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Aging for the stationary Kardar–Parisi–Zhang equation and
related models

Jean-Dominique Deuschel, Gregorio R. Moreno Flores, Tal Orenshtein

Abstract

We study the aging property for stationary models in the KPZ universality class. In particu-
lar, we show aging for the stationary KPZ fixed point, the Cole-Hopf solution to the stationary
KPZ equation, the height function of the stationary TASEP, last-passage percolation with bound-
ary conditions and stationary directed polymers in the intermediate disorder regime. All of these
models are shown to display a universal aging behavior characterized by the rate of decay of their
correlations. As a comparison, we show aging for models in the Edwards-Wilkinson universality
class where a different decay exponent is obtained. A key ingredient to our proofs is a charac-
teristic of space-time stationarity - covariance-to-variance reduction - which allows to deduce the
asymptotic behavior of the correlations of two space-time points by the one of the variances at
one point. We formulate several open problems.

1 Introduction

Aging is a property satisfied by a wide family of non-equilibrium dynamics in disordered media, in-
cluding many interesting processes in random environments. Heuristically, a process is said to satisfy
aging if, the older it gets, the longer it takes to forget its past. To properly state this property, we
consider the correlation between two random variables Q1 and Q2:

Corr(Q1, Q2) =
Cov (Q1, Q2)√
VarQ1

√
VarQ2

.

We say that a process (Yt)t≥0 satisfies the aging property with respect to the aging function ρ if
ρ : [1,∞)→ (0, 1] is so that ρ(a) < 1 for a > 1 and

lim
t→∞

Corr (Yt, Yat) = ρ(a)

for all a ≥ 1.

The study of aging originated in the physics literature in the context of cooling experiments for glassy
systems [Str76, Ferry80]. Here, the age of the system was understood as the time during which the
system is kept at a fixed temperature. It was observed that older systems take longer to relax when
submitted to a thermal variation.

The problem then reached the mathematics community, especially in the study of spin glasses and
trap models [BenCer05,BenCer07,BenBovGay02,BenCerMou06,BenDemGui01]. Aging was studied
also for random walks in random environment, with yet a similar formulation in which the correlation
function is replaced by the distance distribution function, cf. [EnrSabZin09, DemGuiZei01] and the
references therein.
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The aging property was observed in interacting diffusions as well [DemDeu07]. One of these is the
parabolic Anderson model (PAM)

dZj(t) = 1
2
∆Zj(t)dt+ βZj(t)dBj(t), t ≥ 0, j ∈ Zd,

where β > 0, ∆ is the discrete Laplacian and (Bj)j is an i.i.d. family of standard one-dimensional
Brownian motions. It was noticed that such a property is highly sensitive to the details of the models.
In particular, it is shown in [DemDeu07, Proposition 1.3 (iii)] that no aging takes place for Zj . On the
other hand, it was conjectured that aging should take place for logZj in (d + 1)-dimensions with
d = 1, 2 and for large β in dimensions d ≥ 3. This conjecture was the original motivation for our
work.

The PAM can be seen as a discrete version of the Stochastic Heat Equation with multiplicative noise
(SHE) (cf. (4) below). The SHE is in turn related to the Kardar-Parisi-Zhang equation (KPZ) through
the Cole-Hopf transformationH(t, x) = logZ(t, x), where Z is the solution of the SHE. One of our
main results - Theorem 2.2 - shows aging for the KPZ equation in 1+1 dimensions in the stationary
regime, i.e. when H(t, 0) = B(x), where B is a two-sided Brownian motion (see Section 1.2 for a
precise definition of stationarity). Moreover, this is obtained with an explicit aging function.

The study of aging in the KPZ universality class has been the object of many recent works in exper-
imental physics [TakSan12, DeNLeDTak17], theoretical physics [FerSpo16, DeNLeD17, LeD17, DeN-
LeD18] and mathematics [BasGan18,FerOcc19,CorGhoHam+]. It is intimately related to the two-time
correlations of the models under consideration, a challenging problem which has been successfully
tackled only in the last few years. In this work, we show aging for several stationary models in this
class, always with the same aging function. This can be seen as a lower resolution observation on the
sensitivity of the property to the details of the models; it supports the idea that the aging behavior is
yet another universal property inside the KPZ universality class.

1.1 The KPZ universality class

The Kardar-Parisi-Zhang equation was introduced in the physics literature as a model of phase sepa-
ration lines in the presence of impurities [KPZ86]. It can be written as

∂tH = 1
2
∂2
xH + |∂xH|2 + W ,

where W is a space-time white noise. We refer to [Qua12, Cor12, SpoQua15] for comprehensive
reviews on this equation and the KPZ universality class, including physical systems under its scope.
Among the many possible initial conditions, three of them have attracted much attention: the narrow
wedge initial condition eH(0,·) = δ0(·), the flat initial condition H(0, ·) = 0 and the stationary initial
conditionH(0, ·) = B(·), where B is a two-sided Brownian motion.

The fluctuations of the KPZ equation are fairly well understood. It is known that there exist constants
v∞, c ∈ R such that

H(0, t)− v∞t
ct1/3

⇒ χ, t→∞,

where the distribution of χ is not Gaussian and moreover depends on the initial conditions. In par-
ticular, it has been identified as the GUE distribution for the narrow-wedge initial condition, the GOE
distribution for the flat initial condition and the Baik-Rains distribution for stationary initial conditions.
Such behavior is shared by many relevant models in the KPZ universality class such as last-passage
percolation models and the totally asymmetric simple exclusion process.
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Aging for stationary KPZ 3

The study of aging properties requires information on two-time correlation functions. Persistence of
memory was first observed in the experimental setting in [TakSan12] in the framework of spectacular
liquid-crystal turbulence experiments. Aging was observed for the phase separation line of such sys-
tems on circular (narrow-wedge) and flat substrates. Such behaviour was further confirmed in [DeN-
LeDTak17] as well as aging in numerical simulations of the Eden model.

There has been historically at least two different approaches to the computation of the two-point cor-
relations of models in the KPZ universality class. The first one consists in expressing the correlations
in terms of simpler Airy-like processes. This approach was pioneered in [FerSpo16] for last-passage
percolation for narrow-wedge, flat and stationary initial profiles. In the latter case, it was conjectured
that

lim
n→∞

Cov (L(n), L(an)) = τ 2/3Cov

(
A(0), max

u∈R
{A(u) + â−1/3Ã(uâ2/3)− u2â}

)
, (1)

where L denotes the passage time (see Section 2.3 for a precise definition of the model). In the above
formula,A and Ã are two independent Airy processes and â = (a− 1)−1. It was further conjectured
that

lim
n→∞

n−2/3Cov (L(n), L(an)) = C
(
1 + a2/3 − (a− 1)2/3

)
, (2)

where C is identified as the variance of the Baik-Rains distribution [FerSpo16, Formula 2.6]. The
variational formula (1) was later proved in [FerOcc19] while we prove (2) in Theorem 2.9. Note that
it was proved in [FerOcc19] that the limiting covariance in (1) can be expressed as a combination of
variances of Airy process. We obtain such identities at finite scales for all the stationary processes
considered in this work (see Section 1.3).

The second approach consists in obtaining highly non-trivial formulae for the two-point distribution
function. Conjectural formulae were obtained in [DeNLeD17, DeNLeD18] for the KPZ equation with
narrow-wedge initial condition and in [LeD17] for the Airy process minus a parabola plus a Brownian
motion. Rigorous formulae were obtained for a continuum last-passage percolation model in [Joh17]
and for last-passage percolation with geometric weights in an appropriate scaling limit in [Joh19]. Long
and short time asymptotics were then obtained in [Joh+]. Note that no asymptotics for the correlations
are provided in these works. In general, obtaining such information from exact formulae involves very
refined asymptotic analysis.

We finally comment on two recent works. In [BasGan18], the authors obtain bounds on the correla-
tions of the last-percolation model with exponential weights which match the predictions of [FerSpo16].
The work [CorGhoHam+] provides such bounds for the KPZ equation with narrow wedge initial con-
dition, providing the first rigorous results for a positive-temperature model (in contrast with the zero-
temperature nature of last-passage percolation). More precisely, if

Ht(a, x) = t−1/3
(
H(at, t2/3x) + αt/24

)
,

then, it is showed that there exists two positive constants c1, c2 and t0 > 0 such that

c1a
−1/3 ≤ Corr

(
Ht(1, 0), Ht(a, 0)

)
≤ c2a

−1/3, ∀ a > 2, t > t0,

c1(a− 1)2/3 ≤ 1− Corr
(
Ht(1, 0), Ht(a, 0)

)
≤ c2(a− 1)2/3, ∀ a ∈ (1, 3

2
), t > t0

a−1
.

Our work complements the above results by providing an explicit aging function in the stationary case
for both last-passage percolation and the KPZ equation.
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1.2 Summary of results

In this paper we address the question of aging for stationary models in 1 + 1 dimensions. A random
process {F (t, x) : t ≥ 0, x ∈ R}, or {F (t, x) : t ≥ 0, x ∈ Z}, is stationary (resp. space-time
stationary ) if the law of its space (resp. space-time) increments is invariant under shifting the process
in time (resp. in space-time). A formal definition of space-time stationarity can be found in the content
of Proposition 5.1. The notion of stationarity should not be confused with equilibrium, in which case
the law of the process itself is invariant under time shifts. All our results follow a similar scheme which
is outlined in Section 1.3 and starts by reducing the computation of covariances to a combination of
variances involving the processes at a single space-time point.

