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Distributed optimization with quantization for computing
Wasserstein barycenters

Roman Krawtschenko, César A. Uribe, Alexander Gasnikov, Pavel Dvurechensky

Abstract

We study the problem of the decentralized computation of entropy-regularized semi-discrete
Wasserstein barycenters over a network. Building upon recent primal-dual approaches, we pro-
pose a sampling gradient quantization scheme that allows efficient communication and computa-
tion of approximate barycenters where the factor distributions are stored distributedly on arbitrary
networks. The communication and algorithmic complexity of the proposed algorithm are shown,
with explicit dependency on the size of the support, the number of distributions, and the desired
accuracy. Numerical results validate our algorithmic analysis.

1 Introduction

Optimal transport (OT) has become an important part of the modern machine learning for its ability
to take into account the geometry of the data into the computations. Applications range from image
retrieval [54] and image classification [16] to Generative Adversarial Networks [3]. An immediate use of
Wasserstein distances is the definition of Frechet means of distributions [1, 52], which is usually called
the Wasserstein barycenter (WB) [8, 28]. Informally, WB allows us to define for example, an average
image when interpreted as a discrete probability distribution. Such flexibility along side the geometric
and statistical properties of WB has been a large number of applications, e.g., image morphing and
image interpolation of natural images [57], averaging atmospheric gas concentration data [6], graph
representation learning [58], fairness in ML [13], geometric clustering [48], Bayesian Learning [4], stain
normalization and augmentation [49], probability and density forecast combination [15], multimedia
analysis and fusion [36], unsupervised multilingual alignment [44], clustering patterns for COVID-19
dynamics [51], channel pruning [56], and many others.

As OT and, in particular, the WB framework is used in machine learning applications, the scale of
the problem increases as well. Thus, the geometric and statistical advantages of WB come with a
high computational cost. For example, calculating the WB of two images of 1M pixels translates into
a large-scale optimization problem, where the definition of the Wasserstein distance itself contains
a minimization problem with approximately 1012 variables. Approximating WB with high accuracy re-
quires processing a large number of samples to get good statistical estimates, and dependencies on
the distribution support, number of distribution, and desired accuracy are usually high [10]. There-
fore, the complexity and scalability of approximating WB is also a main research thrust within the ML
community [29, 45, 53, 45], where some heuristics [11], strongly-polynomial 2-approximation [9], fast
computation [34, 32], saddle-point [61], and proximal methods [60, 65] have been proposed, as well
as approaches based on multimarginal optimal transport [46, 62].

In addition to scale, modern ML applications require other considerations. In particular, decentral-
ized approaches [59] have recently emerged over centralized ones due to its ability to take into ac-
count data ownership, privacy, fault tolerance, and scalability, e.g., parameter server [17], federated
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learning [40, 47, 37], among others. In this paper, we are focused on: • Communication-efficient, •
Stochastic (semi-discrete), and • Decentralized computation of Wasserstein barycenters. Decentral-
ized because we assume it is not possible to store the whole dataset into one machine, and proba-
bility distributions are stored locally on a number of agents or workers connected over some arbitrary
network. The network structure defines some limited communication capabilities between the nodes.
Semi-discrete because in contrast with most of the available WB computation approaches, we assume
the base probability distributions are continuous, while we want to recover their best discrete (finite)
barycenter. Moreover, the semi-discrete setup implies that agents or machines are oblivious to their
local probability distribution and can learn about it from the realization of an associated random vari-
able. Finally, Communication-efficient because we exploit the fact that the gradients of the associated
dual formulation [55, 64] of the WB lie in the probability simplex, i.e., is a discrete distribution. Thus, we
propose a quantized communication approach that drastically reduces the network’s communication
load by sampling from such a discrete distribution, creating a sparse approximation of the stochastic
gradient. Applied to the WB problem, this means that instead of sending the whole distribution, e.g.,
an image, in each iteration, agents share a histogram from a finite number of samples drawn from its
current WB estimate.

The main contributions of this paper are:

� We propose a general quantized communication-based algorithm for the distributed computa-
tion of semi-discrete WB over networks.

� We analyze the communication and communication complexity of the proposed algorithm in two
setups: 1) The number of samples from the distribution and the samples from the gradient are
allowed to increase with time. 2) The number of samples is fixed to some predefined constant.

� Our specific results for the computation of WB are based on a new general primal-dual analysis
of the accelerated stochastic gradient descent method, for which we provide a new convergence
rate and sample complexity analysis.

� We provide numerical experiments that empirically support our theoretical finding on the con-
vergence of the proposed algorithm.

Related works: Efficient gradient quantization was studied in [35, 39, 38]. However, only non-accele-
rated stochastic gradient approaches are available. A similar approach to ours was recently studied
in [5], which uses SGD and sampling scheme in the discrete setting. In contrast, we use AGM (Accel-
erated gradient method) instead of SGD (Stochastic gradient descent), and we study the WB problem
in the semi-discrete setting and give precise computation and communication complexity in terms of
the dimension n of the barycenter space, the number of considered distributions m, and the network
architecture. Centralized Semi-discrete WB [14] was studied in [59], where the convergence of the
discrete approximations of the continuous measures was studied. Decentralized discrete WB com-
munication and computation complexity was studied in [63], and their corresponding semi-discrete
analysis is available in [21], both approaches with no quantization for communication efficiency. Em-
pirical studies of the approximation of the fully continuous barycenter are recently available in [43]. To
the best of the authors’ knowledge, the best estimate of the complexity of computing the WB in the
centralized discrete setup is available in [20].

This paper is organized as follows. Section 2 introduces the problem of distributed WB computa-
tion. Section 4 presents the general primal-dual accelerated gradient method. Section 3 analyzes the
primal-dual properties of the WB problem. Section 5 states our proposed algorithm and main results.
Section 6 shows the numerical results. Finally, Section 7 provides conclusions and future work.

Notations: We denoteM1
+(X ) as the set of positive Radon probability measures on a metric space

X . Y ∼ µ means that random variable Y is distributed according to measure µ. Let ei denote the
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Y 1∼µ1

Y 2∼µ2
Y 3∼µ3

Y m∼µm

Figure 1: A network of agents, where each agent is able to sample from a different distribution, i.e.,
agent i ∈ V samples from µi.

i-th unit vector. Let W be a positive semi-definite matrix with maximal and minimal nonzero eigen-
values denoted by λmax(W ) and λ+

min(W ). We denote the condition number of a matrix W by
χ(W ) , λmax(W )/λ+

min(W ). S1(n) , {p ∈ Rn :
∑n

l=1 pl = 1} denotes the probability sim-
plex of dimension n. Õ(·) denotes the complexity up to polylogarithms. δ denotes the Dirac mass and
[p]i denote the i-th component of the vector p. ⊗ denotes the Kronecker product of matrices and �
denotes the component-wise vector multiplication. nnz(x) denotes the number of non-zero elements
of vector x.

Given a matrix W and its rows W i we write κ(W ) :=
m∑
i=1

nnz(W i).

2 Problem Statement and Results

In this section, we describe the problem of the distributed computation of the entropy-regularized semi-
discrete Wasserstein barycenter. Moreover, we present a summary of the main results of this paper
regarding the communication, sample, and arithmetic complexity of the proposed algorithm.

Consider a network of m agents defined over a connected, fixed, and undirected graph G = (V,E),
where V = {1, · · · ,m} is the set of agents andE is the set of edges, such that (i, j) ∈ E if agent i
and agent j can communicate with each other. We assume that the graph G does not have self-loops.
Moreover, at each time k ≥ 0, each agent has access to realizations or samples (the number of
samples will be specified later) from a stationary random process {Y i

k}k≥0 such that Y i
k ∼ µi, where

µi ∈M1
+(Y) is a continuous probability distribution with with density qi(y) on a metric space Y , see

Figure 1.

