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ABSTRACT. A class of stochastic systems of particles with variable weights is stu-
died. The corresponding empirical measures are shown to converge to the solution 
of the spatially homogeneous Boltzmann equation. In a certain sense, this class of 
stochastic processes generalizes the "Kac master process" ([4]). 
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1. INTRODUCTION 

We are concerned with stochastic systems of the form 

(9i,n(t),vi,n(t)), i = 1, ... ,mn(t), t ET. (1.1) 

The limiting behavior of the system (1.1) is studied as the parameter n tends to 
infinity. The number of elements in the system is denoted by mn ( t), where t E T , 
T C [O, oo), is the time parameter. The elements Vi,n( t) E IR3 are considered as 
"particles" (or "velocities"), and the elements 9i,n(t) E [O, 1] - as "weights". The 
empirical measures corresponding to the system ( 1.1) are defined as 

mn(t) 

µn(t,dv)= I: 9i,n(t)811i,n(t)(dv), (1.2) 
i=l 

where 8 denotes the Dirac measure. 

A simple model of the type (1.1) was studied in Illner and Wagner [3] and cal-
led "random discrete velocity model". This model was discrete in time, i.e. T = 
{k6.t; k = 0, 1, 2, ... }, 6.t > 0. Also, a time-independent set of "discrete veloci-
ties" ( Vi,n , i = 1, ... , n) was used. The random evolution of the weigths (9i,n ( t) , i = 
1, ... ,n), t E T, was defined on the basis of a Broadwell-type equation. It has 
been proved that the empirical measures (1.2) approximate (as the number of dis-
crete velocities tends to infinity) the solution of the time-discretized and spatially 
homogeneous Boltzmann equation 

f(t+6.t,v) = f(t,v)+6.t r dw r deq(v,w,e)x }"'3 ls2 

x [f(t,v*(v,w, e))f(t,v*(w,v, e))- f(t,v)f(t,w)], 

f(O,v) = fo(v), 

(1.3) 

(1.4) 

where t E T and v E IR3 • The symbol § 2 denotes the unit sphere in the Euclidean 
space JR3 , the positive measurable function q is called the collision kernel, and v* 
denotes the collision transformation 

v*(v,w,e)=v+e(e,w-v), v,wEIR3 , eE§2 , (1.5) 

where(.,.) on the right-hand side of (1.5) is the scalar product in IR3 . 

The precise formulation of what "approximation" means is the following. Let p 
denote the bounded Lipschitz distance between two finite measures V1 and v2, which 
is defined as 

(1.6) 
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where D = {cp: IR3 - [O, 1]; lcp(x) ~ cp(y)I :S llx -yll}. Consider the measures 

>.(t,dv)=f(t,v)dv, iET, (1.7) 

where f is the solution of Eq.(1.3), (1.4). Under some assumptions concerning the 
collision kernel q it has been proved that 

lim E(n)p(µn(t), >.(t)) = 0, Vt ET, 
n-->oo 

while a certain stability condition holds. The symbol E(n) denotes the mathematical 
expectation. 

The main result of this paper is the construction of a stochastic system of the 
form (1.1) such that the empirical measures (1.2) converge (in the sense described 
above) to the exact (i.e. without a time-discretization error) solution of the spatially 
homogeneous Boltzmann equation 

a 
atf(t, v) 

where t > 0 and v E JR3 . 

f dw f deq(v,w,e) x JIB.3 ls2 

x [f(t,v*(v,w, e))f(t,v*(w,v, e))- f(t,v)f(t,w)], 

f(O,v) = fo(v), 

(1.8) 

(1.9) 

The stochastic system contains certain free parameters that do not influence the 
convergence result. For a special choice of these parameters, the system (1.1) is 
closely related to the "master process" introduced by Kac in his famous paper [4] on 
the mathematical foundation of kinetic theory. 

The paper is organized as follows. Section 2 contains the definition of the stochastic 
model. The precise formulation of the convergence result is given in Section 3. After 
some technical preparations collected in Section 4, the convergence result is proved 
in Section 5. In the proof, ideas from Skorokhod [5], Arsen'yev [2], Smirnov [6], and 
Wagner [7] are used. Some special cases are considered in Section 6. In particular, 
the relationship between the stochastic model introduced in this paper and the Kac 
model is discussed. Comments concerning some open problems conclude the paper. 

2. THE MODEL 

We introduce a stochastic system of the form (1.1) as a sequence of Markov jump 
processes 

(2.1) 
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For a fixed n, the state space of the process z(n) is 

z(n)= LJ ([o,1(n)]xIR3)m. (2.2) 
1::;m::;N(n) 

The positive numbers N(n) and 1(n) are bounds for the number of particles in the 
system and for the weights of the particles, respectively. 

