ma B 31
2(2 i') F (ZIF m(m—1 mm{ gl —LG +G) (31)

64(M2+yp L;)2 Ma ’
gh2y G T8LFT (ZIF m(m—1) mm{ 7TG}+6)

b =min < m,

\ mn ( )

these estimates asymptotically look like

cwo(l)-mnfnof 1))

D.2 The proof of theorem 5

(‘r»

Theorem 5| proves linear global convergence rate to approximate solution of problem (5) point in mean.
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Theorem 5. Suppose assumptions (3, [4, (3, [6, 7] are satisfied. Consider Stochastic Gauss—Newton
method[d with Ty = &1 (xx, Br), Tk € [N, 1], N € (0, 1] and some finite & > o. Then:

E||[VA00)|] <4M3ac:

E[A(x)] < 5+ Ay

def A kn(2—mn)u : 2P, Mg
A, xo)lexp | — +4 | [~min ~&8 76\ +

11 prPg1+u> S
+64\/-—— <— ,k€Zy,bel, min{m,n}.
b m) n2—nu " trm )

Expectation operator E [-] averages over all randomness in optimization procedure.

\

Proof. According to update rule for x; (7), we have the following (corollary [9.1):
81 (%, B) = 81 (%1, Bi) =

nk(z_ nk) <( A/ * A/ A
2 oo G )C,B G )C,B + X,B L1
28, (. By) \ NG (0 B07G (3t Bi) 21 (ks Bi) Lk

G/(XkaBk)*G(kaBk)> > 0= & (xk, Bx) — &2(xk+1, Bk)

>{m>n, L <yLp}>

L n@2-n)

- 2
G/(xkaBk)*é(xkaBk)> =

_n2-n)
2

G (x¢,BY)* G xe, By),

AVA N———

82 (xk, Br) — 81 (%, Bk) &1 (X1, B) >

Al Al 71 Al A
< (G (X, Bk)*G (xg, B) + V81 (xk,Bk)Lﬁ1n> G (xx,By)" G(xx, By),

Al Al % Al ~ 71 Al % A
<G(Xk,Bk) (G (xk, Bx)* G (xk»Bk)‘f‘ygl(xkak)LﬁIn) G (xx,Bi)*G(xx, By),

nE2-n)u
2 (yYLp&1 (xk,Br) + 1)

n(2-n)|Glx.Bx) H It — (0 BY)
2 (yLp&1 (%, Bi) + 1) 7

= &2 (xk41,Bx) < §2(xk, B) (1 - ( n2=mnu ) .

G(xt, By)) > {lemmalBl} >

2 (YLp&1 (xk, Br) + 1)
We add —fz* < 0 to the inequality above:

A Pk A Pk n(z n):u“
B.)— 15 < B B
82(Xk+1,Br) — 5 < (82(xx, Bx) — /5 ) — 82 (xx, Bx) > (1Lpr e, B) 1)
A Pk ( )
< B,) — 1-— B —
< (&2(xx, By) fz)( 2 OLpan xijk ) (82(xk, Br) — fo (i) + fo ()

_§2(xk7Bk—1)+g2(xk7Bk—1) fz) ( 2(}/LA§ (xk Bk)—f-,li)) -
P >

< (|82, Be) — o) + fo (o) — 82 xk,Bk D]+

+82 (%, Bi1) — f5) <1— 2( n(2 )

VL8 Xk,Bk +u)
< (18200, Br) — Fa(xi) | + | 2 (i) — 82 (o, Bt )| +
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R . n2-nu
+ (gz(xk’Bk_l) _fz)) (1 2 (YLpgl(xk,Bk) +I~L)> . %9

Now we average the inequality above using operator E [-]:

E [82(xr1,Be) — f5 ] < E[(|82(xk, Be) — F2(xe) | + | F2 (k) — 826, Be—1) | +

A N n2-mu
+ (&2(xk,Bk—1) — f3)) (1 ) (YLp81 (e, B) + 1) )

