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Weak-strong uniqueness for
energy-reaction-diffusion systems

Katharina Hopf

ABSTRACT. We establish weak-strong uniqueness and stability properties of renormalised solutions to
a class of energy-reaction-diffusion systems, which genuinely feature cross-diffusion effects. The sys-
tems considered are motivated by thermodynamically consistent models, and their formal entropy struc-
ture allows us to use as a key tool a suitably adjusted relative entropy method. Weak-strong uniqueness
is obtained for general entropy-dissipating reactions without growth restrictions, and certain models with
a non-integrable diffusive flux. The results also apply to a class of (isoenergetic) reaction-cross-diffusion
systems.

1. INTRODUCTION

It is well acknowledged that the evolution of a system of diffusing and reacting chemicals is influ-
enced by the thermal state of the system. Energy-reaction-diffusion systems (ERDS) take into ac-
count this thermal dependency by consistently coupling the evolution of the chemical concentrations
c = (c1, . . . , cn) to a heat-type equation for the internal energy density u. Choosing the internal en-
ergy density as the thermal variable (as opposed to temperature for instance) has the advantage that
the underlying physical entropy is jointly concave in the state variables z = (u, c) [34, 35].

Recently, global existence of weak and renormalised solutions has been obtained for a class of ther-
modynamically consistent ERDS [24] taking the form (with z := (u, c))

∂tu = ∇ ·
(
A0j(z)∇zj

)
, t > 0, x ∈ Ω,

∂tci = ∇ ·
(
Aij(z)∇zj

)
+Ri(z), t > 0, x ∈ Ω, i ∈ {1, . . . , n},

0 = Aij(z)∇zj · ν, t > 0, x ∈ ∂Ω, i ∈ {0, . . . , n},
(1.1)

see also the more explicit system (2.5). Eq. (1.1) is supplemented with an initial condition (u, c)|t=0 =
(uin, cin) for x ∈ Ω, where Ω ⊂ Rd is a bounded Lipschitz domain with outer unit normal ν. Note
that we use the summation convention omitting the summation symbol in repeatedly occurring indices
(here

∑n
j=0). The diffusion matrixA(z) = (Aij(z))i,j=0,...,n and the reactions (Ri(z))i=1,...,n are ob-

tained from an underlying formal gradient structure based on entropy functionals H(z) =
´

Ω
h(z) dx

with convex densities h(z) = h(u, c) taking the form

h(u, c1, . . . , cn) = −σ(u) +
n∑
i=1

b(ci, wi(u)).

Here, σ denotes the thermal part when the concentrations ci are in their thermodynamic equilibrium
wi = wi(u), and b(s, e) := eλ(s/e) with λ denoting the Boltzmann function, see Section 1.1 for
details. The absence of reactions in the u-component of (1.1) reflects the property of conservation of
the total (internal) energy

´
Ω
u.

ERDS genuinely feature cross-diffusion effects, such as concentration flux driven by gradients of the
internal energy density and energy flux due to concentration gradients, which are one of the main
sources of difficulties in their analysis. These phenomena are closely linked to the thermodynamic
origin of ERDS, and are related to the Soret effect and the Dufour effect, well-known in physics,
which describe concentration flux due to temperature gradients resp. heat flux driven by concentration
gradients.
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K. Hopf 2

In the present manuscript, we aim to derive stability properties including a weak-strong uniqueness
result for ERDS (1.1) based on their thermodynamic structure. This can be seen as a way of justify-
ing the weak solution concept in [24]. The main contribution of [24] was to identify non-trivial classes
of thermodynamically consistent models that allow for an existence theory of generalised solutions.
Interestingly, even in a cross-diffusion dominant regime and without physically restrictive growth con-
ditions on the reactions, existence has been obtained in [24] based on the notion of renormalised
solutions [22]. Our weak-strong uniqueness principle covers models involving various cross-diffusion
phenomena (Soret effect, Dufour effect, cross diffusion between species), and applies in particular to
a class of isoenergetic reaction-cross-diffusion systems, thus generalising [12]. Weak-strong unique-
ness is obtained from a weak stability estimate for a generalised distance involving as in [23] an
adjusted relative entropy. By suitably exploiting the thermodynamic structure of the system some of
the technical issues arising in the proof of [12] will be avoided. We also obtain an asymptotic stability
result.

1.1. Thermodynamic modelling. Let us now briefly specify the thermodynamic structure considered
in the present manuscript. For more background on the modelling, we refer to [24, 39, 28, 36]. Models
compatible with thermodynamics can be derived using the Onsager formalism in [36]. Here, the main
ingredient is a triple (Z,H,K) consisting of a state space Z , a driving functional H , and a so-called
Onsager operator K. Typically, Z ⊂ X is a convex subset of a Banach spaceX ,H : Z → R∪{∞}
a differentiable and convex functional on Z (below usually referred to as entropy due to its correspon-
dence to the negative of the physical entropy), while K can be seen as a generalised inverse Rie-
mannian metric tensor on Z . More specifically, for every z ∈ Z , K(z) defines a positive semi-definite
and symmetric (unbounded) operator from T ∗z Z to TzZ . If G = K−1 exists, the triple (Z,H,G)
forms a gradient system. Then, motivated by the classical gradient flow equation G(z)ż = −DH(z),
with ż denoting the time derivative of z = z(t), one considers the evolution law

ż = −K(z)DH(z),

where hereDH denotes the Fréchet derivative of the functionalH . An advantage of this Onsager form
is that it facilitates the consistent coupling of different physical phenomena, which can be realised by
an additive decomposition of K [36]. Observe that, formally, the above structure encodes the following
core entropy dissipation property

d
dt
H(z) = −〈DH(z),K(z)DH(z)〉 ≤ 0 (1.2)

along any solution curve z = z(t) of the above law. Conservation of the total energyE(z), withE de-

noting the energy functional on Z , can be guaranteed by imposing the condition KDE = K∗DE !
=

0, which implies that d
dt
E(z) = −〈DE(z),K(z)DH(z)〉 = 0.

In the context of ERDS, we consider, as introduced above, z = (u, c) with u the internal energy
density and c = (c1, . . . , cn) the vector of concentrations. We focus on entropies of the form

H(z) =

ˆ
Ω

h(z) dx

with densities

h(z) = h(u, c) = −σ(u) +
n∑
i=1

b(ci, wi(u)),

composed of a thermal part σ(u) and a relative Boltzmann entropy b(s, e) = eλ(s/e), where

λ(r) := r log(r)− r + 1, (1.3)

and with wi = wi(u), i = 1, . . . , n, denoting the thermodynamic equilibria of the concentrations ci.
The dependence of wi on the internal energy density u results in a strong coupling of the system and
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Weak-strong uniqueness for ERDS 3

is one of the main sources of difficulties in the analysis. It will be convenient to introduce the function
σ̂(u) = σ(u)−

∑n
i=1wi(u) + n and rewrite h(u, c) in the following more explicit form

h(u, c) = −σ̂(u) +
n∑
i=1

(
λ(ci)− ci logwi(u)

)
. (h1)

To simplify the exposition, we will impose the following concrete conditions on the coefficient functions
(cf. [24]):

σ̂ ∈ C2((0,∞)) strictly concave & non-decreasing.
wi ∈ C([0,∞)) ∩ C2((0,∞)) concave & non-decr. with wi(0) > 0 for all i.
limu↓0 σ̂

′(u) = +∞, limu↑∞ σ̂
′(u) = 0; supu∈(0,1] σ̂

′′(u) < 0.
∃β ∈ (0, 1) such that wi(u) . 1 + uβ for all i ∈ {1, . . . , n}.

 (h2)

Typical choices are σ̂(u) = a log(u) or σ̂(u) = auν for some ν ∈ (0, 1), a > 0, and wi(u) =
(bi,1u+ bi,0)βi or wi(u) = bi,1u

βi + bi,0 for βi ∈ (0, 1), bi,0 > 0, bi,1 ≥ 0.

Our weak-strong uniqueness principle does not rely, in an essential way, on this specific form of the
entropy density.1 In fact, in the proof of our main theorem (Thm 2.8), identity (h1) is only used to
guarantee the coercivity properties in Proposition 3.2. The crucial point in the assumptions (h2) on the
coefficient functions is that they ensure good convexity properties, and more specifically the locally
uniform positive definiteness of the Hessian D2h, which is essential for estimate (3.5) in Prop. 3.2.
The monotonicity assumptions on σ̂ and wi are relevant from the modelling point of view, since they
ensure that u 7→ h(u, c) is non-increasing, so that temperature, which is given by − 1

∂uh
, is non-

negative.

As in [39, 24] we are primarily interested in Onsager operators K of the form

K(z)ζ = Kdiff(z)ζ + Kreact(z)ζ = −∇ · (M(z)∇ζ) + L(z)ζ,

where M(z),L(z) ∈ R(1+n)×(1+n) are positive semi-definite symmetric matrices and where ∇ =
∇x is the gradient with respect to x ∈ Ω. We will complement K with the no-flux boundary conditions
M∇ζ · ν = 0 on ∂Ω, where ν denotes the outer unit normal vector to ∂Ω. Observing that E(u, c) =´

Ω
u describes the total (internal) energy, the condition KDE ≡ 0, ensuring energy conservation,

means that kerL(z) ⊇ span{(1, 0)T}. Thus, by the symmetry of L, the zeroth component R0 of
R(z) := −L(z)Dh(z) vanishes. Moreover, positive semi-definiteness of L implies the inequality

Dih(z)Ri(z) ≤ 0. (1.4)

In this paper, the specific form of L(z) will not be relevant. Instead, we directly work with reactions
R(z) of the form

R(z) := (0, R1(z), . . . , Rn(z))

satisfying (1.4).

With K as above, the equation ż = −K(z)DH(z) can be written in the form (1.1) by choosing

A(z) := M(z)D2h(z).

In short,
∂tz = ∇ ·

(
A(z)∇z

)
+R(z), t > 0, x ∈ Ω,

0 = A(z)∇z · ν, t > 0, x ∈ ∂Ω,
(ERDS)

subject to an initial condition z|t=0 = zin. In the above setting, the entropy dissipation property (1.2)
takes the form

d

dt
H(z) +

ˆ
Ω

P(z) dx =

ˆ
Ω

Dih(z)Ri(z) dx ≤ 0,

1See Sec. 2.3.2 for an example of a different entropy density that our technique can be adapted to.
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where P(z) := ∇Dih(z) ·Mil(z)∇Dlh(z) ≥ 0, by the positive semi-definiteness of the mobility
matrix M, which will be assumed throughout. Supposing, for instance, that P(z) &

∑n
i=1 |∇

√
ci|2

(as it can be proved for many of the models considered in [24], see Section 2.3 and Lemma 6.1),
and using conservation of

´
Ω
u together with suitable bounds on H(z) (cf. Lemma 6.3), the entropy

dissipation property provides a priori control of
∑n

i=1 ‖∇
√
ci‖2

L2
t,x

. Let us further note that the fact

that R0(z) vanishes gives to some extent a scalar-like structure to the u-component of (ERDS), and
if, for instance, M is chosen such that A0j = a δ0j for some function a = a(z) ≥ 0, any Lp-type
energy 1

p
‖u(t)‖pLp , p ∈ (1,∞), is formally non-increasing in time.

1.2. Motivation and strategy. Being able, for a given PDE, to identify concepts of solutions for which
both existence and uniqueness can be established is a fundamental concern in modelling and anal-
ysis. For scalar equations, there are various tools to identify frameworks allowing for the existence
of a unique solution, even in regimes of low regularity and with strong nonlinearities. One approach
is based on the ‘doubling variables’ technique first employed by Kružkov [32] to entropy solutions of
first-order equations, and extended by Carrillo [6] to hyperbolic-parabolic-elliptic equations. The con-
cept was adapted to situations where L∞ bounds are not available to give uniqueness in a class of
renormalised solutions [3, 7]. See also [2, 40, 1] for more recent developments. Let us also mention
the Young measure approach to conservation laws going back to Tartar [43] and DiPerna [19] who
obtained, in the scalar case, uniqueness of solutions obeying an entropy inequality. For second order
parabolic and elliptic equations the viscosity solution technique and associated comparison princi-
ples [30, 14] are powerful tools and the key to a variety of wellposedness results in geometric, highly
nonlinear or degenerate settings, see e.g. [20, 13, 5, 8]. Some extensions of the viscosity solution
approach to systems are available for weakly coupled problems with a monotonicity condition [29].
Further uniqueness results applying to specific systems and typically in more regular situations in-
clude [25, 31, 10, 41, 26, 4].

In general, the case of strongly coupled (parabolic) systems tends to be much more difficult. While
under a parabolicity condition the existence of suitable generalised solutions (here referred to as ‘weak’
solutions) can often be established, positive uniqueness results in such general settings are rare. It
is therefore common, to relax the quest for uniqueness to the problem of whether weak solutions are
uniquely determined in situations where a sufficiently regular solution (a ‘strong’ solution) happens to
exist. In other words, one is interested in the question of whether such strong solutions are unique in
a potentially much larger class of weak solutions. The question of weak-strong uniqueness is classical
in fluid dynamics problems and goes back to Leray’s fundamental work [33], where it was established
for the incompressible Navier–Stokes equations. We refer to the survey by Wiedemann [45] for more
details and further references. For recent advances on conditional uniqueness results for dissipative
measure-valued solutions to conservation laws, see [27] and references therein. Quite interesting in
the thermodynamics context is moreover the relative entropy technique employed by DiPerna [18] and
Dafermos [16] for hyperbolic conservation laws.

Relative entropy methods are nowadays a standard tool to study weak stability properties of nonlinear
systems endowed with a (convex) entropy structure. Generally speaking (using the notation introduced
in Sec. 1.1), a relative entropy of the form

Hrel(z, z̃) = H(z)−
ˆ

Ω

Dih(z̃)(zi − z̃i) dx−H(z̃) (1.5)

is used to measure the distance between a weak solution z and a strong solution z̃. Observe that for
convex entropies H(z), the map z 7→ Hrel(z, z̃) is a non-negative, convex functional vanishing in
z = z̃. The thermodynamic structure ensures that regular solutions automatically satisfy an entropy
dissipation balance (cf. eq. (1.2)). Physically relevant processes may, however, in general possess less
regularity and here an entropy inequality is often added as an admissibility criterion for weak solutions.
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The goal is then to obtain an upper bound on the time evolution of the relative entropy that implies
stability of a regular flow on a finite time horizon among generalised solutions. This means that given
a regular flow, any weak solution that is initially close (in relative entropy) will remain close for some
time.

In the present paper, we pursue such a strategy in the context of ERDS. Weak-strong uniqueness
has recently been obtained for entropy-dissipating reaction-diffusion systems with a uniformly elliptic
and bounded diagonal diffusion matrix [23], where the main difficulty consists in a lack of control of
the reaction rates. Extensions to a cross-diffusion system from population dynamics with weak cross
diffusion can be found in [12]. Both references are based on the relative entropy method, but their
arguments rely on the specific structure of the diffusion matrix of their systems. Here, we would like to
present a more general strategy to deduce stability from an underlying thermodynamic structure.

Given the strong coupling and lack of a priori bounds in L∞, there are several difficulties in our ERDS
that require an adaptation of the classical relative entropy approach to weak-strong stability. First,
due to the lack of growth restrictions on the reactions and in some cases even the flux term (see the
models in [24]), the evolution of the classical relative entropy used to measure the distance between a
renormalised solution z and a strong solution z̃, cannot be properly controlled. This is due to the term

−
ˆ

Ω

Dih(z̃) d
dt
zi dx =

ˆ
Ω

∇Dih(z̃) · (Aij(z)∇zj) dx−
ˆ

Ω

Dih(z̃)Ri(z) dx (1.6)

arising in the formal computation of the time derivative of Hrel(z, z̃). In fact, the available a priori
estimates do not ensure that Aij(z)∇zj ∈ L1(Ω) and Ri(z) ∈ L1(Ω) for a.e. time. At the same
time, the corresponding integrands in (1.6) do not have a sign, and there is no hope for the uncontrolled
parts to cancel with some of the remaining terms appearing in d

dt
Hrel(z, z̃). It is therefore necessary

to adjust the relative entropy Hrel(z, z̃). This issue has already been encountered in [23]; it can be
resolved by introducing a suitable smooth and compactly supported truncation function ξ∗ = ξ∗(z)
with ξ∗(z) = 1 if

∑n
i=0 zi ≤ E for some E �

∑n
i=0 z̃i (see Section 3.1 for details) in the formula

for the relative entropy via

H∗rel(z, z̃) := H(z)−
ˆ

Ω

Dih(z̃)(ξ∗(z)zi − z̃i) dx−H(z̃).