The process z(n) is defined by its infinitesimal generator 

(A(n)<f?)(z) = L l deD(n)(z, i,j, e)[<I?(J(n)(z, i,j, e)) - <I?(z)], (2.3) 
1::;i<j::;m § 2 

where <I? is a bounded measurable function on the state space, and the state is of the 
form z = ((g1, v1), ... ,(gm, Vm)) E z(n). 

The function D(n) is supposed to be nonnegative, measurable, and such that the 
jump intensity 

is bounded, i.e. 

7r(n)(z) S 1rt"2x, Vz E zCn), for some constant 1rt"2x. 
The jump transformation J(n) is defined as follows, 

J (n)( . . ) _ {((.§1, v1), ... , (9m+2i vm+2)) 
z,i,J, e -

z 
, if m + 2 S N( n), 
, otherwise , 

, if k Sm, 
, if k = m + 1, 
, if k = m + 2, 

where v* is the collision transformation given in (1.5), and 

{
gk 

9k = 9k(z,i,j,e) = gk -G(n)(z,i,j,e) 
Q( n) ( z' i' j' e) 

, if k S m , k =/= i, j , 
l if k = i,j l 
,if k>m. 

The function G(n) is supposed to be nonnegative, measurable, and such that 

Q(n)(z, i,j, e) S i(n)-1 gi gj, 

for all z = ((gi, vi), ... , (gm, vm)) E zCn), 1 Si, j Sm, e E § 2 • 

The path wise behavior of the process (2.1) is the following. 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 
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At a given state z = ((g1,v1), ... ,(gm,vm)), the process waits a random time expo-
nentially distributed with the parameter 7r(n)(z). 

Then, it performs a jump into a state z distributed according to the probability 
distribution 

(2.10) 

where 7r(n) is defined in (2.4). 
If m > N(n) - 2, then p(n)(z, dz)= 5z(dz), i.e. the jump is fictitious. Otherwise, 

the jump looks as follows. A random pair of indices ( i, j) is chosen according to the 
probabilities 

1 r d n(n)( . . ) 
7r(n)(z) }§2 e z, i, J, e . (2.11) 

A random direction vector e is generated according to the probability density 

D(n)(z, i,j, e) de 
fs2 deD(n)(z,i,j,e) · (2.12) 

A collision is performed with the particles Vi and Vj, and the vector e. The post--
collisional velocities v*( vi, Vj, e) and v*( Vj, vi, e) are added to the system. A part 
G(n)(z,i,j,e) of the weights of the pre-collisional velocities is given to the post--
collisional velocities. Condition (2.9) assures that the weights remain in the interval 
[0,1(n)]. 

3. THE CONVERGENCE RESULT 

The following properties of the collision kernel q of the Boltzmann equation (1.8) 
are assumed, for arbitrary v, w, v1 , v2 E JR3 and e E § 2 , 

q(v,w,e) = q(w,v,e), 

q(v,w,e) = q(v*(v,w,e),v*(w,v,e),e), 

where v* is defined in (1.5), 

r deq(v,w,e) ~ Qmax, ls2 

(3.1) 

(3.2) 

(3.3) 

(3.4) 
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The function lo appearing in the initial condition (1.9) is supposed to be such that 

f llvll 2lo( v )dv < oo. JJ?,.3 (3.5) 

We refer to Arkeryd [1] concerning the following results. Under the assumptions 
(3.1)-(3.3) there exists a unique solution f(t,v) E L1 (IR3 ), t > 0, of Eq.(1.8), (1.9) 
for every nonnegative function lo E L1 (IR3 ). Moreover, if the function lo satisfies 
condition (3.5), then certain conservation properties hold, namely 

f ,/f;i(v)f(t,v)dv= f 1f;i(v)f0(v)dv, \lt2:0, i=0,1,2, (3.6) JJ?,.3 JIB.3 
where 

(3.7) 

The following assumptions concerning the parameters of the stochastic model 
(2.1 )-(2.9) are made; 

- number of particles at the beginning: 

m~(O) = n, \In= l, 2, ... ; (3.8) 

- bound for the number of particles: 

N(n) = cNn, \In= 1, 2, ... , for some constant CN > 1; (3.9) 

- bound for the weights of the particles: 

1(n) = c-yn-1 , \In= 1, 2, ... , for some constant c.-y. (3.10) 

Concerning the function D(n), it is assumed that 

ls d D (n)( · · ) < -1 e z,i,J,e _ cDn , 
§2 

\In= 1, 2, ... , for some constant CD, (3.11) 

and 

D(n)( · · )Q(n)( · · ) ( ) z,i,J,e z,i,J,e = q Vi,Vj,e 9i9j, (3.12) 

for all z = ((gi,v1 ), ... ,(gm,vm)) E z(n), 1:::; i,j:::; m, e E § 2 • Notice that assum-
ption (3.11) implies (2.5), with 

(n) _ CD CN N( ) 
1rmax - 2 n . (3.13) 
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Theorem 3.1. Suppose the assumptions (3.1)-(3.5) concerning the parameters of 
the Boltzmann equation and the assumptions (3.8)--(3.12) concerning the parameters 
of the stochastic model to be fulfilled. 