< {according to assumption[f]} <

< QE [|§z(xk,Bk) — Fr () H +£E Hfz(xk) — gz(xk,Bk_l)}l+

Vv Vv
is bounded with batch variance is bounded according to lemma

A N n2-nu
+E [620, B 1) — f3]) (1 T2 (yLpPy, +u)> |

The expression above is bounded according to lemmas [10] (corollary [T0.2) and [T}

o - /1 1 N 1
E[gZ(Xk—i—l,Bk)_fz}S (G E_E+2ZFE[ka_xk—1H]]l{b<m}+G E_a—i_

5 2 n2-nu
+E [2(xk, Be—1) — f5]) (1 ~3 (1LrPy +,u)> < {corollary[3:2, ny < 1} <

2P;, M 11 o
. 5 G ~
< (2 <zﬁmm{ Lgl, T}]l{b<m}+6 E_%) +

+E[§2(xk,Bk1)—f§])<1— n@-nu )

2(YLpPy + 1)
Formula represents a recurrent dependency over iterations k € N:

o YR [82(xk, Bi—1) — 5] 5

def . 2P;,  Mgx ~
Ck éc:2<lpm1n{\/%,TG}IL{M,"}—FG,/%—%); (35)

def 2=n)u nRe-nu

= (1- AR ) < ———= 1 € (0,1).
7 ( 2(7LpPy ﬂ‘)) =P ( 2<7LﬁP§1+“)) 1)
So, for sequence {ay } ;. defined in (35) we have

def ¢
ap = E[g(x0,B0)];

ay  <aoq < aopq+cq;
Ayl < (ak+c) q, k € N.
The bound for a; is straightforwardly deduced from (33):

A A* A P n<2_n>u
82(%+1,Bi) = fo < §2(vier1, Br) < 82k, By) < 2(7Lﬁ§1(xk73k)+“)> B

. . n2-nu . .
< {assumption[B} < &> (xx,B) | 1 — = {k=0}=E|g(x1,By) — f5| <
o 2 (1L P 1 1) | d

X n2-nu . n2-nu
< E[g,(x0,Bo)] (1 -3 (LoP +H)> < E[g2(x0,Bo)]exp (—2 (VL Py +H)> .
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Now, we can bound aj form above using the following sum:

k=1 k—1
ar < Eak_l +c)g < ((ak_z-l-c)q-l—c)qj < <apgd+ec Z q' = aog* + cq (T) Lo

: ~~ - - i=1
partial sum for geometric series

keZ,.

We link a; bound with f>(x;) upper bound:

Fo(x) = f5 = fola) — 82(xk, Biee1) + &2 (v, Bi—1) — f5 < | fole) — 2., Bi—1)| +
+ & (5, Bio1) — f5 = E () — 5] SE[|fla) — &2(x,Bier)|] +
+E [82(xk, Bi1) — f5] < {according to lemma([iT]and corollary[[3:2, 1 < 1} <

Slemin{ zi‘él, }1{b<m}+6\/%—%—l—E[(?z(xk,Bk1)_J?2*} ={@9} =
:ZQmm{ T, }1@@@+6M%—$rﬂm§{@@}§

§2&nﬂn{ 2%% Ll}1ﬂxmy+5v%—7%+umf+cq<1;gz4)ﬂ%xnﬁ
gzoﬂm%:Z%RQ%}mkm+ﬁ %—%>+%J+m(1;§;>hbm:

L 1_qk71
= apq +c(1+q< 1_q >]l{k>o})7k€Z+.