The relative entropy density adjusted in this fashion allows to remove the issue pointed out above.
(Strictly speaking, in the term D0h(z̃)(z0 − z̃0) the truncation function is not needed in the models
considered in this paper, and for other applications it may be helpful to use a different choice such as
Dih(z̃)(ξ∗i (z)zi − z̃i) with ξ∗i (z) ≡ 1 for i = 0, or versions thereof.)

A second difficulty arising in the case of ERDS is the inherent coupling between concentrations and
energy density, which manifests itself in the circumstance that the entropy density cannot be additively
decomposed into terms depending only on an individual component zi. This in turn leads to a non-
diagonal diffusion matrix A(z) and renders estimating the evolution of H∗rel(z, z̃) substantially more
delicate than in the diagonal case. One of the main contributions of this manuscript is to show that
such estimates can be achieved, with relatively little technical effort, by carefully exploiting the entropy
structure.

The energy component u plays a distinguished role in ERDS that has to be taken advantage of when
interested in a general analysis. At a technical level, the physical constraint of the convex function
h(u, c) being non-increasing in u (to ensure a non-negative temperature) restricts the range of rele-
vant functions σ̂ to sublinearities such as σ̂(u) = uν for some ν ∈ [0, 1) (with ν = 0 corresponding to
log). Unless σ̂(u) has close to linear growth for large values of u, even the possibility of an existence
theory solely based on the entropy estimate is questionable in general dimensions. We are interested
in covering more degenerate choices of σ̂, and therefore cannot purely rely on the (adjusted) relative
entropy to measure the distance of a weak to the strong solution. Instead, we exploit the absence of
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source terms in the u-component of the evolution system, which allows to give an extra, scalar-like
structure to the evolution law for u. Here, we content ourselves with the arguably simplest choice of
an L2-structure, meaning that we consider weighted generalised distances of the form

Dist∗α(z, z̃) = H∗rel(z, z̃) + α
2
‖u− ũ‖2

L2(Ω), α ∈ (0,∞).

This is consistent with the approach in [24] and allows us in particular to show the weak-strong unique-
ness property for the potentially pathological solutions constructed in [24, Theorem 1.8], where a
cross-diffusion dominant regime was considered with gradients of the internal energy density induc-
ing a (possibly) non-integrable concentration flux. Furthermore, by exploiting the existence of such an
additional quantity that up to some error term is dissipated along the flow, we can relax the conditions
on the entropy functional in [39] required for proving exponential convergence to equilibrium.

1.3. Technique. Here, we briefly outline, at a formal level, the main points of our argument showing
a weak-strong stability estimate of the form

d
dt

Dist∗α(z, z̃) .T,α,ξ∗ Dist∗α(z, z̃), (1.7)

on any finite time horizon (0, T ), T < T ∗, where z is assumed to be a ‘weak’ (renormalised) solution
and z̃ a ‘strong’ solution of (ERDS) in (0, T ∗)× Ω for some T ∗ ∈ (0,∞].

First, letting dist∗α(z, z̃) = h∗rel(z, z̃) + α
2
|u− ũ|2, where

h∗rel(z, z̃) = h(z)−Dih(z̃)(ξ∗(z)zi − z̃i)− h(z̃), (1.8)

we can write Dist∗α(z, z̃) =
´

Ω
dist∗α(z, z̃) dx. We further recall that the function ξ∗ = ξ∗(z) will

be chosen such that ξ∗(z) = 1 if
∑n

i=0 zi ≤ E for an auxiliary parameter E �
∑n

i=0 z̃i. Then, if
E = E(z̃,min{α, 1}) is chosen large enough, dist∗α(z, z̃) ≥ 0 for all z ∈ [0,∞)1+n with equality
if and only if z = z̃.

To sketch the argument leading to (1.7), let us for simplicity only consider the case where A0j(z) =
a(z)δ0j with a & 1. In this case, it will suffice to take α ≥ 1. We now assume that z and z̃ are
sufficiently regular solutions of (ERDS) (with A = MD2h, M ≥ 0, DihRi ≤ 0), where the strong
solution z̃ be such that ‖z̃‖C0,1([0,T ]×Ω̄) < ∞ and inf(0,T )×Ω z̃i > 0 for all i ∈ {0, . . . , n} and all
T < T ∗. To estimate the time evolution of Dist∗α(z, z̃), one formally computes

d
dt

Dist∗α(z, z̃) =

ˆ
Ω

ρ(h) dx+ α

ˆ
Ω

ρ(g) dx,

where (see Lemma 3.4)

ρ(h) := −∇Dih(z) ·Mil(z)∇Dlh(z) (1.9)

+∇(Di(ξ
∗(z)zj)Djh(z̃)) ·Mil(z)∇Dlh(z)

+∇
(
Dijh(z̃)(ξ∗(z)zj − z̃j)

)
·Mil(z̃)∇Dlh(z̃)

−Dijh(z̃)(ξ∗(z)zj − z̃j)Ri(z̃)

+ (Dih(z)−Djh(z̃)Di(ξ
∗(z)zj))Ri(z),

and

ρ(g) := −a(z)|∇u|2 − a(z̃)|∇ũ|2 + a(z)∇u · ∇ũ+ a(z̃)∇u · ∇ũ
= −a(z)|∇u−∇ũ|2 − (a(z)− a(z̃))(∇u−∇ũ) · ∇ũ. (1.10)

Thus, to show (1.7) it suffices to obtain a pointwise upper bound of the form

ρα := ρ(h) + αρ(g) . dist∗α(z, z̃). (1.11)
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Weak-strong uniqueness for ERDS 7

This pointwise estimate will be proved by distinguishing four cases determined by the value of the
weak solution z = z(t, x) ∈ [0,∞)1+n at any given point (t, x). This case distinction is motivated
by the following observations:

First, if z ∈ [0,∞)1+n with
∑n

i=0 zi ≤ E forE = E(z̃) large enough, we want h∗rel(z, z̃) to coincide
with the classical relative entropy density hrel(z, z̃) = h(z) − Dih(z̃)(zi − z̃i) − h(z̃) to be able
to use its distance-like properties. This will be ensured by choosing ξ∗(z) = 1 with Dkξ∗(z) = 0
for all k ∈ N+ whenever

∑n
i=0 zi ≤ E (cf. the definition of ξ∗ in Sect. 3.1). Thus, if |z − z̃| is

close to zero, the strict convexity, non-negativity and vanishing in z = z̃ of dist∗α(·, z̃) imply that
dist∗α(z, z̃) ∼‖z̃‖L∞ ,E |z − z̃|2 for |z| ≤ E. In this case, to show that ρα is quadratically small in
|z − z̃|, we write (using

∑
i zi ≤ E)

ρ(h) = −∇(Dih(z)−Dih(z̃)) ·Mil(z)∇(Dlh(z)−Dlh(z̃))

−∇(Dih(z)−Dih(z̃)) · (Mil(z)−Mil(z̃))∇Dlh(z̃)

−∇
(
Dih(z)−Dih(z̃)−Dijh(z̃)(zj − z̃j)

)
·Mil(z̃)∇Dlh(z̃)

+
(
Dih(z)−Dih(z̃)−Dijh(z̃)(zj − z̃j)

)
Ri(z̃)

+ (Dih(z)−Dih(z̃))(Ri(z)−Ri(z̃)),

see case A+ in the proof of Theorem 2.8 for details. In order to deal with the terms involving a
gradient of z that appear in the second and the third term on the RHS, one would like to exploit the
non-positive first term on the RHS. Typically (such as in the ERDS models considered in [24]), the
submatrix (Mil(z))i,l=1,...,n will, however, degenerate as soon as ci ↘ 0 for some i ∈ {1, . . . , n}.
Yet if min{z1, . . . , zn} ≥ ι for some ι > 0, then it is possible to assume that (Mil(z))i,l=1,...,n &ι In.
This, combined with the second line in (1.10) and suitable smoothness assumptions on M and h, will
allow us to infer that

ρα .E,ι,z̃ |z − z̃|2

whenever z(t, x) ∈ A+ := {z′ ∈ [0,∞)1+n : min{z′0, . . . , z′n} ≥ ι,
∑n

i=0 zi ≤ E} for some
ι > 0 and sufficiently large E ≥ 1.

To deal with the case z(t, x) ∈ A0 := {z′ : min{z′0, . . . , z′n} < ι,
∑n

i=0 zi ≤ E}, we fix
ι = ι(z̃) > 0 small enough such that inf z̃i ≥ 2ι for all i = 0, . . . , n. This implies that |z −
z̃| ≥ ι whenever z ∈ A0. Thus, since |z − z̃| & 1 is bounded away from zero, so is dist∗α(z, z̃)
(see Prop. 3.2). It then suffices to have suitable coercivity estimates on P(z) that allow to absorb
those terms on the RHS of (1.9) that involve gradients of z and do not have a sign by the first term
on the RHS, which equals −P(z). (Such coercivity estimates are typically already needed in the
construction of solutions.)

It remains to consider the case
∑

i zi > E, where E will be chosen large enough, in particular
such that E ≥ ‖

∑
i z̃i‖L∞((0,T )×Ω) + 1 and E ≥ E0 with E0 being such that dist∗α(z, z̃) &∑

i ci log+(ci) + u2 + 1 for all Ẽ ≥ E0. If z 6∈ supp ξ∗, ρ(h) takes a simple form. The entropy
dissipating property of diffusion and reactions, and the Lipschitz regularity of the strong solution z̃ are
sufficient to deduce (1.11) in this case (referred to as z ∈ C).

The intermediate case (below referred to as case z ∈ B), where 0 < ξ∗ < 1, is somewhat more
delicate as can be seen in formula (1.9), where the second term on the RHS involves products of
gradients of the weak solution. In order to be able to absorb this term by the first term on the RHS
of (1.9), another scale E ′ � E is introduced (for convenience we choose E ′ = EN , as in [23]),
and ξ∗ will be taken such that ξ∗(z) = 0 if and only if

∑n
i=0 zi ≥ E ′, ξ∗(z) = 1 if and only if∑n

i=0 zi ≤ E. On these scales, derivatives of ξ∗ typically have an additional decay property enabling
the desired absorption if E

′

E
is large enough.
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1.4. Outline. The rest of the article is structured as follows. In Section 2 we introduce relevant defini-
tions and hypotheses, and formulate our main results: a weak-strong uniqueness principle for renor-
malised solutions to (ERDS) (see Thm 2.8), a strong entropy dissipation inequality as used in the
proof of Theorem 2.8 (see Prop. 2.9), and a result on the exponential convergence to equilibrium (see
Prop. 2.10). In Section 2.3 we present selected examples that our main results apply to, including the
class of ERDS considered in [24] as well as a class of models with cross diffusion between species.
The weak-strong uniqueness principle is proved in Section 3, starting with several auxiliary results
with the actual proof of Theorem 2.8 being given in Section 3.4. The proofs of the entropy dissipation
inequality and the exponential convergence to equilibrium are given in Sections 4 and 5 respectively.
Some auxiliary results are gathered in Appendix 6.

1.5. Notations.

• Summation convention: any unspecified summations of the form
∑

i are to be understood as
∑n

i=0. For
brevity, we use a summation convention for summing over the system’s components i = 0, . . . , n in
case of repeatedly occurring indices while omitting the summation symbol. In ambiguous situations the
summation symbol will be used. Summations restricted to i = 1, . . . , n (excluding the u-component)
will always be made explicit. In our convention, summation over repeated indices has priority over other
mathematical operations such as integration or taking the absolute value. For instance, by default we let
|Aik(z)∇zk| = |

∑n
k=0Aik(z)∇zk|.

• For technical concerns regarding the notation Mil(z)∇Dlh(z), we refer to Remark 2.3.
• We denote by R = (0, R1, . . . , Rn)T the vectors of reaction rates.
• Given T ∗ ∈ (0,∞], we let I = [0, T ∗) denote the time horizon of interest. For T > 0, we abbreviate

ΩT := (0, T )× Ω.

• For functions f = f(z0, . . . , zn) we let Dif = ∂f
∂zi

and Dijf = ∂2f
∂zi∂zj

for i, j ∈ {0, . . . , n}.
• In estimates, C < ∞ typically denotes a finite (sufficiently large) constant that may change from line to

line, while we often use ε > 0 to denote a (sufficiently small) positive constant.
• For quantities A,B ≥ 0 we write A . B if there exists a fixed constant C < ∞ such that A ≤ CB.

The notation A & B means B . A, while A ∼ B is to be understood as both A . B and A &
B being satisfied. In order to indicate dependencies of the constant C = C(p1, . . . , pk) on certain
parameters p1, . . . , pk, we write A .p1,...,pk B, and analogously for & and ∼.
• Any dependence of constants and estimates on the regular solution z̃ ∈ C0,1 will usually not be explicitly

indicated.
• We let min(z) := min{z0, z1, . . . , zn} for z = (z0, . . . , zn) ∈ [0,∞)1+n.

• By default, | · | denotes the Euclidean norm, e.g. |z| = (
∑

i |zi|2)
1
2

• |z|1 =
∑n

i=0 zi and |c|1 =
∑n

i=1 ci.
• For time-dependent integral functionals

´
Ω f((t, x), z(t, x)) dx, where z = z(t, x) denotes a ‘weak’

solution of (ERDS) taking in a suitable sense the data zin, we use the convention
ˆ

Ω
f((t, x), z(t, x)) dx

∣∣∣∣t=T
t=0

:=

ˆ
Ω
f((T, x), z(T, x)) dx−

ˆ
Ω
f((0, x), zin(x)) dx

provided the terms on the RHS are well-defined.
• For an open set U ⊂ RN ,Ck(U) denotes the space of continuous functions on U that are continuously

differentiable up to order k ∈ N. By Ck,ν(U) = Ck,νloc (U), we denote the space of functions in Ck(U),
whose k-th derivative is ν-Hölder continuous for some ν ∈ (0, 1] on compact subsets K ⊆ U . (We use

the symbol Ck,νloc (U) for clarity’s sake.)

2. MAIN RESULTS

2.1. Assumptions. Throughout these notes, we let d ≥ 1 and Ω ⊂ Rd be a bounded Lipschitz
domain with |Ω| = 1. We further let T ∗ ∈ (0,∞] and I = [0, T ∗).
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To prepare for stating our main result, the weak-strong uniqueness principle (Theorem 2.8), we gather
the following conditions.

(A1) Entropy: h ∈ C4((0,∞)1+n) is of the form (h1), where σ̂ and wi are supposed to satisfy (h2).

(A2) Reactions: R = (0, R1, . . . , Rn) ∈ C([0,∞)1+n)1+n

(i) satisfy
∑n

i=1Dih(z)Ri(z) ≤ 0 in (0,∞)1+n

(ii) are locally Lipschitz continuous in (0,∞)1+n.

(A3) Mobility matrix: M ∈
(
C0,1

loc ((0,∞)1+n) ∩ C([0,∞)1+n)
)(1+n)×(1+n)

and there exist non-

negative functions m, a ∈ C0,1
loc ((0,∞)1+n) and $ ∈ {0, 1} with 0 ≤ m . $ and a & 1

such that

M0l = M̃0l + δ0lm for l = 0, . . . , n, (A3.a)

for suitable M̃0l satisfying
∑n

l=0 M̃0lDljh = δ0ja.
Moreover, for all z ∈ [0,∞)1+n with mini zi ≥ ι for some ι > 0 there exists ε(ι) > 0 such

that

M(z) ≥ diag(m(z), 0, . . . , 0) + ε(ι) diag(0, 1, . . . , 1). (A3.b)

By continuity, when ι = 0, (A3.b) holds true with ε(ι) = 0.

Using our standard notation A(z) = M(z)D2h(z), hp. (A3.a) implies that, formally,
n∑
j=0

A0j(z)∇zj =
n∑
l=0

M0l(z)∇Dlh(z) = a(z)∇u+m(z)∇D0h(z). (A3.c)

We further need certain bounds on the flux and the concentration gradients in terms of the entropy
dissipation. For this purpose we define for non-negative functions zj ∈ L1

loc(I, L
1(Ω)) such that

∇(zsj ) ∈ L2
loc(I;L2(Ω)) for some s ∈ {1

2
, 1} for each j ∈ {0, . . . , n}, the quantity

P(z) : = ∇z : (D2h(z)A(z)∇z)

= ∇Dih(z) · (Mil(z)∇Dlh(z)),

where the second equality is to be understood in a formal sense, see Remark 2.3. By the positive semi-
definiteness of M imposed by hp. (A3.b), we have P(z) ≥ 0 for any such z, and more specifically,
P(z) ≥ m(z)|∇D0h(z)|2.