Let >.(t), t 2: O, be the measures related to the solution of Eq. (1.8) 1 (1.9) via the 
formula (1.7) 1 and µn(t), t 2: 01 be the empirical measures (1.2) associated with the 
stochastic system ( 1.1). 

Suppose that 

(3.14) 

and 

lim E(n) p(µn(O), >.(O)) = 0. 
n--HX> 

(3.15) 

Then1 

lim E(n) sup p(µn(t),>.(t)) = 0, 
n-+oo tE[O,ti.t] 

(3.16) 

for all 

(3.17) 

4. TECHNICAL PREPARATIONS 

Let B(R3 ), Cb(R3 ), and CL(R3 ), respectively, denote the spaces of bounded measu-
rable, bounded continuous, and bounded Lipschitz continuous functions on R 3 . The 
norms JJcplloo = supvEJ!R3 lcp(v)J and 

IJcpJJL =max { ll'Pl!oo; sup Jcp(I~) = cp1~ )J} 
v,wEJ!R3 V W 

are used. Let M+(JR.3 ) denote the space of finite positive measures on R 3 . 

We will use the following abbreviations, 

(cp, v) = ~3 cp(v) v(dv), (4.1) 

(3*(cp)(v,w, e) = cp(v*(v,w, e)) + cp(v*(w,v, e)) - cp(v) - cp(w), (4.2) 

j3(cp)(v,w) = r deq(v,w,e)~j3*(cp)(v,w,e), (4.3) ls2 2 

B(cp, v) = f ( f3(cp)(v,w)v(dv)v(dw), (4.4) 1JIR3 1JIR3 
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where v,w E ll~.3, e E § 2 , <p E B(ll~.3), v E J\ll+(JR3), and v* is defined in (1.5). 

Lemma 4.1. Suppose assumptions (3.1)-(3.3) to be fulfilled. Let .X(t), t 2'.: 0, be the 
measures related to the solution of Eq. (1.8), (1.9) via the formula (1.7). 

Then, the following equation is satisfied, 

(<p,.X(t)) = (<p,.X(O)) +lat dsB(<p,.X(s)), t 2'.: 0, V<p E B(JR.3 ). (4.5) 

Proof. From (1.8), (1.9) one obtains the equation 

(<p,.X(t)) = (<p,.X(O)) + ft ds f dv f dw f de<p(v)q(v,w,e) x lo Jf!3 Jr£.3 ls2 

x [f ( s, v * ( v, w, e)) f ( s, v * ( w, v, e)) - f ( s, v) f ( s, w)] . 
A substitution of the integration variables 

(v,w)-+ T(v,w) = (v*(v,w,e),v*(w,v,e)), 

which has the property that T 2 is the identity, yields the assertion. D 

Lemma 4.2. The function fJ* defined in ( 4.2) has the following properties, 

fJ*(<p)(v,v,e) = 0, 

fJ*(<p)(v;w, e) = {J*(<p)(w,v, e), 

lfJ*(<p)(v,w, e)I :S 4 ll<plloo, <p E B(R3 ), 

for all v, w, E JR.3 , e E § 2 • 

(4.6) 

( 4. 7) 

( 4.8) 

Proof. Properties ( 4.6)-( 4.8) are obvious consequences of the definitions ( 4.2) and 
(1.5). Property ( 4.9) is shown as follows, 

lfJ*(<p )( v1, w, e) - fJ*( <p )(v2, w, e )I :S 
ll<plldllv*( Vi, w, e) - v*( v2, w, e )II + llv*( w, v1, e) - v*( w, v2, e )II + llv1 - v2ll] :S 
:S 4 ll<pllL llv1 - v2ll, 

where (1.5) has been used. D 
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Lemma 4.3. Suppose assumptions (3.1) and (3.3) to be fulfilled. 
Then, the function /3 defined in (4.3) has the following properties, 

f3(cp)(v,w) = f3(cp)(w,v), 

l/3(cp)(v,w)I:::; 2 llcplloo Qmax, 

(4.10) 

( 4.11) 
for all v,w, E JR.3 , cp E B(JR.3 ). 

If, in addition, assumption (3.4) is fulfilled, then the following inequality holds, 

l/3(cp)(vi,w) - /3(cp)(v2,w)I:::; 2 llcpllL(Qmax + QL) llv1 - v2ll, (4.12) 
for all v1,v2,w E JR.3 , cp E CL(JR.3 ). 

