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Rough invariance principle for delayed regenerative processes

Tal Orenshtein

Abstract

We derive an invariance principle for the lift to the rough path topology of stochastic processes
with delayed regenerative increments under an optimal moment condition. An interesting feature
of the result is the emergence of area anomaly, a correction term in the second level of the lim-
iting rough path which is identified as the average stochastic area on a regeneration interval. A
few applications include random walks in random environment and additive functionals of recur-
rent Markov chains. The result is formulated in the p-variation settings, where a rough Donsker
Theorem is available under the second moment condition. The key renewal theorem is applied to
obtain an optimal moment condition.

1 Introduction

Donsker’s invariance principle states that a diffusively rescaled centered random walk on R? with
jumps of finite variance converges in distribution to a Brownian motion in the Skorohod topology. Re-
generative processes are a more general class: they are assumed to contain an infinite subsequence
of times on which the induced process is a random walk. The natural strategy to prove an invariance
principle here is to first prove it for that subsequence, and then to show that the fluctuations of the
original process coincide with the ones of the approximating sequence in the limit. However, when lift-
ing regenerative processes to the rough path space a surprising feature appears in the limiting rough
path. The first level is naturally, the Brownian motion defined by the covariance matrix achieved in the
classical case, whereas the second level (see Section for more details) does not coincide with
the iterated integral of the Brownian motion, but should be corrected by a deterministic process. The
latter is called ‘area anomaly’ and is linear in time and identified in terms of the stochastic area on a
regeneration time interval, see for example (5) below. This provides non-trivial and new information on
the limiting path which is not captured in the classical invariance principle. This information is crucial
in order to describe the limit of stochastic differential equations (SDE) of the form

t t
Yt(n) —Y, +/ b(YS("))dS +/ U(Y;("))dXén), t € [0,7T],
0 0

where the driver X (™ is a linearly interpolated rescaled regenerative process, b and ¢ are smooth
functions and the integral is in the sense of Riemann-Stieltjes. Even though X converges weakly
to a Brownian motion B, the limit of Y (™) does not satisfy the SDE with b and & driven by B, but the
is an additional drift which is explicit in terms of the area correction of the second level of the limiting
rough path (denoted by I in below), see e.g [6] line (1.1) and the discussion below it.

In this work we optimize the moment condition on regeneration intervals that was assumed in [21]. The
main obstacle of [21] is that it relies on the rough path extension of Donsker’s Theorem [2] which is
based on Kolmogorov’s tightness criterion on Hélder rough paths. As mentioned already in [2], this was
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T. Orenshtein 2

costly and therefore the assumed moment condition was not optimal. Instead of considering the some-
what heavy algebraic framework in Hélder rough path formalism, we consider the parametrization-free
p-variation settings which fits better to jump processes and discrete-time processes.

Recently, a new machinery was introduced to deal with regularity for jump processes in the rough
path topology. The main tool is the Lépingle Burkholder-Davis-Gundy (BDG) inequality lifted to the
p-variation rough path settings. The latter provides an equivalence between the (2¢)-th moment of
the p-variation norm of a local martingale and the g-th moment of its quadratic variation, and allows to
obtain the rough version of Donsker’s Theorem under the second moment condition, as in the classical
case. The proof is by now standard, however for completeness we sketch it in the proof of our main
result.

In order to optimize the moment condition on a regeneration interval for processes with regenerative
increments so that the rough path version of Donsker’s Theorem is used under not more than the sec-
ond moment, we apply the Key Renewal Theorem. This theorem roughly says that the mass function
of the process in a regeneration interval around a fixed time (also called ‘age’ in the renewal theory
jargon) is approaching a density which is proportional to the uniform measure of an independent copy
of the interval, namely, its size-biased version. This result is sharp and in particular guarantees that
in the limit as time goes to infinity the m-th moment of a regeneration interval around a deterministic
time, and the (m + 1)-st moment of a fixed regeneration interval are equal up to a constant. The result
extends the classical Donsker Theorem for these processes with no extra regularity assumption.

There has been some progress related to random walks in the rough topology in the past two decades.
The closest works, generalized in this paper are [21] 23, 22]. In the context of semimartingales and
rough paths with jumps [3, 18, 4], CLT on nilpotent covering graphs and crystal lattices [15, 24, [16],
additive functional of Markov process and random walks in random environment [6]. For homoge-
nization in the continuous settings [5} (18] [19], and for additive functionals of fractional random fields
1142, [13].