(A4) For all K ≥ 1

χ{|z|≤K}|∇c| .K

√
P(z), (A4.a)

χ{|z|≤K}|
n∑
j=0

Aij(z)∇zj| .K

√
P(z) (A4.b)

for all i = 0, . . . , n.
(A5) For a(z) as in (A3),

|a(z)∇u| . (1 + u)
√

P(z).

Additionally, we often impose the following bound:

(A6) For all 0 ≤ i ≤ n

χ{|z|1≥1}|∇z||
n∑
j=0

Aij(z)∇zj| . |z|P(z) + |z||∇u|2.
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If (A6) is not satisfied, we have to assume that $ = 0 in (A3) together with the condition:

(A6’) For all 0 ≤ i ≤ n and all u ∈ (0, 1]

χ{u≥u}χ{|z|1≥1}|∇z||
n∑
j=0

Aij(z)∇zj| . |z|P(z) + C(|z|, u)|∇u|2.

Let us observe that (A6) =⇒ (A6’).

A selection of relevant examples fulfilling the above hypotheses is provided in Section 2.3.

2.2. Definitions and Results. Throughout this text, we write A(z) := M(z)D2h(z), where h takes
the form (h1), (h2). We further recall our summation convention (see Notations 1.5).

Definition 2.1 (Renormalised solutions). Let I = [0, T ∗) and suppose that the vector-valued function
z = (u, c1, . . . , cn) has non-negative components zi ≥ 0 satisfying

√
zi ∈ L2

loc(I;H1(Ω)) or
zi ∈ L2

loc(I;H1(Ω)) for all i = 0, . . . , n. Further suppose that for all E ≥ 1

χ{|z|≤E}Aik(z)∇zk ∈ L2
loc(I;L2(Ω)),

for every i ∈ {0, . . . , n}.
We call such z a renormalised solution of the energy-reaction-diffusion system (ERDS) in ΩT ∗ :=
(0, T ∗)× Ω with initial data zin if for all ξ ∈ C∞(R1+n

≥0 ) with compactly supported derivative Dξ, all
ψ ∈ C∞(I × Ω̄) and almost all T ∈ (0, T ∗)

ˆ
Ω

ξ(z(T, ·))ψ(T, ·) dx−
ˆ

Ω

ξ(zin)ψ(0, ·) dx−
ˆ T

0

ˆ
Ω

ξ(z)∂tψ dxdt

= −
ˆ T

0

ˆ
Ω

Dijξ(z)Aik(z)∇zk · ∇zjψ dxdt

−
ˆ T

0

ˆ
Ω

Diξ(z)Aik(z)∇zk · ∇ψ dxdt+

ˆ T

0

ˆ
Ω

Diξ(z)Ri(z)ψ dxdt.

(2.1)

Remark 2.2. By approximation, given a renormalised solution z, the equality (2.1) can be seen to
hold true for a larger set of test functions ψ ∈ C(I × Ω̄) with ∂tψ ∈ L1

loc(I;L1(Ω)), ∇ψ ∈
L2

loc(I;L2(Ω)), and for truncation functions ξ ∈ C2(R1+n
≥0 ) with suppDξ compact.

Remark 2.3 (Notation). Let z denote a renormalised solution of (ERDS) in the sense of Def. 2.1. To
keep notation simple and better emphasise the entropy structure of the diffusive part, we will often use
a ‘symbolic’ notation writing Mil(z)∇Dlh(z) instead of Aik(z)∇zk, where as before the summation
convention is used. Likewise, we write ∇Dih(z) instead of the more precise notation Dijh(z)∇zj .
The point here is that while, by hypothesis, the weak derivatives∇zj, j = 0, . . . , n, are well-defined
(in the standard Sobolev/distributional sense), the function Dih(z) may not be weakly differentiable.

Remark 2.4. The following equation, equivalent to (2.1), can be obtained by ‘reversing the product
rule’ for∇ˆ

Ω

ξ(z(T, ·))ψ(T, ·) dx−
ˆ

Ω

ξ(zin)ψ(0, ·) dx−
ˆ T

0

ˆ
Ω

ξ(z)∂tψ dxdt

= −
ˆ T

0

ˆ
Ω

∇
(
Diξ(z)ψ

)
·Mil(z)∇Dl(z) dxdt+

ˆ T

0

ˆ
Ω

Diξ(z)Ri(z)ψ dxdt,

(2.2)

where we recall our convention Mil(z)∇Dlh(z) := Aik(z)∇zk, see Remark 2.3.
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Notice that thanks to the hypothesis of Dξ being compactly supported, no growth restrictions have
to be imposed on the reaction term R(z) in (2.1), and none of the flux terms Aik(z)∇zk is neces-
sarily required to be integrable in order for the integrals in (2.1) to converge. At the same time, this
restrictive condition on the set of admissible truncation functions ξ means that recovering a separate
(e.g. weak) formulation of a single component i0 ∈ {0, . . . , n} of the system (assuming integrabil-
ity of Ai0k(z)∇zk and Ri0(z)) is not immediate unless all components of the flux and the reactions
are known to be integrable. Thus, consistent with the existence result for (ERDS) in [24], our weak-
strong uniqueness principle for renormalised solutions additionally assumes a weak formulation for
the energy component.

Definition 2.5 (Weak solutions of energy equation). Let z = (u, c) be as in Def. 2.1. We say that u
is a weak solution of the energy component ∂tu = div(A0j(z)∇zj) in ΩT ∗ with no-flux boundary
conditions and initial condition uin if A0j(z)∇zj ∈ L1

loc(I;L1(Ω)) and if for all ϕ ∈ C1(I × Ω̄) and
almost all T < T ∗

ˆ
Ω

u(T, ·)ϕ(T, ·) dx−
ˆ

Ω

uinϕ(0, ·) dx−
ˆ T

0

ˆ
Ω

u∂tϕ dxdt

=−
ˆ T

0

ˆ
Ω

A0j(z)∇zj · ∇ϕ dxdt.

(2.3)

By carefully using lower-semicontinuity type properties of the entropy and entropy dissipation, the
existence proof of global-in-time weak and renormalised solutions to ERDS as provided in [24] typically
allows to show that for almost all T ∈ (0,∞) the constructed solutions satisfy the entropy dissipation
inequality

H(z(T ))−H(zin) ≤ −
ˆ T

0

ˆ
Ω

P(z) dxdt+

ˆ T

0

ˆ
Ω

Ri(z)Dih(z) dxdt, (ED)

where we recall the notation P(z) := ∇Dih(z) ·Mil(z)∇Dlh(z) ≥ 0. Observe that thanks to the
non-negativity of P(z) and−Ri(z)Dih(z) (to be assumed throughout), any function z = (u, c) with
u ∈ L∞t L1

x and well-defined, measurable P(z) that satisfies (ED) with h(zin) ∈ L1(Ω) necessarily
has the regularity P(z) ∈ L1(ΩT ) and Ri(z)Dih(z) ∈ L1(ΩT ). (For the estimate on H(z(T ))
required in this argument, see (6.7) in the appendix.)

We further note that the energy equation ∂tu = div(A0j(z)∇zj) is satisfied in the weak sense by
the solutions constructed in ref. [24], that ∇u ∈ L2(ΩT ), and that the quantity G(u) = 1

2
‖u‖2

L2(Ω)

satisfies (with an equality)

G(u(T ))−G(uin) ≤ −
ˆ T

0

ˆ
Ω

a(z)|∇u|2 dxdt−
ˆ T

0

ˆ
Ω

m(z)∇D0h(z) · ∇u dxdt (ENE)

for almost all T ∈ (0,∞). (In [24], the case m ≡ 0 was considered.)

Our main theorem asserts a weak-strong uniqueness property of entropy-dissipating renormalised
solutions to the energy-reaction-diffusion problem (ERDS) under a set of hypotheses that is motivated
by and compatible with the models in [24] (see system (2.5) below). Before stating the theorem, we
need to specify what we understand by a ‘strong’ solution.

Definition 2.6 (Weak solution). Let I = [0, T ∗). We call a function z ∈ L1
loc(I;W 1,1(Ω)), z =

(u, c1, . . . , cn) with zi ≥ 0 for all i, a weak solution of (ERDS) in ΩT ∗ with initial data zin ifAij(z)∇zj, Ri(z) ∈
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L1
loc(I;L1(Ω)) for all i, and if for all ψ ∈ C∞(I × Ω̄)1+n and almost all T ∈ (0, T ∗)ˆ

Ω

zi(T, ·)ψi(T, ·) dx−
ˆ

Ω

zin
i ψi(0, ·) dx−

ˆ T

0

ˆ
Ω

zi∂tψi dxdt

= −
ˆ T

0

ˆ
Ω

Aij(z)∇zj · ∇ψi dxdt+

ˆ T

0

ˆ
Ω

Ri(z)ψi dxdt.

(2.4)

Definition 2.7 (‘Strong’ solution). Let I = [0, T ∗). We call z = z(t, x) a strong solution of sys-
tem (ERDS) in ΩT ∗ with data zin if it is a weak solution in the sense of Definition 2.6, has the regularity
z ∈ C0,1

loc (I × Ω̄) and satisfies infΩT zi > 0 for i = 0, . . . , n and every T ∈ (0, T ∗).

Theorem 2.8 (Weak-strong uniqueness). Let T ∗ ∈ (0,∞]. Assume hp. (A1)–(A5). Further suppose
that (A6) holds true, or alternatively that $ = 0 and that (A6’) is fulfilled. Let zin = (uin, cin) ∈
L1(Ω)1+n, zin

i ≥ 0 for all i, and h(zin) ∈ L1(Ω), uin ∈ L2(Ω). Let z = (u, c) be a renormalised
solution of system (ERDS) in ΩT ∗ taking the initial data zin, and let u be a weak solution of the energy
equation in the sense of Definition 2.5. Further suppose that, for almost all T ∈ (0, T ∗), z satisfies the
entropy inequality (ED) and the energy inequality (ENE) with∇u ∈ L2(ΩT ). If z̃ is a strong solution in
ΩT ∗ in the sense of Definition 2.7 taking the same initial data zin, then z = z̃ a.e. in ΩT ∗ .

The proof of Theorem 2.8 will be completed in Section 3.4. In Section 2.3 we provide a list of examples
covered by this theorem, including a class of (isoenergetic) cross-diffusion systems.

As mentioned in the introduction, the proof of Theorem 2.8 is based on a weak-strong stability type
estimate with a generalised distance involving a modified relative entropy and an L2-part for the en-
ergy component (cf. Sec. 1.3). The entropy inequality (ED) is a fundamental ingredient in the proof. As
pointed out above, the solutions constructed in ref. [24] enjoy this estimate. The hypothesis in Theo-
rem 2.8 that admissible weak solutions satisfy some kind of entropy/energy dissipation inequality is not
uncommon in systems with strong nonlinearities; similar assumptions are encountered in the context
of weak-strong uniqueness in fluid dynamics problems, see e.g. [45, 42] and references therein. Yet for
many of the models we are interested in, the entropy dissipation inequality (ED) as well as the energy
(in)equality (ENE) can be derived for general renormalised solutions z in the sense of Definition 2.1
(with the u-component satisfying a scalar problem as in Def. 2.5) if one assumes integrability of the
quantities P(z) and a(z)|∇u|2. In order to illustrate the ideas, we provide a proof of inequality (ED)
for one of the models in the ref. [24] considering ERDS of the form

u̇ = div
(
a(u, c)∇u+m(z)∇D0h(z)

)
, (2.5a)

ċi = div
(
mi(u, c)∇ log

(
ci

wi(u)

)
+ a(u, c)ci

w′i(u)

wi(u)
∇u
)

+Ri(u, c), (2.5b)

where, as before, h(u, c) satisfies (h1), (h2), and where a(z) := π1(z)γ(z), with

γ(u, c) :=
(
∂2
uh−

n∑
i=1

ci
(w′i
wi

)2)
= −σ̂′′(u)−

n∑
i=1

ci
w′′i (u)

wi(u)
> 0. (2.6)

System (2.5) is obtained as a special case of (ERDS) by choosing

M(z) := diag
(
m,m1, . . . ,mn

)
+ π1µ⊗ µ (2.7)

with non-negative functionsm,mi, π1 ∈ C([0,∞)1+n) to be specified below, and µ = (1, µ1, . . . , µn)
determined by

µi(u, c) :=
w′i(u)

wi(u)
ci for i ∈ {1, . . . , n}.

Throughout, the bound

0 ≤
√
π1(u, c) . 1 + u (2.8)
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and the mild regularity condition
√
π1(u, c)w′i(u) ∈ C([0,∞)1+n), i = 1, . . . , n, will be imposed,

the latter ensuring the continuity of M in [0,∞)1+n.

The functions mi(u, c), i ∈ {1, . . . , n}, are assumed to take the following form for certain ai ∈
C([0,∞)1+n) and κ0,i, κ1,i ≥ 0 :

mi(u, c) = ciai(u, c), where ai(u, c) ∼ κ0,i + κ1,ici. (2.9)

Hypotheses of Model (M0). Model (M0) consists of the following conditions:

• Entropy density h is given by (h1), (h2) with coefficient functions satisfying

(w′i)
2 . −w′′i wi (2.10)

for all i ∈ {1, . . . , n}.
• Reactions Ri ∈ C([0,∞)1+n), i = 1, . . . , n, satisfy (A2.i), where R0 ≡ 0.
• M is given by (2.7)–(2.9) with

◦ rank-one part: π1(z) ∼ 1
γ(z)

, where γ is given by (2.6).

◦ diagonal part: 0 ≤ m(z) . $ for some $ ∈ {0, 1}, and mi(u, c) given by (2.9) with
κ0,i = 1, κ1,i = 0 for all i ∈ {1, . . . , n}.

We recall that the evolution law (ERDS) associated with Model (M0) takes the form (2.5a), (2.5b). (Cf.
Lemma 6.1 and [24] for details.) It is further easy to see that condition (2.8) is compatible with the
choice π1(z) ∼ 1

γ(z)
for any power law σ̂(u) = uν , ν ∈ (0, 1) and σ̂(u) = log(u).

Model (M0) generalises the special case M(u, c) = const·(D2h(u, c))−1 considered in [28]. It allows
for species-dependent diffusivities, and genuinely contains cross terms in this case. More precisely,
for models with species-dependent diffusion coefficients, thermodynamical consistency always leads
to cross-diffusion effects, since for a diagonal diffusion matrix A = diag(. . . ) ∈ R(1+n)×(1+n) that is
not a multiple of the identity matrix the product M = A(D2h)−1 is not symmetric.

In the derivation of the entropy dissipation inequality (ED), we need to assume that

m(u, c)
n∑
l=1

cl . (1 + u)2, (2.11)

and have to impose the following conditions mainly serving to avoid issues for small values of u close
to zero: {

m(u, c)|σ̂′′(u)| . 1,

−σ̂′′(v) . −σ̂′′(u) + 1 for all v ≥ u.
(2.12)

Proposition 2.9 (Strong entropy dissipation inequality). Let T ∗ ∈ (0,∞]. Let the hypotheses of
Model (M0) hold, and assume locally ε0-Hölder continuous reactions R ∈ Cε0

loc([0,∞)1+n) for some
ε0 ∈ (0, 1). In addition, assume the bounds (2.11), (2.12), and suppose that wi ∈ C2([0,∞)) for
i = 1, . . . , n. Let zin = (uin, cin), zin

i ≥ 0, and uin, σ̂−(uin) ∈ L1(Ω) and cin
i ∈ L logL(Ω) for all

i. Let z = (u, c) have non-negative components and suppose that

u ∈ L∞loc([0, T
∗);L1(Ω)),

P(z) ∈ L1(ΩT ), a(z)|∇u|2 ∈ L1(ΩT ) for all T < T ∗.

If z is a renormalised solution (in the sense of Def. 2.1) of system (ERDS) in ΩT ∗ with initial data zin,
then the strong entropy dissipation inequality is satisfied, i.e.

H(z(t))−H(z(s)) ≤ −
ˆ t

s

ˆ
Ω

P(z) dxdτ +

ˆ t

s

ˆ
Ω

Ri(z)Dih(z) dxdτ (ED.s)
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for a.e. 0 ≤ s < t < T ∗, and for s = 02 and a.e. t ∈ (0, T ∗). In particular, ineq. (ED) holds true for
a.e. T ∈ (0, T ∗).