Proof. The properties ( 4.10) and ( 4.11) are obvious consequences of (3.1), ( 4.7), (3.3), 
and ( 4.8). Property ( 4.12) follows from 

1/3( cp )( V1, w) - /3( cp )( V2, w )I :::; r de lq( V1, w, e) - q( V2, w, e )l~l/3*( cp )( V1, w, e )I+ 
.f s2 2 

r deq(v2,w, e)~l/3*(cp)(v1,w, e) -/3*(cp)(v2,w, e)I 
.f s2 2 

< 2 II cp II oo Q L II V1 - V2 II + 2 II cp II L Q max II V1 - V2 II , 
where ( 4.8), ( 4.9), and the assumptions (3.3), (3.4) have been used. 0 

Lemma 4.4. Suppose assumptions (3.1) and (3.3) to be fulfilled. 
Then, the function E defined in ( 4.4) satisfies the inequality, 

IE( cp, I/ )I :::; 2 llcplloo Qmax v(lR.3 ) 2 ' Vcp E B(JR.3)' I/ E JW+(JR.3). ( 4.13) 
If, in addition, assumption (3.4) is fulfilled, then the following property holds, 

IE( cp, v1) - E( cp, v2)I :::; 2 !icpl!L( Qmax + QL) p(v1, v2) (v1(1R.3 ) + v2(1R.3 )], ( 4.14) 
for all cp E CL(JR.3 ), v1, v2 E M+(JR.3 ). 

Proof. Property (4.13) is an immediate consequence of (4.11). To prove (4.14), we 
consider the function 

f31(cp,v)(v) = r f3(cp)(v,w)v(dw), IM,_3 

where f3 is defined in (4.3) and v E M+(JR.3 ). One easily obtains from (4.11), (4.12) 
that 

and 
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Consequently, 

( 4.15) 
Using ( 4.10), ( 4.15), and the definition (1.6), one obtains 

JB( cp, v1) - B( cp, v2)I :'.S 
:'.S I (,81 ( cp' V1)' V1) - (,81 ( cp' V1)' V2) I + I (,81 ( cp' V2)' V1) - (,81 ( cp' V2)' V2) I :'.S 
:'.S 2 llcpl!L(Qmax + QL) p(v1, v2) [v1(~.3) + v2(lR3 )], 

where(.,.) is defined in (4.1). D 

For any r > 0, we consider the function Xr on JR3 , 

{
1 , llvll :'.Sr, 

Xr(v)= r+l-llvll, llvl!E[r,r+l], 
0 , llvll2'.r+l. 

For cp E B(JR3), we denote 

'Pr( V) = cp( V) Xr( V) , V E JR3 . 

Lemma 4.5. Let cp E CL(JR3 ). 

Then, 

l!'Prl!L :'.S 2 ll'Pl!L, Vr > 0. 

Proof. Obviously, ll'Prll= :'.S l!'Pll=· The assertion follows from 

l'Pr(v) - 'Pr(w)J :'.S 
:'.S lcp(v)xr(v) - cp(v)xr(w)I + lcp(v)xr(w) - cp(w)xr(w)I 
:'.S l!'Pll= !Iv - wll + !i'Pl!L llv - wll, 

where the Lipschitz property of the function Xr has been used. D 

Given cp E B(JR3 ), we introduce the function 
m 

( 4.16) 

( 4.17) 

F(cp)(z) = L9i cp(vi)' z = ((g1,v1), ... , (gm,vm)) E z(n). (4.18) 

Notice that 
F(cp)(z(n)(t)) = (cp, µn(t)). ( 4.19) 

Let ~A denote the indicator function of a set A. 



11 

Lemma 4.6. Conservation of mass, momentum, and energy holds for the empirical 
measures (1.2) associated with the stochastic system (1.1), i.e. 

({;i, µn(t)) = ({;i, µn(O)), Vt 2 0, i = 0, 1, 2, 
where the functions {;0 1 {;1 1 and {;2 are defined in (3.7). 

Proof. Using the definitions (2.6)-(2.8) and ( 4.2), we find that 

F( cp )( J(n)(z, i, j, e )) = F( cp )(z) + 

( 4.20) 

( 4.21) 
+~{ms;N(n)-2}( m) Q(n)( z, i, j, e) /3*( <p )(Vi, Vj 1 e), 

for all z E z(n), 1 :Si < j :Sm, e E § 2 • The jumps of the process z(n)(t) are of 
the form z---+ J(n)(z,i,j,e). Thus, one obtains from (4.19), (4.21) that 

(cp, µn(t)) = (cp, µn(O)), Vt 2 0, 
if 

/3*(cp)(v,w,e)=O, Vv,wEIR3 , eE§2 • 

This is fulfilled for cp = {;i, i = 0, 1, 2. 0 

Lemma 4.7. Let cp E B(IR3 ). Suppose assumptions (3.1) 1 (3.3) 1 and (3.12) to be 
fulfilled. 