We first deduce an aging property characterized by the aging function

ρKPZ(a) :=
1 + a2/3 − (a− 1)2/3

2a1/3

for models in the KPZ universality class. We refer to ρKPZ as the KPZ aging function. While this is an
asymptotic result for most of the models, the two-time correlations of the KPZ fixed point [MatQuaRem+]
are shown to be exactly given by ρKPZ. This follows easily from the fact that this process satisfies the
3 : 2 : 1 scaling property which is a characteristic of its universality class (but is not satisfied by
microscopic models at a fixed scale). The KPZ fixed point is the central object of its own universality
class in the sense that it should arise as the scaling limit of the models in this class. This is showed to
hold for the totally asymmetric exclusion process (TASEP) in [MatQuaRem+] and very recently for the
KPZ equation in [QuaSar+] and [Vir+].

We then prove aging for the Cole-Hopf solution to the KPZ equation. Next, we prove aging for the
height function of TASEP and last-passage percolation (LPP) with exponential weights and boundary
conditions. Our proofs rely crucially on further tail estimates for these models which have been derived
in [BaiFerPec14] and [CorGho+].

Finally, we show aging for directed polymers in Brownian environment in the intermediate disorder
regime (O’Connell-Yor model [OCoYo01]). The argument, which is the most technical part of this work,
uses Talagrand’s concentration method in Malliavin formalism and may be of independent interest. In
this case, we show that the correlations of the model rescale to the ones of the KPZ equation.

As a comparison, we also consider the Edwards-Wilkinson (EW) universality class, which has scaling
4 : 2 : 1. The aging behavior in this case is characterized by the aging function

ρEW(a) =
1 + a1/2 − (a− 1)1/2

2a1/4
.

We call ρEW the EW aging function. Once again, the stationary EW model (AKA the stochastic heat
equation with additive noise) is at the center of this universality class and its two-time correlations
are exactly given by ρEW. For one-dimensional gradient models which rescale to the EW model, we
generalize aging and show the convergence of the rescaled space-time correlation function to the one
of EW.

1.3 A warm up

All the models considered hereafter are stationary. Our methods follow a fairly elementary scheme
and are based on the simple observation that if a process (Yt)t≥0 is such that

Var(Yt − Ys) = Var(Yt−s)
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for all 0 ≤ s ≤ t and, in addition, its variance satisfies

lim
s→∞

Var(Ys)

s2α
= v

for some v, α > 0, then

lim
s→∞

Corr(Ys, Yas) =
1 + a2α − (a− 1)2α

2aα

for all a ≥ 1. This is a direct consequence of a property we call covariance-to-variance reduction
which is detailed in the definition below and allows us to express the covariance as a combination of
variances. In Lemma 1.2, we prove the elementary fact that stationary processes satisfy this property.
We stress that the convergence of the variances is a highly non-trivial fact for most of the models
considered in this work.

Definition 1.1. A random process F (t, x), t ≥ 0, x ∈ S, for S = R or S = Z, is said to follow the
covariance-to-variance reduction if for all 0 ≤ t1 < t2 and x1, x2 ∈ S, it holds that

Corr (F (t1, x1), F (t2, x2)) =
1

2

VarF (t1, x1) + VarF (t2, x2)− VarF (t2 − t1, x2 − x1)√
VarF (t1, x1)VarF (t2, x2)

.

Lemma 1.2. A space-time stationary process follows the covariance-to-variance reduction.

Proof. Applying the elementary identity

Var (Q1 −Q2) = VarQ1 + VarQ2 − 2Cov (Q1, Q2)

for two random variables Q1 and Q2, we get

Cov (F (s, x), F (t, y)) =
1

2

(
VarF (s, x) + VarF (t, y)− Var (F (t, y)− F (s, x))

)
.

Assuming that Var (F (t, y)− F (s, x)) = VarF (t− s, y − x), the above becomes

Cov (F (s, x), F (t, y)) =
1

2

(
VarF (s, x) + VarF (t, y)− Var (F (t− s, y − x))

)
,

which proves the covariance-to-variance reduction for F .

In fact, the above proof shows that a process is satisfying the covariance-to-variance reduction if and
only if the variance of its space-time increments is invariant under space-time shifts. All the processes
considered in this paper are posteriorly space-time stationary. It might be interesting to construct
non-trivial examples of processes which are not space-time stationary but exhibit the covariance-to-
variance reduction. Notice that such a process cannot be Gaussian since the latter is determined by
the variances.

2 The KPZ universality class

2.1 The KPZ fixed point

The stationary KPZ fixed point H was introduced in

[MatQuaRem+]. In the same paper, it is proved to satisfy the 3 : 2 : 1 scaling identity
(
s−1/3H(st, s3/2x)

)
t≥0,x∈R

law
=(

H(t, x)
)
t≥0,x∈R for s > 0. In addition, the process H is stationary, and moreover x 7→ H(t, x +

y)−H(t, y) is a two-sided Brownian motion for all t ≥ 0.
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Lemma 2.1. The KPZ fixed point H follows the covariance-to-variance reduction.

Define

RKPZ(s, t;x, y) = Corr (H(s, x), H(t, y))

and

ρKPZ(a) =
1 + a2/3 − (a− 1)2/3

2a1/3
.

From the 3 : 2 : 1 scaling identity, we immediately obtain

RKPZ(s, as; 0, 0) = ρKPZ(a).

For general end-points:

Theorem 2.2. For all x1, x2 ∈ R, we have

lim
s→∞
RKPZ(s, as;x1, x2) = ρKPZ(a).

Remark 2.3. The proof of Theorem 2.2, in Section 5 below, covers also the case x1, x2 = o(s2/3).
For x1 = x̂2s

2/3, x2 = x̂2s
2/3, the scaling identity gives

RKPZ(st1, st2; s2/3x̂1, s
2/3x̂2) = RKPZ(t1, t2; x̂1, x̂2). (3)

2.2 The stationary Kardar-Parisi-Zhang equation

We consider the stationary stochastic heat equation with multiplicative noise (SHE) i.e. the mild solu-
tion to the equation

∂tZ =
1

2
∂2
xZ + ZW , (4)

Z(0, x) = eB(x),

where W is a space-time white noise and B is a two-sided Brownian motion, that is B(0) = 0 and
{B(x), x ≥ 0} and {B(−x), x ≥ 0} are two independent standard Brownian motions. The precise
meaning of a mild solution will be given in Section 6.2.

We define H(t, x) = logZ(t, x) which is commonly interpreted as the Cole-Hopf solution to the
stationary KPZ equation

∂tH =
1

2
∂2
xH + |∂xH|2 + W ,

H(0, x) = B(x).

For t1, t2 ≥ 0 and x1, x2 ∈ R, we define

RKPZEQ(t1, t2;x1, x2) = Corr (H(t1, x1),H(t2, x2)).

Theorem 2.4. For all a ≥ 1 and all x1, x2 ∈ R, we have

lim
s→∞
RKPZEQ(s, as;x1, x2) = ρKPZ(a).
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Remark 2.5. An inspection at the proof shows that the result is still valid if we consider x1, x2 =
o(s2/3). The case x1, x2 = O(s2/3) is expected to lead to a different behavior and is discussed in
Subsection 4.5 along with some other open questions.

Once again, the proof of Theorem 2.4 is based on the following lemma.

Lemma 2.6. The Cole-Hopf solutionH to the KPZ equation follows the covariance-to-variance reduc-
tion.

Remark 2.7. We easily obtain the following asymptotics for ρKPZ:

ρKPZ(a) ≈ 1

2a1/3
, a→∞,

1− ρKPZ(a) ≈ 1

2
(a− 1)2/3, a→ 1+.

These match the bounds from [CorGhoHam+] presented at the end of Section 1.1.

2.3 TASEP and LPP

We consider the totally asymmetric exclusion process (TASEP) on Z with initial condition given by i.i.d.
Bernoulli random variables with parameter 1

2
. We denote the occupation variables by ηt = {η(t, j) :

t ≥ 0, j ∈ Z} where η(t, j) = 1 if there is a particle in site j at time t and η(t, j) = 0 otherwise.
We denote by Nt(j) the number of particles that have jumped from j to j + 1 during the time interval
[0, t]. We then define the height function h by

h(t, j) =


2Nt(0)−

∑j
`=1(1− 2η(t, `)), if j ≥ 1,

2Nt(0) if j = 0,

2Nt(0)−
∑−1

`=j(1− 2η(t, `)), if j ≤ −1.

We define

RTASEP(s, t; j, k) = Corr (h(s, j), h(t, k)) .

Theorem 2.8. For all j, k ∈ Z, we have

lim
s→∞
RTASEP(s, as; j, k) = ρKPZ(a).

This proves the conjectured Formula 2.6 from [FerSpo16].

We also consider a last-passage percolation model that can be mapped to TASEP. Let {W (i, j) :
i, j ≥ 0} be a collection of independent random variables such that

W (i, j) ∼ Exp(1), i, j ≥ 1,

W (i, 0) ∼ Exp(1/2), i ≥ 1,

W (0, j) ∼ Exp(1/2), j ≥ 1

W (0, 0) = 0.

Let m,n ≥ 0 and set S(m,n) to be the collection of up-right paths S with S(0) = (0, 0) and
S(m+ n) = (m,n). The passage time of such S is defined as

T (S) =
n+m∑
k=1

W (S(k)).
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Finally, we define

L(m,n) = max{T (S) : S ∈ S(m,n)}.