The group of agents tries to collaboratively compute the entropy-regularized semi-discrete Wasser-
stein barycenter, defined as the discrete probability distribution ν, on a fixed support z1, . . . , zn ∈ Z ,
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i.e., ν =
∑n

i=1[p]iδ(zi), and p ∈ S1(n) such that

p∗ = argmin
p∈S1(n)

m∑
i=1

ωiWγ,µi(p), (1)

where {ωi}mi=1 is a set of non-negative weights with
∑m

i=1 ωi = 1. Without loss of generality we set
ωi = 1/m. Moreover, denoteWγ,µ(p) ,Wγ(µ, p) for fixed probability measure µ, whereWγ(µ, p)
is the entropy-regularized semi-discrete Wasserstein distance:

Wγ(µ, p) = min
π∈Π(µ,p)

{
n∑
i=1

∫
Y
ci(y)πi(y)dy+

γ

n∑
i=1

∫
Y
πi(y) log

(
πi(y)

ξ

)
dy

}
, (2)

where ξ is the density of uniform distribution on Y × Z , ci(y) = c(zi, y) denotes the cost of trans-
porting a unit of mass from point zi ∈ Z to point y ∈ Y , and Π(µ, p) is the set of admissible coupling
measures π defined as

Π(µ, p) =

{
π ∈M1

+(Y)× S1(n) :

n∑
i=1

πi(y) = q(y), y ∈ Y ,
∫
Y
πi(y)dy = pi

}
and γ is the regularization parameter.

Note that unlike [31], we regularize the problem by the Kullback-Leibler divergence from the uniform
distribution ξ, which allows us to find explicitly the Fenchel conjugate forWγ(µ, p), to be defined later
in Lemma 3.

We are interested in the distributed computation of approximate solutions of (1), such that, each agent
finds an approximate distribution p̃i, where

1

m

m∑
i=1

Wγ(µi, p̃i)−
1

m

m∑
i=1

Wγ(µi, p
∗) ≤ ε, (3)

and p̃1, · · · , p̃m are close to each other in a sense to be defined soon. Due to the distributed nature of
the problem, we impose the constraint p̃1 = · · · = p̃m. Also, note that with an appropriate selection of
the regularization parameter γ, one can also compute an approximate solution to the non-regularized
Wasserstein barycenter.

Proposition 1. Assume that the space Y × Z is compact with the volume Ω , Vol(Y × Z) and
there exist p̃ satisfying (3) with γ = γ̂ , ε/(4 log(Ω)). Then

1

m

m∑
i=1

W0(µi, p̃)−
1

m

m∑
i=1

W0(µi, p
∗) ≤ 2ε. (4)

Remark 1. Formally, the ρ-Wasserstein distance for ρ ≥ 1 is (W0(µ, ν))
1
ρ if Y = Z and ci(y) =

dρ(zi, y), d being a distance on Y . For simplicity, we refer to (2) as regularized Wasserstein distance.
However, we want to emphasize that our algorithm does not rely on any specific choice of cost ci(y)
and can be used for the Monge-Kantorovich distances where the transportation costs do not have to
satisfy the metric properties.
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Table 1: A summary of complexity bounds for Q-DecPDSAG. Constant and logarithmic terms are
hidden for notation convenience.

26emComplexity DecPDSAG Q-DecPDSAG
[21] Increasing Batch Constant Batch

Communication
Rounds

√
χ(W )n

ε

√
χ(W )n

ε

χ(W )n

ε2

Total Arithmetic
Operations

χ(W ) max{mn
2

ε2
,
nκ(W )

ε2
} χ(W ) max{mn

2

ε2
,
nκ(W )

ε2
} χ(W )n2κ(W )

ε2

Total Number of
bits sent

√
χ(W )mn3/2

ε

√
χ(W )κ(W ) max{n

3/2

ε
,
n

ε2
} χ(W )nκ(W )

ε2

Total Arithmetic
Operations

expander graph

mn2

ε2

mn2

ε2

mn2

ε2

Total Number of
bits sent

expander graph

mn3/2

ε
max{mn

3/2

ε
,
mn

ε2
} mn

ε2

Number of bits sent
at iteration k

n max{n, k} M

Total Number
of Samples

√
χ(W )mn

ε2

√
χ(W )mn

ε2

χ(W )mn

ε2

The objective of the group of agents is to solve (1). However, the distributed structure induced by the
network G imposes communication constraints we need to consider. We assumed that at each time
t ≥ 0, each agent i ∈ V has access to the samples from the distribution µi only, i.e., agent i has no
information about µj for j 6= i. Therefore, cooperation is needed. Such cooperation is modeled as the
ability of the agents to share their gradients using the set of edges E.

In Table 1, we informally summarize the main results of this paper. We also describe the communi-
cation and the computational complexity of the proposed algorithm, quantized distributed primal-dual
stochastic accelerated gradient method Q-DecPDSAG. We compare the obtained bounds with the
Non-quantized version denoted DecPDSAG [21]. The specifics of the proposed quantization scheme
will be described in Section 3.2. Moreover, we compare two different regimes for Q-DecPDSAG,
namely, having an increasing number of samples per iteration and having a constant number of sam-
ples per interaction. We analyze the computational complexity of Q-DecPDSAG in terms of arithmetic
operations and the total communication complexity, as the total number of coordinates sent per node
over all the iterations of the algorithm for the general graph as well as for the specific architecture
where we use expander graphs.

In the next section, we study the primal-dual properties of the WB problem. We specifically exploit the
dual problem structure and propose an effective sampling strategy for the construction of estimates of
the stochastic gradient. This will be the main building block of our algorithm.

3 Duality and Quantization

In this Section, we build upon the dual properties of the entropy-regularized Wasserstein distance to
develop a distributed algorithm that allows for the computation of a Wasserstein barycenter.

DOI 10.20347/WIAS.PREPRINT.2782 Berlin 2020
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3.1 Duality of the WB problem

A commonly used method to introduce the distributed structure of the problem is by reformulating (1)
to take into account the constraints imposed by the graph G explicitly. To do so, we define the Lapla-
cian matrix W̄∈ Rm×m of the graph G as [W̄ ]ij , −1, (i, j) ∈ E, [W̄ ]ij = deg(i) if i = j,
and 0 otherwise, where deg(i) is the number of neighbors of node i, i.e., the degree of the node
i. Similarly, we define the auxiliary matrix W , W̄ ⊗ In, which takes into account the dimension
n of the decision variable. Therefore, assuming that the graph G is undirected and connected, W̄
is symmetric and positive semidefinite. Moreover, the matrix W inherits the properties of W̄ . More
importantly, the Laplacian matrix has the property: Wp = 0 if and only if p1 = · · · = pm, where
p = [pT1 , · · · , pTm]T ∈ Rmn. The relation

√
Wp = 0 if and only if p1 = · · · = pm also holds [21].

Thus, we equivalently rewrite problem (1) as

max
p1,...,pm∈S1(n)√

Wp=0

− 1

m

m∑
i=1

Wγ,µi(pi). (5)

Given that (5) is an optimization problem with linear constraints, we introduce a vector of dual variables
λ = [λT1 , · · · , λTm]T ∈ Rmn for the constraints

√
Wp = 0. Then, the Lagrangian dual problem for

(1) can be written as

min
λ∈Rmn

W∗γ(λ) ,
1

m

m∑
i=1

W∗γ,µi(m[
√
Wλ]i), (6)

whereW∗γ,µi(·) is the Fenchel-Legendre transform ofWγ,µi(pi) defined as

W∗γ,µi(m[
√
Wλ]i)= max

pi∈S1(n)

{
〈λi, [

√
Wp]i〉 −

1

m
Wγ,µi(pi)

}
,

and [
√
Wp]i and [

√
Wλ]i denote the i-th n-dimensional block of vectors

√
Wp and

√
Wλ respec-

tively.

The next two auxiliary lemmas state properties ofW∗γ,µi(·) what will be useful for our analysis in [21].
In particular,W∗γ,µi(·) is a smooth function with Lipschitz-continuous gradient and can be expressed
as an expectation of a function of additional random argument.

Lemma 1 (Lemma 1 in [21]). Given a positive Radon probability measure µ ∈ M1
+(Y) with density

q(y) on a metric space Y , the Fenchel-Legendre dual function ofWγ,µ(p) can be written as

W∗γ,µ(λ̄)=EY∼µ

[
γ log

(
1

q(Y )

n∑
`=1

exp

(
[λ̄]`−c`(Y )

γ

))]
.

Moreover,W∗γ,µ(λ̄) hasm/γ-Lipschitz gradients w.r.t. 2-norm, and its l-th coordiante, for l = 1, . . . , n,
is defined as

[∇W∗γ,µ(λ̄)]l = EY∼µ

[
exp(([λ̄]l − cl(Y ))/γ)∑n
`=1 exp(([λ̄]` − c`(Y ))/γ)

]
.