Then, 

( cp, µn ( 0)) + lat ds B ( cp, ~ ( s)) -

- lot ds~{m>N(n)-} (mn(s))B(cp,µn(s))+Mn(S)(t), 

where Mn ( cp )( t) is a martingale such that 

I g r( <p) ( t) I '.S 2 11 <p 11 ooµ r( 0, IR ~ [ 1 + t Q ma:zlt n( 0, IR ~] 

and 

( 4.22) 

( 4.23) 

E(n) [Mn(cp)(t)] 2 '.S8JJcpJJ~1(n) Qmax t E(n)[Yn(O, IR3 )] 2 . (4.24) 

Proof. Since the function F( cp) defined in ( 4.18) belongs to the domain of definition 
. of the infinitesimal generator (2.3), the following representation holds, 
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where Mn(cp)(t) is a martingale, and 

E(n) [Mn(cp)(t)] 2 = E(n) lot ds [A(n)(F(cp)2 ) - 2F(cp) A(n)(F(cp))] (z(n)(s)). (4.26) 

We obtain from (2.3) and (4.21) that 

A(n)(F(cp))(z) = L ~ deD(n)(z,i,j,e) X 
. 1si<ism S2 

X ,{msN(n)-2}( m) G(n)( z, i, j, e) {3*( <p )(Vi, Vj, e) . 

Now we use (3.1 ), (3.12), ( 4. 7), and ( 4.6) to obtain 

m 1 
A(n)(F(cp))(z) = ,{msN(n)-2}(m) .4= 9i9j fs2 deq(vi,Vj,e) 2f3*(cp)(vi,Vj,e) 

•,J=l 
m 

- ,{msN(n)-2}( m) L 9i 9i f3( <p )(Vi, Vj) · 
i,j=l 

From ( 4.19), ( 4.25) we obtain 

(cp, µn(t)) = (cp, µn(O)) + 

+lot ds, {mSN(n)-2}( mn( s)) B( <p, µn( s)) + Mn( <p )( t) , 

and assertion ( 4.22) follows. 
Moreover, it follows from ( 4.27) and ( 4.13) that 

( 4.27) 

IMn(cp)(t)I ~ llcplloo µn(t, R3 ) + ll'Plloo µn(O, R3 ) +lot ds 2 Qmax llcplloo [µn(s, R3 )]2 · 

According to Lemma 4.6, we obtain assertion ( 4.23). 
To show (4.24), we derive from (4.21) that 

F(cp) 2(J(n)(z,i,j, e)) = F(cp)2(z)+ 
+ 2 F( <p )(z) ,{msN(n)-2}( m) cCn)( z, i, j, e) {3*( <p )(Vi, Vj, e) + 
+ ,{msN(n)-2}(m) [c(n)(z,i,j,e){3*(cp)(vi,vj,e)]2. 

Consequently, we obtain from (2.3) that 

A(n)(F(cp)2 )(z) = 2F(cp)(z)A(n)(F(cp))(z)+ 
( 4.28) 

+ L fs2 deD(n)(z,i,j,e),{msN(n)-2}(m) [G(n)(z,i,j,e){3*(cp)(vi,Vj,e)]2. 
l~i<j~m 
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It follows from (2.9) that 

a<n)(z,i,j,e) ~ 1(n). ( 4.29) 

Applying (3.12), (3.3), ( 4.8), and ( 4.29), we conclude from ( 4.28) that the function 
appearing on the right-hand side of ( 4.26) satisfies the inequalities 

Consequently, assertion ( 4.24) follows from ( 4.26), and Lemma 4.6. 0 

The following lemmas are related to the estimation of the probability that the 
number of particles in the system becomes close to the bound N(n). 

Lemma 4.8. Consider a Markov jump process z(t) given by the generator 

(A¢)(z) = 7r(z) lz P(z, dz) [¢(z) - ¢(z)], z E Z, ( 4.30) 

and suppose that the jump intensity is bounded, i.e. 

7r ( Z) ~ 7r max < 00 , 'V Z E Z . ( 4.31) 

Let a(t) denote the number of jumps of the process z(t) on the time interval [O, t). 
Then, 

Prob(a(t) 2 c) ~ Prob(e 2 c), Ve E IR, ( 4.32) 

where the random variable e has a Poisson distribution with the parameter t 7r max. 