Let

RLPP(m1,m2;n1, n2) = Corr (L(m1, n1), L(m2, n2)) .

Theorem 2.9. Let a ≥ 1. Then,

lim
n→∞

RLPP(n, banc;n, banc) = ρKPZ(a).

Both models satisfy the covariance-to-variance reduction which is a consequence of their space-time
shift invariance by Lemma 1.2.

2.4 Semi-discrete directed polymers in a Brownian environment

2.4.1 The partition function

We introduce the model of semi-discrete directed polymers in a Brownian random environment from
[OCoYo01].

We start defining the point-to-point partition function. Let {Bi(·) : i ≥ 1} be a collection of two-sided
standard one-dimensional Brownian motions. For 0 ≤ m < n and s, t ∈ R so that s < t we define

∆(s,m; t, n) := {(sm+1, · · · , sn−1) : s < sm+1 < · · · < sn−1 < t},
∆(t, n) := {(s0, · · · , sn−1) : −∞ < s0 < · · · < sn−1 < t}.

For β > 0, 1 ≤ m+ 1 < n and 0 ≤ s < t, we define the point-to-point partition function

Zβ(s,m; t, n) (5)

=

∫
∆(s,m;t,n)

exp
[
β {Bm+1(s, sm+1) +Bm+2(sm+1, sm+2) + · · ·+Bn(sn−1, t)}

]
dsm+1,n−1,

where we write dsm+1,n−1 = dsm+1 · · · dsn−1 and Bk(u, v) := Bk(v)−Bk(u).

Fix a new two-sided standard one-dimensional Brownian motionsB0, independent of {Bi(·) : i ≥ 1}.
The stationary partition function Zβ,θ(t, n) is then defined as

Zθ,β(t, n) =

∫
∆(t,n)

exp
[
−βB0(s0) + θs0 + β {B1(s0, s1) + · · ·+Bn(sn−1, t)}

]
ds0,n−1,

where we wrote ds0,n−1 = ds0 · · · dsn−1. Note that we have the representation

Zβ,θ(t, n) =

∫ t

−∞
e−βB0(s0)+θs0Zβ(s0, 0; t, n) ds0.

The term stationary refers to a specific structure highlighted in Section 10.1.

We now state the covariance-to-variance reduction for the directed polymer model. As Zθ,β(t, n) is
almost surely positive, we can define Hθ,β(t, n) = logZθ,β(t, n). We have the following.

Lemma 2.10. The logarithm of the stationary partition functionHθ,β follows the covariance-to-variance
reduction.
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2.4.2 The intermediate disorder regime

The relation between the polymer model and the stochastic heat equation is given by the following
scaling limits known as intermediate disorder regime. We define the rescaled stationary partition func-
tion as

Z ST
n (t, x) := e−

√
n(
√
nt−x)−1

2
(
√
nt−x)− 1

2
n lognZβn,θn(tn− x

√
n, btnc),

where βn = n−1/4 and θn = 1 + β2
n

2
and here and in what follows, we systematically omit the integer

part from the notation.

Let Hn = logZ ST
n . This is known as the intermediate disorder scaling and from [JarMor19], we

know that Hn ⇒ H as n → ∞ in the locally uniform topology. The first result of this type was
on the Cole-Hopf level [AlbKhaQua14]. The result in [JarMor19] shows convergence of the discrete
gradients of Hn to the energy solution to the stochastic Burgers equation i.e. the space-derivative of
the KPZ equation. The convergence takes places in the space of distributions. However, the arguments
of [GonJar14, Section 6.4] can be easily adapted to transfer the result on the gradient convergence to
the one of the KPZ to a convergence of the whole pathHn to KPZ. We include some heuristics on the
intermediate disorder regime in Appendix B aimed at readers who are not familiar with this setting.

We can now state our Theorem on aging for directed polymers in the intermediate disorder regime.
Let

Rn(s, t;x, y) = Corr (Hn(s, x),Hn(t, y)).

Theorem 2.11. Let 0 ≤ s < t and x, y ∈ R. Then,

lim
n→∞

Rn(s, t;x, y) = RKPZEQ(s, t;x, y).

Combining the above with Theorem 2.4, we get the statement

lim
s→∞

lim
n→∞

Rn(s, as;x, y) =
1 + a2/3 − (a− 1)2/3

2a1/3
.

The key element of the proof of Theorem 2.11 is the convergence of the moments of Hn which is of
independent interest and constitutes the most technical part of this work. The proof uses concentration
inequalities based on Malliavin calculus to obtain uniform estimates on the lower tails of Zn.

Theorem 2.12. For all p > 0, t ≥ 0 and x ∈ R, we have

lim
n→∞

E [Hn(t, x)p] = E [H(t, x)p] .

Note that, by Brownian scaling, it holds that

Zβ,θ(t, n) = β−2nZ1,β−2θ(β2t, n).

As a corollary of Lemma 2.10 and the estimates of Section 10.2, we obtain the following aging regime
for polymers at a fixed temperature. Note that the parameter θ is still scaled with the size of the system.
Let

Rθ,β(s, t;m,n) = Corr(Hθ,β(t, n), Hθ,β(s,m)).

Corollary 2.13. Let νn = β−2
n θn =

√
n+ 1

2
. Then,

lim
n→∞

Rνn,1(s
√
n− x, t

√
n− y; sn, tn) = RKPZEQ(s, t;x, y).

See Subsection 4.1 for a discussion of the expected aging behavior for fixed β and θ.
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3 The Edwards-Wilkinson universality class

3.1 The Edwards-Wilkinson model

As a comparison, we consider the Edwards-Wilkinson equation, that is, the stochastic heat equa-
tion with additive noise. As in the case of the KPZ equation, here the two-sided Brownian motion is
stationary as well. More precisely, we consider the mild solution to the stochastic partial differential
equation

∂t U(t, x) =
1

2
∂2
x U(t, x) + W ,

U(0, x) = B(x),

where B(x) is a two-sided Brownian motion and W is a space-time white noise. In this case, the
solution is given explicitly by convolution of the noise with the heat kernel (see (12)). We define

REW(t1, t2;x1, x2) = Corr (U(t1, x1),U(t2, x2)).

Theorem 3.1. For all a ≥ 1 and x, y ∈ R, we have

lim
s→∞
REW(s, as;x, y) =

1 + a1/2 − (a− 1)1/2

2a1/4
. (6)

Once again, the proof is based on the following.

Lemma 3.2. The mild solution U to the EW equation follows the covariance-to-variance reduction.

Note that, by Brownian scaling, we have the 4 : 2 : 1 identity U(st,
√
sx)

law
=
√
sU(t, x) for all s > 0.

Together with the above covariance-to-variance reduction, we obtain the scaling relation

REW(sa, sb;x
√
s, y
√
s) = REW(a, b;x, y), (7)

for all s > 0, see a similar relation forRKPZ in (3). In particular,

REW(s, as; 0, 0) =
1 + a1/2 − (a− 1)1/2

2a1/4
, (8)

for all a ≥ 1. The correlationREW can, in fact, be made rather explicit even in the general case. In the
next proposition, we obtain an explicit formula for the variance of the Edwards-Wilkinson model which,
together with the covariance-to-variance reduction, yields an expression for REW . This is stated and
proved in Proposition 8.2 is a slightly more general setting.

Proposition 3.3. Let σ2(x) = Ex[|B(1)|] where, under Px, B is a one-dimensional standard Brow-
nian motion with B(0) = x. Then,

VarU(1, x) = σ2(x).

As a consequence,

REW (a, b;x, y) =
a1/2σ2(ya−1/2) + b1/2σ2(yb−1/2)− (b− a)1/2σ2((y − x)(b− a)−1/2)

2(ab)1/4
√
σ2(xa−1/2)σ2(yb−1/2)

Remark 3.4. We easily obtain the following asymptotics for ρEW:

ρEW(a) ≈ 1

2a1/4
, a→∞,

1− ρEW(a) ≈ 1

2
(a− 1)1/2, a→ 1+.
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3.2 One-dimensional Ginzburg-Landau∇ interface model

Let V : R→ [0,∞) be a twice differentiable, symmetric and convex function such that

0 < c1 ≤ V ′′(x) ≤ c2 <∞, ∀x ∈ R,

for some constants c1, c2 ∈ R. We consider {Bj : j ∈ Z} a family of independent standard one-
dimensional Brownian motions and we let {uj; j ∈ Z} be the solution to the system of coupled
stochastic differential equations

duj =
1

2
(V ′(∇uj−1)− V ′(∇uj)) dt+ dBj,

where ∇uj = uj+1 − uj . The existence of the dynamics on suitable weighted spaces can be found
for instance in [Zhu90]. It is a well-known fact that the gradient process {∇uj : j ∈ Z} admits a
family of product invariant distributions given by

µλ(d∇uj) =
1

C(λ)
eλ∇uj−V (∇uj)d∇uj,

where

C(λ) =

∫
eλ∇uj−V (∇uj)d∇uj,

which is finite by the convexity of V .

We define

RGL
V (s, t; j, k) = Corr(uj(s), uk(t)).

Theorem 3.5. Consider the process {uj(t), t ≥ 0, j ∈ Z} with initial distribution u0 = 0 and
∇uj(0) ∼ µZ

0 . Then for all a ≥ 1 and x, y ∈ R, we have

lim
s→∞
RGL
V (s, as;x

√
s, y
√
s) = REW(1, a;x, y).