Lemma 2 (Lemma 2 in [21]). The functionW∗γ(λ) in (6) has mλmax(W )/γ-Lipschitz gradients w.r.t.
2-norm. Moreover, for l = 1, . . . , n, it holds that[

∇W∗γ(λ)
]
l
=

m∑
j=1

√
W lj∇W∗γ,µj(λ̄j), (7)

where we denoted λ̄j = m[
√
Wλ]j .
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Distributed quantized optimization for Wasserstein barycenters 7

Lemma 2 states that the dual problem (6) is a smooth stochastic convex optimization problem. This
is in contrast, to [42], where the primal problem is a stochastic optimization problem. This will be the
main observation that will allow us to propose an efficient sampling and communication strategy to
find an approximate solution of (6), and (1). More importantly, the gradient of the dual function can be
computed in a distributed manner over a network, where each agent j ∈ V computes ∇W∗γ,µj(λ̄j)
using local information only. Then, the gradient is shared with neighbors following the graph topology,
and a full gradient step can be taken.

Next, we describe our sampling and quantization approach. We take advantage of the smooth stochas-
tic form of the dual problem, for which each agent can obtain an estimate of the gradient-based on
samples from the random variables Y i. Moreover, such an approximate gradient will be a probability
distribution itself. Thus, instead of communicating the full gradient, an agent can share a histogram of
samples of the approximate gradient itself.

3.2 Quantized stochastic gradients

We build our main result based on the idea of double sampling of the gradients. In [21], the authors
propose to use sampling from measures µi to approximate the gradients of the dual problem. Given
that each agent i can obtain at each iteration M1 samples of the random variable Y i

k ∼ µi, one can
define an approximate gradient as

∇̂W∗γ,µj(λ̄j) =
1

M1

M1∑
r=1

pj(λ̄j, Y
j
r ), (8)

where, for all l = 1, · · · , n,

[pj(λ̄j, Y
j
r )]l=

exp(([λ̄j]l − cl(Y j
r ))/γ)∑n

k=1 exp(([λ̄j]k − ck(Y j
r ))/γ)

. (9)

However, such an approximate gradient will be a vector of dimension n. For the case where n is large,
this might be prohibitively expensive in terms of communications. Thus, we take advantage of the fact
that ∇̂W∗γ,µ(λ̄) ∈ S1(n), to propose a strategy that allows lower communication costs. We propose
to use the approximate stochastic gradient defined in the next lemma.

Lemma 3. Let each agent i ∈ V , at iteration k, take M1 samples of the random variable Y i, and
build a stochastic gradient as defined in (8). Now, let each agent i ∈ V takeM2 samples of a discrete
random variable ξ on l ∈ {1, ..., n} with ξ = l with probability [∇̂W∗γ,µj(λ̄j)]l, and construct a

histogram, or approximate quantized sampled gradient of its local dual function as ∇̃W∗γ,µj(λ̄j) =
1
M2

∑M2

r=1 eξr , which are then combined in the stochastic approximation for the whole dual objective
(6) defined as [

∇̃W∗γ(λ)
]
l
=

m∑
j=1

√
W lj∇̃W∗γ,µj(λ̄j).

Then, the quantized stochastic gradient is unbiased, i.e.,

E∇̃W∗γ(λ) = ∇W∗γ(λ). (10)

Furthermore, its variance is bounded by

E‖∇̃W∗γ(λ)−∇W∗γ(λ)‖22 ≤ 2λmax(W )
m∑
i=1

( 1

Mi,1
+

1

Mi,2

)
.
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There are two main advantages in the approach described in Lemma 3. First, the number of com-
munications between the nodes diminishes with a smaller second batch, while the double-batched
algorithm preserves roughly the same complexity just as the Accelerated Distributed Computation of
Wasserstein barycenter in [21]. The second advantage is the quantization aspect such that agents
exchange sparse integer vectors instead of dense vectors of float variables.

The main observation of this Section is that the dual problem to the WB setup is a stochastic optimiza-
tion problem. Moreover, its stochastic gradients live in a probability simplex, which defines a discrete
probability distribution. Such a unique structure allows for effective sampling strategies, which trans-
late into effective communication due to the primal-dual properties of the problem. In the next section,
we propose a new analysis of stochastic optimization problems with such a structure. Later we will
specialize it for the WB problem, but our general results could be of independent interest.

4 General Primal-Dual Accelerated Stochastic Gradient Method

For any finite-dimensional real vector spaceE, we denote byE∗ its dual, by 〈λ, x〉 the value of a linear
function λ ∈ E∗ at x ∈ E. Let ‖ · ‖ denote some norm on E and ‖ · ‖∗ denote the norm on E∗ which
is dual to ‖ · ‖, i.e. ‖λ‖∗ = max{〈λ, x〉 : ‖x‖ ≤ 1}. For a linear operator A : E1 → E2, we define
the adjoint operator AT : E∗2 → E∗1 in the following way 〈u,Ax〉 = 〈ATu, x〉, ∀ u ∈ E∗2 , x ∈ E1.
We say that a function f : E → R has a L-Lipschitz continuous gradient w.r.t. norm ‖ · ‖∗ if it
is continuously differentiable and its gradient satisfies Lipschitz condition ‖∇f(x) − ∇f(y)‖∗ ≤
L‖x− y‖, ∀ x, y ∈ E.
The main problem we consider in this section is

min
x∈Q
{f(x) : Ax = b}, (11)

whereQ is a simple closed convex set,A : E → H is given linear operator, b ∈ H is given, Λ = H∗.
The dual problem for (11) consists in minimization of the function

ϕ(λ) , 〈λ, b〉+ max
x∈Q
{−f(x)− 〈ATλ, x〉}

= 〈λ, b〉+ f ∗(−ATλ). (12)

Here f ∗ is the Fenchel-Legendre conjugate function for f . We say that a (random) point x̂ is an
ε−solution to Problem (11) if

f(Ex̂)− f ∗ ≤ ε, ‖AEx̂− b‖2 ≤
ε

R
, (13)

where R is such that the dual problem (12) has a solution λ∗ satisfying ‖λ∗‖2 ≤ R < +∞.

We assume that f ∗(−ATλ) = EξF ∗(−ATλ, ξ), where ξ is random vector and F ∗ is the Fenchel-
Legendre conjugate function to some function F (x, ξ), i.e. it satisfies F ∗(−ATλ, ξ)
= max

x∈Q
{ 〈−ATλ, x〉 − F (x, ξ)}. F ∗(λ̄, ξ) is assumed to be smooth and, hence ∇λ̄F

∗(λ̄, ξ) =

x(λ̄, ξ), where x(λ̄, ξ) is the solution of the maximization problem

x(λ̄, ξ) = arg max
x∈Q
{〈λ̄, x〉 − F (x, ξ)}.

Further, we assume that the dual problem (12) can be accessed by a stochastic oracle
(Φ(λ, ξ),∇Φ(λ, ξ)) with Φ(λ, ξ) = 〈λ, b〉+F ∗(−ATλ, ξ) and∇Φ(λ, ξ) = b−A∇F ∗(−ATλ, ξ).
Let us summarize our main assumptions as follows.

DOI 10.20347/WIAS.PREPRINT.2782 Berlin 2020



Distributed quantized optimization for Wasserstein barycenters 9

Assumptions 1. � The gradient of the objective function ϕ is L-Lipschitz continuous.

� The stochastic oracle pair (Φ(λ, ξ),∇Φ(λ, ξ)) for the dual problem satisfies

EξΦ(λ, ξ) = ϕ(λ) (14)

Eξ∇Φ(λ, ξ) = ∇ϕ(λ). (15)

� There is a random variable ξ̃, which is independent of ξ, and a stochastic approximation
∇̃Φ(λ, ξ, ξ̃) for∇Φ(λ, ξ) satisfying

Eξ̃ ∇̃Φ(λ, ξ, ξ̃) = ∇Φ(λ, ξ), ∀λ, ξ (16)

Eξ,ξ̃‖ ∇̃Φ(λ, ξ, ξ̃)−∇ϕ(λ)‖2
2 ≤ σ2, ∀λ. (17)

� The dual problem (12) has a solution λ∗ and there exists someR > 0 such that ‖λ∗‖2 ≤ R <
+∞.

We propose Algorithm 1 for solving (11) using the stochastic oracle described above. Contrary to [21],
we extend the accelerated stochastic gradient method from [18] and propose its primal-dual version.
The main benefit is flexibility in the choice of the batch size, which is assumed fixed in [21]. Also, the
algorithm from [18] cannot be directly used since it does not allow us to reconstruct the solution of
the primal problem, i.e., the barycenter in our application. We believe that this general primal-dual
accelerated stochastic gradient method with flexible batch size can be of independent interest. The
next theorem presents the convergence properties of Algorithm 1.