In the remaining part of this section we shall present the model and the main result, Theorem after
introducing the necessary rough path theory elements in Section In Chapter 2 we shall mention
some examples to which our main result applies, whereas its proof is given in Chapter 3. We also
included two short appendices which might be useful in other context.

1.1 Preliminaries on rough paths

For two families (a;);er, (b;):es of real numbers indexed by I, we write a; < b; if there is a positive
constant ¢ so that a; < cb; for all ¢ € I. We write a,, =~ b,, whenever a,, — b, — 0asn — oo.
SetN = {1,2,..}, Ng = NU {0} and Ay := {(s,¢) : 0 < s <t < T}forT > 0. Fora
function X : [0, 7] — R< we set X, = Xy — X,. We interpret X also as a function on A given
by (s,t) — X .. For a metric space E we write C'([0, T, E) resp. D([0, T, E)) for the E-valued
continuous resp. cadlag functions on [0, 7']. We write C'(Ar, E) resp. D(Ar, E)) for the space of
E-valued functions X : Ar — F so that ¢ — X, is continuous resp. cadlag on [s, T'], for every
s € [0, T). By convention, whenever E = R? we write | - | for the d-dimensional Euclidean norm.
Also, the expectation of a vector (or matrix) valued random variable is understood coordinate- (or entry-
) wise. For x, y € R? we write 2@y € R for the tensor product (z®y); j = zy;,4,j = 1,...,d,
and 2%? for x ® x. Whenever (xy,)n is a sequence of elements in R? we write xﬁl,z’ =1,....d, for
their components.

For brevity, we shall focus on the necessary objects needed for introducing our results. We follow
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Rough invariance principle 3

closely Chapter 2 of [6]. The reader is referred to Section 5 of [8] for details on Ité6 p-variation rough
paths with jumps and to [9] and [10] for an extensive account of the theory of rough paths.

For a normed space (E, | - ||g), and a function X € C([0,7],E) or X € C(Ar, E) we write
| X o001 := SUDP(s,eny | Xl & to denote the uniform norm of X, and for any p € (0, 00), we

1/p
write || X[, 0,77 = (Sup D (s AeP ||Xs7t||%> , where the supremum is over all finite partitions P

of [0, 77, to denote its p-variation norm. A continuous rough path is a pair of functions (X, X) €
C([0,T],RY) x C(Ar, R¥*9) satisfying Chen’s relation, that is

X&t - XS,T - Xr’t — Xs,r ® Xr’t fOI’ a” 0 < S < r < t < T (1)

Definition 1.1 (p-variation rough path space). Forp € [2,3), C,([0,T],R¢ x R%*4) js the space of
all continuous rough paths (X, X) such that

X2 0,71 = [Xo| + 1 X |y 0.1 + [IXlp/2. 0,27 < 00 @)

The (uniform) p-variation distance oy, 0, 7] /s defined by taking the norm of the path defined by the
differences increment-wise:

ap o1} (X, X), (Y, Y)) = [[|(X =V, X = Y) [[lp 017 -

We refer to X as the first level of the rough path (X, X) and to X as its second level. We shall now
state a simple and useful sufficient condition for convergence in p-variation based on the convergence
in the uniform topology together with tightness of the p-variation norms, see Lemma 2.3 in [6] and
which is based on Theorem 6.1 of [8].

Lemma 1.2 (Sufficient condition for convergence in p-variation). Assume that
(Zn, Zn)nen is a sequence of continuous rough paths and let py € (2,3). Assume also that there
exists a continuous rough path (Z,7.) such that (Z,,Z,) — (Z,7) in distribution in the uniform
topology and that the family of real valued random variables (||(Zy, Zn)||po,[0,1])nen is tight. Then
(Zy, Z)) — (Z,7) in distribution in the py-variation uniform topology C,,([0, T], R? x R*4) for all
p € (po,3).