In particular, for all a ≥ 1, it holds that

lim
s→∞
RGL
V (s, as; 0, 0) =

1 + a1/2 − (a− 1)1/2

2a1/4
.

Remark 3.6. For the Landau-Ginzburg model with i.i.d. initial distribution a different and less precise
asymptotic has been derived in [DemDeu07, Theorem 1.1]:

RGL,i.i.d
V (s, as; 0, 0) � (a+ 1)1/2 − (a− 1)1/2

21/2a1/4
< ρEW (a) for all a > 1.

This is due to the effect of the initial distribution which is less correlated than the stationary distribution
which is of i.i.d. increments.

An important element in the proof of Theorem 3.5 is a representation of the variance of the model in
terms of random walks, in the spirit of Proposition 3.3.
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4 Open problems

Our path to aging consists in obtaining a covariance-to-variance reduction and taking the limit of the
variances. This second step is the more involved as it requires to obtain highly non-trivial tail bounds
to insure enough uniform integrability.

4.1 Semi-discrete polymers at fixed temperature

Our result for directed polymers holds in the intermediate disorder regime, where the parameters of
the model depend on the size of the system. The model satisfies a covariance-to-variance reduction
for fixed parameters and it is known that there exists two suitable constants c1 and c2 such that

logZβ,θ(n, n)− c2n

c2n1/3
⇒ X,

where X follows the Baik-Rains distribution [BorCorFer14]. It is therefore expected that the correla-
tions of the model converge to ρKPZ. The missing point is the convergence of the moments. For some
results in this direction, see the recent work [NoaSos+a].

4.2 The parabolic Anderson model

One of the original motivations for this work was to show aging for the Parabolic Anderson Model
(PAM) in a Brownian potential, a problem that was left open in [DemDeu07]. The PAM is an example
of a discrete stochastic heat equation and can be defined as the solution to the infinite system of
coupled stochastic differential equations

dZj =
1

2
∆Zjdt+ βZjdBj, j ∈ Z,

where ∆ is the discrete Laplacian and (Bj)j is an i.i.d. family of one-dimensional Brownian motions.
The model can be interpreted as the partition function of a continuous-time simple symmetric random
walk in an i.i.d. Brownian potential, i.e. a directed polymer model. As such, it should converge to the
stochastic heat equation in the intermediate disorder regime much in the spirit of the O’Connell-Yor
model. However, no stationarity is known which leaves the covariance-to-variance reduction out of
reach.

4.3 Further stationary directed polymer models

There exist other stationary polymer and last-passage percolation models to which the techniques of
this work could be applied. We refer the reader to the recent work [NoaSos+b] where concentration
bounds for several of these models are obtained.

4.4 Weakly asymmetric models

We were able to show aging for the height function of TASEP. However, the asymmetric exclusion
process (ASEP) is also in the KPZ universality class and possesses product Bernoulli space-time
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invariant measures. The covariance-to-variance reduction is hence available. The missing point to
show aging is the convergence of the moments. The asymmetry can be tuned to get convergence to
the Cole-Hopf solution to the KPZ equation [BerGac97] and it is then reasonable to expect a result in
the spirit of Theorem 2.11 in this regime.

On the other hand, a stationary and weakly asymmetric version of the Ginzburg-Landau ∇-interface
models considered here is known to rescale to the KPZ equation [DieGubPer16]. Once again, an
analogue of Theorem 2.11 is expected in this case.

4.5 KPZ fixed point regime for discrete models

As noticed above, Theorem 2.4 still holds if we consider end-points x = xs and y = ys with xs, ys =
o(s2/3). When these end-points are of order s2/3, we expect that

lim
s→∞
RKPZEQ(st1, st2; s2/3x1, s

2/3x2) = RKPZ(t1, t2;x1, x2),

as, in this regime, Z should rescale to the KPZ fixed point after proper centering and normalization.
The proof of this fact is currently well far behind the reach of this work. Similar considerations should
hold for other models in the KPZ universality class, including TASEP, LPP and weakly asymmetric
gradient models.

4.6 Non-stationary models

Our approach relies heavily on the stationary structure of the models we consider. However, aging
should still hold for these models with different initial conditions. See for example in [DemDeu07] for
various interacting diffusion and [CorGhoHam+] for the KPZ in the narrow edge regime.

4.7 Higher dimensions

Finally, we address the question of aging for higher dimensional models of directed polymer type.
The parabolic Anderson model described above can be defined on any dimension. It is expected that
aging still holds in dimension two, in logarithm time scale, cf. [DemDeu07, Theorem 1.1]. In larger
dimensions, the model displays a phase transition as the parameter β varies. For small β, the model
is in a regime of weak disorder and admits an equilibrium measure which can be constructed by means
of suitable limits of the solutions using standard techniques from the theory of directed polymers in
random environment. Hence, no aging should occur. On the other end, large values of β lead to a
completely different strong disorder regime where some kind of aging should hold.

5 Proofs for the KPZ fixed point

We follow [MatQuaRem+]. Let h be the height function of the stationary TASEP and let

Hε(t, x) = ε1/2
(
h(2ε−2/3t, 2ε−1x) + ε−3/2t

)
.

Then, the KPZ fixed point H is defined as the limit in law

H(t, x) = lim
ε→0

Hε(t, x).
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The convergence above is as processes in a suitable topology proved in [MatQuaRem+], and particu-
larly in the sense of the finite dimensional distributions (see Theorem 3.8 there). From the same article,

we have the scaling identityH(st, s3/2x)
law
= s1/3H(t, x) and stationarity: x 7→ H(t, x+y)−H(t, y)

is a two-sided Brownian motion for all t ≥ 0. The covariance-to-variance reduction follows from space-
time stationarity by Lemma 1.2.

Proposition 5.1. For all t ≥ 0 and x ∈ R, we have

H(t+ ·, x+ ·)−H(t, x)
law
= H(·, ·).

In other words, the process H is space-time stationary.

This is a corollary of the space-time invariance for h itself:

Lemma 5.2. For all t ≥ 0 and k ∈ Z, we have

h(t+ ·, k + ·)− h(t, k)
law
= h(·, ·).

Proof. We will use two different representations of the height function. Recall that Nt(j) denotes the
flux of particles passing through j integrated over the time interval [0, t]. Then, it holds that

h(t, j) = h(0, j) + 2Nt(j).

On the other hand, we also have

h(t, j + k) = h(t, j) +

j+k−1∑
l=j

η̂(t, l),

where η̂(t, l) := 1− 2η(t, l). For t = 0, the above reduces to

h(0, j) =

j−1∑
l=0

η̂(0, l).

Note that the process η̂ is space-time invariant. Now

h(t+ s, k + j) = h(0, k + j) + 2Nt+s(k + j)

= h(0, k + j) + 2Nt(k + j) + 2 (Nt+s(k + j)−Nt(k + j))

= h(t, k + j) + 2Nt,t+s(k + j),

where Nt,t+s(k + j) is the flux of particles through j + k integrated over the time interval [t, t + s].
We now use the second representation as a coupled system, that is for every t ≥ 0 and j ∈ Z we
have the equality of processes:(

h(t+ s, k + j)− h(t, k)
)
s≥0,j∈Z =

(
h(t, k + j)− h(t, k) + 2Nt,t+s(k + j)

)
s≥0,j∈Z

=
( k+j−1∑

l=k

η̂(t, l) + 2Nt,t+s(k + j))
)
s≥0,j∈Z

Using the space-time invariance of η̂ it follows that the later is equal in law to

( j−1∑
l=0

η̂(0, l) + 2Ns(j)
)
s≥0,j∈Z =

(
h(s, j)

)
s≥0,j∈Z.
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Proof of Lemma 2.1. By Lemma 1.2, the covariance-to-variance reduction follows from the space-time
stationarity. It is enough to prove that H(t, x) has a finite second moment for all t ≥ 0 and x ∈ R. By
the scaling identity, it is enough to consider t = 1. From [BaiFerPec14, Theorem 1], for x ∈ R, there
exists a distribution Fx with finite moments such that

lim
ε→0

E [Hε(1, x)n] =

∫
yndFx(y), (9)

for all n ≥ 0. By Fatou’s lemma, we then have that E[H(1, x)2] <∞.

Proof of Theorem 2.2. For x = y = 0, the scaling identity satisfied byH immediately yieldsRKPZ(s, as; 0, 0) =
ρKPZ(a). To include general end-points, we rewrite the covariance-to-variance reduction as

RKPZ(s, as;x, y) =
s−2/3VarH(s, x) + s−2/3VarH(as, y)− s−2/3VarH((a− 1)s, y − x)

2
√
s−2/3VarH(s, x) s−2/3VarH(as, y)

.

LetB(t, x) = H(t, x)−H(t, 0) and recall that for each fixed t, x 7→ B(t, x) is a two-sided Brownian
motion. Now,

VarH(s, x) = VarH(s, 0) + VarB(s, x) + 2Cov (H(s, 0), B(s, x)) .

For fixed x, it holds that lims→∞ s
−2/3 VarB(s, x) = lims→∞ s

−2/3|x| = 0 and by Cauchy-
Schwartz’ inequality

|Cov (H(s, 0), B(s, x)) |
s2/3

≤
(
VarH(s, 0)

s2/3

)1/2(VarB(s, x)

s2/3

)1/2

= (VarH(1, 0))1/2

(
VarB(s, x)

s2/3

)1/2

which converges to 0 as s goes to infinity. Hence, using scaling one more time,

lim
s→∞
RKPZ(s, as;x, y)

= lim
s→∞

s−2/3VarH(s, 0) + s−2/3VarH(as, 0)− s−2/3VarH((a− 1)s, 0)

2
√
s−2/3VarH(s, 0) s−2/3VarH(as, 0)

= lim
s→∞
RKPZ(s, as; 0, 0) = ρKPZ(a).