Theorem 1. Let Algorithm 1 be applied to solve Problem (11) under the above assumptions. Case A
Assume also that at each iteration the variance σk of the stochastic gradient satisfies σ2

k ≤ εLαk/Ak.
Then, Algorithm 1 outputs an ε− solution to Problem (11) after

√
8LR2/ε iterations. Case B As-

sume the variance σ2 is constant. Then, Algorithm 1 outputs an ε−solution to Problem (11) after
max{

√
4LR2/ε, 9σ2R2/ε2} iterations.

5 Proposed Algorithm and Analysis

In this Section, we adjust the main primal-dual algorithm to the Wasserstein Barycenter problem. The
algorithm has two different options for the batch size, one for the increasing batch size similar to the
main algorithm in [21] and one for the constant batch size. We adapt the structure of the general Algo-
rithm 1 for the specific properties of the WB. This allows us to propose Algorithm 2 for the distributed
computation of WB in the semi-discrete setting with quantized communications. Finally, the following
theorems establish the complexity results in Table 1.

Theorem 2. Let G be a connected, undirected, fixed graph, and let {µi}i∈V be a set of probability

distributions with µi ∈ M1
+(Z). Moreover, set N = Õ

(√
χ(W )n/ε

)
(communication rounds),

and pick the increasing batch size strategy with Mk
i,1 = Mk

i,2 = max{1, d(k + 2)/log(Ω)e} for all
i ∈ V and all k ≥ 0. Then, the output of Algorithm 2, i.e., p̂N , is an ε− solution of (1). Moreover, the

total number of samples drawn from {µi}i∈V is Õ

(√
χ(W )mn/ε2

)
, the total number of arithmetic

operations is Õ
(

max{χ(W )mn2/ε2, χ(W )κ(W )n/ε2}
)

a, and the total number of bits sent per

node is Õ
(√

χ(W )κ(W ) min{n3/2/ε, n/ε2}
)
.
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Algorithm 1 Primal-Dual Accelerated Stochastic Gradient Method
1: Initialization

Set η0 = ζ0 = z0 = λ0 = 0and choose a number of iterations N .
2: for k = 0, . . . , N − 1 do
3: Select the coefficients:

Case A)

Ak =
1

2
(k + 1)(k + 2), αk =

k + 1

2
with βk = 2L.

Case B)

αk=
k+1

2
√

2
, βk=L+

σ(k + 2)3/2

21/4
√

3R
, Ak=

(k+1)(k+2)

4
√

2
.

4: τk = αk+1/Ak+1.

5: zk = − 1

βk

k∑
l=0

αl ∇̃Φ(λl, ξl, ξ̃l)

6: λk+1 = τkzk + (1− τk)ηk.

7: ζk+1 = zk −
αk+1

βk
∇̃Φ(λk+1, ξk+1, ξ̃k+1).

8: ηk+1 = τkζk+1 + (1− τk)ηk.
9: end for

10: x̂k+1 = 1
Ak+1

∑k+1
l=0 αlx(−ATλk+1, ξk+1).

Output: The point x̂N .

The results in Theorem 2 are two-fold. On the one hand, it provides the number of communication
rounds required for Algorithm 2 to obtain an arbitrary approximation of the non-regularized WB when
sampling scheme Case A) is selected. Moreover, we provide an explicit sample, arithmetic, and com-
munication complexities for generating such an approximation. In particular, if one uses expander
graphs, which are in general well-connected, the total number of arithmetic operations is Õ (mn2/ε2),
and the total number of bits sent per node is Õ(min{n3/2/ε, n/ε2}).

Next, we present a result for the sampling scheme Case B) in Algorithm 2.

Theorem 3. Let G be a connected, undirected, fixed graph, and let {µi}i∈V be a set of probability
distributions where µi ∈M1

+(Z). Moreover, setN = Õ
(
χ(W )n/ε2

)
(communication rounds), and

pick the constant batch strategy with Mk
i,1 = Mk

i,2 = M for all i ∈ V and all k ≥ 0. Then, the output
of Algorithm 2, i.e., p̂N , is an ε− solution of (1). Moreover, Ner of samples from the set of distributions
{µi}i∈V is Õ

(
χ(W )mn/ε2

)
. The total number of arithmetic operations is Õ

(
χ(W )κ(W )n2/ε2

)
.

The total number of bits sent per node for the general graph is Õ
(
χ(W )κ(W )n/ε2

)
.

Similarly as in Theorem 2, when expander graphs are used, the total number of arithmetic operations
is Õ (mn2/ε2), and the total number of bits sent per node is Õ(mn/ε2).

6 Numerical Results

We present numerical experiments to support Theorem 3 and Theorem 2. Figure 2 shows the con-
sensus gap and the dual function value of the WB problem generated by Algorithm 2 for m = 10 and
m = 100 agents. The set of distributions are set to be Gaussian with means and variances randomly
selected and assigned. Moreover, we compare the performance for the Non-quantized AGM for WB
computation proposed in [21]. We test the algorithm for various combinations of sampling rates M1

and M2. As expected, the algorithm from [21] has the best results because it is a non-quantized com-
munication approach, and at each iteration, each agent communicates its full gradient with its neigh-
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Algorithm 2 Q-DecPDSAG: Decentralized Quantized and Stochastic Computation of the Semi-
Discrete Entropy-Regularized Wasserstein Barycenter
1: Initialization
2: Each agent i ∈ V is assigned a distribution µi.
3: All agents i ∈ V set η0

i = ζ0
i = z0

i = ζ0
i = λ̄0

i = p̂0
i = 0 ∈ Rn, and γ = ε/(4 ln(Ω)).

4: Set the number of iterations N
5: Select the sampling scheme:

A) Increasing batch size.

Set M1,k
i = M2,k

i = max{1, d(k + 2)/ln(Ω)e}, Ak =
1

2
(k + 1)(k + 2), αk =

k + 1

2
with βk = 2L.

B) Constant batch size.

Set M1,k
i = M2,k

i = M , αk =
k + 1

2
√

2
and βk = L+

σ(k + 2)3/2

21/4
√

3R
, Ak =

(k + 1)(k + 2)

4
√

2
.

6: Compute ∇̃W∗γ,µi(λ̄0
i ) according to Lemma 3.

7: Send ∇̃W∗γ,µi(λ̄0
i ) to neighbors, i.e., {j | (i, j) ∈ E}.

8: Initialization ends.
9: For each agent i ∈ V :

10: for k = 0, . . . , N − 1 do
11: τk = αk+1/Ak+1

12: zki = − 1

βk

k∑
l=0

αl
m∑
j=1

Wij∇̃W∗γ,µj (λ̄ki ).

13: λ̄k+1
i = τkz

k
i + (1− τk)ηki .

14: Compute ∇̃W∗γ,µi(λ̄
k+1
i ) according to Lemma 3.

15: Send ∇̃W∗γ,µi(λ̄
k+1
i ) to neighbors.

16: ζk+1
i = zki −

αk+1

βk

m∑
j=1

Wij∇̃W∗γ,µj (λ̄
k+1
i ).

17: ηk+1
i = τkζ

k+1
i + (1− τk)ηki .

18: p̂k+1
i =

αk+1p
k+1(λ̄k+1

i ,·)+Akp̂ki
Ak+1

.
19: end for
Output: The point p̂N .

bors. However, the experiments also show that even with a small number of samples like M1 = 1 and
M2 = 10 Algorithm 2 can rapidly converge to the barycenter with significantly less communication
overhead. Figure 3 shows the iterates generated by Algorithm 2 for k = {10, 100, 200, 500} itera-
tions. Again, we compare the performance with AGM from [21] and various sampling schemes M1

and M2.

7 Discussion and Future Work

We presented an algorithm for the computation of approximate semi-discrete WB over networks. We
analyzed the primal-dual structure of the WB associated optimization problem and proposed a novel
accelerated stochastic method to minimize functions with stochastic dual structure. The proposed
method’s main advantage is its flexibility in the sampling scheme of the dual stochastic gradient. Two
sampling approaches were studied, increasing batch sized and constant batch size. The constant
batch is particularly useful when a specific sample size is available at each iteration step. These
sampling schemes drastically reduce the communication complexity of the WB computation. Moreover,
we explicitly analyze the communication, sample, and arithmetic complexity of the proposed methods.
Future work should focus on studying whether the total arithmetic operations can be improved further
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Figure 2: Consensus gap and dual function values generated by Algorithm 2.

than nm2/ε2 as in the discrete case [41, 45].
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Figure 3: The iterates generated by Algorithm 2.
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[40] J. Konečnỳ, H. B. McMahan, D. Ramage, and P. Richtárik. Federated optimization: Distributed
machine learning for on-device intelligence. arXiv preprint arXiv:1610.02527, 2016.