1.2 Main result

Let X = (X, )nen, be a discrete time stochastic process on R? defined on a probability space
(S, F,P) and let E be the corresponding expectation. Assume that X has a delayed regenerative in-
crements, that is there exists a sequence 0 =1 71 < 7 < T <.. of
JF-measurable Ny-valued random variables so that (7%, { X7, 7, +m,0 < m < Tj})gen is an iid.
family independent of (75, { Xo,m,0 < m < 71}) under P, where T, = 7,41 — 7y are the regen-
eration intervals and X, := Xy — X, are the increments. Assume that E[X, ,,] = 0 and that
ged{j : p; > 0} = dforsome d € N, where p; = P(T} = j), thatis, T} is d-arithmetic. For any
sequence (X} )ren, of elements in R? we define

1 nt — |nt]

Vn
n(t —s) — [nt] + |ns] (

(Xntj+1 — X|ney)  and

Str Str
I 1 (X)) = I00% e (X)), ®)
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T. Orenshtein 4

where for positive integers M < N

1
IStr N(X) = Z <XM,k1 ® Xp—1k — §Xk71,k ® Xkl,k) :
MA1<k<N

X .= / / dx{ & dx{m,
(s,t] J (s,u)

where the integration with respect to d X' 5”) is in the sense of Riemann-Stieltjes.

Remark 1.3. Note that

We shall now formulate the main regularity assumption. We remind the reader that for Y € R? we
write Y for the i-th component of Y, i € {1, ..., d}.

Assumption 1.4. Foralli € {1,...,d}, m € {0,1} andp € {0, 2}
(Eﬁn)ka] < 00

where 2, = sup{|X. _ . [:0<k<Th}

O0<E

Theorem 1.5. Let X be a discrete time stochastic process satisfying Assumption Assume that

E[X,, r.,] = 0 forevery k € Ny. Then, (X™,X™),cy converges in distribution to (B, B + -T')
in C,([0, T], R x R¥*) for every p > 2, where B is a centered Brownian motion with covariance
B, B] E[XE?TZ] t 4
[ ) t — E[T]_] I ( )
B is the Stratonovich iterated integral of B, that is B, ; = | (5] Bsu ® 0dBy and T € R4 js given
by
ElA, (X
r Eldnn (0] .
E[T3]

where Ay n(X) = Antisym(Xg\? ) is the antisymmetric part of the matrix X( ) . The notation

7

B + T above is for (B, + (t — s)I )(st eAr’

Remark 1.6. Note that the positivity condition for the moment in Assumption|[1.4)is assumed in order to
avoid degeneracies. Indeed, it can be omitted if we accept a degenerate formulation of the invariance
principle. More accurately, if this is violated, then X,i = 0 for all times for some coordinate 1, for
which one can say that the invariance principle holds with a singular covariance matrix. Note also that
Assumption' holds whenever 11 has a third moment and <—- | . kl are uniformly bounded from above
by a constant a.s., for example, whenever the process X has values in Z%, with nearest-neighbor
jumps.

Remark 1.7 (Optimality of the result). Let X,, = Y ,_, & be a centered random walk on RY, that is
E[&] = 0,i = ,d, where &, = (&}, ..., &) are RY- valued i.i.d random variables. Then X =
(Xn)nen, has, tr/wally, delayed regenerative increments: here Ty, = 1 and =}, = |£L],i = 1,...,d,
2

k = 0,1,... Therefore Assumptlon is equivalent in this case to [E [Zi:l & ] < 00, which is

a necessary and sufficient condition for the classical central limit theorem, cf. Theorem 4 in Chapter 7
of [14].
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Rough invariance principle 5

2 Examples

Positive recurrent countable Markov chains. Assume that (Y )ren is @ positive recurrent irre-
ducible Markov chain taking values in some measurable space S, that is

P(T,f < 0ol Xy =) = 1forsomex € S

where T." = inf{k € N : Y, = z}. Assume moreover that E[(T.1)3| X, = ] < oco. Then the
conditions of Theorem [1.5hold under P(-| X, = z) for the sequence

E[D[Yo = ]

LN D — N,
B[l [Yo=a] " <"

X, = Zf(Yk) —-n
k=0

+_
where D = Z?:o " f(Y4),and f : 8 — R is any bounded measurable function.