6 Proofs for the stochastic heat equation

By a mild solution to the stationary stochastic heat equation, we mean a progressively measurable
process solving the integral equation

Z(t, x) =

∫
R
p(t, x− y)eB(y)dy +

∫ t

0

∫
R
p(t− s, x− y)Z(s, y)W (dsdy).

We refer the reader to the early reference [BerGac97] for a proof of existence and uniqueness among
other results.
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6.1 Space-time stationarity

It is well known that, for each fixed t ≥ 0, the process

x 7→ logZ(t, x)

has Brownian increments [BerGac97,FunQua15].

By Lemma 1.2 the covariance-to-variance reduction follows from the following Proposition.

Proposition 6.1. Let s ≥ 0 and y ∈ R. Then, we have the identity

Z(·, ·)
Z(s, y)

law
= Z(· − s, · − y).

In other words, the processH = logZ is space-time stationary.

Proof. For u ≥ 0 and b ∈ R, we define a new white noise Wu,b acting on L2([0,∞)× R) as∫ ∞
0

∫
R
f(r, z)Wu,b(drdz) =

∫ ∞
0

∫
R
f(r + u, z + b)W (drdz).

Note that Wu,b is independent of the restriction of W to the strip [0, u] × R. Using the flow property
of the mild solution,

Z(t, x) =

∫
R
p(t− s, x− z)Z(s, z)dz

+

∫ t

s

∫
R
p(t− r, x− z)Z(r, z)W (drdz)

=

∫
R
p(t− s, x− y − z)Z(s, y + z)dz

+

∫ t−s

0

∫
R
p(t− s− r, x− y − z)Z(s+ r, y + z)Ws,y(drdz).

Now, using the independence of Z(s, y) and Ws,0 to pull Z(s, y) inside the stochastic integral,

Z(t, x)

Z(s, y)
=

∫
R
p(t− s, x− y − z)

Z(s, y + z)

Z(s, y)
dz

+

∫ t−s

0

∫
R
p(t− s− r, x− z)

Z(s+ r, y + z)

Z(s, y)
Ws,y(drdz).

This shows that [s,∞) × R 3 (t, x) 7→ Z(t, x)

Z(s, y)
is a mild solution to the stochastic heat equation

with initial condition
Z(s, ·)
Z(s, y)

which is independent of the noise Ws,y for all t > s and, by stationarity, is

distributed as the exponential of a two-sided Brownian motion shifted by y. This proves the claim.

6.2 Proof of Theorem 2.4

We prove Theorem 2.4. First, we quote a few results from [BorCorFerVet15] and [CorGho+]. Let

h(t, x) =
H(2t, x) + t

12
− 2

3
log 2t

t1/3
.
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Recall the definition of the Baik-Rains distribution from [BorCorFerVet15, Definition 2.16]. From [Bor-
CorFerVet15, Theorem 2.17], we know that

h(t, 0)⇒ X as t→∞, (10)

where X follows the Baik-Rains distribution. From [CorGho+, Corollary 1.14], we also have conver-
gence of the moments: for all p > 0,

lim
t→∞

E[h(t, 0)p] = E[Xp]. (11)

The key to this result is a combination of two tail bounds for h(t, 0) ensuring that the family {h(t, 0)p :
t ≥ 0} is uniformly integrable (see [CorGho+, Theorem 1.12 and 1.13]).

We can now prove Theorem 2.4.

Proof of Theorem 2.4 . First, assume x = y = 0. Let σ2(t) = t−2/3VarH(t, 0). We have

RKPZEQ(s, as; 0, 0) =
(as)2/3σ2(as) + s2/3σ2(s)− s2/3(a− 1)2/3σ2((a− 1)s)

2s2/3a1/3
√
σ2(s)σ2(as)

.

It is then enough to show convergence of σ2(t) as t → ∞. From (10), we have the convergence in
law

H(t, 0) + t
24
− 2

3
log t

t1/3
⇒ 21/3X,

where X follows the Baik-Rains distribution. From (11), we obtain

lim
t→∞

VarH(t, 0)

t2/3
= 41/3 VarX.

We can then take limits on the right-hand-side of the covariance-to-variance reduction in Lemma 2.6.
The proof To handle general end-points, we can replicate the arguments in the proof of Theorem
2.2.

7 Proofs for TASEP and LPP

We already have all the elements to prove Theorem 2.8.

Proof of Theorem 2.8. We follow the scheme of proof of Theorem 2.2. The covariance-to-variance
reduction for h follows from Lemma 5.2. The convergence of the variances follows from (9).

The proof for TASEP follows from stationarity and an exact mapping to TASEP. For the former:

Lemma 7.1. For all m,n ≥ 0, we have

L(·, ·)− L(m,n)
law
= L(· −m, · − n).
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Proof. Let m1, n1 ≥ 0. We define new random variables {W (i, j) : i ≥ n1, j ≥ m1} as

W (i, j) = W (i, j), i > n1 and j > m1,

W (n1, j) = L(n1, j)− L(n1, j − 1), j > m1,

W (i,m1) = L(j,m1)− L(j − 1,m1), i > n1

W (n1,m1) = 0.

It is known that {W (i, j) : i ≥ n1, j ≥ m1} is a family of independent random variables such that

W (i, j) ∼ Exp(1) for i > n1, j > m1,

W (i, j) ∼ Exp(1/2) for i = n1, j > m1 or i > n1, j = m1.

For any m2 ≥ m1 and n2 ≥ n1 and an up-right path S from (m1, n1) to (m2, n2), we define the
passage time T (S) using the random variables W (i, j) and we let L(m2, n2) to be the maximum of
T (S) over such paths. Then, it holds that

(
L(m2, n2)

)
m2≥m1,n2≥n1

has the same law as
(
L(m2 −

m1, n2 − n1)
)
m2≥m1,n2≥n1

. Let B(m1, n1) = {(i, j) : i = m1 and n1 ≤ j ≤ n2 or m1 ≤
i ≤ m2 and j = m1}. Let S∗ be the optimal path from (0, 0) to (m2, n2). S∗ crosses B and exits
it at a point x∗. Without loss of generality, assume that x∗ lies on the horizontal segment of B. Let
x∗+ = x∗ + (0, 1). Then,

L(m2, n2) = L(x∗) + L(x∗;m2, n2)

= L(m1, n1) +
(
L(x∗)− L(m1, n1) + L(x∗+;m2, n2)

)
≤ L(m1, n1) + L(m2, n2).

Now, there exists y∗ ∈ B such that

L(m2, n2) = L(y∗)− L(m1, n1) + L(y∗+;m2, n2),

where we assumed, without loss of generality, that y∗ lies on the horizontal segment of B and we let
y∗+ = y∗ + (0, 1). Hence,

L(m1, n1) + L(m2, n2) = L(m1, n1) + L(y∗)− L(m1, n1) + L(y∗+;m2, n2)

= L(y∗) + L(y∗+;m2, n2)

≤ L(m2, n2).

To conclude, note that we in fact showed that
(
L(m2, n2)

)
m2≥m1,n2≥n1

=
(
L(m2, n2)−L(m1, n1)

)
m2≥m1,n2≥n1

.

Proof of Theorem 2.9. We use the well-known identity

P [L(n, n) ≤ t] = P [Nt(0) ≥ n] = P [h(t, 0) ≥ n/2] .

Then, the convergence of the moments of the rescaled height function yields convergence of the
moments of

L(n, n)− c1n

c2n1/3
,

where c1 and c2 are properly chosen constants. The proof then follows along the lines of the proof of
Theorem 2.2.
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8 Proofs for the Edwards-Wilkinson equation

Recall that a solution to the Edwards-Wilkinson equation (or stochastic heat equation with additive
noise) corresponds to the mild solution to the equation

∂t U(t, x) = 1
2
∂2
x U(t, x) + W ,

U(0, x) = B(x),

The solution is explicitly given by

U(t, x) =

∫
R
p(t, x− z)B(z) dz +

∫ t

0

∫
R
p(t− r, x− z) dzdr, (12)

where

p(t, x) =
1√
2πt

e−
x2

2t .

As U arises as the limit of discrete models which discrete gradients have product invariant distributions
[Zhu90,GonJarSim16], it follows that the two-sided Brownian motion initial condition is stationary.

We now sketch the proof of Theorem 3.1. The formula (7) is a consequence of the equality in law

U(as, bs;x
√
s, y
√
s)

law
= s1/4U(a, b;x, y),

which follows from Brownian scaling. The covariance-to-variance reduction which will again play a cru-
cial role follows from Proposition 8.1 below. Formula (8) then follows from the covariance-to-variance
reduction and the scaling relation above. Finally, the limit (6) follows from the arguments used at the
end of the proof of Theorem 2.4 once we note that

U(t, x) = U(t, 0) + (U(t, x)− U(t, 0)) ,

and Var (U(t, x)− U(t, 0)) = |x| for all t ≥ 0.

As noted above, to get the covariance-to-variance reduction, it is enough to show:

Proposition 8.1. For all s ≥ 0 and y ∈ R, we have the identity

U(·, ·)− U(s, x)
law
= U(· − s, · − x).