Proof. The assertion of the lemma is intuitively clear. To prove it formally, one 
considers the extended Markov process (z( t), a( t), ,8( t) ), t 2 0, given by the generator 

(A¢)(z,a,,8) = hkk {7r(z)P(z,dz)5a+1 (da)5~+1 (d,B)+ 
+[7rmax - 7r(z)] oz( dz) 5a(da) 5~+1 (d,8)} (¢(z, a,,8) - ¢(z, a,,B)j 

The jump intensity for the extended process is constant, 71-(z, a,,8) = 7rma~· With 
probability ~, the process jumps into the state (z, a+ 1, ,8 + 1), with probability 

7rma.:c 

(1- ;~~) - into the state (z,a,,8 + 1). If a(O) = ,8(0) = 0, then a(t) ~ ,8(t), 
'Vt 2 0, and ,8(t) has a Poisson distribution with the parameter t7rmax· 0 
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Lemma 4.9. Let the random variable e have a Poisson distribution with the para-
meter fr. 

Then, 
fr 

Prob(e ;::::: fr+ C) ::::; c 2 , vc > o. ( 4.33) 

Proof. The assertion follows from the properties of the Poisson distribution Ee = 
E (e - E e)2 =fr, and Chebyshev's inequality. 0 

Lemma 4.10. Consider the process (2.1). Suppose that assumption (2.5) is fulfilled 
with 

7rt"2x ::S ctr N ( n) , for some constant ctr . (4.34) 

Suppose that 

lim N(n) = oo, 
n->oo 

( 4.35) 

and 

Ji_.~ Prob(n) ( mn(O) 2 KN( n)) = 0, for some K E (0, 1). ( 4.36) 

lim Prob(n) (mn(t) 2 N(n) - k) = 0, Vk = 1, 2, ... , 
n->oo 

for all t < 12-K, • c,.. 

Proof. Let an(t) denote the number of jumps of the process z(n)(t) on the interval 
[O, t). Then, 

Using ( 4.37), one estimates 

Prob(n)(mn(t) 2 N(n)- k) = 

Prob(n)(mn(t) 2 N(n)-k; mn(O) 2 KN(n)) + 

( 4.37) 

+Prob(n) ( mn(t) 2 N(n) - k; mn(O) < K N(n)) ::S ( 4.38) 

< Prob(n)(mn(O) 2 KN(n)) + Prob(n)(KN(n) + 2an(t) 2 N(n) - k), 

for any k = 1, 2, .... The first term on the right-hand side of ( 4.38) tends to zero as 
n ---+ oo because of assumption ( 4.36). 

Lemma 4.8 is to be applied to estimate the second term on the right-hand side 
of (4.38). The generator (2.3) has the form (4.30) (cf. (2.10), (2.4)). Assumption 
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(4.31) is fulfilled with 11"max = c1rN(n) because of (4.34). Consequently, we obtain 
from ( 4.32), 

where e is a random variable having a Poisson distribution with the parameter 
t c1r N(n). 

The probability on the right-hand side of ( 4.39) is estimated via Lemma 4.9. The 
positivity of the expression 

1 2 [N(n) (1 - K) - k] - t c1r N(n) 

is assured as n -+ oo by assumption ( 4.35), provided that 1 - K - 2 t c1r > 0. Thus, 
we obtain from (4.33), with 7r = tc1rN(n), 

(n)( ) 4tc1rN(n) 
Prob KN(n) + 2an(t) "?:_ N(n)- k S [N(n)(l _ K _ 2tc7r) _ k]2. 

Thus, the second term on the right-hand side of ( 4.38) tends to zero as n -+ oo 
because of assumption ( 4.35) provided that t < 12-K.. D c.,.. 

5. PROOF OF THEOREM 3.1 

Let IIBr, r > 0, denote the ball with the radius r in IR3 . Using (4.5), (4.22), and 
( 4.16), we obtain the estimate 

I ( cp, µn ( i)) - ( cp, A ( i)) I S 
I ('Pr) µn ( t)) - ('Pr ) A ( t)) I + I ( cp - cpT) µn ( t)) I + I ( cp - 'Pr) A ( t)) I s 

< l(cpr, µn(O)) - (cpr, .A(O))I +lot ds IB(cpr, µn(s)) - B(cpr, .A(s))I + 

+lot ds ~{m>N(n)-2}( mn( S )) IB( 'Pr, µn( S ))I + I Mn( 'Pr)( i) I + 
[µn(i, JR3 \ IIBr) + .A(i, JR3 \ IIBr )] ll'Plloo' 
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for any r.p E B(JR3 ). Now we apply (4.13), (4.14), and (4.17) to obtain 

p(µn(t), A(t)) :::; 2 p(µn(O), .A(O)) + _ 

+lot ds4(Qmax + QL)p(µn(s),.A(s)) [µn(s,JR.3 ) + .A(s,JR3 )] + 

+lot ds~{m>N(n)-2}(mn(s))2Qmax [µn(s,1R3 )]2 + 

+ sup IMn('Pr)(t)I + µn(t,JR.3 \ lIBr) + .A(t,JR3 \ lIBr). 
jjcpJJL::;t 

It follows from (4.20), (3.6), and the monotonicity of mn(s) with respect to s that 