All the examples considered in Section 5 of [21] are applicable here. In particular, the result applies
to Random walks in periodic environment ([21], Section 5.2), where the periodicity assumption can
be easily relaxed. For example, it can include i.i.d. impurities, as long as the regenerative structure is
kept. It applies also to Random walks on covering graphs and hidden Markov chains, (Chapter 5.2
of [21])). The examples there immediately satisfy Assumption Moreover, these can be extended,
allowing infinite modulating systems and covering graphs with infinite structure. Another application is
to the so-called Ballistic random walks in random environment (Section 5.1 of [21]). Lastly, for the
example of Random walks in Dirichlet environments, the rough invariance principle, Theorem 5.5 of
[21] is shown in the ballistic regime (more accurately, whenever a condition which is denoted by (7).,
holds for some v € (0, 1), see Chapter 6.1 of [26] for teh definition and more details) in the sense of
Holder rough paths only whenever the trap parameter x satisfies £ > 8 in the a-Hblder rough path
topology for all @ < 5 — ﬁ where (k/2)* = min{|x/2],2|x/4]}. The improvement in the
present work is that the rough invariance principle - Theorem [1.5] below - applies already whenever
the trap parameter satisfies k > 3, and moreover it holds for all p > 2, which corresponds to all
a < 1/2in the a-Hélder settings.

3 Proof of Theorem[1.5

Set 7, = X, = ]Z;& Y, fork > 0,where Y, .= X

o704+ Then Z = (Zy)ken, is a random walk
with square integrable jumps. Therefore,

(Z™ 7)) converges in distribution to (BZ, BZ) in C,,([0, T], RY) (6)
for all p > 2, where B?Z is a centered Brownian motion with covariance
[B%, B%), = E[Y, ® Yt

and BZ is the Stratonovich iterated integral of BZ. Indeed, this is a rough path version of Donsker’s
Theorem and for completeness, we now sketch the proof. By Lemma it is enough to prove first
convergence in distribution in the uniform topology and then to show tightness for the sequence of
p-variation norms. The convergence in the uniform topology for the path is Donsker’s Theorem, cf.
[7, ], while for the iterated integral it follows by Theorem 2.2 of Kurtz-Protter [17] (with the slight
modification to Stratonovich’s integral rather then Ité’s). Tightness of the p-variation norm of the path
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T. Orenshtein 6

follows from Lépingle’s p-variation inequality [20] combined with the BDG inequality, whereas tightness
for the p/2-variation norm of the iterated integrals follows from Theorem 1.1 of [27], which is an off-
diagonal version to the Lépingle p-variation BDG inequality (one can also use [25] or Proposition 3.8
of [6]).

Next, we treat the rescaled lift (X("), X("))neN. We shall work on each level separately. Let us first
identify the limit by proving the convergence of the finite-dimensional distributions. For ease of notation
we shall only show the one-dimensional distributions, proving the convergence for higher dimensions
is done similarly. For any u > 0 let x(u) be the unique random integer k so that 7, < u < Tj41.
Note that x(u) is measurable with respect to o(T} : k < u), since 7, = ZI;;OI Ty . Observe that

nt — |nt - . 1
X0 = 205 1 = | =Xy + T g = Xh) = T2 | < Ik

Next, note that as 7,(n¢) < Nt < Ti(nt)+1

k(nt) k(nt)+1 < k(nt) < k(nt)

r(nt) + 1 Tumt)+1 nt Te(nt)

The weak law of large numbers for (7% )xen, implies that

L N YIS G @)

nt n—00

in probability with respect to P, where we used the fact that 1 < E[77] < oo by assumption. In
particular, P(k(n) > 25n) —— 0 and therefore for every ¢ > 0
n—oo

P([| X ™" — Z,(:(Lr)zl/nHoo o1 >€) < P(I= 0l > evn)

< ]P’( max Ein>5\/ﬁ)+0(1).

0o<m<nT2s3

But since the maximum of order 7 i.i.d random variables with a finite second moment is sub-diffusive
in probability the first term also vanishes in probability. Indeed,

]P’(max Efn>€\/ﬁ) = 1—(1_ (_0>€\/_))(1_ (H§>€\/ﬁ))Lan

os<m<en
1— (1-P (2 >evn))™
1 —exp (—cnIP (Ell > 5\/5)) ,

which tends to 0 as n — oo. This holds since P(|Z%|* > ?n) < P(|Z}|? > %) forevery j < n
and so

Q

Q

(n—k)P(|Z¢]* > e2n) < ZIP 2> &%), k<n.

Jj=k+1
Therefore,
(o)
limsupnP (2} > ey/n) = limsup(n — k)P(|Z}]> > en) < Z P(e 22> > j) —— 0,
n—00 n—00 ikt k—o00

since the right hand side is summable as E[|Z}|?] < ooc.
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Rough invariance principle 7

Next, since the maximum of linear interpolations of any finite sequence on any bounded interval is
obttained on the end points, we have

||Zf(i7(1’r)7j-l)/n - Z-(Bn)ﬂ”oo,[o,T] <

=i _
0<metng = 0<metng |k (m/B) —m].