Proof. The proof is very similar to the multiplicative case. By the flow property of the mild solution,

U(t, y) =

∫
R
p(t− s, x− z)U(s, z) dz +

∫ t

s

∫
R
p(t− r, x− z)W (drdz)

=

∫
R
p(t− s, x− y − z)U(s, y + z) dz +

∫ t−s

0

∫
R
p(t− s− r, x− y − z)Ws,y(drdz),

where Ws,y was defined in the proof of Proposition 6.1. Hence,

U(t, y)− U(s, x) =

∫
R
p(t− s, x− y − z) (U(s, y + z)− U(s, y)) dz

+

∫ t−s

0

∫
R
p(t− s− r, x− y − z)Ws,y(drdz).

To conclude, we just note that z 7→ U(s, y + z) − U(s, y) is a two-sided Brownian motion which is
independent of Ws,y.
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The next result will be used in the proof of Theorem 3.5 and might be of independent interest.

Proposition 8.2. We have the formula

VarU(t, x) = |x|+
∫ t

0

p(s, x) ds = Ex[|Bt|],

where, under Ex, B is a Brownian motion with B0 = x.

Remark 8.3. We can obtain slightly more explicit expressions for VarU(t, x). Note that we have the
scaling

VarU(t, x) = r(t, x) = t1/2r(1, xt−1/2),

where

r(1, y) = |y|(2Φ(|y|)− 1) + 2p(1, y), Φ(y) =

∫ |y|
−∞

p(1, z)dz.

Proof of Proposition 8.2. We write pt(x) = p(t, x) to lighten the notation. From (12) and the inde-
pendence of B and W , we have

Var (U(t, x)) =

∫
R

∫
R
pt(z − x)pt(z̄ − x)g(z, z̄) dz dz̄ +

1

2

∫ 2t

0

pu(0) du,

where

g(z, z̄) = z ∧ z̄1z,z̄≥0 + (−z) ∧ (−z̄)1z,z̄≤0.

We claim that

∂tVar (U(t, x)) = pt(x). (13)

Together with Var (U(0, x)) = |x|, this proves the first identity above.

For fixed x, we set ft(z) = pt(x− z). Then,

∂tVar (Z(t, x)) = 2

∫
R

∫
R
∂tft(z)ft(z̄)g(z, z̄) dz dz̄ + f2t(x).

Using that ∂tft(z) = 1
2
f ′′t (z), it holds that

2

∫
R
ft(z̄)

∫
R
∂tft(z)g(z, z̄) dz dz̄ =

∫
R
ft(z̄)

(∫
R
f ′′t (z)g(z, z̄) dz

)
dz̄.

By integration by parts, ∫
R
f ′′t (z̄)g(z, z̄) dz = −

∫
R
f ′t(z)∂zg(z, z̄) dz,

where

∂zg(z, z̄) = −1z̄≤z≤0 + 10≤z≤z̄.
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Thus

−
∫
R
f ′t(z)∂zg(z, z̄) dz =

∫ 0

z̄

f ′t(z) dz1z̄≤0 −
∫ z̄

0

f ′t(z) dz1z̄≥0

=
(
ft(0)− ft(z̄)

)
1z̄≤0 −

(
ft(z̄)− ft(0)

)
1z̄≤0

= ft(0)− ft(z̄),

and we get∫
R
ft(z̄) dz̄

(∫
R
f ′′t (z)g(z, z̄) dz

)
= ft(0)

∫
R
ft(z̄) dz̄ −

∫
R
f 2
t (z̄) dz̄ = pt(x)− p2t(0),

where we have used that the integral of ft is equals to one and the semigroup property. Putting things
together and recalling that f2t(x) = p2t(0), we obtain (13).

Next we claim that

r(t, x) := Ex[|B(t)|] = |x|+
∫ t

0

ps(x) ds, (14)

where B(t) is a Brownian motion. Note that

r(t, x) =

∫
R
pt(z)|z + x| dz =

∫
R
pt(x− z)|z| dz = −

∫ 0

∞
ft(z)z dz +

∫ ∞
0

ft(z)z dz,

where, as above, ft(z) = pt(x− z).Thus

∂tr(t, x) = −
∫ 0

∞
∂tft(z)z dz +

∫ ∞
0

∂tft(z)z dz = −1

2

∫ 0

∞
f ′′t (z)z dz +

1

2

∫ ∞
0

f ′′t (z)z dz

=
1

2

∫ 0

∞
f ′t(z) dz − 1

2

∫ ∞
0

f ′t(z) dz = ft(0) = pt(x)

Together with r(0, x) = |x|, this proves (14).

9 Proofs for the Ginzburg-Landau∇ interface model

We shall prove Theorem 3.5. Let u(t, k) := uk(t), t ≥ 0, k ∈ Z. We need to establish the
covariance-to-variance reduction for u, which is by Lemma 1.2 a consequence of the next Lemma.

Lemma 9.1. For every s ≥ 0 and j ∈ Z, we have the identity

u(·, ·)− u(s, j)
law
= u(· − s, · − j).

Proof. We proceed as in the previous cases:

u(t, k) = u(s, k) +
1

2

∫ t

s

(V ′(∇uk−1(r))− V ′(∇uk(r))) dr +Bk(t)−Bk(s)

= u(s, j)

+ u(s, k)− u(s, j) +
1

2

∫ t

s

(V ′(∇uk−1(r))− V ′(∇uk(r))) dr +Bk(t)−Bk(s)
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By shifting the space and time parameters, we can see that the last line is equal in law to

u(0, k − j)− u(0, 0) +
1

2

∫ t−s

0

(V ′(∇uk−j−1(r))− V ′(∇uk−j(r))) dr +Bk−j(t− s)−Bk−j(0).

Note that we used the time and space invariance of the law of the process of the discrete gradients
{∇uj(·) : j ∈ Z}. The claim follows.

We now sketch the proof of Theorem 3.5. For simplicity, we restrict to the case V (x) = x2

2
, the general

case following along the same lines. We let Un(t, x) = n−1/4u(c1tn, c2x
√
n). Note that

Corr
(
u(tn, y

√
n), u(sn, x

√
n)
)

= Corr (Un(t, y), Un(s, x)) ,

so that, thanks to the covariance-to-variance reduction, the first statement of Theorem 3.5 i.e.

lim
n→∞

RGL
V (s, as;x

√
n, y
√
s) = REW (1, a;x, y)

follows once we have the convergence

lim
n→∞

VarUn(t, x) = VarU(t, x). (15)

Proposition 9.2 is a discrete analogue of Proposition 8.2. The convergence (15) in this case is then a
consequence of the invariance principle. We defer these last details to the end of the section.

Proposition 9.2. Consider the case V (x) = x2

2
. We have the formula

Varu(t, k) = Ek[|Xt|],

where, under Ek, X is a simple symmetric continuous-time random walk starting at k.

Proof. For the discrete additive SHE a corresponding equality holds, involving the discrete Laplacian.
This can be verified in a straight forward manner using the covariance-to-variance reduction. Indeed,
let

u(t, i) = u(0, i) +
1

2

∫ t

0

(u(s, i+ 1) + u(s, i− 1)− 2u(s, i)) ds+Bi(t), i ∈ Z,

where u(0, 0) = 0 and {u(0, i+ 1)− u(0, i)}i are standard normal i.i.d. random variables. By Ito’s
formula

du(t, i)2 =
[
u(t, i)(u(t, i+ 1) + u(t, i− 1)− 2u(s, i)) + 1

]
dt+ 2u(t, i)dBi(t).

Let f(t, i) = Var (u(t, i)) = E[u(t, i)2], since E[u(t, i)] = 0. Then

∂tf(t, i) = E[
[
u(t, i)(u(t, i+ 1) + u(t, i− 1)− 2u(t, i)) + 1

]
= Cov (u(t, i), u(t, i+ 1)) + Cov (u(t, i), u(t, i− 1))− 2Var (u(t, i)) + 1.

In view of the covariance-to-variance reduction and Var (u(0,±1)) = 1

Cov (u(t, i), u(t, i± 1)) =
1

2
Var (u(t, i)) +

1

2
Var (u(t, i± 1))− 1

2
Var (u(0,∓1))

=
1

2
f(t, i) +

1

2
f(t, i± 1)− 1

2
.
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Thus

∂tf(t, i) =
1

2

[
f(t, i+ 1) + f(t, i− 1)− 2f(t, i)

]
=

1

2
∆f(t, i),

where ∆ is the discrete Laplacian and
f(0, i) = |i|.

Note that this is nothing but the stochastic heat equation for the continuous-time simple random walk
X(t):

f(t, i) =
∑
j

pRW
t (i− j)|j| = Ei[|X(t)|] = E0[|X(t) + i|],

where pRW
t (j) = P0(X(t) = j).

We finish the proof of Theorem 3.5. Let fn(t, x) = VarUn(t, x) with Un(t, x) = n−1/4u(tn2, bnxc),
Xn(t) = n−1X(tn2) and xn = n−1bnxc. By the invariance principle,

fn(t, x) = Exn [|Xn(t)|]→ Ex[|B(t)|] = r(t, x),

as n→∞, where B(t) is a Brownian motion.

10 Proofs for directed polymers

10.1 The space-time stationary structure

The covariance-to-variance reduction for directed polymers is a consequence of Proposition 10.2 be-
low. At this point, it is convenient to work with β = 1. The general case follows from Brownian scaling
which yields the identity

Zβ,θ(t, n)
law
= β−2nZ1,β−2θ(β2t, n).