And we express E [fz (xk)} estimate from the inequality above:

SERSIRNS

. . 1— k—1
E [f2(0)] < f5 +aoq" +c (1 +q ( ; f’q ) 1{k>0}) keZy. (37)
We use WGC to bound the mean squared norm of the gradient:

e R e

Al 2 A
<A4E {HG (xk,Bk)*H HG(xk,Bk)Hz] < {assumptionfd]} < 4MéE (82 (xk, By)] -
Consider the next expression:

82(xk, Br) — f5 = &2 (x, B) — o (i) + fo(xk) — 82k, Bi—1) + &2 (xx, Bi—1) — f5 <
< |82 (xk, B) — fo (i) | + | fo (k) — 82k Bie—1) | + (82(x, Bi1) — f5 ) =
= E [82(xx,Br) — f5] S E[|82(x,Be) — folxi) || +E [| 2 () — 82k, Bi—1)|] +

A 1 1
+E[@2(x%, Bi1) — f3] < {corollary [[0:Z and lemmalTT]} < 6/ > — -+
m
~ 1 1 N P
+ 2B [ = 0[] Lpamy + 64/ 5 = — +E [f2(u. Beor) = 5] <

. 2P Mg .11
< {corollary[13:2, nx < 1} <2 | Iz min A Lipemy+6 b +
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. n 1— k—1
+E [gz(xk,Bk,O —fz] =c+a < {} < aoqk+c (1 +q <%) ]l{k>0}> s ke Z+.

(38)
Using the arbitrariness of f;° > 0 in and we can set fy =0 in and to estimate

E |[[VA2 0]

A 2 2 k 1-¢*!
E[[VA|| <4M2 (aod +¢(1+4 o)) ) keZe @

Simplifying and we obtain the desired result:

k 1-g*" k q
apq” +c¢ 1+q —1_q ]l{k>0} <apq" +c 1+—1_q —
k
R n2-nu . 2Py Mg
~E Bo) | 1— +2( 1, Yk L G S PSS
[gz(.X() 0)]( Z(YLFP§1+H)) (len{ L L {b<m}
— 2 (vLaPs
e P N (14 (1 n@=mu ) 2(rLpPy tu)
b m 2(YLpPs +1) ] n2—mu
A kn(2—n)u . 2P;, Mg
E — +4( 1 s =2 S L e+
Vz(xoﬂGXp( 2 (YLpPs, + 1) RN T (e

. /11 }/LpPgl—i—,u) —_—
+6\/-—— || —————— | =Avp, kE€Z,, b 1, min{m, n}.
)(n(Z—n)u “o N tm. 1)

IA

b m
So, the estimates and using Ay , represent (32):
E[f(u)] <+ Ak
E [vaz<xk)||2] < AMZALp-
O

Corollary 5.1. Analogously to corollary[4.1] we establish the following conditions on the batch size and
on the number of iterations using approach from and (31):

( [2(vLepy +u) 4MZE[$, (x0,B0)] .
k_[ ne-me M —2a,  r€(01);

2 2
256M‘£(1F m(m— lmm{ A7MTG}+6) (YTLIZPng]w)

256M4 P (Mpky h ;
2421 mG(le/m(m l)mln{@7f}+6) (nl(vzgfli) )

co(u(}))-+-mnfuno())

In such conditions we can be sure that
A 2 N
E|[VAm)|] <&

However, the batch size limitation b < min{m, n} restricts from achieving arbitrary low € > 0 value of
the gradient norm in mean with linear convergence speed in the worst case.

b=min< m, n,

\

or asymptotically:
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D.3 The proof of theorem 6

The doubly stochastic step is described in (8). This step is originally based on the two batch estimate of
local model ¥, 1, z (v, B):

~ ~ %k Lk 1 A ~ Al ~ 2
VL7, (0, By) = 5t5 ||y_xk||2+2_%k G(xk,Br) +G (xk,Bk)(y—xk)H =
(B & By) G (x, Bo)* Gy, By)

— <2 —+ sz + ;L:k y Y — Xk +
1 5 (x ,B)*G (xi,B
- << (X k)%k (xx, Bx) +Lk1n> (y—x0), y—Xk> N