p(µn(t),.A(t)):::; 4(Qmax + QL) [µn(O,JR.3 ) + .A(O,JR3 )] lot dsp(µn(s),.A(s))+ 

+2 p(µn(O), A(O)) + 2 Qmax [µn(O, JR.3 )] 2 ~t~{m>N(n)-2}(mn(~t)) + 
+ sup sup IMn('Pr)(t)I + sup µn(t,JR.3 \ lIBr) + sup .A(t,JR3 \ lIBr), 

tE[O,ti.t] JJcpJJL'.'.:;t tE[O,ti.t] tE[O,ti.t] 

for all t E [O, ~t], ~t > 0. Notice that 

(5.1) 

according to (3.8) and (3.10). Now we conclude from Gronwall's inequality that 

sup p(µn(t), .A(t)) < C1 [p(µn(O), .A(O)) + 
tE[O,ti.t] 

(5.2) 

+~{m>N(n)-2}(mn(~t)) + sup sup IMn('Pr)(t)I + 
tE[O,ti.t] JJcpJJL:9 

+ sup µn( t, lR.3 \ lIBr) + sup .A( t, lR3 \ lIBr )] , 
tE[O,ti.t] tE[O,ti.t] 

where the constant C1 does not depend on r and n. 
The next step is the estimation of the mathematical expectation of the terms on 

the right-hand side of (5.2). 
Using Chebyshev's inequality, ( 4.20), and assumption (3.14), we estimate the term 

E(n) sup µn(t,JR.3 \lIBr) < E(n) sup ~ f llvll 2µn(t,dv) 
tE[O,ti.t] tE[O,ti.t] r }1,.3 

~ E(n) f llvll 2 µn(O, dv) :::; C: , (5.3) 
r h3 r 

where the constant C2 does not depend on n and r. 
Analogously, using (3.6), we obtain 

sup .X(t,lR.3 \lIBr):::; ~ f llvll 2-A(O,dv). 
tE[O,.C.t] r }1,.a 

(5.4) 
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Lemma 4.10 is to be applied to estimate the term E(n)-J{m>N(n)- 2 }(mn(6.t)). Con-
dition ( 4.34) is fulfilled with c?r = ~because of (3.13). Condition ( 4.36) is fulfilled 
for all K, E c~' 1) because of (3.8) and (3.9). Assumption (3.9) also assures Condition 
( 4.35). Consequently, 

lim Prob(n) (mn(t);::: N(n) - 2) = 0, 
n-+oo 

(5.5) 

for all t < ...L ...L (1 - ...L). en CN CN 

Finally, we estimate the term E(n) suptE[O,t.t] sup[l'PllL~l IMn(<pr)(t)I. Notice that 
the set Dr ={<pr; llcpllL :::; 1} is compact in C(IIBr+i)· Consequently, for any e > 0, 
there exists a finite set of functions ('!j;i) from C(IIBr+i) such that, for any 'lj; E Dr, 
mini IJ'1f; - 'lj;i lloo :::; e. The functions ( '!j;i) are continued by zero to the space R 3 . From 
the inequality 

we obtain the estimate 

< m~nlMn(<pr -'!j;i)(i)I + 2:1Mn('lj;i)(t)I:::; 
1 . 

1 

< sup IMn('!j;)(t)j + L JMn('lj;i)(t)j. (5.6) 
JJ.Plloo~L': 

Using (4.23) and (5.1), we derive from (5.6) that 

sup sup I Mn( <pr )(t)I :::; c3 e + L sup I Mn( '!j;i)(t)I) 
tE[O,t.t] JJrpJJL9 i tE(O,t.t] 

(5.7) 

where the constant C3 does not depend on n, r, and e. Applying the martingale 
inequality, (4.24), and (5.1), we obtain from (5.7) that 

E(n) sup sup JMn(<pr)(t)I:::; C3e+C4 LIJ'1f;illoo/(n)112 , (5.8) 
tE(O,t.t] ll'PJJL9 i 

where the constant C4 does not depend on n, r, and e. 
Using (3.15), (5.5), (5.8), (3.10), (5.3), (5.4), and (3.5), we conclude from (5.2) 

that 

limsupE(n) sup p(µn(t),>.(t)):::; C: +C3e, 
n-+oo tE[O,t.t] T 

where the constant C5 does not depend on r and e, provided that 6.t satisfies (3.17). 
Since r and e are arbitrary, the assertion of Theorem 3.1 follows. 
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6. EXAMPLES AND COMMENTS 

The stochastic model described in Section 2 contains certain free parameters, na-
mely the bound N(n) for the number of particles in the system, the bound 1(n) for 
the weights of the particles, the initial state z(n)(O), the function D(n) influencing 
the jump intensity (2.4), and the function Q(n) determining the part of the weights 
transfered fo the post-collisional velocities during a jump. Certain restrictions con-
cerning these parameters have been introduced in Section 3 in connection with the 
convergence theorem. It will be illustrated now that there still remains considerable 
freedom in the choice of the parameters of the stochastic model. 