Moreover, it is clear that the pre-factor will not affect the variances once we take the logarithm. In the
following, we abbreviate Zθ = Z1,θ.

We now describe the stationary structure of the model. Let Zθ(t, 0) := e−B0(t)+θt and define pro-
cesses rn(·) and Yn(·) for n ≥ 1 as

logZθ(t, n)− logZθ(t, n− 1) = rn(t)

logZθ(t, n)− logZθ(s, n) = θ(t− s)− Yn(s, t).

In particular, we have the identity

logZθ(t, n) = −B0(t) + θt+
n∑
k=1

rk(t).

The following Lemma summarizes the Burke’s property from [OCoYo01] and parts of [SepVal10, The-
orem 3.3]:

Lemma 10.1. The family of processes {rn, Yn : n ≥ 1} satisfies the following properties:

a.- For each fixed t ≥ 0, the random variables (rk(t))k≥1 are i.i.d. and, for each k ≥ 1, e−rk(t)

follows a Gamma(θ) distribution.
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b.- For each fixed n, {Yn(0, t) : t ∈ R} is a two-sided Brownian motion.

c.- For each n ≥ 1 and each −∞ < s1 ≤ s2 ≤ · · · ≤ sn < ∞, the process and the random
variables

{Yn(0, t) : t ≤ s1}, rk(sk), k = 1, · · · , n,

are independent.

By the discussion at the opening of Section 4, the discrete covariance-to-variance reduction in Lemma 2.10
follows from the following Proposition.

Proposition 10.2. Let s ≥ 0 and m ≥ 0. Then, we have the identity

Zθ(s+ ·,m+ ·)
Zθ(s,m)

law
= Zθ(·, ·).

Proof. The proof is similar to the case of SHE. We first note that

Zθ(s+ t,m+ n) =

∫
−∞<sm<···<sm+n−1<s+t

Zθ(sm,m)e
∑n
j=m+1Bj(sj−1,sj)dsm · · · dsm+n−1,

with the convention sm+n = s+ t. We let

eW (s,s+u) :=
Zθ(s+ u,m)

Zθ(s,m)
e−θu,

and notice that, by Lemma 10.1, W̃ (·) := W (s, s + ·) is a two-sided Brownian motion which is
independent of B̃j(·) := Bj+m(s+ ·) for all j ≥ 1. Hence, by the change of variables sj → s+ sj
followed by setting s̃j = sj+m, we get the following

Zθ(s+ t,m+ n)

Zθ(s,m)
=

∫
−∞<sm<···<sm+n−1<s+t

eW (s,sm)+θ(sm−s)e
∑n
j=m+1Bj(sj−1,sj)dsm · · · dsm+n−1

=

∫
−∞<sm<···<sm+n−1<t

eW (s,s+sm)+θsme
∑n
j=m+1Bj(s+sj−1,s+sj)dsm · · · dsm+n−1

=

∫
−∞<s̃0<···<s̃n−1<t

eW̃ (s̃0)+θs̃0e
∑n−m
j=1 B̃j(s̃j−1,s̃j)ds̃0 · · · ds̃n−1,

where sn = s̃n−m = t, and the last equality should be understood as an equality of processes on
{(t, n) : t ∈ R+n ∈ Z+} :. To conclude, note that the last term has the same law of the right hand
side of the required identity.

10.2 Uniform integrability and the proof of Theorem 2.11

LetHn = logZ ST
n . The proof of Theorem 2.12 (and hence of Theorem 2.11) boils down to show that,

for each t ≥ 0, x ∈ R and each p > 0, the family {Hn(t, x)p : n ≥ 1} is uniformly integrable.
We can then take the limit on both sides of the discrete covariance-to-variance reduction Lemma 2.10.
This proves Theorem 2.11.
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The proof of the uniform integrability of {Hn(t, x)p : n ≥ 1}will be based on the following elementary
bound: for each p > 0, there exists C = C(p) such that

|Hn(t, x)|p ≤ C
(
Z ST
n (t, x) + Z ST

n (t, x)−1
)
.

It is then enough to show that the expected value of Z ST
n (t, x)−1 is uniformly bounded in n. This is the

content of the following theorem.

Theorem 10.3. For each fixed t ≥ 0 and x ∈ R, we have

sup
n≥1

E
[
Z ST
n (t, x)−1

]
<∞.

We give the proof of the theorem after stating the corresponding result for the point-to-point rescaled
partition function which will then be proved in Section 10.5 by means of Gaussian deviation bounds.
Note that we have the relation

Z ST
n (t, x) =

∫ √nt
−∞

e−βnB0(
√
ns)Zn(0, y; t, x) dy,

with

Zn(s, y; t, x) =
√
ne−n(t−s)+

√
n(x−y)e−

1
2

[
√
n(t−s)−(x−y)] Zβn(ns−

√
ny, ns+ 1;nt−

√
nx, nt),

(16)

where the point-to-point partition function in fixed temperature was defined in (5).

Theorem 10.4. For each fixed t ≥ 0 and a ≥ 0, there exists c = c(t, a) ∈ (0,∞), C = C(t, a) ∈
(0,∞) and u0 = u0(t, a) ≥ 0 such that

P
[
Zn(0, y; t, x) ≤ Ce−cu

]
≤ 2e−

1
2
u2

,

for all n ≥ 1, |y − x| ∈ [−a, a] and u ≥ u0.

As a consequence, for each t ≥ 0, p > 0 and a ≥ 0, there exists K = K(t, p, a) <∞ such that

E
[
Zn(0, y; t, x)−p

]
≤ K,

for all |y − x| ∈ [−a, a].

Note that, by translation invariance, it is enough to show the bound for Zn(t, x) := Zn(0, 0; t, x),
uniformly in x ∈ [−a, a].

This kind of bounds dates back at least to [Tal98a, Theorem 2.1] in the context of the Sherrington-
Kirkpatrick model (see also [Tal03, Theorem 2.2.7]). They were shown for the Hopfield model in
[Tal98b, Theorem 1.1]. In the context of directed polymers, they were obtain for Gaussian (resp.
bounded) environments in [CarHu02, Theorem 1.5] (resp. [Mor10, Proposition 1]), and for a Brow-
nian polymer in a Gaussian environment in [RovTin05, Proposition 3.3]. All these results are for fixed
temperature and fixed end-point. The result for directed discrete polymers in Gaussian environments
in the intermediate disorder regime and locally uniformly in the end-point was obtained in [Mor14, The-
orem 1].

Our proof is a blend of the approaches in [RovTin05] and [Mor14].
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Proof of Theorem 10.3 assuming Theorem 10.4. We take x = 0 to simplify the notation. The proof
for a general x ∈ R is identical. Recall the relation

Z ST
n (t, 0) =

∫ √nt
−∞

Wn(y)Zn(0, y; t, 0) dy where Wn(y) = e−βnB0(
√
ny).

Then, for all a > 0, we have the bound

Z ST
n (t, 0) ≥

∫ a

−a
Wn(y)Zn(0, y; t, 0) dy.

We let Wn = Wn,a =
∫ a
−aWn(y) dy. Then,

E
[
Z ST
n (t, 0)−1

]
≤ E

[(∫ a

−a
Wn(y)Zn(0, y; t, 0) dy

)−1
]

= E

[
W−1
n

(
W−1
n

∫ a

−a
Wn(y)Zn(0, y; t, 0) dy

)−1
]

≤ E
[
W−2
n

∫ a

−a
Wn(y)Zn(0, y; t, 0)−1 dy

]

≤ E
[
W−4
n

]1/2 E[(∫ a

−a
Wn(y)Zn(0, y; t, 0)−1 dy

)2
]1/2

where we used Jensen’s inequality with respect to the measure with density W−1
n Wn(y) to go from

the second to the third line. The first expected value in the last line is uniformly bounded. Next, using
Cauchy-Schwarz inequality twice,

E

[(∫ a

−a
Wn(y)Zn(0, y; t, 0)−1 dy

)2
]

≤ E
[∫ a

−a
Wn(y)2dy

∫ a

−a
Zn(0, y; t, 0)−2 dy

]

≤ E

[(∫ a

−a
Wn(y)2dy

)2
]1/2

E

[(∫ a

−a
Zn(0, y; t, 0)−2 dy

)2
]1/2

.

The first expected value above is uniformly bounded. Finally, using Jensen’s inequality once again,

E

[(∫ a

−a
Zn(0, y; t, 0)−2 dy

)2
]
≤ aE

[∫ a

−a
Zn(0, y; t, 0)−4 dy

]
= a

∫ a

−a
E
[
Zn(0, y; t, 0)−4

]
dy,

which is uniformly bounded in virtue of Theorem 10.4.

10.3 Gaussian deviation bounds

In this section, we show a Gaussian deviation bound that will be the key to the proof of Theorem 10.4.
To this end, we will rely on Gaussian concentration estimates based on Malliavin calculus. From now
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on, we specify our probability space. We let Ω be the space of continuous real valued functions defined
on R+ × Z+ with the cylindrical σ-algebra and we let P be the standard Wiener measure on Ω. For
each fixed B ∈ Ω, we then define the environment {Bk : k ≥ 1} as

Bk(t) = B(t, k).

We also consider the space

H1 =

{
h : R+ × Z+ → R : ‖h‖2

H1
:=
∑
k

∫
R+

|ḣk(s)|2ds <∞

}
.