N <A .
N % < (G (Xk,Bk>~G (xk, B) +Lk1n> (=), ¥ —Xk> ‘
Tk
So, the rule from (8) can be viewed as some scaled step of Newton method to optimize the two batch
estimate of lfixk,ijk (y, E’k). Note that estimate of Vyl;\UxIﬁLk’fk (y, Bk) evaluated at y = x;, is unbiased
w.r.t. B;. The stochastic Gauss—Newton framework with doubly stochastic step possesses settings
(10). And formal description of this framework is presented in algorithm [3] Theorem [6|elaborates linear
convergence rates in mean to solution of problem in the worst case scenario. The whole procedure

is justified as the optimizer for local model @y, ;, (¥), ¥ := Xk in mean:

A ~ ~ l
L)< @00, (0) =H0w) +{(Vilw), y—x)+ EkHy—kaz’
——
by corollary[T5.1]

>l =2 (MI%, +LﬁPfl>, (x,y) € E2.

S

by coroﬁ;ry[ﬂ_ﬁ]
Theorem 6. Suppose that assumptions(3,[4, (3, [7 are satisfied. Consider Stochastic Gauss—Newton
method[3 with Ty > T > 0, Ly > L > 0. Then, for sequence

u(fLy)?

Nk = , - 5 . ke Z+
(MG n rkLk> (LFPJ;I +MF> M2
the next estimate holds
2
N A k uiL
E [f2()] <E[f2(x0)] exp | — N (MZ +%L> k€L
(Lepy, +m3) M2 \Mg

In case of N, = 1, k € Z convergence estimate is no better than

N Va k z 2 1 ;
ElA0w)] <E|fx)]exp <_MLG <“+<Lﬁpf1 HR)e (Lry, *MW)) )

def | [ 2 3/474+393
C—3<1+7347+3\/9>3—|— 5 ),kEZ+

Expectation operator E -] averages over all randomness in optimization procedure.
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Proof. Function fz has the Lipschitz gradient with the Lipschitz constant estimate
= P 2
lfz =2 (LFPﬁ +MF>

from corollary Consider local model for function fz at k—th iteration evaluated at x;4 1, k € Z4
(corollary [15.):

F2(xag1) < fa(o) + (V2 (xx), Xpewr —xe) + J; k1 — x|

Update rule for x; is defined as follows:

N . N - B =1, A
Xkl = Xk — M (G (xXk, Bx)“G (xx, By) + TkLk1n> G (i, Br)" G (i, Byr) =

J/

-~

R def N
&y = 3 Vi 82(5,Be)

= x¢ — MeHy V., 82(xx, Br), Mk > 0.

By, B, C % — independently sampled batches at k—th iteration. Substitute this update rule into the
local model:

A A s ) nily . >

F2(xs1) < fa(or) = e (Vf2(xk), HiV, 82 (xe, Bi)) + TZHHkakgz(xk,Bk)H =

2
nels R R
2f2 <H/<2Vng2(xk7Bk)7 kagZ(xk,Bk)> .

= () — M (Vo (xk), Hi Vo 82 (3, Bi) ) +

For matrix Hj the next relations hold (lemma6):
1

(2 (Mé + kak> )t

Now we average local model using the expectation operator:

E [f2(x1)] <E ()] = mE [(V (), HiV fa (i) )] +

I, < H| <

5 k€Zy, 130
_(2’kak)tn +

il
+ %E |:<H/3ka§2(Xk,Bk),kagA2<Xk,Bk)>:| <
A 2
nkE[Hsz(xk)H ] . el
2 (Mé + %kLk> 8 (TiLy)

<E[f(n)] - S [V 820,80 ]

We use WGC and PL condition from for the inequality above:
A 2
v ] 2
nk([VARw)I]
2 <Mé + %kLk) 8 (%kLk

N 2
- 2muE [ ()] N neMEL,
ME+TLe 2(Rly)

R 2Nl Iy (nkMé)z
7)) < Mé + %Ly 5 %Ly

A 21l 2\ (Mg
= ] - — L:P; M7 .
[fZ(xk)] < Mé + ;EkLk + < F~ fi + F> kak

E /(1) <E[Hl)] —

)zE [||kaé2(Xk,Bk)H2] <

<E[fa(w)] E[/2(u)] =
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We compute the optimal step scale for each iteration:

My \? 2u
2 2 G .
LyP; MA> 26 ) g ) S min=
Mk (( PO Mg (rkLk> ) i <Mé+kak> M0
(% Ly)?