[41] A. Kroshnin, N. Tupitsa, D. Dvinskikh, P. Dvurechensky, A. Gasnikov, and C. Uribe. On the com-
plexity of approximating Wasserstein barycenters. In K. Chaudhuri and R. Salakhutdinov, editors,
Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceed-
ings of Machine Learning Research, pages 3530–3540, Long Beach, California, USA, 09–15 Jun
2019. PMLR. arXiv:1901.08686.

[42] G. Lan, S. Lee, and Y. Zhou. Communication-efficient algorithms for decentralized and stochastic
optimization. Mathematical Programming, pages 1–48, 2018.

[43] L. Li, A. Genevay, M. Yurochkin, and J. Solomon. Continuous regularized wasserstein barycen-
ters. arXiv:2008.12534, 2020.

DOI 10.20347/WIAS.PREPRINT.2782 Berlin 2020



Distributed quantized optimization for Wasserstein barycenters 17

[44] X. Lian, K. Jain, J. Truszkowski, P. Poupart, and Y. Yu. Unsupervised multilingual alignment using
wasserstein barycenter. arXiv:2002.00743, 2020.

[45] T. Lin, N. Ho, X. Chen, M. Cuturi, and M. I. Jordan. Computational hardness and fast algorithm
for fixed-support wasserstein barycenter. arXiv:2002.04783, 2020.

[46] T. Lin, N. Ho, M. Cuturi, and M. I. Jordan. On the Complexity of Approximating Multimarginal
Optimal Transport. arXiv e-prints, 2019. arXiv:1910.00152.

[47] H. B. McMahan, E. Moore, D. Ramage, and B. A. y Arcas. Federated learning of deep networks
using model averaging. corr abs/1602.05629 (2016). arXiv preprint arXiv:1602.05629, 2016.

[48] L. Mi, T. Yu, J. Bento, W. Zhang, B. Li, and Y. Wang. Variational wasserstein barycenters for
geometric clustering. arXiv:2002.10543, 2020.

[49] S. Nadeem, T. Hollmann, and A. Tannenbaum. Multimarginal wasserstein barycenter for stain
normalization and augmentation. In International Conference on Medical Image Computing and
Computer-Assisted Intervention, pages 362–371. Springer, 2020.

[50] Y. Nesterov, A. Gasnikov, S. Guminov, and P. Dvurechensky. Primal-dual accelerated gradient
methods with small-dimensional relaxation oracle. Optimization Methods and Software, pages
1–28, 2020. arXiv:1809.05895.

[51] F. Nielsen, G. Marti, S. Ray, and S. Pyne. Clustering patterns connecting covid-19 dynamics and
human mobility using optimal transport. arXiv:2007.10677, 2020.

[52] V. M. Panaretos and Y. Zemel. An Invitation to Statistics in Wasserstein Space: Fréchet Means
in the Wasserstein Space W2, pages 59–74. Springer International Publishing, Cham, 2020.

[53] G. Puccetti, L. Rüschendorf, and S. Vanduffel. On the computation of Wasserstein barycenters.
Journal of Multivariate Analysis, 176(C), 2020.

[54] Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover’s distance as a metric for image retrieval.
International journal of computer vision, 40(2):99–121, 2000.

[55] K. Scaman, F. R. Bach, S. Bubeck, Y. T. Lee, and L. Massoulié. Optimal algorithms for smooth
and strongly convex distributed optimization in networks. In Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, pages
3027–3036, 2017.

[56] Y. Shen, L. Shen, H.-Z. Huang, X. Wang, and W. Liu. Cpot: Channel pruning via optimal transport.
arXiv:2005.10451, 2020.

[57] D. Simon and A. Aberdam. Barycenters of natural images constrained wasserstein barycen-
ters for image morphing. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 7910–7919, 2020.

[58] E. Simou, D. Thanou, and P. Frossard. node2coords: Graph representation learning with wasser-
stein barycenters. arXiv:2007.16056, 2020.

[59] M. Staib, S. Claici, J. M. Solomon, and S. Jegelka. Parallel streaming wasserstein barycenters.
In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems 30, pages 2647–2658. Curran
Associates, Inc., 2017.

DOI 10.20347/WIAS.PREPRINT.2782 Berlin 2020



R. Krawtschenko, C. Uribe, A. Gasnikov, P. Dvurechensky 18

[60] F. S. Stonyakin, D. Dvinskikh, P. Dvurechensky, A. Kroshnin, O. Kuznetsova, A. Agafonov, A. Gas-
nikov, A. Tyurin, C. A. Uribe, D. Pasechnyuk, and S. Artamonov. Gradient methods for problems
with inexact model of the objective. In M. Khachay, Y. Kochetov, and P. Pardalos, editors, Math-
ematical Optimization Theory and Operations Research, pages 97–114, Cham, 2019. Springer
International Publishing. arXiv:1902.09001.

[61] D. Tiapkin, A. Gasnikov, and P. Dvurechensky. Stochastic saddle-point optimization for wasser-
stein barycenters. arXiv:2006.06763, 2020.

[62] N. Tupitsa, P. Dvurechensky, A. Gasnikov, and C. A. Uribe. Multimarginal optimal transport by
accelerated alternating minimization. In 2020 IEEE 59th Conference on Decision and Control
(CDC), 2020. (accepted), arXiv:2004.02294.

[63] C. A. Uribe, D. Dvinskikh, P. Dvurechensky, A. Gasnikov, and A. Nedić. Distributed computation
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A Proof of Proposition 1

It is clear that the density ξ of the uniform distribution on Y × Z is 1/Ω, and that the entropy term
in (2) is bounded from below by zero and from above by the value achieved when when π is a Dirac
mass. In the latter case the maximum value is γ log Ω, which is no greater than ε/4 by our choice of
γ = γ̂ = ε/(4 log(Ω)). Thus, for any µ, p,W0(µ, p) ∈ [Wγ̂(µ, p),Wγ̂(µ, p) + ε/4]. Substituting
this in (3), we obtain the desired result.

B Proof of Lemma 3

By the definition of ξr, Eξr [eξr ] = ∇̂W∗γ,µj(λ̄j) and it is easy to verify that the stochastic ap-

proximation ∇̃W∗γ,µj(λ̄j) is unbiased, and (10) holds. Let us now estimate the variance. Denoting

E = EY il ∼µj ,ξir,i=1,...,m,l=1,... ,Mi,1,r=1,...,Mi,2
where ξir is distributed as described in Lemma 3 we have

the following chain of estimates.

E‖∇̃W∗γ(λ)−∇W∗γ(λ)‖2
2 = E

∥∥∥∥∥∥∥
√
W

 ∇̃W
∗
γ,µ1

([λ̄]1)

...

∇̃W∗γ,µm([λ̄]m)

−√W
∇W

∗
γ,µ1

([λ̄]1)

...

∇W∗γ,µm([λ̄]m)


∥∥∥∥∥∥∥

2

2

≤ (λmax(
√
W ))2E

∥∥∥∥∥∥∥
∇̃W∗γ,µ1([λ̄]1)−∇W∗γ,µ1([λ̄]1)

...

∇̃W∗γ,µm([λ̄]m)−∇W∗γ,µm([λ̄]m)

∥∥∥∥∥∥∥
2

2

= (λmax(
√
W ))2E

m∑
i=1

∥∥∥∇̃W∗γ,µi([λ̄]i)−∇W∗γ,µi([λ̄]i)
∥∥∥2

2

= (λmax(W ))
m∑
i=1

E

∥∥∥∥∥∥ 1

Mi,2

Mi,2∑
r=1

eξr(λ̄i, Y
i

1 , . . . , Y
i
Mi,1

)− Epi(λ̄i, Y i)

∥∥∥∥∥∥
2

2

.