For the proof of Proposition 2.9, see Section 4. Some comments on generalisations of Proposition 2.9
to other models are provided in Section 2.3.

In our final main result, we illustrate that a version of the generalised distance can further be used to
prove exponential convergence to equilibrium. Exponential convergence in relative entropy has been
studied at a formal level in [39] by means of log-Sobolev type inequalities leading to entropy-entropy
dissipation estimates (see also [28]). In contrast to the present approach, [39] solely relies on the
relative entropy, which restricts the results to thermal parts σ close to linear; for instance, the choice
σ(u) ∼ log u related to gas dynamics is only admitted in dimensions d ≤ 2. For simplicity, in the
following result we disregard the reaction term and refer to [39] for applications on mass action-type
reactions. We will further assume the strong energy inequality i.e.

G(u(t))−G(u(s)) ≤ −
ˆ t

s

ˆ
Ω

a(z)|∇u|2 dxdτ −
ˆ t

s

ˆ
Ω

m(z)∇D0h(z) · ∇u dxdτ (ENE.s)

for a.e. 0 ≤ s < t < T ∗, and for s = 0 and a.e. t ∈ (0, T ∗).

Proposition 2.10 (Exponential convergence to equilibrium). Recall that |Ω| = 1 and let the hy-
potheses of Model (M0) hold. Let zin = (uin, cin) have non-negative components with σ̂−(uin) ∈
L1(Ω), uin ∈ L2(Ω), cin

i ∈ L logL. Let z = (u, c) with u ∈ L∞loc([0,∞), L1(Ω)) and ∇u ∈
L2

loc([0,∞), L2(Ω)) be a global-in-time renormalised solution of (ERDS) with R ≡ 0, and suppose
that (ED.s) and (ENE.s) are satisfied (with T ∗ =∞).

Then
´

Ω
zi(t, x) dx =

´
Ω
zin
i (x) dx =: z̄i for all i ∈ {0, . . . , n} and a.a. t > 0, and there exist

constants α ∈ (0, 1] and λ = λ(z̄, α,Ω) > 0 such that for a.e. t > 0

Distα(z(t), z̄) ≤ e−λt Distα(zin, z̄), (2.13)

where Distα(z, z̄) = Hrel(z, z̄) + αGrel(u, ū) (cf. eq. (1.5)).

See Section 5 for the proof of Prop. 2.10. For non-trivial reactions obeying mass action kinetics, the
steady state z̄ associated with (ERDS) is determined by solving a constrained minimisation problem

for the convex entropy functional H(u, c) imposing energy conservation E(u, c) =
´

Ω
u

!
= E0

and further linear constraints taking into account possible conservation laws for the concentrations
(see [28, 39]). Prop. 2.10 considers the simplest case, where all species have a conserved mass.
Extension to more general reactions is usually achieved by means of suitable coercivity estimates for
the dissipation term −Dih(z)Ri(z) ≥ 0 associated with the reactions. See [28, 39] for applications
in a non-isothermal setting; for previous works in the isothermal case, we refer to [38, 17, 37] and
references therein. Let us observe that since (M0) allows form 6= 0, leading to energy flux induced by
temperature gradients, a maximum principle for the internal energy density (as is crucially used in [28])
is not available here. We further note that, with a standard Csiszár–Kullback–Pinsker inequality [15,
44], the bound (2.13) can be used to deduce exponential convergence to equilibrium in L2(Ω) ×
(L1(Ω))n.

Remark 2.11. Observe that the condition (ED.s) in Prop 2.10 is satisfied under the additional hypothe-
ses on the coefficient functions imposed in Prop. 2.9. Under suitable regularity hypotheses, the strong
energy inequality (ENE.s) (with an equality) can be proved similarly as in [24, Lemma 6.1].

2.3. Examples. Below, we provide relevant applications of the weak-strong uniqueness result.

2With the understanding that H(z(0)) = H(zin).
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2.3.1. Energy-reaction-diffusion systems. The hypotheses of Theorem 2.8 are compatible with the
class of ERDS introduced in [24]. In that work, the existence of generalised solutions (weak or renor-
malised) has been established for two classes of models, both taking the form (2.5) with m ≡ 0.

One of the models in [24] is a special case of (M0) (see page 13) with m ≡ 0. A brief verification of
the model hypotheses of Theorem 2.8 for (M0) is provided in the appendix, see Lemma 6.2. The exis-
tence analysis for (M0) focuses on reactions obeying suitable growth conditions, in which case there
are global-in-time weak solutions. However, renormalised solutions can be constructed by adapting
the proof of [24, Theorem 1.8], and in this case no growth restrictions on |R(z)| are required. Con-
ceptually, the construction of renormalised solutions for (M0) is simpler than in [24, Theorem 1.8],
since the diffusive flux is integrable and the strong convergence of∇u is not required in case of (M0).

The second class of models considered in [24] will here be referred to as (M1). It again takes the
form (2.5) with m ≡ 0, and assumes the following conditions:

• Entropy density h is given by (h1), (h2).
• Reactions Ri ∈ C([0,∞)1+n), i = 1, . . . , n, satisfy (A2.i), where R0 ≡ 0.
• M is given by (2.7)–(2.9) with m(z) ≡ 0, and mi(u, c) given by (2.9), where κ0,i, κ1,i satisfy

one of the following:
(i) κ0,i = 1 and κ1,i = 0 for all i
(ii) κ0,i ≥ 0 and κ1,i = 1 for all i

• Moreover,
◦ π1γ & 1 (γ as in (2.6))
◦ w′i(u) . −w′′i (u)

√
π1

◦ √π1
w′i
wi

. 1.

Global weak solutions in case (ii) have been constructed in [24, Theorem 1.2] for reactions obeying
suitable growth hypotheses. More interesting is case (i), in which the existence of global renormalised
solutions has been established in [24, Theorem 1.8] for general continuous reactions satisfying (A2.i).
A pecularity of this model lies in the circumstance that the renormalised formulation is needed not
only to give a meaning to the reaction rates, but also to the diffusion flux A(z)∇z, which may be non-
integrable. Model (M1.i) satisfies conditions (A3.a) (with $ = 0), (A3.b), (A4), (A5) and (A6’) of The-
orem 2.8. We refer to [24, Section 2.2] (notably the proof of Lemma 2.3 therein), where the necessary
estimates can be found. For verifying (A6’), one should also use the fact that the coefficient function
a(z) = π1(z)γ(z) satisfies the bound χ{u≥u}|a(u, c)| . C(|z|, u) for any u > 0. Thus, under the
extra smoothness assumptions σ̂, wi ∈ C4((0,∞)) and Ri,m,mi, π1 ∈ C0,1

loc ((0,∞)1+n), Theo-
rem 2.8 is applicable. We caveat that verifying (ED) as it was done in Prop. 2.9 for (M0) is much more
delicate for Model (M1.i) due to the possibility of strong cross diffusion caused by a non-integrable
diffusion flux. Whether or not (M1.i) admits an analogue of Prop. 2.9 is an open question.

2.3.2. Reaction-diffusion systems. Our results further apply to (isoenergetic) population models gen-
eralising the two-species system for pattern formation by Shigesada, Kawasaki, and Teramoto (SKT).
Reduction to the isoenergetic case is achieved by choosing $ = 0 (see (A3)) and u ≡ uin to be
spatially constant, which is consistent with the evolution law for the energy density u if $ = 0. Then,
the given energy density u = uin ∈ R+ can be regarded as a fixed system’s parameter (in particular
∇u = 0) and one can write h = h(c), A = A(c), R = R(c), and P = P(c) etc.

The generalised SKT system as considered in [9] states

∂tci = ∇ · (Aij(c)∇cj) +Ri(c), t > 0, x ∈ Ω,

0 = Aij(c)∇cj · ν, t > 0, x ∈ ∂Ω,
(SKT)
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where Aij(c) = δijpi(c) + ci
∂pi
∂cj

(c) for i, j = 1, . . . , n with pi(c) = ai0 +
∑n

k=1 aikc
s
k for suitable

ail ≥ 0 and some s > 0. Under certain hypotheses, this system has a generalised gradient structure
with entropy density given by h(c) =

∑n
i=1 πiλs(ci) for constants πi > 0 and λ1 given by (1.3),

λs(r) = rs−sr
s−1

+ 1 for s 6= 1. Under a weak cross-diffusion (wc) condition (see eq. (12) in [9]) or the
detailed balance (db) condition πiaij = πjaji for all i, j ∈ {1, . . . , n} together with ai0 > 0, aii > 0
for all i, the matrix M(z) = A(z)(D2h(z))−1 satisfies the non-degeneracy condition (A3.b), i.e.
M(c) &ι In whenever min{c1, . . . , cn} ≥ ι, see the explicit estimate in [12, Lemma 2.1] for s = 1,
and [9, Section 2] for the general case under certain extra hypotheses. Observe that the detailed
balance condition is equivalent to the symmetry of the mobility matrix M = A(D2h)−1, and thus
ensures the symmetry of the diffusive part Kdiff of the Onsager operator.

a) Linear transition rates s = 1. In this case, assuming (wc) or (db) with ai0 > 0, aii > 0, one has
P(c) &

∑n
i=1

(
|∇ci|2 + |∇√ci|2

)
and |A(c)∇c| . |c||∇c|. Thus, assumptions (A1), (A3)–

(A6) on the entropy density and the mobility matrix are satisfied. (The more general weights
πi > 0 in h(c) as opposed to the unit weights in (A1) do not impact the analysis.) We leave it to
reader to verify that, by adapting the proof of Prop. 2.9 (see also [23, Prop. 5]), the entropy dissi-
pation inequality (ED) can be proved for renormalised solutions to this system, when assuming
the regularity

ci,
√
ci ∈ L2

loc(I;H1(Ω)) for all i. (2.14)

Observe that this regularity is essentially equivalent to the assumption in Prop. 2.9 that P(z) ∈
L1(ΩT ) for all T < T ∗. Thus, for (SKT) with s = 1 and reactions satisfying (A2), Theorem 2.8
yields the weak-strong uniqueness of renormalised solutions of the regularity (2.14). A similar
result has been obtained previously in [12, Theorem 1]. Here, we should caveat that the regu-
larity assumption ci ∈ L2

loc(I;H1(Ω)) and
√
ci ∈ L2

loc(I;H1(Ω)) is also needed in the proof
of [12, Theorem 1], is, however, incompletely stated in this theorem. Moreover, our result shows
that hypothesis ‘(H2.iii)’ in [12] on the reactions can be dropped.

b) Nonlinear transition rates: an adjustment of our hypotheses further allows to treat system (SKT)
with superlinear transition rates s ∈ (1, 2]. In this case, condition (A6) is no longer fulfilled, but
with a suitable adjustment of the truncation function ξ∗(c) in the definition of the modified relative
entropy density h∗rel(z, z̃) (given by (1.8)) our technique can still be applied. See Remark 3.1 for
technical details.

For sublinear transition rates, s < 1, the problem becomes more delicate since a direct ana-
logue of condition (A6) is not available. When relying exclusively on entropy estimates for a
priori bounds, even the construction of renormalised solutions, which to the author’s knowledge
is currently only available in the case of linear transition rates [11] (but likely to be extendable to
the case s ∈ [1, 2]), is open for small s ∈ (0, 1).

3. WEAK-STRONG UNIQUENESS PRINCIPLE

In this section we will establish a stability estimate implying Theorem 2.8. Throughout this section, we
therefore assume the hypotheses of Theorem 2.8. Before turning to the actual proof in Subsection 3.4,
we gather some technical auxiliary results.

3.1. Truncation function ξ∗(z). Let ι, B be fixed constants, 0 < ι < 1 < B < ∞, that are such
that for all i ∈ {0, . . . , n}

2ι ≤ z̃i ≤ B. (3.1)
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Different regimes/case distinction. We henceforth abbreviate |z|1 =
∑n

i=0 zi. For sufficiently large
but fixed parametersE,N ≥ 2 (to be chosen later) we decompose [0,∞)1+n into the following three
sets:

A = {z ∈ [0,∞)1+n : |z|1 ≤ E},
B = {z ∈ [0,∞)1+n : E < |z|1 < EN},
C = {z ∈ [0,∞)1+n : |z|1 ≥ EN}.

A motivation for this decomposition is given in the introduction (see Section 1.3). Let us also mention
that in the proof of Theorem 2.8 the set A will be further decomposed into A+ and A0 (defined
in (3.18)). The parameter E will always be supposed to satisfy E ≥ 2B. A finite number of further
lower bounds on E will be imposed later on.

Adjusted relative entropy. We now define

h∗rel(z, z̃) = h(z)−Dih(z̃)(ξ∗(z)zi − z̃i)− h(z̃),

where ξ∗ = ξ(E,N) ∈ C∞([0,∞)1+n), 0 ≤ ξ∗ ≤ 1, is a truncation function subordinate to the above
case distinction enjoying the following properties:

(t1) ξ∗(z) = 1 and Dkξ∗(z) = 0 for all k ∈ N+ if z ∈ A,
(t2) ξ∗(z) = 0 and Dkξ∗(z) = 0 for all k ∈ N+ if z ∈ C,

and

(t3) |Dξ∗(z)| . 1
N |z|1 , |D

2ξ∗(z)| . 1
N(|z|1)2

for all z ∈ [0,∞)1+n.

A function ξ∗ that has these properties can be obtained as follows: let ϑ ∈ C∞b (R) be non-increasing
with ϑ(r) = 1 for r ≤ 0 and ϑ(r) = 0 for r ≥ 1 and define (cf. [23])

ξ∗(z) = ξ(E,N)(z) = ϑ

(
log(|z|1)− log(E)

log(EN)− log(E)

)
.

It is elementary to check that this choice satisfies the above properties. For instance, note that

|Dξ(E,N)(z)| . 1
N |z|1 ·

1
log(E)

if N ≥ 2.

Remark 3.1 (Superlinear transition rates). When dealing with (isoenergetic) reaction-cross-diffusion
population systems with superlinear transition rates s ∈ (1, 2] for concentrations c1, . . . , cn (see
Example b) in Sec. 2.3.2), the decay property (t3) is no longer sufficient, and the above choice of ξ∗

should be replaced by

ξ∗(c) := ξ(E,N,s)(c) := ϑ

(
log(ρss(c))− log(Es)

log(EsN)− log(Es)

)
= ϑ

(
log(ρs(c))− log(E)

log(EN)− log(E)

)
, (3.2)

where ϑ is as before, and

ρs(c) :=
( n∑
i=1

(ci + δ)s
) 1
s

with δ = δ(s) = 1 for s ∈ (1, 2) and δ(s) = 0 for s = 2. The parameter δ ∈ {0, 1} ensures the
smoothness of ρss and thus of ξ∗ .

Introducing the regimesA(s) = {ρs(c) ≤ E}, B(s) = {E < ρs(c) < EN}, C(s) = {ρs(c) ≥ EN},
properties (t1) and (t2) remain valid with A, C replaced by A(s) and C(s), respectively. Derivatives of
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ξ∗ given by (3.2) enjoy the following decay properties, specifically adapted to the problem at hand,

|Diξ
∗(c)| . (ci+δ)

s−1

N |c|ss
, |Dikξ

∗(c)| . (ci+δ)
s−1(ck+δ)s−1

N |c|2ss
+ (ci+δ)

s−2

N |c|ss
δik,

where δik denotes the Kronecker delta. As will become clear in Section 3.4, if c ∈ A(s), one can simply
follow the reasoning in the proof of Theorem 2.8 using the fact that (SKT) satisfies (under reasonable
hypotheses) a non-degeneracy condition analogous to (A3.b).

If c ∈ B(s), we need an analogue of assumption (A6) to be able to absorb terms without a good
sign involving products of gradients of the renormalised solution by the entropy dissipation. Typical
systems (SKT) satisfy the coercivity bound (cf. [9])

P(c) &
n∑
i=1

|∇csi |2 +
n∑
i=1

|∇cs/2i |2. (3.3)

Confining to systems (SKT) enjoying this bound, a suitable generalisation of hp. (A6) (in the isoener-
getic case) that is satisfied by such systems is

χ{|c|s≥1} ·
(
cs−1
i + c

s/2−1
i

)
|Aij(c)∇cj| . |c|ss

√
P(c).