Thus for R > 0

( || ZHT(LT)L 7 /n Z.(él)yl

00,0,T] > €)

o<m<TpBn m<TnS

<IP>( max |Z;(m/ﬂ Z! |>5\/_ _max |k (m/ﬁ)—m|<R\/ﬁ)

+P ( max | Zy,5 = Zp| > ev/n, o BX |k(m/B) —m| > R\/ﬁ)

o<m<TBn

0<k,m<T Bn,|k—m|<R\/n 0<m<TnpA

<}P’< max \Zp — Z! | >€\/ﬁ) —|—]P’< max |k(m/B) —m| >R\/ﬁ>
< 3TBv/nP (kgllixf]Z,ﬂ > &?\/ﬁ) +]P< max \ (m/B) —m| > Rﬂ) :

o<m<Tnp

To deal with the first term we use a standard two pairs estimate (see Example 10.1 of Billingsley [1]),
to find some K > 0 and V() = 0 so that for any fixed R > 0
—00

VP (k?f%%‘zﬁ g Eﬁ) < v <5n1/4/\/§>4 - \/_<5n1/4/ (2@))2

By the central limit theorem for renewal processes with finite variance

(8)

max C\Wt| > R),

0<t<

P (amx I5(m/8) ~ m| > V) > B

where W is a Brownian motlon and ¢ > 0 is some constant. As R can be chosen arbitrarily large,
lim sup,,_, IP’(||Z:(?L — Z ||OO 0,7 > €) = 0. Therefore,

| XM — Z.(;)’i||oo,[0,T] — 0  inprobability .
Applying Slutsky’s Theorem in the Skorohod topology, Theorem to
X =x™ — z{V 4 70V (9)

we deduce that X (™ —— BZ =: B in distribution with respect to IP, so that B is a d-dimensional

n—oo
Brownian motion with a covariance matrix given in (4), as desired.

Next, we shall show tightness of the p-variation norms for p > 2. Note that «(u) < u forany u > 0.
Indeed, T; € Nfor all i € N by assumption and therefore x(u) < T,y < u. Now, since

()i _ p(m) L =i i
|X57t - Z/-c(ns)/n k(nt) /n| = %( ‘_‘H(TLS)| + |‘—‘H(nt)+1|)’
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for any partition 0 =t < t; < --- < t,, =T, we have

ZI ntp_1,nty n ntrf1),m(ntr)|2 S Z #{1 < r < m:kK ( ) - k}| Z Tk|

0<k<nT 0<k<nT

Hence, .
E[IX" = 255 0m) S ~((n = DETE ) + E[T5[Zo?) £ 1

Next, since k(nT) < nT we have that (IZZ (e)) is a subsequence of (\/LEZ,?C) ront and

<nT
therefore IE[||Z(" ! o2 o] < E[||Z™: N2 0m) S 1, see (22).

Using the triangle mequallty together with the fact that the p-variation norms are monotonically de-
creasing in p,

E[IX ™5 001] S EIX® = 250515 0m] + EUZSG00 mlln0m] S 1

as desired.

We shall now treat the second level. Let us show first convergence in the Skorohod topology. Note that
for ¢ < k we have the following decomposition which is a consequence of Chen’s relation

LLX) =L+ ), Al (10)

+1<u<k

Indeed, 5 (X) =sym(I5™ _ (X))+A-,_, - (X),andby adirect computation sym (15

Tu—1,Tu

2010 ® Zu,m. Therefore,

X)) =

1 Tu<

1
Str _ 7Str Str
IT[ Tk (X> — 0k (Z) + E : [TU 1,Tu (X) o 5 E : ZU*LU ® ZU*LU

(+1<u<k l+1<u<k

Str § : ATu 1 aTu

l+1<u<k

By Remark 2.2 of [6], it is enough to prove the convergence of X,E”) = X(()’:”t). By (10), we have for any
t>0

1 1 1 1
ﬁ Xflt) - ’{(nt Z ATu I»Tu ) = E|X7(-H)(nt):nt + Xoan(nt) ® XTn(nt)vnt|
1<u<k(nt)
< _|H§ | + = |Zn(nt)| ® |En(nt)|-
Therefore
g
su — X - Zfi ns),k(nt) — AT T X
o2up 5 s (ns) i (nt) > et (X)

k(ns)<u<k(nt)