First we consider the functions Q(n) and D(n). Let ij be a positive measurable 
function of the same arguments as the collision kernel q. We introduce the function 

G(n)( . . ) _ ( )_1 [q( Vi, Vj, e )] °' . . z,i,J,e -/n _( ) g,g1 , qvi,Vj,e 

for some a E [O, 1]. Condition (2.9) takes the form 

q(v,w,e)°' S ij(v,w,e)°', Vv,w E JR3 , e E § 2 • 

It follows from (3.12) that 

D(n)(z,i,j, e) = 1(n) [q(vi,Vj, e)]1-°' [ij(vi,vj, e)J°'. 

Condition (3.11) takes the form 

C-y r de[q(v,w,e)] 1-a[ij(v,w,e)]°'Scv, Vv,wEil~.3, ls2 
for some constant cv. 

Example 6.1. In the case a= 01 we obtain from (6.1) 1 (6.3) 1 and (3.10) that 

Q(n)(z,i,j,e) = c~ 1 n9i9j 

and 

D(n)( · · ) -1 ( ) z,i,J,e = c-yn q vi,vj,e . 

Condition (6.2) is trivial. Condition (6.4) is fulfilled if 

according to (3.3). 
If, in addition1 

9i,n(O)=c-yn-1 , i=l, ... ,n, 

(6.1) 

(6.2) 

(6.3) 

(6.4) 
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then we obtain a model, in which the number of particles with non-zero weights 
remains constant. If two such particles collide, they give their weights to the post--
collisional particles. 

Example 6.2. In the case a = 1, ij(v,w, e) = qmax, Vv,w E IR.3, e E § 2 , we 
obtain from (6.1), (6.3) and (3.10) that 

'Q( n) ( · · ) -1 -1 ( ) Z 1 'L 1 J1 e = C'Y nqmaxq Vi 1 Vj,e gigj, 

and 

D(n)( · · ) -1 Z 1 'L 1 J 1 e = C-y n qmax . 

Condition (6.2) reduces to 

q(v,w, e)::; qmax, Vv,w E lR3 , e E § 2 • 

Condition (6.4) is fulfilled if 

where 47r is the surface measure of the unit sphere. 
We obtain a model, for which the jump intensity (2.4) depends only on the number 

of particles, i.e. 

(n) rn(rn - 1) 
7r ( Z) = 4 7r C-y qmax ' 2n 

The jump parameters 1 ::; i < j ::; rn and e E § 2 are distributed uniformly (cf. (2.11), 
(2.12)}. 

Condition (3.14) concerning the initial state of the system follows from assumption 
(3.5), if one starts with independent samples Vi,n(O), i = 1, ... , n, of the appropriately 
normalized initial density f 0 , and constant weights 

9i,n(O) = n-1 i 3 dv fo(v), i = 1, ... ,n. 

However, it is also possible to start with a deterministic approximation of the initial 
measure .\(0) such that condition (3.14) is fulfilled. 

The convergence result (3.16) has been proved only for time intervals with a length 
satisfying condition (3.17). This condition suggests the choice CN = 2. In this case, 
the restriction of the time interval takes the form .6..t < [4c-r Qmax]-1 in Example 6.1, 
and .6..t < [16 7r C-y qmax]- 1 in Example 6.2, respectively. 
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Finishing the paper, we mention two problems, which are important for possi-
ble applications of the model in the context of stochastic particle methods for the 
numerical treatment of the Boltzmann equation. 

In order to extend the convergence result to larger time intervals, one should intro-
duce a certain mechanism to reduce the number of particles in the system. A specific 
example of such a mechanism has been given in [3], but this problem needs further 
investigations. In particular, the constant c-y, which has no specific function in the 
present model, since the maximum of the weights decreases in time, might be helpful 
in this direction. Notice that after a reduction of the system to the particles with 
non-zero weights Example 6.1 reduces to the "master process" known from [4]. 

For numerical applications, it is necessary to replace the random waiting time 
with the parameter (2.4) by certain approximations. For instance, in Example 6.2, a 
simple approximation is obtained when replacing the random time by its expectation 
[ 4 7r C-y qmax m{ ';n-l) ]-l. The uniformity in time of the convergence result ( 3 .16) is 
useful (cf. [7], concerning the case of particle systems with constant weights) for 
proving convergence for modified processes with certain approximations of the time 
scale. 
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