Observe that since s ∈ (1, 2], the factor
(
cs−1
i +c

s/2−1
i

)
in this condition can be equivalently replaced

by
(
(ci + δ)s−1 + c

s/2−1
i

)
. Using the above model bounds and decay properties of derivatives of ξ∗,

one can verify the estimate

χ{|c|s≥1}|∇Di(ξ
∗(c)cl)||Aij(c)∇cj| . 1

N
P(c),

which allows to deal with the case c ∈ B(s) (cf. ineq. (3.24) in the proof of Thm 2.8). When verifying
this bound, one uses the fact that |∇cl| . |∇csl |+ |∇c

s/2
l |, which holds true since s ∈ (1, 2].

If c ∈ C(s), one can follow the reasoning in the proof of Thm 2.8.

Thus, for models with superlinear transition rates s ∈ (1, 2] that satisfy (3.3), weak-strong uniqueness
is obtained by adapting the proof of Theorem 2.8 as sketched above. Here, we also use the fact that
thanks to the locally uniform convexity of the entropy density associated with (SKT) (see Sec. 2.3.2) an
analogue of Prop. 3.2 is immediate.

3.2. Coercivity properties of the generalised distance. We henceforth let g(s) = 1
2
s2,

grel(u, ũ) := g(u)− g′(ũ)(u− ũ)− g(ũ) = 1
2
|u− ũ|2, (3.4)

and define for α ∈ (0,∞)

dist∗α(z, z̃) = h∗rel(z, z̃) + αgrel(u, ũ).

For the following assertion we recall that z ∈ A if and only if
∑n

i=0 zi ≤ E.

Proposition 3.2 (Coercivity properties). Recall that h(z) = h(u, c) is given by (h1), (h2), and that z̃
satisfies (3.1). For any E ∈ [1,∞), we have3

|z − z̃|2 .E h
∗
rel(z, z̃) if z ∈ A. (3.5)

There exists E = E(z̃) <∞ such that for any E ≥ E and any α ≥ 1

h∗rel(z, z̃) + αgrel(u, ũ) ≥ ε

( n∑
i=1

ci log+ ci + u2

)
+ 1 if z ∈ Ac, (3.6)

where ε > 0 is a positive constant only depending on model parameters.

3We recall that any dependence of estimates on ι and B (see (3.1)) will usually not be indicated explicitly.
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For any α ∈ (0, 1] there exists E = E(α, z̃) <∞ such that for any E ≥ E

h∗rel(z, z̃) + αgrel(u, ũ) ≥ ε

( n∑
i=1

ci log+ ci + αu2

)
+ 1 if z ∈ Ac, (3.7)

where ε > 0 is a positive constant only depending on model parameters.

Remark 3.3. Note that as long as α ∈ [1,∞), the lower bound E can be chosen independently
of α. This property is essential for obtaining the stability estimate (1.7) in the case where (A6) is not
satisfied (including model (M1) in case (i), where κ1,i = 0; cf. Section 2.3).

Proof of Prop. 3.2. For the first assertion, we note that, as can be seen from the proof of [39, Prop. 2.1],
the entropy density h is locally uniformly convex on [0,∞)1+n with Dijh(z) ≥ ε0(E)δij if |z|1 ≤ E.
Since, by construction, ξ∗(z) = 1 whenever z ∈ A, we thus infer

h∗rel(z, z̃) = h(z)−Dih(z̃)(z − z̃)i − h(z̃) &E |z − z̃|2.

Let us now turn to assertions (3.6) and (3.7). Since ũ ≤ B, we have the bound |u − ũ|2 ≥
1
4
u2χ{u≥2B}. By Lemma 6.3, we further have for some ν ∈ [0, 1) and some positive constant ε > 0

h(z) ≥ ε

n∑
i=1

ci log+ ci − C(σ̂+(u) + uν)− C.

Hence,

h∗rel(z, z̃) + αgrel(u, ũ) ≥ ε
n∑
i=1

ci log+ ci + αu2χ{u≥2B} − C
n∑
i=0

zi − C. (3.8)

Inequality (3.6) is now immediate since
∑n

i=1 ci log(ci) + u2 dominates
∑n

0=1 zi for |z|1 ≥ E
whenever E is large enough. Observe that the lower bound on E can be chosen independently of
α ∈ [1,∞).

Let now α ∈ (0, 1] be given. Inequality (3.8) shows that if E = E(α) is large enough, we obtain (3.7)
if E ≥ E.

3.3. Evolution inequality for the generalised distance. We will abbreviate

H∗rel(z, z̃) :=

ˆ
Ω

h∗rel(z, z̃) dx, Grel(u, ũ) :=

ˆ
Ω

grel(u, ũ) dx.

In this subsection, we exploit the evolution laws satisfied by the renormalised solution z and the strong
solution z̃ of Theorem 2.8 to derive an evolution inequality for the generalised distance

Dist∗α(z, z̃) :=

ˆ
Ω

dist∗α(z, z̃) dx = H∗rel(z, z̃) + αGrel(u, ũ), (3.9)

where α ∈ (0,∞) is a suitably chosen weight (to be specified in Section 3.4).

We recall that I := [0, T ∗). Furthermore, we note that since ∂tz̃ ∈ L∞(ΩT ) for any T < T ∗, we can
integrate by parts with respect to time in the weak formulation (2.4) satisfied by the strong solution z̃
to find ˆ T

0

ˆ
Ω

∂tz̃iψi dxdt = −
ˆ T

0

ˆ
Ω

Aij(z̃)∇z̃j · ∇ψi dxdt+

ˆ T

0

ˆ
Ω

Ri(z̃)ψi dxdt. (3.10)

By a density argument, one can see that eq. (3.10) holds true for all ψ ∈ L1
loc(I;W 1,1(Ω)).

We consider separately the two quantitiesH∗rel(z, z̃) andGrel(u, ũ) appearing in (3.9), beginning with
the former.
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Lemma 3.4 (Evolution of the entropic part). For a.e. T < T ∗ one has

H∗rel(z, z̃)

∣∣∣∣t=T
t=0

≤
ˆ T

0

ˆ
Ω

ρ(h) dxdt,

where

ρ(h) := −∇Dih(z) ·Mil(z)∇Dlh(z)

+∇(Di(ξ
∗(z)zj)Djh(z̃)) ·Mil(z)∇Dlh(z)

+∇
(
Dijh(z̃)(ξ∗(z)zj − z̃j)

)
·Mil(z̃)∇Dlh(z̃)

−Dijh(z̃)(ξ∗(z)zj − z̃j)Ri(z̃)

+ (Dih(z)−Djh(z̃)Di(ξ
∗(z)zj))Ri(z).

(3.11)

Proof of Lemma 3.4. The subsequent observations apply to a.e. T < T ∗.

We write

H∗rel(z, z̃) = H(z)−
ˆ

Ω

Dih(z̃)ξ∗(z)zi dx+

ˆ
Ω

(Dih(z̃)z̃i − h(z̃)) dx.

For the first term on the RHS we use the fact that, by hypothesis, z satisfies (ED), i.e.

H(z)

∣∣∣∣t=T
t=0

≤ −
ˆ T

0

ˆ
Ω

∇Dih(z) ·Mil(z)∇Dlh(z) dxdt+

ˆ T

0

ˆ
Ω

Dih(z)Ri(z) dxdt.

For the second term, we want to use the fact that z satisfies the renormalised formulations (2.1)
and (2.2) with the truncation function ξ(z) = ξ∗(z)zj and the test functionψ = Djh(z̃) ∈ W 1,∞(ΩT ).
(For the admissibility of this choice, see Remark 2.2.) Inserting these choices in eq. (2.2), we obtain

−
ˆ

Ω

Djh(z̃)ξ∗(z)zj dx

∣∣∣∣t=T
t=0

+

ˆ T

0

ˆ
Ω

ξ∗(z)zj
d
dt
Djh(z̃) dxdt

=

ˆ T

0

ˆ
Ω

∇(Di(ξ
∗(z)zj)Djh(z̃)) ·Mil(z)∇Dlh(z) dxdt

−
ˆ T

0

ˆ
Ω

Di(ξ
∗(z)zj)Ri(z)Djh(z̃) dxdt.

We next rewrite the second term on the LHS choosing in the weak form (3.10) for z̃ the test function
ψ := Dijh(z̃)ξ∗(z)zj . This yields

ˆ T

0

ˆ
Ω

Dijh(z̃)ξ∗(z)zj∂tz̃i dxdt = −
ˆ T

0

ˆ
Ω

∇
(
Dijh(z̃)ξ∗(z)zj) ·Mil(z̃)∇Dlh(z̃) dxdt

+

ˆ T

0

ˆ
Ω

Dijh(z̃)ξ∗(z)zjRi(z̃) dxdt.

Observe that sinceχ{|z|≤E}∇z ∈ L2
loc(I;L2(Ω)) for anyE <∞, the functionψ := Dijh(z̃)ξ∗(z)zj ∈

L2
loc(I;H1(Ω)) is indeed admissible in the weak equation (3.10) for z̃.

We finally need to determine the evolution of the term
ˆ

Ω

(Dih(z̃)z̃i − h(z̃)) dx.
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To this end, note that thanks to the regularity of z̃,

ˆ
Ω

h(z̃) dx

∣∣∣∣t=T
t=0

=

ˆ T

0

ˆ
Ω

Dih(z̃)∂tz̃i dxdt,

ˆ
Ω

Dih(z̃)z̃i dx

∣∣∣∣t=T
t=0

=

ˆ T

0

ˆ
Ω

Dih(z̃)∂tz̃i dxdt+

ˆ T

0

ˆ
Ω

(
d
dt
Dih(z̃)

)
z̃i dxdt.

Subtracting the first from the second equality then yields

ˆ
Ω

(
Dih(z̃)z̃i − h(z̃)

)
dx

∣∣∣∣t=T
t=0

=

ˆ T

0

ˆ
Ω

Dijh(z̃)z̃i∂tz̃j dxdt

=

ˆ T

0

ˆ
Ω

Dijh(z̃)z̃j∂tz̃i dxdt

= −
ˆ T

0

ˆ
Ω

∇
(
Dijh(z̃)z̃j

)
·Mil(z̃)∇Dlh(z̃) dxdt

+

ˆ T

0

ˆ
Ω

Dijh(z̃)z̃jRi(z̃) dxdt,

where in the second step we have used the symmetry of the Hessian of h.

In combination, the above estimates yield the bound

H∗rel(z, z̃)

∣∣∣∣t=T
t=0

≤ −
ˆ T

0

ˆ
Ω

∇Dih(z) ·Mil(z)∇Dlh(z) dxdt

+

ˆ T

0

ˆ
Ω

Dih(z)Ri(z) dxdt

+

ˆ T

0

ˆ
Ω

∇(Di(ξ
∗(z)zj)Djh(z̃)) ·Mil(z)∇Dlh(z) dxdt

−
ˆ T

0

ˆ
Ω

Di(ξ
∗(z)zj)Ri(z)Djh(z̃) dxdt

+

ˆ T

0

ˆ
Ω

∇
(
Dijh(z̃)ξ∗(z)zj) ·Mil(z̃)∇Dlh(z̃) dxdt

−
ˆ T

0

ˆ
Ω

Dijh(z̃)ξ∗(z)zjRi(z̃) dxdt

−
ˆ T

0

ˆ
Ω

∇
(
Dijh(z̃)z̃j

)
·Mil(z̃)∇Dlh(z̃) dxdt

+

ˆ T

0

ˆ
Ω

Dijh(z̃)z̃jRi(z̃) dxdt.

The asserted inequality is now obtained upon rearranging the integrals on the RHS.

We next turn to the energetic part. We first note that equation (3.10) and the fact that R0 ≡ 0 imply
that ˆ T

0

ˆ
Ω

∂tũϕ dxdt = −
ˆ T

0

ˆ
Ω

A0j(z̃)∇z̃j · ∇ϕ dxdt (3.12)

for all ϕ ∈ L1
loc(I;W 1,1(Ω)).
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Lemma 3.5 (Evolution of the energetic part). Recall the definition of grel in (3.4) and the notation
Grel(u, ũ) :=

´
Ω
grel(u, ũ) dx. For almost every T > 0, we have

Grel(u, ũ)

∣∣∣∣t=T
t=0

=

ˆ T

0

ˆ
Ω

ρg dxdt, (3.13)

where

ρ(g) := −a(z)|∇u−∇ũ|2

− (a(z)− a(z̃))(∇u−∇ũ) · ∇ũ
−m(z)(∇u−∇ũ) · (∇D0h(z)−∇D0h(z̃))

− (m(z)−m(z̃))(∇u−∇ũ) · ∇D0h(z̃).

(3.14)

Proof. We expand grel(u, ũ) = 1
2
u2 − uũ+ 1

2
ũ2.

To deal with the first term on the RHS, we use the energy inequality (ENE), i.e. the property that for
a.e. T < T ∗

G(u)

∣∣∣∣t=T
t=0

≤ −
ˆ T

0

ˆ
Ω

a(z)|∇u|2 dxdt−
ˆ T

0

ˆ
Ω

m(z)∇D0h(z) · ∇u dxdt.

To determine the time evolution of the term
´

Ω
uũ dx, we assert that the Lipschitz function ũ is admis-

sible in the weak formulation (2.3) of the equation for u, thus yielding

−
ˆ

Ω

uũ dx

∣∣∣∣t=T
t=0

+

ˆ T

0

ˆ
Ω

u∂tũ dxdt

=

ˆ T

0

ˆ
Ω

(
a(z)∇u · ∇ũ+m(z)∇D0h(z) · ∇ũ

)
dxdt,

where we used (A3.c). The admissibility of ũ can be shown as follows: first exploit the regularity
properties of ∇u ∈ L2

loc(I;L2(Ω)), u ∈ L∞loc(I;L2(Ω)), which hold true by hypothesis resp. fol-
low from (ENE) and the fact that P(z) ∈ L1

loc(I;L1(Ω)). Assumption (A5), Gagliardo–Nirenberg
interpolation applied to u and the estimate

m|∇D0h(z)| ≤
√
m
√

P(z) .
√

P(z)

then imply improved integrability of the flux term, namely for some s = s(d) > 1

A0j(z)∇zj = a(z)∇u+m(z)∇D0h(z) ∈ Lsloc(I;Ls(Ω)).

With these bounds one can now use an approximation argument to show that, under the current
hypotheses, eq. (2.3) can be extended in particular to Lipschitz functions ϕ ∈ C0,1(I × Ω̄).

Finally, using the test function ϕ = u− ũ ∈ L1
loc(I;W 1,1(Ω)) in the weak equation (3.12) for ũ gives

−
ˆ T

0

ˆ
Ω

∂tũ(u− ũ) dxdt =

ˆ T

0

ˆ
Ω

a(z̃)∇ũ · ∇(u− ũ) dxdt.

The asserted identity (3.13) is now obtained by adding up the above equations and rearranging ap-
propriately the terms on the RHS.

The evolution inequality for our generalised distance is an immediate consequence of the previous two
propositions.

Corollary 3.6. Let α ∈ (0,∞). We have

Dist∗α(z, z̃)

∣∣∣∣t=T
t=0

≤
ˆ T

0

ˆ
Ω

ρα dxdt, (3.15)
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where ρα := ρ(h) + αρ(g) with ρ(h), ρ(g) given by (3.11) resp. (3.14).

3.4. Stability estimate.

Proof of Theorem 2.8. Since (A6) implies (A6’), it suffices to prove the assertion for the case ‘$ = 1
(and thus, by hp., (A6))’ and the case ‘$ = 0 and (A6’)’, henceforth referred to as Case $ = 1
resp. Case $ = 0.

We will show the following.

• Case $ = 1 : if α ∈ (0, 1] is sufficiently small, and if E = E(α) and N = N(E) are large
enough, then for almost all T ∈ (0, T ∗)

Dist∗α(z(t, ·), z̃(t, ·))
∣∣∣∣t=T
t=0

.E,N,α

ˆ T

0

Dist∗α(z, z̃) dt. (3.16)

• Case $ = 0 : if E, N = N(E) and α ∈ [1,∞) are chosen large enough (α possibly
depending on E,N ), then for a.a. T ∈ (0, T ∗) ineq. (3.16) holds true.

Once ineq. (3.16) has been established, we can invoke Gronwall’s inequality to infer that for a.e.
T ∈ (0, T ∗)

Dist∗α(z(T, ·), z̃(T, ·)) ≤ Dist∗α(zin, z̃in) exp(kT ),

where k = k(E,N, α) > 0. The estimates will also depend on the fixed constant ι > 0, i.e. on the
pointwise lower bound for min(z̃). This dependency will only be indicated occasionally and for the
sake of clarity.