5 5 2,fk>0,Lk>0,k€Z+.
Mé-l-TkLk) (LFPfl +MI7“> MG

:>77k=<

Such step scale leads to linear convergence speed with an arbitrary batch size:

IN

2
A A ‘ukak 1
E | f2(41)] <E [f2(x) 1—< . )
[ k+1 ] [ k } Mé—f—TkLk (Lﬁpf'l _'_M%) Mé

€(0, 1) because O<u§min{M1267 M(Z;} and Ly >0

2
" —(k+1 TL
< E[f>(x0)] exp (k+1) (Mét ~L> ke,
(LFPfl +M§> M2 A\MG+1T

Now look closer at convergence estimate. Define function

2
a(n) —( i ) 1
e ‘ |
Me+t) (Lppy +M2) M

and find its minimal value and points of the minimal value t = %;L; to estimate the best decrease
E [ f2(xk41)]:

E [f2(i1)] < a(B%L)E [f2(x)] -

The search of minimum of o(¢) is equivalent to the search of maximum of the function below:

def  MI
= .

B()

Function () has non negative first derivative and non positive second derivative on R :

/ U t
B(t)=—5 (1— 5 )ZO;
Mé—f—l Mé—f—l‘

" 2‘LL t
B (1) = ( —1) <0,
(Mé+t>2 Mé,+t

It means, the greater t we have, the less o() we get:

2

1= a(0)>a() > lim a()=1- £

>0,tcR,,
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because u < min{Mé, Mﬁ} (by assumption. Consider change of the update rule relatively t = T Ly:

Al ~ Al ~ - -1 Al £ A
u(%Ly)? (G (xk,Bk)*G(xk,Bk)-i-TkLkln) G (x, Br)*G(xy, B)

2 = D. 2 2
(MG n TkLk) (LFPf] n Mﬁ> M2

MV 3, 82 (xk, Bi) = =

t

A 5 s A B - A/ A
ut (G(kaBk) G(xk7B’<)+In> G (xk, Br)*G(xk, By)

:>zhlf M2—|—t 2 12 -
—> o0
(L M3 )
u 5
= N | Ved2(Be).
2 (LpPy + M) M

So, the faster estimate we get, the closer stochastic Gauss—Newton method update to stochastic
gradient method update.

If we set the value 1 = 1, we can find the unique optimal t = 7Ly, k € Z from the local decrease

estimate )
N N 2“ 2 MA
E [/2(xes1)] < E [fa2(xr)] (1 T (L P +Mﬁ> (TG :
G
To prove that we directly find the optimal convergence rate:

D 2 2
(Lepy, +M2) M2

2u .
3 - — — min.
t Mé—i—t t>0

defg()

We express optimality conditions of the second order for defined function &():

2 2
; ~2(LpPy +M2) M2

C (t) = fll‘S (M22l;LH>2 =Y,
G
2
C”(l) _ 6(L Pflt_:M ) G (Mg-:l_t>3 < 0.

Condition &' () = 0 leads to cubic equation
urd - (Lﬁpf1 +M§) M2 =2 (Lﬁpfl +M§> Mt — (Lﬁpf1 +M§) ME =0,
with unique real root obtained from the general formula for roots of cubic equation:

2 2
3u 47+3¢_ V

for this value we have £ (1*) > 0. Moreover, for * we have linear convergence with estimate (@0), and
linear convergence rate lies in (0, 1):

2
0<1-—#& 2 — 1 <1;
M, <,ll+(LﬁPfl+Ml%,>c (LFPfl—l—M )
_1 [ 2 3 /474393
C—3(1+7347+3m+ A )623
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Inequalities 4 < min {Mé, M[%} and 3 > ¢ > 2 force for convergence rate to be within (0, 1). If we

compare this rate with the convergence rate for non fixed, adaptive 1)y, the second one turns out to be
less in the limit case, when taking t — o0, and, thus, possesses faster convergence in the worst case
scenario. N