We define p =
1

M1

M1∑
l=1

p
(
λ̄i, Y

i
l

)
. Using the triangle inequality for the square of the norm we get:

E‖eξ − E(p)‖2
2 ≤ 2E‖eξ − p̄‖2

2 + 2E‖p̄− E(p)‖2
2. (18)

Moreover, using the [21, Lemma 2], we have E‖p̄− E(p)‖2
2 ≤ 1

M1
− 1

M1
‖E(p)‖2

2. For a fixed λ and
p(Yr) := p(λ, Yr), the first term in inequality (18) can be computed as follows:

E‖eξ − p̄‖2
2 = E

[
E[‖eξ − p̄‖2

2|Y ]
]

= E
[
E
[ n∑
i=1

([eξ]i − [p̄]i)|Y ]
]]

=

E

[
E

[
n∑
i=1

[eξ]i|Y
]]
−

n∑
i=1

E[p̄]2i =

= E

[
n∑
i=1

[p̄]i

]
− 1

M2
1

n∑
i=1

E
M1∑
r=1

[p(Yr)]
2
i = 1− 1

M1

E‖p‖2
2.
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Using the above procedure for the sum of eξ we get

E‖ 1

M2

n∑
r=1

eξr − Ep‖2
2 =

1

M2
2

E‖
M2∑
r=1

(eξr − p̄+ p̄− Ep) ‖2
2

≤ E

[
2

M2
2

‖
M2∑
r=1

(eξr − p̄) ‖2
2 + 2‖p̄− Ep‖2

2

]
. (19)

Since ξr are conditionally independent, we can bound the first term by:

E
2

M2
2

‖
M2∑
r=1

(eξr −
M2∑
r=1

p̄)‖2
2 =

2

M2
2

(
E

[
E

[
M2∑
r=1

‖eξr‖1|Y
]]
− E

(E[ M2∑
r=1

‖eξr‖1|Y
])2

)

=
2

M2
2

E

[
M2

n∑
i=1

[p̄]i

]
− 2E‖p̄‖2

2

M2

=
2

M2

(1− E‖p̄‖2
2).

Thus, the inequality (19) becomes:

E‖ 1

M2

n∑
r=1

eξr − Ep‖2
2 ≤

2

M2

(1− 1

M1

E‖p‖2
2)− 2

M1

‖E[p]‖2
2 +

2

M1

=
2

M2

+
2

M1

(1− ‖E[p]‖2
2 −

2

M2

E‖p‖2
2) ≤ 2

(
1

M2

+
1

M1

)
.

This leads to:

E‖∇̃W∗γ(λ)−∇W∗γ(λ)‖2
2 = (λmax(W ))

m∑
i=1

2

(
1

Mi,2

+
1

Mi,1

)
(20)

and the desired result follows.

C Proof of Theorem 1

As mentioned in Section 4, we consider primal-dual pair of problems of the form:

min
x∈Q
{f(x) : Ax = b} (21)

min
λ∈Λ

ϕ(λ) = min
λ∈Λ
〈λ, b〉+ max

x∈Q
{−f(x)− 〈ATλ, x〉} = min

λ∈Λ
〈λ, b〉+ f ∗(−ATλ). (22)

As before we assume that the conditions 1 are satisfied.

Algorithm 1 generalizes the Algorithm 6.1 of [18] (see also [22, 30]), here we present the Algorithm 6.1
to give a reader a better overview and its convergence theorem. Then we analyze the convergence
rate of our primal-dual version of the Algorithm 1. Note that the primal-dual analysis of the existing
accelerated methods [66, 2, 7, 12, 23, 24, 25, 26, 33, 50] does not apply since the dual problem is a
stochastic optimization problem and we use additional randomization.

Algorithm 6.1 of [18] applied to the dual problem (22) with stochastic inexact oracle ∇̃Φ(λ, ξ, ξ̃) is
listed as Algorithm C3. Since the objective ϕ(λ) has Lipschitz-continuous gradient, in the setting of
[18] we have δ = 0.

The following condition for the convergence analysis of Algorithm C3 is stated at the beginning of
Section 6.1 in [18].
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Algorithm C3 Stochastic Fast Gradient Method ([18, Algorithm 6.1])

Input: Sequences αk, βk, Ak =
∑k

i=0 αk satisfying Assumptions 2. Distance generating function d(λ) and
corresponding Bregman divergence V [zk](λ).

1: Initialization
Set η0 = ζ0 = z0 = λ0 and choose a number of iterations N .

2: for k = 0, . . . , N − 1 do
3: τk = αk+1/Ak+1.
4:

zk = argmin
λ∈Λ

{βkd(λ) +
k∑
l=0

αl〈∇̃Φ(λl, ξl, ξ̃l), λ− λl〉} (23)

5: λk+1 = τkzk + (1− τk)ηk.
6: Compute ∇̃Φ(λk+1, ξk+1, ξ̃k+1).
7:

ζk+1 = argmin
λ∈Λ

{〈βkV [zk](λ) + αk+1〈∇̃Φ(λk+1, ξk+1, ξ̃k+1), λ− zk〉}. (24)

8: ηk+1 = τkζk+1 + (1− τk)ηk.
9: end for

Output: The point ηN .

Assumptions 2. The following conditions hold for the sequences {αk} and {βk}, for all k ≥ 0.

α0 ∈]0, 1] and βk+1 ≥ βk > L for all k ≥ 0,

Coupling condition: α2
kβk ≤

( k∑
l=0

α`

)
βk−1. (25)

We denote, for any N ≥ 0,

Ψ̃N(λ) = βNd(λ) +
N∑
k=0

αk
(
Φ(λk, ξk) + 〈∇̃Φ(λk, ξk, ξ̃k), λ− λk〉

)
, Ψ̃∗N = min

λ∈Λ
Ψ̃N(λ).

Theorem C1 (Lemma 2 in [18]). Assume that Conditions 1, 2 are satisfied. Then, the output of Algo-
rithm C3 for all N ≥ 0 has the following property:

ANϕ(ηN) ≤ Ψ̃∗N +
N∑
k=0

αk(ϕ(λk)− Φ(λk, ξk)) +
N∑
k=1

Ak−1〈∇ϕ(λk)− ∇̃Φ(λk, ξk, ξ̃k),

λk − ηk−1〉+
N∑
k=0

Ak
(βk − L)

‖ ∇̃Φk(λk, ξk, ξ̃k)−∇ϕ(λk)‖2
2. (26)

Let us now move to our generalization of Algorithm C3. In our setting, we take Algorithm C3 with a

particular choice of the prox-function d(λ) =
1

2
‖λ‖2

2 and the corresponding Bregman divergence

V [λ̃](λ) =
1

2
‖λ− λ̃‖2

2. Then, the steps (23) and (24) of Algorithm C3 can be computed analytically.

Indeed, the optimality conditions result in equations βkλ +
k∑
l=0

αl ∇̃Φ(λl, ξl, ξ̃l) = 0 and βk(λ −
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zk) + αk+1 ∇̃Φ(λk+1, ξk+1, ξ̃k+1) = 0. The steps therefore read as zk = − 1

βk

k∑
l=0

αl∇Φ(λl, ξl)

and ζk+1 = zk −
αk+1

βk
∇Φ(λk+1, ξk+1). Our generalization consists in adding an update for the

primal variable, such that not only the dual, but also the primal problem (21) is solved with an optimal
rate. Thus, in our primal-dual algorithm, we add the step x̂k+1 = 1

Ak+1

∑k+1
i=0 αix(−ATλi, ξi) =

αk+1x(−ATλk+1,ξk+1)+Akx̂k
Ak+1

to the algorithm for the update of the primal variable. Here the vector

x(−ATλ, ξ) is defined as

x(−ATλ, ξ) = arg max
x∈Q
{〈−ATλ, x〉 − F (x, ξ)}.

We also specify two choices of sequences αk, βk, Ak =
∑k

i=0 αk. Having made these adjustments
we arrive at Algorithm 1.

The following Lemma is needed for the proof of Theorem C2.

Lemma C1. Let the assumptions of Section 4 in the main paper hold. Then

Eξk(ϕ(λk) + 〈∇Φ(λk, ξk), λ− λk〉)
≤ −f(Eξkx(−ATλk, ξk)) + 〈b− AEξkx(−ATλk, ξk), λ〉. (27)

Proof. The proof can be found in [21, Theorem 2].

Theorem C2 gives a convergence result for Algorithm 1 which is a primal-dual version of the Algorithm
C3.

Theorem C2. Let Assumptions 1 hold and the variance in each iteration be bounded
Eξk,ξ̃k‖ ∇̃Φ(λk, ξk, ξ̃k)−∇ϕ(λk)‖2

2 ≤ σ2
k. Let accuracy ε > 0 and the number of steps N ≥ 0 be

given. Then, for the primal sequence x̂k+1 = 1
Ak+1

∑k+1
i=0 αix(−ATλi, ξi) = αk+1x(−ATλk+1,ξk+1)+Akx̂k

Ak+1

its expected value Ex̂N satisfies

f(Ex̂N)− f ∗ ≤ βNR
2

2AN
+

1

AN

N∑
k=0

Ak
(βk − L)

σ2
k, (28)

‖AEx̂N − b‖2 ≤
βNR

2AN
+

1

RAN

N∑
k=0

Ak
(βk − L)

σ2
k. (29)

where the expectation is taken w.r.t. all the randomness ξ1, . . . , ξN , ξ̃1, . . . , ξ̃N .