In view of inequality (3.15) it suffices to show the pointwise bound

ρα .E,N,α dist∗α(z, z̃). (3.17)

An elementary ingredient in the proof of this bound will be the coercivity properties of dist∗α (see
Prop. 3.2). We anticipate that referring to Prop. 3.2 will be the only instance, where the present proof
makes use of the more specific form of the entropy density h(u, c) assumed in (A1). Loosely speaking,
besides the locally strict convexity ensuring (3.5), we will rely on a lower bound on the generalised
distance of the form dist∗α(z, z̃) & 1 + u2 for |z| � 1.

We will distinguish the casesA,B and C introduced on page 17, where, owing to the degeneracies of
M(z) occurring when one of the concentrations vanishes, we further decompose the setA into

A+ := {z′ : min(z′) ≥ ι} ∩ A and A0 := {z′ : min(z′) < ι} ∩ A, (3.18)

where min(z′) := min{z′0, . . . , z′n} for z′ = (z′0, . . . , z
′
n) ∈ [0,∞)1+n. This decomposition further

serves to avoid regularity issues of h as zi ↘ 0 for some i ∈ {0, . . . , n}.
If z ∈ (A+)c, we will make use of the following equivalent formula for ρ(g)

ρ(g) = −a(z)|∇u|2 − a(z̃)|∇ũ|2 + a(z)∇u · ∇ũ+ a(z̃)∇u · ∇ũ
−m(z)(∇u−∇ũ) · ∇D0h(z)

+m(z̃)(∇u−∇ũ) · ∇D0h(z̃).

Since, by hypothesis, 0 ≤ m(z) . $ and a(z) & 1, this implies that

ρ(g) ≤ −a(z)
2
|∇u|2 + C|a(z)∇u|+ Cm(z)$|∇D0h(z)|2 + C. (3.19)

Using this form in the case when z ∈ (A+)c, we can avoid for instance issues due to a(z) becoming
singular as u→ 0 by using the bound (A5) on the energy flux.
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Finally, note that z ∈ A implies ξ∗(z) = 1 and Dkξ∗(z) = 0 ∀k ∈ N+, so that, if z ∈ A, one has
by formula (3.11)

ρ(h) = −∇Dih(z) ·Mil(z)∇Dlh(z)

+∇Dih(z̃) ·Mil(z)∇Dlh(z)

+∇
(
Dijh(z̃)(zj − z̃j)

)
·Mil(z̃)∇Dlh(z̃) dxdt

−Dijh(z̃)(zj − z̃j)Ri(z̃)

+ (Dih(z)−Dih(z̃))Ri(z).

(3.20)

We are now ready to tackle the four cases.

Case z ∈ A+ : in this case we have the control ι ≤ zi ≤ E for all i ∈ {0, . . . , n}, and we need to
show that ρα . |z − z̃|2. We therefore rewrite formula (3.20) as

ρ(h) = −∇(Dih(z)−Dih(z̃)) ·Mil(z)∇Dlh(z)

+∇
(
Dijh(z̃)(zj − z̃j)

)
·Mil(z̃)∇Dlh(z̃)

+
(
Dih(z)−Dih(z̃)−Dijh(z̃)(zj − z̃j)

)
Ri(z̃)

+ (Dih(z)−Dih(z̃))(Ri(z)−Ri(z̃))

= −∇(Dih(z)−Dih(z̃)) ·Mil(z)∇(Dlh(z)−Dlh(z̃))

−∇(Dih(z)−Dih(z̃)) · (Mil(z)−Mil(z̃))∇Dlh(z̃)

−∇
(
Dih(z)−Dih(z̃)−Dijh(z̃)(zj − z̃j)

)
·Mil(z̃)∇Dlh(z̃)

+
(
Dih(z)−Dih(z̃)−Dijh(z̃)(zj − z̃j)

)
Ri(z̃)

+ (Dih(z)−Dih(z̃))(Ri(z)−Ri(z̃)).

(3.21)

Since, by hp. (A3.b), M(z) ≥ diag(m(z)$, 0, . . . , 0)+ε(ι) diag(0, 1, . . . , 1) for a suitable constant
ε(ι) > 0, we have

∇(Dih(z)−Dih(z̃)) ·Mil(z)∇(Dlh(z)−Dlh(z̃))

≥ m(z)$|∇D0h(z)−∇D0h(z̃)|2 + ε(ι)δ|∇Dch(z)−∇Dch(z̃)|2

for any δ ∈ (0, 1]. The auxiliary parameter δ = δ(α) will eventually be chosen small enough to be
specified below. For i ∈ {1, . . . , n} we observe that since ι ≤ zj ≤ E for all j ∈ {0, . . . , n}, the
triangle inequality yields

|∇Dih(z)−∇Dih(z̃)| ≥ |∇ log(ci)−∇ log(c̃i)| − |∇ log(wi(u))−∇ log(wi(ũ))|

≥ 1
ci
|∇ci −∇c̃i| −

∣∣ 1
ci
− 1

c̃i

∣∣|∇c̃i| − |∇u−∇ũ|w′i(u)

wi(u)

−
∣∣w′i(u)

wi(u)
− w′i(ũ)

wi(ũ)

∣∣|∇ũ|
≥ ε(E, ι)|∇c−∇c̃| − C(E, ι)|∇u−∇ũ| − C(E, ι)|z − z̃|,

where ε(E, ι) > 0 is some sufficiently small constant.

We next estimate, using the local Lipschitz continuity of M,

|∇(Dih(z)−Dih(z̃)) · (Mil(z)−Mil(z̃))∇Dlh(z̃)| .E,ι |∇Dh(z)−∇Dh(z̃)||z − z̃|
.E,ι |z − z̃||∇z −∇z̃|+ |z − z̃|2.
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Before estimating the remaining terms, we compute for f ∈ C3
loc((0,∞)1+n)

∇
(
f(z)− f(z̃)−Djf(z̃)(zj − z̃j)

)
= Djf(z)∇zj −Djf(z̃)∇z̃j −Djf(z̃)∇(zj − z̃j)
−Djkf(z̃)(zj − z̃j)∇z̃k

= (Djf(z)−Djf(z̃))∇zj −Djkf(z̃)(zj − z̃j)∇z̃k
= (Djf(z)−Djf(z̃))∇(zj − z̃j)

+ [Dkf(z)−Dkf(z̃)−Djkf(z̃)(zj − z̃j)]∇z̃k
and, using Taylor’s theorem, for k = 0, . . . , n

|Dkf(z)−Dkf(z̃)−Djkf(z̃)(zj − z̃j)| .E,ι,f |z − z̃|2.
Letting f(z) = Dih(z), we infer since h ∈ C4

loc((0,∞)1+n) (see hp. (A1)) that

|∇
(
Dih(z)−Dih(z̃)−Dijh(z̃)(zj − z̃j)

)
| .ι,E |z − z̃||∇z −∇z̃|+ |z − z̃|2.

Using the previous bounds to estimate the RHS of (3.21), recalling also hp. (A2.ii), and applying
Young’s inequality and an absorption argument, we thus infer for suitable ε(ι, E) > 0

ρ(h) ≤ −ε(ι, E)δ|∇c−∇c̃|2 −m(z)$|∇D0h(z)−∇D0h(z̃)|2

+ C1(E, ι)δ|∇u−∇ũ|2 + C(δ, E, ι)|z − z̃|2.
On the other hand, using the fact that z 7→ a(z) is locally Lipschitz continuous in (0,∞)1+n, we
deduce from eq. (3.14) for suitable ε1 > 0 and C2 <∞ (independent of E, ι)

ρ(g) ≤ −ε1|∇u−∇ũ|2 + C2m(z)$|∇D0h(z)−∇D0h(z̃)|2 + C(E, ι)|z − z̃|2,

where we used the fact that 0 ≤ m(z) . $.

If $ = 1, we choose α ∈ (0, 1] small enough such that αC2 ≤ 1 and subsequently δ = δ(α,E, ι)
sufficiently small such that δC1(E, ι) ≤ αε1. We may then conclude that

ρα = ρ(h) + αρ(g) ≤ C(α,E, ι)|z − z̃|2.
Let us emphasise that the smallness condition of α is independent of E.

If instead $ = 0, we choose for given4 α ∈ [1,∞) the parameter δ = δ(α,E, ι) small enough such
that δ C1(E, ι) ≤ ε1α, and obtain as before

ρα ≤ C(α,E, ι)|z − z̃|2.

Case z ∈ A0 : in this case, we have no lower bound on zi away from zero, but since min(z) ≤ ι and
min(z̃) ≥ 2ι, we know that |z− z̃| ≥ ι. By Prop. 3.2 (cf. (3.5)) it thus suffices to prove that ρα .E 1.

Recalling (3.20) and (A2.i), we estimate

ρ(h) ≤ −∇Dih(z) ·Mil(z)∇Dlh(z)

+∇Dih(z̃) ·Mil(z)∇Dlh(z)

+∇
(
Dijh(z̃)(zj − z̃j)

)
·Mil(z̃)∇Dlh(z̃)

+ C(E)

≤ −P(z) + C(E)
√

P(z) + C|∇u|+ C(E),

where the last step uses hp. (A4.a) and hp. (A4.b). Hence,

ρ(h) ≤ −1
2
P(z) + C(E)|∇u|+ C(E).

4In the case $ = 0, it suffices to restrict α to the range 1 ≤ α <∞.
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Next, by ineq. (3.19) and hp. (A4.b),

ρ(g) ≤ −a(z)
2
|∇u|2 + C(δ1, E) + δ1

4
P(z) + Cm(z)$|∇D0h(z)|2 (3.22)

for any δ1 > 0.

If $ = 1, we let δ1 = 1 and use the estimate m(z)$|∇D0h(z)|2 ≤ P(z), which follows from
hp. (A3), to see that after possibly decreasing α ∈ (0, 1] we have ρα ≤ −αa(z)

2
|∇u|2+C(E)|∇u|+

C(E) ≤ −αa(z)
4
|∇u|2 + C(α,E).

If $ = 0, we choose δ1 = 1
α
≤ 1. Then

ρα ≤ −1
2
P(z)− αa(z)

2
|∇u|2 + a(z)

4
|∇u|2 + C(α,E) + 1

4
P(z)

.α,E 1.

Case z ∈ B : in this case derivatives of ξ∗ do in general not vanish, but we know that 1 � E <
|z|1 < EN . We estimate

ρ(h) = −∇Dih(z) ·Mil(z)∇Dlh(z)

+∇(Di(ξ
∗(z)zj)Djh(z̃)) ·Mil(z)∇Dlh(z)

+∇
(
Dijh(z̃)(ξ∗(z)zj − z̃j)

)
·Mil(z̃)∇Dlh(z̃)

−Dijh(z̃)(ξ∗(z)zj − z̃j)Ri(z̃)

+Dih(z)Ri(z)−Djh(z̃)Di(ξ
∗(z)zj)Ri(z)

≤ −P(z)

+ C|∇Di(ξ
∗(z)zj) ·Mil(z)∇Dlh(z)|

+ C(E,N)
√

P(z) + C(E,N)|∇u| (by hp. (A4.b), (A4.a))

+ C(E,N) (using hp. (A2.i))

≤ −1
2
P(z)

+ C|∇Di(ξ
∗(z)zj) ·Mil(z)∇Dlh(z)|

+ C(E,N)|∇u|+ C(E,N).

In order to estimate the term |∇Di(ξ
∗(z)zj) ·Mil(z)∇Dlh(z)|, we observe that

|∇Di(ξ
∗(z)zj)| . |Dξ∗(z)||∇z|+ |D2ξ∗(z)z||∇z|

. 1
N |z|1 |∇z| (by (t3)).

(3.23)

We first consider the case $ = 1. Then (A6) is at our disposal, which yields using (3.23)

|∇Di(ξ
∗(z)zj)||Mil(z)∇Dlh(z)| . 1

N |z|1 |∇z||
∑
j

Aij(z)∇zj| . 1
N

P(z) + 1
N
|∇u|2.

Thus, choosing N = N(min{1, α}) sufficiently large, we infer

ρ(h) ≤ −1
4
P(z) + min{1, α}a(z)

8
|∇u|2 + C(E,N, α).

Next, simiarly as in (3.22), we estimate

ρ(g) ≤ −a(z)
2
|∇u|2 + C(E,N) + 1

8
P(z) + C4m(z)$|∇D0h(z)|2.

Decreasing α ∈ (0, 1], if necessary, to ensure that αC4m(z)$|∇D0h(z)|2 ≤ 1
8
P(z), we obtain

ρα .N,E 1.
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It remains to consider the case where$ = 0 and (A6’) are fulfilled. Since u := inf uin = inf ũ(0, ·) ≥
2ι, Lemma 6.4 yields inf u ≥ u > 0. By hp. (A6’), we infer for all 0 ≤ i ≤ n

|∇z||Mil(z)∇Dlh(z)| ≤ C|z|1P(z) + C(E,N, u)|∇u|2.

Thus, recalling ineq. (3.23), we can estimate for N large enough

|∇Di(ξ
∗(z)zj) ·Mil(z)∇Dlh(z)| ≤ 1

4
P(z) + C(E,N, u)|∇u|2 (3.24)

to infer

ρ(h) ≤ −1
4
P(z) + C1(E,N, u)|∇u|2 + C(E,N).

Next, since $ = 0, ineq. (3.19) yields

ρ(g) ≤ −a(z)
2
|∇u|2 + C(E,N)

√
P(z) + C

≤ −a(z)
2
|∇u|2 + 1

8α
P(z) + C(α,E,N).

Increasing α = α(E,N, u), if necessary, to ensure that αa(z)
2
≥ C1(E,N, u), we conclude

ρα ≤ −1
8
P(z) + C(α,E,N, u).

Case z ∈ C : in this case, ξ∗(z) = 0 and Dkξ∗(z) = 0 for all k ∈ N+. Thus

ρ(h) = −∇Dih(z) ·Mil(z)∇Dlh(z)

−∇(Dijh(z̃)z̃j) ·Mil(z̃)∇Dlh(z̃)

+Dijh(z̃)z̃jRi(z̃)

+Dih(z)Ri(z)

≤ −P(z) + C,

where we used hp. (A2.i).

If $ = 1, we have thanks to (3.19) and hp. (A3), (A5)

ρ(g) ≤ −a(z)
2
|∇u|2 + C4P(z) + u2 + C,

where C4 is independent of E,N . Hence, after possibly decreasing α ∈ (0, 1] to ensure that αC4 ≤
1, we find

ρα ≤ C + αu2 .α dist∗α(z, z̃),

where the second step follows from (3.7) (after choosing E = E(α) large enough).

If $ = 0, we estimate using again (3.19) and hp. (A5)

ρ(g) ≤ −a(z)
2
|∇u|2 + C(1 + u)

√
P(z) + C

≤ −a(z)
2
|∇u|2 + 1

2α
P(z) + C(α)u2 + C(α),

and infer

ρα ≤ −1
2
P(z)− αa(z)

2
|∇u|2 + C(α)u2 + C(α)

.α dist∗α(z, z̃).

The second step follows from the coercivity property (3.6) and the fact that α ≥ 1.

This proves the bound (3.17) and thus completes the proof of Theorem 2.8.
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4. STRONG ENTROPY DISSIPATION PROPERTY

Proof of Proposition 2.9. We first establish (ED.s) for s = 0 and a.e. t = T ∈ (0, T ∗), that is, we first
prove (ED). In a second step (see page 34 ), we point out how to extend the result to a.e. 0 < s <
t < T ∗.

Case 1: s = 0, t = T ∈ (0, T ∗).

We consider for a small parameter δ > 0 the regularised entropy density

hδ(u, c) = δu+ h(u, c).

The additive term δu serves to ensure coercivity, since the original density h(z) may in general allow
for cancellations at infinity reflecting the coupling between concentrations and energy component. In
particular, for every L ∈ N the sublevel set {z ∈ R1+n

≥0 : hδ(z) ≤ L} is bounded. This coercivity
property easily follows from the lower bound

h(z) ≥ −σ̂(u) + ε∗

n∑
i=1

ci log ci − Cuν − C, (4.1)

valid for suitable ν ∈ [0, 1), ε∗ > 0 (see Lemma 6.3), together with the sublinearity of the increasing
function σ̂(u) as u→∞ (see (h2)).