Corollary 6.1. Unlike corollaries[4.1and[5.1] we can state the convergence condition relatively function
> value:

E [f2(x)] < &
So, for adaptive My we have the following minimal number of iterations:

k= Mé(LﬁPflJrM%) (Aj[—éJrl)zln(M) :o(m(i)).
£

u? 7L &2

The same asymptotics we have for the case of 1), = 1 with optimal value of T;Ly:

o M 2 1 ) lln<E[§2(xoyBo)]) _
2

2 P, N .. (1.p. 2 &2
o\t (LePr M2 ) e (L + M2

ofu(?))

And because of independence from the batch sizes b and b we can assume a constant asymptotics for
batches, achieving the lowest polylogarithmic complexity cost of the number of oracle calls within our
work form < n in the worst case:

B bk = min {O (%) , O (#) } from coro/lary'
B bk = min {O (mln (%)) , O (t@%ln (é)) } from coro/lary'
[ (Z)—}—b) k=0 (ln ( ' )) from t‘heorem@r

g

E Details of the experiments for Gauss—Newton method

This section provides the details of our experiments, including hyperparameters descriptions, data
generating procedures and experiment configurations. We describe experiments in both deterministic
and stochastic settings.

We run experiments on three benchmark tasks based on unconstrained minimization task. The original
task means the following minimization of doubly smooth function f:

min {f(x)}.

xeEq

For our case we consider an aggregated form of this task, solving the system of nonlinear equations to
obtain a stationary point, not necessarily minimum point:

Vf(x)=F(x) =0, x€E|.
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And for such system we have the optimizable merit ||F (x)||. Clearly, the obtained system is square in

terms of dimensions m = n. Using || F'(x)|| we test three distinct functions f(x), x &t (x!, ... XM xe
E1:

1, , 2
W Nesterov—Skokov function [9]: fys(x) := z(x' =1)2+ ¥ (x’“ -2 (x’)2 + 1) ;

2
M Hat function: fy(x) := <Hx||2— 1) ;
2 LN,
W PL function: fpr (x) = ||x||”+3 ¥ sin® ().
i=1

Function fys is non—convex and has one of the hardest surface for optimization because of its fluctuating
landscape created using superpositions of Chebyshev polynomials of first kind P (xi) =2 (x")2 —1,
function has unique minimum point x* = (1, ..., 1). Function fy is non—convex, has quadratic growth
property and all its minima are global minima with ||x*|| = 1. Function PL is non—convex, it is bounded
by paraboloids from both sides and also satisfies quadratic growth property, this function has unique
global minimum x* = 0,,.

We fix random seed for reproducibility of the experiments. For numerical stability reasons we clip
absolute values for all variates to stay within Chebyshev ball with radius 10'2 centered at origin. For
all symmetric matrix inversion operations we also clip matrix spectra by 10~ from below and by 10'2
from above. For efficient and stable computation of x; 1 we consider matrix factorizations described in
the next subsection.

E.1 Fast binary search of the local Lipschitz constant

The most expensive operation in the designed algorithms is matrix inversion, so we use matrix
factorization with an asymptotic cost of the one unoptimized iteration to have linear w.r.t. min{m, n}
in asymptotics matrix inversion at each inner iteration. Firstly, we perform factorization of the update
direction towards x; 1. For simplicity we consider deterministic case, however we can extend the
factorization to stochastic setting by substitution of the local model. The value min{m, n} points out
the necessity to consider two cases: m > n and m < n.