Proof. The dualization result relies on the weak duality and convexity of the considered problem.
Taking the expectation in the inequality (26) in Theorem C1 for the unbiased stochastic approximation
cancels out certain terms and we obtain

ANϕ(ηN) ≤ EΨ̃∗N +
N∑
k=0

Ak
(βk − L)

E‖ ∇̃Φk(λk, ξk, ξ̃k)−∇ϕ(λk)‖2
2. (30)

Let us first estimate EΨ̃∗N . We introduce the feasible set ΛR := {λ ∈ H∗ : ‖λ‖2 ≤ 2R}. Then,
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Emin
λ∈Λ

Ψ̃N(λ) = E
[

min
λ∈Λ

d(λ) +
N∑
k=0

αk(ϕ(λk) + 〈∇̃Φ(λk, ξk, ξ̃k), λ− λk〉)
]

≤ min
λ∈ΛR

βNd(λ) + E
[ N∑
k=0

αk(ϕ(λk) + 〈∇̃Φ(λk, ξk, ξ̃k), λ− λk〉)
]

= min
λ∈ΛR

βNd(λ) +
N∑
k=0

αkE
[
(ϕ(λk) + 〈∇̃Φ(λk, ξk, ξ̃k), λ− λk〉)

]
(31)

Applying Lemma C1 above and using Eξk,ξ̃k ∇̃Φ(λk, ξk, ξ̃k) = Eξk∇Φ(λk, ξk), we get:

min
λ∈ΛR

N∑
k=0

αkE
[
(ϕ(λk) + 〈∇̃Φ(λk, ξk, ξ̃k), λ− λk〉)

]
= min

λ∈ΛR

N∑
k=0

αkE
[
(ϕ(λk) + 〈∇Φ(λk, ξk), λ− λk〉)

]
≤ min

λ∈ΛR

{
N∑
k=0

αk(−f(Ex(−ATλk, ξk)) + 〈b− AEx(−ATλk, ξk), λ〉)
}

≤ AN min
λ∈ΛR

{−f(Ex̂N) + 〈b− AEx̂N , λ〉}

= −ANf(Ex̂N) + AN min
λ∈ΛR
〈b− AEx̂N , λ〉

= −ANf(Ex̂N) + AN min
λ∈ΛR
〈b− AEx̂N ,

AEx̂N − b
‖AEx̂N − b‖

λ〉

= −ANf(Ex̂N)− 2ANR‖b− AEx̂N‖2.

In the inequalities above, we also used the convexity of f , the property of AN being a linear combina-

tion AN =
N∑
k=0

αk, and definitions of x̂N and ΛR.

Thus, EΨ̃∗N is bounded by

EΨ̃∗N ≤ βNd(λ)− ANf(Ex̂N)− 2ANR‖b− AEx̂N‖2. (32)

Moreover, using (30), and (32), the fact that d(λ) ≤ R2/2, and the unbiasedness of the stochastic
approximation, we get the following bound on the iteration term ANϕ(ηN):

ANEϕ(ηN) ≤ βNR
2/2− ANf(Ex̂N)− 2ANR‖b− AEx̂N‖2

+
N∑
k=0

Ak
(βk − L)

E‖ ∇̃Φ(λk, ξk, ξ̃k)−∇ϕ(λk)‖2
2. (33)

Now, let us estimate the convergence of the primal objective f(Ex̂N).

Using the weak duality −f(x∗) ≤ ϕ(λ∗) we obtain:

f(Ex̂N)− f(x∗) ≤ f(Ex̂N) + ϕ(η∗) ≤ f(Ex̂N) + Eϕ(ηN) (34)
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Dividing all terms by AN in inequality 33 and using it we obtain

f(Ex̂N)− f(x∗) ≤ f(Ex̂N) + Eϕ(ηN)

≤ βNR
2

2AN
− 2R‖b− AEx̂N‖2 +

1

AN

N∑
k=0

Ak
(βk − L)

E‖ ∇̃Φ(λk, ξk, ξ̃k)−∇ϕ(λk)‖2
2

=
βNR

2

2AN
+

1

AN

N∑
k=0

Ak
(βk − L)

E‖ ∇̃Φ(λk, ξk, ξ̃k)−∇ϕ(λk)‖2
2. (35)

Regarding the convergence of the argument ‖AEx̂N − b‖2, we know

2R‖b− AEx̂N‖2 ≤ f(x∗)− f(Ex̂N)

+
βNR

2

2AN
+

1

AN

N∑
k=0

Ak
(βk − L)

E‖ ∇̃Φ(λk, ξk, ξ̃k)−∇ϕ(λk)‖2
2. (36)

Therefore, we have for any x ∈ Q, f(x∗) ≤ f(x) + 〈λ∗, Ax− b〉. Using the bound ‖λ∗‖2 ≤ R, and
choosing x = Ex̂N translates to f(x∗) ≤ f(Ex̂N)+〈λ∗, AEx̂N−b〉 ≤ f(Ex̂N)+R‖AEx̂N−b‖2.
Finally, using this estimate in the inequality (36) gives us:

2R‖b− AEx̂N‖2 ≤ R‖AEx̂N − b‖2

+
βNR

2

2AN
+

1

AN

N∑
k=0

Ak
(βk − L)

E‖ ∇̃Φ(λk, ξk, ξ̃k)−∇ϕ(λk)‖2
2, (37)

and the desired result follows.

Using the techniques developed in [27, 19], these convergence rate guarantees can be extended to
the bounds in terms of probability of large deviations.

We next analyze Case A) of Algorithm 1 and prove Theorem 1 case A).

Theorem C3 (Proof of Theorem 1 case A). Select Case A in Algorithm 1 by choosing Ak =
1

2
(k +

1)(k + 2), αk =
k + 1

2
with βk = 2L . Assume that the variance σk satisfies σ2

k ≤
εLαk
Ak

. Then,

Algorithm 1 gives an ε-solution after

√
8LR2

ε
iterations.
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Proof. By (28), we obtain

f(Ex̂N)− f ∗ = ϕ(ηN)− ϕ(λ∗) ≤ βNR
2

2AN
+

1

AN

N∑
k=0

Ak
βk − L

σ2
k

≤ 4LR2

(N + 1)(N + 2)
+

4ε

L(N + 1)(N + 2)

N∑
k=0

Ak
L

εLαk
Ak

=
4LR2

(N + 1)(N + 2)
+

4ε

L(N + 1)(N + 2)

N∑
k=0

L
k + 1

4

=
4LR2

(N + 1)(N + 2)
+

2ε

(N + 1)(N + 2)

(N + 1)(N + 2)

4

=
4LR2

(N + 1)(N + 2)
+
ε

2
. (38)

We can see that afterN =

√
8LR2

ε
the r.h.s. becomes smaller than

ε

2
. The bound for ‖AEx̂N−b‖2

is obtained in the same way using (29).

We next analyze Case B) of Algorithm 1 and prove Theorem 1 case B).

Theorem C4 (Proof of Theorem 1 case B). Assume that we have some constant variance σ2
k = σ2.

Given c ≥ 1, a = 2c, b > 0 let the coefficients be defined by αk =
k + 1

2c
and βk = L+

σ

R
b(k+2)c,

Ak =
k∑̀
=0

α` =
1

2a
(k+ 1)(k+ 2). Select case B of Algorithm 1 by setting c = 3/2 with the resulting

step sizes αk =
k + 1

2
√

2
and βk = L +

σ

21/4
√

3R
(k + 2)3/2. Then Algorithm 1 gives an ε-solution

after

√
4LR2

ε

∨ 9σ2R2

ε2
iterations.