In order to define an admissible truncation function, we consider as in [23, Proof of Prop. 5] for L ≥ 2
an auxiliary function θL ∈ C∞(R) satisfying θL(s) = s for |s| ≤ L, 0 ≤ θ′L ≤ 1,

|θ′′L(s)| . C
1+|s| log(|s|+e)

(4.2)

for all s ∈ R and θ′L(s) = 0 for |s| ≥ LC for some sufficiently large constant C ≥ 2, which is kept
fixed throughout the proof.

To derive the entropy dissipation inequality, we would like to choose the truncation function θL(hδ(·))
and the test function ψ ≡ 1 in the renormalised formulation satisfied by z, and then let L → ∞ and
subsequently δ → 0. Since derivatives of hδ are in general not bounded as u↘ 0 or ci ↘ 0, further
regularisation is required. We let

hδ,ε(u, c) = hδ(z) + σ̂(u)− σ̂(u+ ε),

abbreviate for z = (u, c1, . . . , cn)

zε̃ := (u, c1 + ε̃, . . . , cn + ε̃), ε̃ ∈ (0, 1],

and then consider the function z 7→ hδ,ε(z
ε̃) ∈ C2([0,∞)1+n). Thanks to (4.1), it is easy to see that

for fixed δ ∈ (0, 1] sublevel sets of z 7→ hδ,ε(z
ε̃) are bounded; in fact

hδ,ε(z
ε̃) ≥ δ

2
u+ ε∗

n∑
i=1

ci log+ ci − Cδ (4.3)

for δ, ε, ε̃ ∈ (0, 1]. Hence, the C2-function ξ(z) := θL(hδ,ε(z
ε̃)) has compactly supported derivative

Dξ, and is thus an admissible truncation in eq. (2.1) (cf. Remark 2.2). This, combined with the choice
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ψ ≡ 1 in eq. (2.1), yields for a.e. T < T ∗

LHS :=

ˆ
Ω

θL(hδ,ε(z
ε̃)) dx

∣∣∣∣t=T
t=0

=−
ˆ T

0

ˆ
Ω

θ′L(hδ,ε(z
ε̃))Dijhδ,ε(z

ε̃)∇zj · Aik(z)∇zk dxdt

−
ˆ T

0

ˆ
Ω

θ′′L(hδ,ε(z
ε̃))Djhδ,ε(z

ε̃)Dihδ,ε(z
ε̃)∇zj · Aik(z)∇zk dxdt

+

ˆ T

0

ˆ
Ω

θ′L(hδ,ε(z
ε̃))Dih(zε̃)Ri(z) dxdt

= : I + II + III,

(4.4)

where we recall the summation convention (see Notations 1.5). In the reaction term we have used the
fact that Dihδ,ε(z) = Dih(z) whenever i 6= 0 together with R0 ≡ 0.

We will establish the asserted inequality (ED) by taking the lim inf of the LHS and the lim sup of the
RHS of the above equation (4.4) as ε̃ → 0, L → ∞ and δ, ε → 0, in the stated order. We perform
the corresponding limits separately in LHS and in each of the three terms I, II, III . Below we use,
without explicit reference, the following basic properties satisfied under the hypotheses of Model (M0),
see Lemma 6.1:

a(z)|∇u|2 ∼ |∇u|2,

P(z) &
n∑
i=1

|∇
√
ci|2 + |√γ∇u|2 + |

√
m∇D0h(z)|2,

where γ(u, c) = −σ̂′′(u)−
∑n

l=1

w′′l (u)

wl(u)
cl,

|Aik(z)∇zk| .
√
ci
√

P(z) for i ≥ 1,

|A0k(z)∇zk| . |∇u|+
√
m
√

P(z).

LHS:
The limit ε̃→ 0 of the LHS is immediate due to the boundedness of θL, and yieldsˆ

Ω

θL(hδ,ε(z)) dx

∣∣∣∣t=T
t=0

.

We next take
lim inf
ε,δ→∞

lim inf
L→∞

of the last expression using a combination of the dominated convergence theorem and Fatou’s lemma:

At initial time, we estimate using the lower and upper bounds on h in Lemma 6.3

|θL(hδ,ε(z
in))| ≤ |hδ,ε(zin)| . uin + |σ̂−(uin)|+

n∑
i=0

cin
i log+ c

in
i + 1.

We can hence use dominated convergence to deduce that, as L→∞ and δ, ε→ 0,ˆ
Ω

θL(hδ,ε(z
in)) dx→

ˆ
Ω

h(zin) dx.

To deal with the integral at time t = T , we first observe that, thanks to the regularity u ∈ L∞loc([0, T
∗), L1(Ω))

and (4.1), the negative part of θL(hδ,ε(z(T, ·))) is controlled pointwise in x, for a.e. T ∈ (0, T ∗], by
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an integrable function, uniformly in L, δ, ε, and its integral can thus be shown to converge in the same
way as the term at initial time. For the positive part of θL(hδ,ε(z(T, ·))) we use Fatou’s lemma:ˆ

Ω

max{hδ,ε(z(T, ·)), 0} dx ≤ lim inf
L→∞

ˆ
Ω

max{θL(hδ,ε(z(T, ·))), 0} dx,

ˆ
Ω

max{h(z(T, ·)), 0} dx ≤ lim inf
δ,ε→0

ˆ
Ω

max{hδ,ε(z(T, ·)), 0} dx.

In combination, we inferˆ
Ω

h(z) dx

∣∣∣∣t=T
t=0

≤ lim inf
δ,ε→0

lim inf
L→∞

lim
ε̃→0

ˆ
Ω

θL(hδ,ε(z
ε̃)) dx

∣∣∣∣t=T
t=0

.

Diffusive dissipation term I:
We assert that

lim sup
δ,ε→0

lim sup
L→∞

lim sup
ε̃→0

(
−
ˆ T

0

ˆ
Ω

θ′L(hδ,ε(z
ε̃))∇zj ·Djihδ,ε(z

ε̃)Aik(z)∇zk dxdt
)

can be bounded above by the non-positive term

−
ˆ T

0

ˆ
Ω

∇zj ·Djih(z)Aik(z)∇zk dxdt.

To show this, we will mainly rely on the dominated convergence theorem. We therefore start by listing
several uniform pointwise estimates on the terms involved.

We first estimate for i, j fixed the term

pij := θ′L(hδ,ε(z
ε̃))Djihδ,ε(z

ε̃)∇zj ·
∑
k

Aik(z)∇zk,

where we recall that 0 ≤ θ′L ≤ 1.

Case i, j ≥ 1 : in this case Dijhδ,ε(z
ε̃) = 1

ci+ε̃
δij and thus

|pij| ≤ | 1
ci+ε̃
∇ci ·

∑
k

Aik(z)∇zk| . 1
ci
|∇ci|

√
ci
√

P(z) . P(z).

Case i ≥ 1, j = 0 : observing that −Di0hδ,ε(z
ε̃) =

w′i
wi

.
√
−w′′i
wi

(cf. (2.10)), we find

|pij| ≤ |w
′
i

wi
∇u ·

∑
k

Aik(z)∇zk| . |
√
−w′′i
wi
ci∇u|

√
P(z) . P(z).

Case i = 0, j ≥ 0 : we split the sum over k in the definition of p0j into two parts:∑
k

A0k(z)∇zk = a(z)∇u+m(z)∇D0h(z)

and split p0j accordingly into p0j = p
(0)
0j + p

(1)
0j .

For j ≥ 1 we estimate as above

|p(0)
0j | ≤ |

w′j
wj
∇cj · a(z)∇u| . |

√
−w′′j
wj
cj∇u||∇

√
cj| . P(z).

For j = 0, we have p(0)
00 = θ′L(hδ,ε(z

ε̃))D00hδ,ε(z
ε̃)a(z)|∇u|2 ≥ 0, and since in the equation it

comes with a minus sign, its integral can easily be handled using Fatou’s lemma.
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It remains to estimate the part p(1)
0j . To deal with the limit ε̃→ 0 (for finite L), we estimate

|∇D0hδ,ε(z
ε̃) ·m(z)∇D0h(z)| .

√
m|∇D0hδ,ε(z

ε̃)|
√

P(z)

and for |zε̃| ≤ C(L, δ)

√
m|∇D0hδ,ε(z

ε̃)| ≤ |D00hδ,ε(z
ε̃)∇u|+

n∑
j=1

|D0jhδ,ε(z
ε̃)∇cj|

.L,δ,ε |∇u|+
√

P(z).

Thus the limit ε̃→ 0 can be handled using dominated convergence.

We can now let ε̃ = 0 and compute

∇D0hδ,ε(z) ·m(z)∇D0h(z)

= m(z)|∇D0h(z)|2 − (σ̂′′(u+ ε)− σ̂′′(u))∇u ·m(z)∇D0h(z).

Note that the first term on the RHS is bounded above by P(z) ∈ L1(ΩT ). Concerning the second
term, we estimate

|(σ̂′′(u+ ε)− σ̂′′(u))∇u ·m(z)∇D0h(z)|

.
√
m|(σ̂′′(u+ ε)− σ̂′′(u))∇u|

√
P(z)

. |(1 +
√
−σ̂′′(u))∇u|

√
P(z)

. P(z) + |∇u|2,
where in the penultimate step we have used hypothesis (2.12).

Combining the above estimates allows to take the successive limits

lim sup
ε,δ→0

lim sup
L→∞

lim sup
ε̃→0

. . .

as above, thus yielding the asserted inequality for term I .

Remainder gradient term II:
We will show that

lim sup
L→∞

lim sup
ε̃→0

(
−
ˆ T

0

ˆ
Ω
θ′′L(hδ,ε(z

ε̃))Djhδ,ε(z
ε̃)∇zj ·Dihδ,ε(z

ε̃)Aik(z)∇zk dxdt
)
≤ 0. (4.5)

As in the previous paragraph, the main task is to obtain uniform pointwise estimates on the terms
involved, where here we can afford a dependence of our estimates on δ and ε. We introduce for i, j
fixed the term

qij = −θ′′L(hδ,ε(z
ε̃))Djhδ,ε(z

ε̃)∇zj ·Dihδ,ε(z
ε̃)
∑
k

Aik(z)∇zk

and observe that, by (4.2) and (4.3), for L ≥ L0(δ) (henceforth to be assumed)

|θ′′L(hδ,ε(z
ε̃))| .δ

1
1+(u+

∑
i ci log+(ci)) log(|z|1+e)

. (4.6)

Case i, j ≥ 1 : in this case,

|qij| . |θ′′L(hδ,ε(z
ε̃))|| log

(
ci+ε̃
wi(u)

)
|| log

(
cj+ε̃

wj(u)

)
|
√
ci
√
cj|∇
√
cj|
√

P(z).

Estimating
√
ci| log

(
ci+ε̃
wi(u)

)
| .
√
ci log+(ci) +

√
wi(u) log+(wi(u)) + 1,
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we find, using (h2) and (4.6),

|θ′′L(hδ,ε(z
ε̃))|
√
ci| log

(
ci+ε̃
wi(u)

)
| √cj| log

(
cj+ε̃

wj(u)

)
|

. |θ′′L(hδ,ε(z
ε̃))|(
√
ci log+(ci) +

√
u+ 1)(

√
cj log+(cj) +

√
u+ 1) .δ 1.

Thus, |qij| .δ P(z).

Case i ≥ 1, j = 0 : here,

|qij| .
√
ci| log

(
ci+ε̃
wi(u)

)
||D0hδ,ε(z

ε̃)∇u|
√

P(z) |θ′′L(hδ,ε(z
ε̃))|.

In view of the factor
√
ci, this shows that |qij| ≤ C(L, δ, ε)|∇u|

√
P(z) uniformly in ε̃, allowing us

to infer by dominated convergence

lim sup
ε̃→0

ˆ T

0

ˆ
Ω

qij dxdt ≤ −
ˆ T

0

ˆ
Ω

θ′′L(hδ,ε(z))D0hδ,ε(z)∇u · log
(

ci
wi(u)

)
Aik(z)∇zk dxdt.

Since ε > 0 and
w′l(u)

wl(u)
.
√
−w′′l (u)

wl(u)
, we have the rough bound

|D0hδ,ε(z)∇u| .ε |∇u|+
∑
l

√
cl
√
γ|∇u|

. |∇u|+
∑
l

√
cl
√

P(z).
(4.7)

Moreover,

| log
(

ci
wi(u)

)
Aik(z)∇zk| . (log+(ci) + 1 + log+(wi(u)))

√
ci
√

P(z),

and hence

|θ′′L(hδ,ε(z))D0hδ,ε(z)∇u ·Dihδ,ε(z)Aik(z)∇zk| .ε P(z) + |∇u|2.

Case i = 0, j ≥ 0 : using the fact that for |z|1 ≤ C(L, δ)

|Djhδ,ε(z
ε̃)∇zj||D0hδ,ε(z

ε̃)||a(z)∇u+m(z)∇D0h(z)| .L,δ,ε P(z) + |∇u|2,
one can take the limit ε̃→ 0

lim sup
ε̃→0

(
−
ˆ T

0

ˆ
Ω

θ′′L(hδ,ε(z
ε̃))Djhδ,ε(z

ε̃)∇zj ·D0hδ,ε(z
ε̃)
∑
k

A0k(z)∇zk dxdt
)

≤ −
ˆ T

0

ˆ
Ω

θ′′L(hδ,ε(z))Djhδ,ε(z)∇zj ·D0hδ,ε(z)
∑
k

A0k(z)∇zk dxdt.

To obtain L-uniform bounds of the integrand on the RHS, we split∑
k

A0k(z)∇zk = a(z)∇u+m(z)∇D0h(z).

Using (4.7) we have for j ≥ 1

|∇zjDjhδ,ε(z)||D0hδ,ε(z)a(z)∇u|

.ε
√
cj(log+(cj) + 1 + log+(wj(u)))(|∇u|

√
P(z) +

∑
l

√
clP(z)),

and for j = 0

|∇uD0hδ,ε(z)||D0hδ,ε(z)a(z)∇u| .ε

(
|∇u|+

√
|c|1
√

P(z)
)2

. |∇u|2 + |c|1P(z).
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It remains to consider the term involving m(z). We estimate for j ≥ 1

|Djhδ,ε(z)∇zj ·D0hδ,ε(z)||m(z)∇D0h(z)|

.ε
√
cj(log+(cj) + 1 + log+(wj(u)))(1 +

∑
l cl

1+u
)
√
mP(z),

where we used the fact that
w′l(u)

wl(u)
. 1

1+u
for all l allowing us to estimate

|D0hδ,ε(z)| .ε 1 +
∑n
l=1 cl
1+u

.

Similarly, for j = 0 we estimate, using also the bound (4.7),

|D0hδ,ε(z)∇u ·D0hδ,ε(z)||m(z)∇D0h(z)|

.ε (1 +
∑n
l′=1 cl′

1+u
)
(
|∇u|+

n∑
l=1

√
cl
√

P(z)
)√

m
√

P(z).

Thus, recalling the conditions (2.11), (2.12) on m(z), we infer the L-uniform bound

|θ′′L(hδ,ε(z))Djhδ,ε(z)∇zj ·D0hδ,ε(z)
∑
k

A0k(z)∇zk| .δ,ε P(z) + |∇u|2.

Combining the above estimates, we can take the limits

lim sup
L→∞

lim sup
ε̃→0

. . .

of term II and obtain ineq. (4.5) by the pointwise convergence θ′′L(s)→ 0 as L→∞.

Reactions III:
Concerning the reaction term III , we first need to take care of the fact thatDih(z) is unbounded near
ci = 0. By (4.3), we have |z|, |zε̃| ≤ C(L, δ) unless θ′L(hδ,ε(z

ε̃)) = 0. Using the local ε0-Hölder
regularity of Ri, we then compute for |zε̃| ≤ C(L, δ)

Dih(zε̃)Ri(z) = Dih(zε̃)[Ri(z)−Ri(z
ε̃)] +Dih(zε̃)Ri(z

ε̃)

≤ C(L, δ)(1 +
n∑
i=1

log(ci + ε̃))ε̃ε0 +Dih(zε̃)Ri(z
ε̃).

The first term in the last line converges, as ε̃→ 0, uniformly to zero on the set {|zε̃| ≤ C(L, δ)}. The
second term is non-positive by hp. (A2.i). Thus, since θ′L ≥ 0 and limL→∞ θ

′
L(s) = 1 for all s ∈ R

we can use Fatou’s lemma to infer

lim sup
L→∞

lim sup
ε̃→0

ˆ T

0

ˆ
Ω

θ′L(hδ,ε(z
ε̃))Dih(zε̃)Ri(z) dxdt

≤ lim sup
L→∞

ˆ T

0

ˆ
Ω

θ′L(hδ,ε(z))Dih(z)Ri(z) dxdt

≤
ˆ T

0

ˆ
Ω

Dih(z)Ri(z) dxdt.