In the first case we use eigendecomposition of the matrix £ (x;)*F" (x;.):

£ (xk)*F/ (xx) = OnNu O, O, 0n = I, A, is a diagonal matrix;

F (xk)*F (xk) + TkLkIn = QnAnQ:; + TkLkIn = Qn (An + TkLkIn) QZ =

Al

N —1 B
N (F ()" F () + kakIn> = O (Ap+ i) O m>n =

_l A/ A
= X1 = Xk — MO (An + TLidy) ™ OpF (x1)"F ().
For the expressions above we have O(n) complexity of the matrix inversion (A, + TkLkIn)*l. The
eigendecomposition has complexity cost O(n3) achievable using the divide—and—conquer algorithm

for tridiagonalization with Householder reflections [13] [7, [4]. Note that orthogonal matrix @, and
diagonal matix A,, occupy O(n” +n) memory. Fixed vector Q% F" (x;)* F' (x;) can be computed using
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O(n? + nm) operations, matrix multiplication of Q,, and (A, + TeLiy) ' QF (x¢)*F (x¢) uses O(n?)
operations. The whole number of inner iterations is bounded by

LA
[logz (YTFN +1,y>2,Le (0, Lg],

because the local Lipschitz constant is estimated via some binary search—like procedure. Also, we
have at most only two inner iterations after hitting L;_; € [LF, ZLF} at the k-th step. So, we have the
overall cost of the optimized step:

O(n3+n2+mn+n(n+l) ({1og2 (}/LTFN +1)>,

which stays conceptually the same in stochastic settings with m substituted with b, assuming b <b.

For the second case we use Sherman—Morrison—Woodbury formula and an eigendecomposition to
have matrix inversion with the const O(m). We perform the eigendecomposition for symmetric matrix
Al Al

F (x)F (x)* using O(m?) operations and O(m? +m) memory:

Al

F (xk)F/ (xk)" = OmAm Q5 O3, Om = I, Ay, is a diagonal matrix;

Al N 71 1

<F (k)" F (Xk)—f—TkLkIn) =—1I,—
T Ly

_1 al N N -1 .,
- (o))" (TkLkIm+F (xx)F (xk)*> F(x) =

T Ly

1 1 . B B

- rkLkI"_ T_kLkF () * O (i + M) "L Q5 F (xi), m < n =

1
k+1 k nk(TkLk n

1 A/ * _ % N N . A
_TkLkF (%)" O (i + An) ™" OpuF (xk)> F(x) F (xx) =
== B (F () F () = F ()" O (5L + M)~ A F () ) =
Ty

= 3= 2 F () (F () = O (5l + )~ AnQF () )
Tr Ly

We compute vector AmQ;';,F(xk) using O (m2 + m) operations, and x| is computed with the cost
0] (m2 +mn+m+ n) . So, we have the following cost of the step:

0 (m3+m2—l—m+(m2+mn+m+n) ([logz (}/LTF)‘ +1)),

which also stays conceptually the same in stochastic settings with m substituted with b, assuming
b < b. But for doubly stochastic step with b = b we have another form of the fast update:

1
Xkr1 =X — Mk (mln_

1 ~ - _ « A ~ Al £ A
_mG(leBk) Oy (TLily +Ap) "' QG (xlmBk)) G (xk,Bi)"G(xy, By) =
= X; — ﬁ—k <G” (ks Bi) "G (x4, Bi) —

T Lk

Al

—G (%, B Qo (BLidy + Ap) ' Q36 (01, Br) G (xk,Bk)*G(xk,Bk)> ;

Al Al

G (%6, Bu)G (x1, Bu)* = QpAp 05, 030p = Iy, Ay is a diagonal matrix,
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with the overall computational complexity of the step:

O(b3+b2(n+1)+bn+(bn+b+n) dlog2 (%ﬂ +1)>,

if we use binary search for L, otherwise we have the following complexity:
O (b’ +b*(n+1)+bn+b+n),

which is also cheaper for n > 1 than straightforward computation because we assumed b=b<
n. Besides, the described factorizations allow us to clip spectrum of diagonal matrices to achieve
numerically stable matrix inversion.