1
< 2 sup — (|28 m)| | Znty| @ |Zkmny])-
ost<T N

DOI 10.20347/WIAS.PREPRINT.2809 Berlin 2021



Rough invariance principle 9

But supg<;<r = ( ”f(znt | + [ Ziont)| @ |Zkmp)|) — 0 in probability. Indeed, we have already seen
n—

that P (||Ef€(n_)||oo,[07T] > 5\/ﬁ> — 0 for any £ > 0 and for the second term

P( sup |Zumt) @ Epnry] > en) < P (| Zn:||oojo,r) > RVn) + P (022(1“ |=k| > &/ﬁ/R) :

0<t<T
But for any R > 0 the right term vanishes as n — oo, while the left term converges to P(maxo<i<r [¢Wy| >
R), where W is a Brownian motion and ¢ > 0 is a constant, which vanishes as R — 0o. By Slutsky’s
Theorem the convergence of X(™ in distribution holds if
1 1
—Z/{(n) —+ E Z ATu—lﬂ'u (X) —_— ]BO + 1

n—00
1<u<k(n:)

in distribution in the uniform topology. To achieve the last convergence, first note that (A, , -, (X))uen
are mdependent random matrices with the same law for © > 2. Note also that |A4,, , ., (X)| <
4|Z2,-1]®*T,,—1 which implies that E[|A,, , -, (X)|] < C for u = 1, 2 by Assumption|1.4| Hence the
weak law of large numbers for the sum yields

LS A (X) — B[4, (X))

n—00
1<k<n

in probability. Together with the convergence in probability “("t) — ]E[Tl] which is the conse-

n—oo

quence of Assumption [1.4] with o = 0, we deduce that

E[A X
Z Ar i (X) » An (X)) =:T almost surely .

1<k<k(nt)
. E[|Ar (X
Moreover, since w < 00 we have moreover

> An (X)) = T4{| ooy — 0 inprobability .
n—

1<k<k(n-)
Using Slutsky’s Theorem again together with (6) it is left to show that

HZ W n)/ .(Z)Hoo,[o,T] m 0 in probability.

n

As for the case of the first level we use (3) to reduce the last convergence to showing that HZS(LL.)/R —

(n) , I
L.g ”oo,[O,T]l{maX()gmng I(m)—mBI <Ry} — 0 in probability. Fix € > 0.

IP) ZZ ZZ7] >
(ogk,mgTég?g(_mKRﬁ| 0,m 0k| 5n>
~ (0<k,m<Tgll,al§(—m<R\/ﬁ’ ol |Zo,4l > n)
h (Oék,méngl,ali(ng\/ﬁ| bl Ven/R) + P (maxocgnt | okl > VeEn )
< V' ( wmax |Zi,|> VEn/R P (masocrent |7, ] > VERE).
R 0<k<Ry/n <k< 0kl =V
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Now, for any fixed R the first term converges to zero by (8) while the limsup of the right term is bounded
by P (maxo<i<7 [¢W;| > \/€R), which tends to zero as R — oc. Therefore we have proved the
convergence is the uniform topology.

To end, we shall now prove tightness of the p/2-variation norms, p > 2. As in the estimate for the first
level, we observe that for 0 =ty < t; < --- < t,, =T and coordinates 1 < i, j < d we have
m

Z i,J 2 : 2 : ,J
|An7trfl,nt,- ‘Athrfl,ntr

r=1 0<u<nT 0<r<m:k(ntr)=u

S Z #{1<r <m:r(nt,) =u}|Z =

0<u<nT

< ﬂL|:u:u Y

0<u<nT

which implies that E [% H | (Zﬁ(m) cuscr(nt) Aru_ima (X ))

1,[0,T]1 S 1. AlSO,

0<s<t<T

(1) = =
Koot = L(ns)(nt) = D(ns)<u<n(nt) Am_l,m(X)‘ < B s wnn] F 1 Znms) ntnt)] © [Enus) miun)|

and so

1 1
E || X0t = Lnnoywoty = 9 Angym(X) oo | ST

k(ns)<u<k(nt) 0<s<t<T

Observe that E[||Z™ ||, /2071 < 1, see (?2). Using the triangle inequality together with the fact that
the p-variation norms are monotonically decreasing E[||X™||,,/2.10.7] < 1, as desired. O
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A Key renewal theorem

In this section we show that the moment condition of Assumption is asymptotically equivalent to a
second moment condition on =, (,,).