Proof. Using (28), we get

f(Ex̂N)− f ∗ ≤ βNR
2

2AN
+

1

AN

N∑
k=0

Ak
βk − L

σ2
k

≤ 23/2LR2

(N + 1)(N + 2)
+

29/4(N + 3)3/2σR√
3(N + 1)(N + 2)

=
4LR2

N2
+

√
3(31/3N)3/2σR

N2

=
4LR2

N2
+

3σR

N1/2

= Θ
(LR2

N2
+
σR√
N

)
. (39)

By the choice of the number of iterationsN =

√
4LR2

ε

∨ 9σ2R2

ε2
, we obtain that the r.h.s. is smaller

than ε. The bound for ‖AEx̂N − b‖2 is obtained in the same way using (29).
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D Proof of Theorem 2

Proof. For the Wasserstein barycenter problem, the dual objective function is ϕ(λ) = W∗γ(λ), the

primal objective is f(p) = 1
m

m∑
i=1

Wγ,µi(pi), and the linear operator is A =
√
W . We set the approx-

imate gradient ∇̃Φ(λ, Y1, . . . , YM1 , ξ1, . . . , ξM2) := ∇̃W∗γ(λ, Y1, . . . , YM1 , ξ1, . . . , ξM2). With

this setting we can apply the Theorem C3. We set γ = ε/(4 ln(Ω)) and the weights to ωl =
1

m
.

According to Theorem C3 the variance has to satisfy the condition

σ2
k ≤

εLαk
Ak

=
εmλmax(W )

(k + 2)γ
=
λmax(W )4m ln(Ω)

(k + 2)
, (40)

where we used also Lemma 2. According to Lemma 3 the total variance is bounded by

E‖∇̃W∗γ(λ)−∇W∗γ(λ)‖2
2 ≤ 2λmax(W )

m∑
i=1

( 1

Mi,1

+
1

Mi,2

)
, λ ∈ Rmn. (41)

Setting the batch sizes Mk = 1
∨⌈k + 2

ln(Ω)

⌉
≤ 1

∨⌈ k

ln(Ω)
+ 1
⌉

which is the Case A of Algorithm 2

satisfies the condition (40), and thus we can apply Theorem C3. Since the decreasing variance con-

dition is satisfied the algorithm converges after N =

√
8LR2

ε
iterations according to Theorem C3.

Using the estimate R ≤
√

2n

mλ+
min(W )

from (49), and L = mλmax(W )/γ from Lemma 2 we have

that Algorithm 2 converges after Õ
(√χ(W )n

ε

)
iterations.

Moreover, the total number of samples is

m
N∑
k=1

Mk ≤ m
N∑
k=1

k + 2 = m
(N(N + 1)

2
+ 2N

)
= Õ

(
χ(W )mN2

)
= Õ

(
χ(W )mn

ε2

)
. (42)

Let us compute the computational complexity for a particular node i. On each iteration we have to
batchMk samples. Sampling individual vector sample pi(λ̄i, Y i

r ) costs n with r = 1, . . . ,Mk. There-
for the overall sampling cost is Mkn at the k-th iteration.

At iteration k the cost of summation of individual gradients (Equations (12) and (16) in Algorithm 2) is
nnz(W i)Mk.

Obtaining realizations costs n. Other operations cost O(n), thus the computational complexity is
Õ(Mkn) at each iteration. Summing the complexity up over the iterations results in

N∑
k=1

(n log2 n+Mk(n+ nnz(W i))) = Nn log2 n+ (n+ nnz(W i))
N∑
k=1

k + 2

ln(Ω)

≤ Nn log2 n+ (n+ nnz(W i))
N∑
k=1

k + 2

= Nn log2 n+ (n+ nnz(W i))
(N(N + 1)

2
+ 2N

)
(43)
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computational complexity per node. Summing this up over all the nodes results in

m∑
i=1

Nn log2 n+ (n+ nnz(W i))
(N(N + 1)

2
+ 2N

)
= mNn log2 n+ (mn+

m∑
i=1

nnz(W i))
(N(N + 1)

2
+ 2N

)
= Õ

(
mnN2

∨ m∑
i=1

nnz(W i)N
2

)
= Õ

(
χ(W )mn2

ε2

∨ χ(W )n

ε2
κ(W )

)
. (44)

Compared to the non-quantized version the number of bit communications per node per round for the
quantized version is now nnz(W i)(Mk

∧
n) instead of nnz(W i) · n because we send Mk coordi-

nates and at most the full dimensional vector. Summing this over the number of iterations and over the
nodes gives us

m∑
i=1

N∑
k=1

nnz(W i)(n ∧Mk) ≤
m∑
i=1

nnz(W i)
N∑
k=1

n
∧ N∑

k=1

Mk

= Õ

(√
χ(W )κ(W )

(
n3/2

ε

∧ n

ε2

))
(45)

total number of sent communication bits.

Remark 2. The complexity bounds for the expander graph are easily derived from the general results

of Theorem C3 and C4 using the equality
m∑
i=1

nnz(W i) = Õ(m).

E Proof of Theorem 3

Proof. We choose the dual, primal objective and approximate gradient as in proof of Theorem 2.

According to Theorem C4, Algorithm 2 case B) converges after N ≥
√

4LR2

ε

∨ 9σ2R2

ε2
iterations.

We choose case B of Algorithm 2 with constant batch size M = Mk
i,1 = Mk

i,2. Then, by Lemma 3

σ2 ≤ 2λmax(W )
m∑
i=1

2

M
=

4λmax(W )m

M
. (46)

Using again the estimate forR and L the algorithm converges afterN =

√
32χ(W )n

ε

∨ 72χ(W )n

ε2M

= Õ
(χ(W )n

ε2

)
iterations for a small constant batch size.

The total number of samples is m
∑N

k=1M = mNM = Õ

(
χ(W )mn

ε2

)
.

Sampling individually pi(λ̄i, Y i
r ), r = 1, . . . ,M costs n. Therefor the overall sampling cost is Mn

for each iteration.
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At iteration k the cost of summation of individual gradients (Equations (12) and (16) in Algorithm 2)
is nnz(W i) ·M . Sampling M type 2 samples costs Mn. Afterwards the cost of sampling M type
1 samples is also Mn. Other operations cost O(n), thus the computational complexity is Õ(Mn) at
each iteration. Summing the complexity up over the overall computational complexity per node is

N∑
k=1

Mn = Õ

(
χ(W )n2

ε2

)
(47)

resulting in
∑m

i=1

∑N
k=1 Mn · nnz(W i) = Õ

(
χ(W )n2

ε2

)
total arithmetic operations.

The number of bits sent per iteration for the quantized version is now nnz(W i)·(M∧n) = nnz(W i)·
M per node for M ≤ n. Summing these estimates over the number of iterations gives us

m∑
i=1

N∑
k=1

nnz(W i) ·M

=
m∑
i=1

nnz(W i)M

√32nχ(W )

ε

∨ 72nχ(W )

ε2M

 = Õ

(
κ(W )χ(W )n

ε2

)
(48)

number of communication bits sent in total.

Remark 3. After sampling M type 2 samples which costs Mn we can first create a binary tree which
costs n log2 n. Afterwards the cost of sampling of one coordinate (type 1 samples) is just M log2 n.

F Additional Results

This useful lemma is used to give an estimation of the area where we have to search for the dual
solution:

Lemma F2. We can upper bound the norm of the dual solution by ‖λ∗‖2 ≤ R with

R2 =

2n
m∑
l=1

w2
l ‖Cl‖2

∞

λ+
min(W )

for γ proportional to ε and c is a constant close to 2 (see [42] and Lemma 8

in [41]).

We normalize the cost matrix ‖C‖2
∞ ≤ 1. For the weights ωi =

1

m
the estimate becomes

R ≤
√

2n

mλ+
min(W )

. (49)

G Additional Simulation Results

In this section, we show additional simulation results for the proposed Algorithm 2. In each case, we
assume there is a network with 30 nodes, and randomly generate 30 different Gaussian distributions
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Figure 4: The randomly generated Gaussian distributions. Each distribution is assigned to each agent.

shown in Figure 4. Each node is assigned one of those Gaussian distributions, with uniformly sam-
pled means and variances. Agents have the ability to query samples from those distributions, but
are oblivious to the distribution itself. We test the proposed algorithm on five different graph classes:
path, cycle, star, Erdős-Renywe test three different setups for number of samples, namely, M1 = 1
and M2 = 100, M1 = 10 and M2 = 10, and M1 = 100 and M2 = 1. A video of the resulting
barycenter estimates for the path graph can be found in https://youtu.be/aSwNZvCkrCw.
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Figure 5: The dual function value and node disagreement of the iterates generated by Algorithm 2
on five different graphs, namely: path, cycle, star, Erdős-Renyí, and complete graphs, with 30 nodes
each. Moreover, we show the effects of different number of samples per iterations. For each network,
we test M1 = 1 and M2 = 100, M1 = 10 and M2 = 10, and M1 = 100 and M2 = 1.
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