E.2 The performance of deterministic Gauss—Newton method

For the experiment we average every combination of the setting over 5 runs. For each run we sample
initial value xq from standard normal multidimensional distribution. For deterministic Gauss—Newton
method we use the exact oracle with 1 = 1 and set 7, = fl (xx) and & = 0. We also use inequality
7, < 107° as an early stopping criterion and define Ly = 1. The maximal number of outer iterations
equals 10%. We test benchmark functions on different values of n: 10, 10? and 103. All depicted
uncertainty intervals have two standard pointwise deviations width.

Figureshows us sublinear convergence on function fys, while figureshows us linear convergence
with a major slowdown near the end of optimization procedure achieving a saddle point due to
trigonometric fluctuations. Meanwhile, figure [2| shows us typical local superlinear convergence. All
tested benchmark functions are unbounded but the experiments show us that it is sufficient to stay
within the region of bounded values to achieve convergence rates proved for bounded functionals.

E.3 The performance of stochastic Gauss—Newton method with scaled step

For stochastic settings we average every combination of hyperparameters over the same set of initial
points used in deterministic Gauss—Newton method. We fix n = 103 and use constant step size
M =N € (0, 1], we also set Ly = 1 and 1 = (x4, Bx). The maximal number of outer iterations
equals 102. For experimental runs we use the following ranges of hyperparameters:

W batch size b € {1,10,10%,10%};

B stepscalen € {1074,1073,1072,1071, 1}.

Every run stands for the combination of hyperparameters taken as an element of cartesian product of
the sets above and depicted uncertainty intervals have two standard pointwise deviations width. The
stochastic Gauss—Newton method uses the same early stopping criterion as the deterministic method:
7 <1076,

For stochastic setting we have preservance of convergence types from deterministic setting as averaged
line show. Figure [4] stands for processes with sublinear convergence, figure [5|describes processes with
local superlinear convergence, while figure [6] establishes linear convergence. Obviously, these figures
state the increasing of the batch size leads to speedup of the convergence for conventional optimization
tasks achieving better interpolation. The increase of the step scale up to 1 also causes such effects.
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Figure 4: The performance of stochastic Gauss—Newton method with scaled step on Nesterov—Skokov
function

E.4 The performance of doubly stochastic step usage

For these stochastic settings we also average every combination of hyperparameters over the same set
of initial points used in deterministic Gauss—Newton method. We bound the maximal number of outer
iterations by 102. We use constant values of T, Ly = £L and N = NTL to simulate conditions similar
to conditions from theorem @ In doubly stochastic case we also set n = 103 and for experimental runs
we use the following ranges of hyperparameters:

B batch size b = b € {1,10,10%,10%};
B stepscalen € {1077,1076,107,1074,1073,1072,107 !, 1};

B value FL € {107%,1,103,10°, 4-o0}.

Every run stands for the combination of hyperparameters taken as an element of cartesian product of
the sets above.
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Figure 5: The performance of stochastic Gauss—Newton method with scaled step on Hat function

Unlike to the previous case, doubly stochastic setting requires to know the global Lipschitz constant of
function fz, and figures and @ show that the lack of such information leads to slower convergence
and even to divergence. In the presented figures column with T, L; = -+, T; = T; stands for the
gradient descend method. Experiments with doubly stochastic step show that gradient and stochastic
gradient methods perform no better than corresponding Gauss—Newton methods, especially with the
increase of batch size. And only for small values of 1; these methods possess similar quality under
small batch size: 1 and 10. Another observation states the "harder" function to optimize, the more
quality gap between gradient methods and Gauss—Newton methods. Such criterion allows us to order

functions with increasing of "the hardness" of unconstrained minimization problem to find stationary
point: fpr X fu =X fws.
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Figure 6: The performance of stochastic Gauss—Newton method with scaled step on PL function
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Figure 7: The performance of stochastic Gauss—Newton method with doubly stochastic step on
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Figure 8: The performance of stochastic Gauss—Newton method with doubly stochastic step on Hat
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Figure 9: The performance of stochastic Gauss—Newton method with doubly stochastic step on PL
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