Theorem A.1 (Key renewal theorem). Assume thatp; > 0,7 € Ny, py = 0, ZJENO p; = 1 so that
ged{j : p; > 0} = d € N. If (b,)nen, is @ summable sequence of non-negative real numbers, then
the equation

n
ay = Z b U (11)
m=0
has a unique solution satisfying
b
lim a, = ZLW’ (12)
n—00 2 jen IPi
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where Uy, = Y.y, P*F(m) is the k-fold convolution of p evaluated at m, that is p**(m) =

P (Z?Zl T, = m) where (T},) 2 is a sequence of independent random variables so that T}, k > 2

all have the same probability mass function p. Moreover, This to be understood even when» jeNo Jjpj =
00, in which case the limit on the right side of is 0.

Lemma A.2. Let =, as defined in Assumption[1.4, then forr, { € Ny

®7‘T€+1]
E EH n ®7‘T€ N Hi |
H ( )‘ H(n)] 00 E[TQ} )

whenever the right hand side is finite.

Proof. Letb, = E[|Z5|® T4 11,~,], then

S b= 3 SIS T ] = 3 KBS K L] = B[ TS

n€Np n€ENg k>n keN

By The key renewal theorem there is a unique solution (a,,),en, to the equation (A7), and it satisfies
the limit in (T2). By the last computation the right hand side of is exactly the one in the wanted
assertion. It is therefore enough to show that a,, = E[|E,{(n)|®”T£(n)]. Indeed,

]E[|En(n)|®rT£ Z E |~—4€|®TT£ k(n)= Z E |®rTlflTk<n,Tk+Tk>n]
keNp kGNO
= Z ZE ‘Hk|® T 1Tk>n m TE= m Z ZE "—'k| T 1Tk>n m]P[Tk — TTL]
kENom 0 keNg m=0
n
- ZE 2|®TT€1T2>77, m Z IP) Tk: ] = Z bn—mum = Qp,
keNg m=0
where in the fourth equality we used independence. O

Note that one could use the argument for b,, of the form E[f({ X7, 71 + k}o<k<r,)g(11)], where
f, g are real functions, as long as (b,) is an absolutely summable sequence (of well-defined finite
elements).

B Slutsky’s Theorem in the Skorohod topology

Theorem B.1. Let X", Y € D([0,T],R), the Skorohod space of cadlag functions (or X", Y™ €
C([0,T],R))) so that X™ — X in distribution in D([0,T],R), X € C([0,T],R) and ||[Y™ —
flso,jo,rp — 0 in probability, for a deterministic continuous function f. Then X" + Y™ — X + f in
distribution in D([0, T],R) (orin C ([0, T],R), resp.).

Sketch of proof. We shall show the case D = D([0,T],R). Let & € Cy(D,R). Since g — P(g +
f) is bounded and continuous in D by the continuity of f, we have

IE[®(X" +Y") — (X + f)]| = [E[®(X" +Y") — &(X" + f)]| + o(1) as n — 0.
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However, since the Skorohod distance d on D is controlled by the uniform distance which is homoge-
neous d(g + h, f + h) < ||f — gllco,jo,7) for any b € D, we have

[E[Q(X" + V") — (X" + [)]|
S 2[P[oPIY™ = flloo oy = €] + [E[((X™ + V™) = B(X™ + f))laxn iy xng py<el|
~ [E[(Q(X" + V") = &(X" + ) laxniyn xngpy<e] |

We shall that lim sup,, , ., [E[®(X™ + Y") — ®(X + f)]| = 0. Fix > 0. By tightness of X",
P(X™ ¢ K;)) < gz for a compact K. Since ® is continuous and K, := K, + f := {g + [ :
g € K, } is compact, for all small enough £ > 0 we have

E[(®(X™ +Y™) — &(X" + f))laxnyn xntp)<el]
L2[[P[|oo|P(X™ & K| + [E[(R(X" +Y") — (X" + f))1d(X"+Y",X"+f)<s,X”+fef(n]’
<n/2+n/2PAX"+Y", X"+ f)<e, X"+ fEK,)<n.
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