Observe that the last line is independent of δ and ε.

Put together, the above inequalities and equation (4.4) imply the entropy dissipation inequality (ED).

Case 2: 0 < s < t < T ∗.
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We assert that the fact that z is a renormalised solution in ΩT ∗ in the sense of Definition 2.1 implies
that for a.e. 0 < s < t < T ∗, and all ψ̃ ∈ C∞([0, T ∗)× Ω̄)

ˆ
Ω

ξ(z(t, ·))ψ̃(t, ·) dx−
ˆ

Ω

ξ(z(s, ·))ψ̃(s, ·) dx−
ˆ t

s

ˆ
Ω

ξ(z)∂τ ψ̃ dxdτ

= −
ˆ t

s

ˆ
Ω

Dijξ(z)Aik(z)∇zk · ∇zjψ̃ dxdτ (4.8)

−
ˆ t

s

ˆ
Ω

Diξ(z)Aik(z)∇zk · ∇ψ̃ dxdτ +

ˆ t

s

ˆ
Ω

Diξ(z)Ri(z)ψ̃ dxdτ

for all ξ ∈ C∞(R1+n
≥0 ).

This can be proved as follows: take η ∈ C∞(R), η′ ≥ 0, η = 0 on (−∞,−1], η = 1 on [0,∞),
and define ηs,δ(τ) := η( τ−s

δ
) for 0 < δ � 1. Observe that ηs,δ(τ) = 0 for τ ≤ s − δ and

ηs,δ(τ) = 1 for τ ≥ s. In the renormalised formulation (2.1) with T = t, we choose the test function
ψ(τ, x) := ψ̃(τ, x)ηs,δ(τ). Then, the corresponding right-hand side of (2.1) converges, as δ → 0, to
the right-hand side of eq. (4.8) by the dominated convergence theorem. The corresponding left-hand
side takes the formˆ

Ω

ξ(z(t, ·))ψ̃(t, ·) dx−
ˆ s

s−δ

ˆ
Ω

ξ(z)ψ̃ dx ∂τηs,δdτ +O(δ)−
ˆ t

s

ˆ
Ω

ξ(z)∂τ ψ̃ dxdτ.

The second term in the last line can be rewritten as
(
F ∗ (1

δ
η′(− ·

δ
))
)

(s) for the measurable, bounded

function F (τ) := −
´

Ω
ξ(z(τ, x))ψ̃(τ, x) dx, and since

´
R η
′(−τ)dτ = 1, we have the conver-

gence
(
F ∗ (1

δ
η′(− ·

δ
))
)

(s) → F (s) = −
´

Ω
ξ(z(s, x))ψ̃(s, x) dx for a.e. s ∈ (0, T ∗) as δ → 0.

This establishes the asserted identity (4.8).

From (4.8) we infer that, for a.e. 0 < s < T ∗, the function (τ, x) 7→ z(s + τ, x) is a renormalised
solution in (0, T ∗− s)×Ω with initial data z(s, ·). Now we can invoke Case 1 and deduce (ED.s).

5. EXPONENTIAL CONVERGENCE TO EQUILIBRIUM

Proof of Proposition 2.10. Let us first observe that the regularity hypotheses on z = (u, c) together
with the bounds (ED.s) and (ENE.s) imply that P(z) + |∇u|2 ∈ L1(ΩT ) for any T < ∞ and that
u ∈ L∞loc([0,∞), L2(Ω)), ci log ci ∈ L∞loc([0,∞), L1(Ω)) for all i ∈ {1, . . . , n}. Here, we also
used the lower and upper bounds on H(z) provided in Lemma 6.3.

The energy and mass conservation properties
´

Ω
zl(t, x) dx = z̄l for a.e. t > 0, where l ∈

{0, 1, . . . , n}, can be seen as follows. In the renormalised formulation (2.1), we choose ψ ≡ 1 and
ξ(z) := ϕEl (z) for E ≥ 1, where ϕEl (z) = Eϕl(E

−1z) for some ϕl ∈ C∞(R1+n
≥0 ) with suppDϕl

compact and ϕl(z) = zl for |z|1 < 1 (see [24] for an example of such ϕl). This gives
ˆ

Ω

ϕEl (z(T, ·)) dx−
ˆ

Ω

ϕEl (zin) dx

= −
ˆ T

0

ˆ
Ω

Dijϕ
E
l (z)Aik(z)∇zk · ∇zj dxdt.

(5.1)

By the dominated convergence theorem, the LHS converges, as E →∞, to
ˆ

Ω

zl(T, x) dx−
ˆ

Ω

zin
l dx.
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Since D2ϕl(z) = 0 for |z|1 < 1, we have limE→∞Dijϕ
E
l (z) = 0 for every z ∈ R1+n

≥0 . At the same
time, using the bounds in Lemma 6.1 it is easy to see that for all i, j ∈ {0, . . . , n}

|Dijϕ
E
l (z)

n∑
k=0

Aik(z)∇zk · ∇zj| . P(z) + |∇u|2

uniformly in E ≥ 1. Hence, the integral on the RHS of (5.1) converges to zero as E →∞ thanks to
dominated convergence.

Let us now sketch the proof showing the exponential convergence to equilibrium. Below, εk, k =
0, 1, . . . , denote fixed positive constants. As we only consider Model (M0), it suffices to take α ∈
(0, 1]. Conservation of the total energy and the mass of each species, combined with z̄ being spatially
constant, yields for a.e. time

Hrel(z, z̄) = H(z)−Dih(z̄)

ˆ
Ω

(zi − z̄i) dx−H(z̄)

= H(z)−H(z̄).

Hence, inequality (ED.s) gives for a.e. t ≥ s ≥ 0

Hrel(z(τ), z̄)

∣∣∣∣τ=t

τ=s

≤ −
ˆ t

s

ˆ
Ω

P(z) dxdτ.

Writing B(c, c̄) :=
∑n

i=1 b(ci, c̄i), where b(s, s̄) = s̄λ(s/s̄), we have by estimate (6.2) and the
logarithmic Sobolev inequality (cf. [39])ˆ

Ω

P(z) dx ≥ ε0

n∑
i=1

ˆ
Ω

|∇
√
ci|2 dx ≥ ε1

ˆ
Ω

B(c, c̄) dx, (5.2)

where ε1 = ε1(Ω) > 0.

Recalling the definition of grel in (3.4), and using
´
u dx =

´
ū dx, (ENE.s), and the Poincaré–

Wirtinger inequality, we can further estimate for some ε2 = ε2(Ω) > 0

Grel(u(τ), ū)

∣∣∣∣τ=t

τ=s

≤ −ε2
ˆ t

s

ˆ
Ω

|u− ū|2 dxdτ +$C

ˆ t

s

ˆ
Ω

P(z) dxdτ. (5.3)

We next let E ≥ |z̄|, to be fixed later. Then, by uniform convexity, for |z| ≤ E,

B(c, c̄) + α|u− ū|2 &E,α |z − z̄|2 &E hrel(z, z̄).

(The argument leading to the second inequality is as in the proof of (3.5).)

At the same time,

B(c, c̄) + α|u− ū|2 ≥ 1
2

(
n∑
i=1

ci log ci + αu2

)
− C(z̄).

Hence, for E = E(z̄, α) large enough, we obtain

B(c, c̄) + α|u− ū|2 &E hrel(z, z̄).

Combining the above estimates and choosing α ∈ (0, 1] such that αC$ ≤ 1
2

(with C as in (5.3)),
we infer[

Hrel(z(τ), z̄) + αGrel(u(τ), ū)

]∣∣∣∣τ=t

τ=s

≤ −1

2

ˆ t

s

ˆ
Ω

P(z) dxdτ − ε2α
ˆ t

s

‖u− ū‖2
L2(Ω)dτ

≤ −ε3
ˆ t

s

[
Hrel(z(τ), z̄) + αGrel(u(τ), ū)

]
dτ,
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where ε3 = ε3(z̄, α,Ω) > 0. A version of Gronwall’s inequality (see e.g. [21, p. 702]) yields the
asserted bound (2.13) for λ = ε3 > 0.

Let us note that in the above proof we have not used the fact that π1γ
2|∇u|2 is dominated by P(z)

(see (5.2)). If σ(u) is sufficiently close to a linear function for u� 1, e.g. σ(u) = u1−ε(d) for ε(d) > 0
small enough, this term may be exploited as in [39, Section 3] to quantitatively improve the decay rate.

6. APPENDIX

Lemma 6.1 (Estimates for Model (M0)). Let the hypotheses of Model (M0) be satisfied. Then, formally,

n∑
k=0

A0k(z)∇zk = a(z)∇z +m(z)∇D0h(z), (6.1a)

n∑
k=0

Aik(z)∇zk = mi(z)∇Dih(z) + a(z)ci
w′i(u)

wi(u)
∇u for i ≥ 1, (6.1b)

where a(z) = π1(z)γ(z) and γ is given by (2.6).
Moreover, for any sufficiently regular function z = (u, c1, . . . , cn) with positive components, we have
the following estimates:

Abbreviating

P(z) := ∇z : (D2h(z)A(z)∇z) = ∇Dih(z) · (Mil(z)∇Dlh(z))

and γ(u, c) := −σ̂′′(u)−
∑n

l=1

w′′l (u)

wl(u)
cl, one has

P(z) &
n∑
i=1

|∇
√
ci|2 + |√γ∇u|2 + |

√
m∇D0h(z)|2, (6.2)

and

a(z)|∇u|2 ∼ |∇u|2. (6.3)

Furthermore,

|A(z)∇z| .
(

max
i=1,...,n

√
ci +

√
π1(z) +

√
m(z)

)√
P(z), (6.4)

|
n∑
k=0

Aik(z)∇zk| .
√
ci
√

P(z) for i ≥ 1, (6.5)

|
n∑
k=0

A0k(z)∇zk| . |∇u|+
√
m
√

P(z). (6.6)

Proof. Identities (6.1a)–(6.1b) follow from a straightforward computation using the definition of µi
(see [24], if necessary). Except for the last term in (6.2), estimate (6.2) is a consequence of [24,
Lemma 2.1] (in [24]: m ≡ 0). The additional control of |

√
m∇D0h(z)|2 for m = m(z) ≥ 0 easily

follows from the definition of P(z) and M. Eq. (6.3) is immediate since a = πγ ∼ 1 by hypothesis.
Estimate (6.4) has been established in [24, Lemma 2.3, eq. (2.10)] for m ≡ 0, and the current version
thus follows estimate (6.2), which implies the bound |m(z)∇D0h(z)| ≤

√
m
√

P(z). Estimate (6.5)
is a consequence of the proof of [24, Lemma 2.3], while estimate (6.6) follows from the fact that a ∼ 1
and the bound on m(z)∇D0h(z) observed before.

Lemma 6.2. Model (M0) (see page 13) fulfils conditions (A1)–(A5) and (A6) of Theorem 2.8 when as-
suming additionally the regularity hypotheses σ̂, wi ∈ C4((0,∞)), (A2.ii) andm,mi, π1 ∈ C0,1

loc ((0,∞)1+n).
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Proof. The asserted estimates can be verified using Lemma 6.1: the bounds in (A4) are immediate
consequences of estimates (6.2), (6.4) combined with the bound 0 ≤

√
π1(z) . (1 + u). Condi-

tion (A5) follows from estimating |a(z)∇u| . √π1|
√
γ∇u| and using (6.2). Condition (A6) easily

follows from (6.5) and (6.6). (We have not aimed at optimising the conditions on m(z), which are far
from being sharp.) The conditions in (A3) follow from the definition of M in (2.7).

Lemma 6.3 (Lower and upper entropy bounds). Let h = h(u, c) be given by (h1) with (h2) being
satisfied. There exist positive constants εβ > 0, κβ ∈ (0, 1) and Cβ, C ∈ (0,∞) such that for all
(u, c) ∈ [0,∞)1+n

h(u, c) ≥ −σ̂(u) + εβ

n∑
i=1

ci log(ci)− Cuκβ − Cβ, (6.7)

h(u, c) ≤ −σ̂(u) + C

n∑
i=1

ci log(ci) + C. (6.8)

Proof. Letting β∗ = β+1
2
∈ (β, 1), we estimate using (h2)

ci log(wi(u)) = ci log(wi(u))χ{wi(u)≤cβ∗i }
+ ci log(wi(u))χ{wi(u)>cβ∗i }

≤ β∗ci log(ci) + wi(u)
1
β∗ log(wi(u)) + C

≤ β∗ci log(ci) + Cu
1
2

(1+β/β∗) + C.

Thus,

h(u, c) = −σ̂(u) +
n∑
i=1

(
λ(ci)− ci log(wi(u))

)
≥ −σ̂(u) +

n∑
i=1

(
(1− β∗)ci log(ci)− ci + 1

)
− Cu

1
2

(1+β/β∗) − C.

This yields (6.7) with κβ := 1
2
(1+β/β∗) < 1, εβ = 1

2
(1−β∗) > 0 and a suitable constantCβ <∞.

Estimate (6.8) easily follows from the hypothesis that wi(0) > 0 for all i (see also the proof of [24,
eq. (2.9)]).

Lemma 6.4 (Minimum principle). In addition to the hypotheses of Theorem 2.8 assume that $ = 0.
Let T ∈ (0, T ∗) and u := infΩT u

in > 0. Then the energy component u of the renormalised solution
z = (u, c) satisfies u ≥ u almost everywhere in ΩT .

Sketch proof. The hypotheses imply that u ∈ L∞loc(I;L2(Ω)) and that there exists r > 1 such that
a(z)∇u ∈ Lrloc(I;Lr(Ω)), ∂tu ∈ Lrloc(I; (W 1,r′(Ω))∗), 1

r
+ 1

r′
= 1. The weak formulation of the

energy component (2.3) can therefore be integrated by parts with respect to time to giveˆ T ′

0

〈∂tu, ϕ〉 dt = −
ˆ T ′

0

ˆ
Ω

a(z)∇u · ∇ϕ dxdt. (6.9)

for a.a. T ′ ∈ (0, T ]. Ignoring regularity issues for the moment and testing the equation with ϕ =
(u− u)− leads to

1

2

ˆ
Ω

|(u− u)−|2 dx

∣∣∣∣t=T ′
t=0

+

ˆ T ′

0

ˆ
Ω

a(z)|∇(u− u)−|2 dxdt = 0. (6.10)

This implies that (u− u)− = 0 and hence u ≥ u a.e. in ΩT .

To make the argument rigorous, one considers a smooth partition of unity (χk)
N
k=1 on Ω̄ as in the proof

of the L2 identities in [24, Lemma 6.1], see also [11, Lemma 12] and [22, Lemma 4]. For simplicity, we
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only outline the reasoning in the case of ψ := χk being compactly supported in Ω, and refer, for the
general case, to the first and the third of the references provided before.

Denote by ρ̃ the standard mollifying kernel, let ρ := ρ̃ ∗ ρ̃ and ρε(x) := 1
εd
ρ(x

ε
). Then, for ε > 0

small enough (only depending on dist(suppψ, ∂Ω)), choose in (6.9) the test function

ϕ = ρε ∗ ((ρε ∗ u− u)−ψ),

which lies in W 1,r
loc (I;Hs(Ω)) for any s ∈ N. Abbreviate uε = ρε ∗ u and compute

∂tuε(uε − u)−ψ = 1
2

d
dt
|(uε − u)−|2ψ.

One the other hand, the termˆ T ′

0

ˆ
Ω

ρε ∗ (a(z)∇u) · ∇((uε − u)−ψ) dxdt

can be shown to converge to ˆ T ′

0

ˆ
Ω

a(z)∇u · ∇((u− u)−ψ) dxdt

by arguing similarly as in the proof of the L2-energy identity in [24, Lemma 6.1], see also [11,
Lemma 12], where one should use the fact that ‖(uε − u)−‖L∞ ≤ u, which follows from the non-
negativity of u. Thus,

1

2

ˆ
Ω

|(u− u)−|2χk dx

∣∣∣∣t=T ′
t=0

+

ˆ T ′

0

ˆ
Ω

a(z)∇u · ∇((u− u)−χk) dxdt = 0,

and upon summation over k one arrives at (6.10).
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