The triple (Ω, H1,P) is known as the standard Wiener space. For a measurable set A ⊂ Ω and
B ∈ Ω, we define

qA(B) = inf {‖h‖H1 : B + h ∈ A} .

The main estimate of this section is:

Lemma 10.5. For each p > 0, there exists a constant cp ∈ (0,∞) such that

P [qA > cp + u] ≤ 2e−
u2

2 ,

for all u > 0 and all measurable set A ⊂ Ω such that P[A] ≥ p.

Before turning to the proof, we need to introduce some tools from Malliavin calculus. We say that a
function F : Ω → R is cylindrical if there exists n ≥ 1, f ∈ C1

0(Rn;R), k1, · · · , kn ≥ 1 and
t1, · · · , tn ≥ 0 such that

F (B) = f(Bk1(t1), · · · , Bkn(tn)).

For a cylindrical function F and h ∈ H1, we define

DhF (B) =
d

dε
F (B + εh)|ε=0.

It easily follows that

DhF (B) =
n∑
j=1

∂jf(Bk1(t1), · · · , Bkn(tn))h(tj, kj).

Hence, for each B ∈ Ω and each cylindrical function F , the mapping h 7→ DhF (B) defines a
continuous linear functional on H1. As a consequence, for each B ∈ Ω and each cylindrical function
F , there exists a unique DF (B) ∈ H1 such that

〈DF (B), h〉H1 = DhF (B).

From [Ust95, Proposition I.1], the operator D can be extended to a continuous linear functional from
Lp(Ω,P;R) to Lp(Ω,P;H1) for all p > 1. We then define Dp,1 as the space of functions F ∈
Lp(Ω,P;R) such that

‖F‖p,1 := ‖F‖Lp(Ω,P;R) + ‖DF‖Lp(Ω,P;H1) <∞.

We are now ready to state the key Gaussian concentration inequality which corresponds to [Ust95,
Theorem 1, p.70].
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Theorem 10.6. Let F ∈ Dp,1 for some p > 1 and suppose that DF ∈ L∞(Ω,P;H1). Let m =
E[F ] and σ2 = ‖DF‖2

L∞(Ω,P;H1). Then,

P [|F −m| > u] ≤ 2e−
u2

2σ2 ,

for all u > 0.

We need one more ingredient:

Lemma 10.7. If P[A] > 0, then qA is P-almost surely finite.

Proof. Let J = {qA < ∞}. We use the following elementary fact [Nua06, Proposition 1.2.6]: 1J ∈
D1,1 if and only if P[J ] = 0 or 1.

Observe that J = J + H1. Hence, for any h ∈ H1 and B ∈ Ω, 1J(B + h) = 1J(B), so that
D1J = 0. On the other hand, ‖1J‖L1(Ω,P;R) = P[J ] < ∞. Hence, 1J ∈ D1,1 and P[J ] = 0 or 1.
As P[J ] ≥ P[A] > 0, we necessarily have that P[J ] = 1.

We can now complete the proof of Lemma 10.5.

Proof of Lemma 10.5. Let h ∈ H1 and ε > 0. By the triangle inequality and the previous lemma,
we have that |qA(B + εh) − qA(B)| ≤ ε‖h‖H1 for all B ∈ Ω. Hence, |DhqA(B)| ≤ ‖h‖H1 for
all B ∈ Ω and h ∈ H1 so that |〈DqA(B), h〉H1| ≤ ‖h‖H1 for all B ∈ Ω and all h ∈ H1. As a
consequence,

‖DqA(B)‖H1 ≤ 1,

for all B ∈ Ω.

For each M ≥ 1, we introduce a cut-off function fM : R+ → R+ such that fM(x) = x for
x ∈ [0,M ], fM(x) = 0 for x ≥ 2M + 1, fM(x) ≤ x for all x, ‖f ′M‖∞ ≤ 1 and such that
fM ≤ fM+1. We then define qMA = fM ◦ qA. By the chain rule,

‖DqMA (B)‖H1 = ‖f ′M(qA(B))DqA(B)‖H1 ≤ 1.

As qMA is bounded, we have qMA ∈ D1,p for any p > 1. By Theorem 10.6, we then have

P
[
|qMA − E[qMA ] > u|

]
≤ 2e−

u2

2 ,

for all u > 0. Assume now that P[A] ≥ p > 0. Then, for all u < E[qMA ],

p ≤ P[A] ≤ P
[
|qMA − E[qMA (ω)]| > u

]
≤ 2e−

u2

2 .

It follows that E[qMA ] ≤ cp := (2 log(2/p))1/2. Using Theorem 10.6 once again, we conclude that

P
[
qMA > cp + u

]
≤ 2e−

u2

2 ,

for all u > 0 and all M ≥ 1. The result follows by Fatou’s lemma.
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10.4 Some preliminaries

Recall the definition of the point-to-point partition function (5). We shall use the notation B(s, i) :=
Bi(s), i ≥ 0. Let X· denote a rate one Poisson process with X0 = 1, let P denote its law and let E
be the expected value with respect to P . Then, the partition function can be written as

Zβ(s,m; t, n) = et−sE[eβHs,t(X)1Xt=n|Xs = m+ 1],

where

Hs,t(X) =

∫ t

s

dBXu(u) =

∫ t

s

dB(u,Xu).

For readability in this section we shall use the mild abuse of notation

Zβ(t, n) := Zβ(0, 1; t, n), Ht(X) := H0,t(X),

(we stress that this differs from the one used in Section 10.1). For two pathsX and X̃ , we define their
overlap as

Lt(X, X̃) =

∫ t

0

1Xs=X̃sds.

We list some elementary identities:

Lemma 10.8. For all t > 0 and n ≥ 1, we have

E[Zβ(t, n)] = ete
β2

2
tP [Xt = n],

E[Zβ(t, n)2] = e2t+β2tE⊗2[eβ
2Lt(X,X̃)1Xt=X̃t=n],

Zβ(t, n)2

E[Zβ(t, n)]2
= E⊗2[eβ

2Lt(X,X̃)|Xt = X̃t = n].

In the following, we write Zβ
B(t, n) and HB

t (X) to stress the dependence on the environment B =
{B(s, i), s ∈ R, i ≥ 1}. We also abbreviate the polymer measure in the environmentB by 〈·〉t,n,β,B .

Lemma 10.9. Assume B = B̄ + h with h ∈ H1. Then,

logZβ
B(t, n) ≥ logZβ

B̄
(t, n)− β

√
〈Lt(X, X̃)〉⊗2

t,n,β,B̄
‖h‖H1 .

Proof. Using that B = B̄ + h

e−tZβ
B(t, n) = E[eβH

B
t (X)1Xt=n] = E[eβH

B̄
t (X)eβH

h
t (X)1Xt=n]

= e−tZβ

B̄
(t, n)

〈
eβH

h
t (X)

〉
t,n,β,B

≥ e−tZβ

B̄
(t, n)e

β〈Hh
t (X)〉

t,n,β,B

Now, ∣∣∣〈Hh
t (X)

〉
t,n,β,B

∣∣∣ =

∣∣∣∣∣
〈∫ t

0

ḣ(s,Xs)ds

〉
t,n,β,B

∣∣∣∣∣
=

∣∣∣∣∣∣
〈∑

k

∫ t

0

1Xs=kḣ(s, k)ds

〉
t,n,β,B

∣∣∣∣∣∣ =

∣∣∣∣∣∑
k

∫ t

0

〈1Xs=k〉t,n,β,B ḣ(s, k)ds

∣∣∣∣∣
≤

∣∣∣∣∣∑
k

∫ t

0

〈1Xs=k〉
2
t,n,β,B

∣∣∣∣∣
1/2

× ‖h‖H1 =

√〈
Lt(X, X̃)

〉⊗2

t,n,β,B
× ‖h‖H1 .
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10.5 Proof of the lower tail bounds

In the following, we write Lt,x,n(X, X̃) = Ltn−x√n(X, X̃) and 〈·〉t,x,n,B = 〈·〉tn−x√n,tn,βn,B . For
K > 0, we define the event

An(t, x,K) =
{
B : Zn,B(t, x) ≥ 1

2
E[Zn(t, x)], 〈Lt,x,n(X, X̃)〉t,x,n,B ≤ K

√
n
}
,

where we denoted Zn(t, x) := Zn(0, 0; t, x) the point-to-point partition function defined in (16).

Lemma 10.10. For all a > 0, t > 1 and K large enough, there exists δ = δ(a, t,K) > 0 such that

P[An(t, x,K)] ≥ δ,

for all n ≥ 1 and |x| ≤ a.

Proof. We denote Et,x,n[·] = E[·|Xtn = tn+ x
√
n] and Ht,x,n(X) = Htn−x

√
n(X). Then,

P[An(t, x,K)] = P
[
Zn(t, x) ≥ 1

2
E[Zn(t, x)],

E⊗2
t,x,n

[
Lt,x,n(X, X̃)eβn(Ht,x,n(X)+Ht,x,n(X̃))

]
≤ K
√
nZn(t, x)2

]
≥ P

[
Zn(t, x) ≥ 1

2
E[Zn(t, x)],

E⊗2
t,x,n

[
Lt,x,n(X, X̃)eβn(Ht,x,n(X)+Ht,x,n(X̃))

]
≤ K

√
n

4
E[Zn(t, x)]2

]
≥ P

[
Zn(t, x) ≥ 1

2
E[Zn(t, x)]

]
− 1

+ P
[
E⊗2
t,x,n

[
Lt,x,n(X, X̃)eβn(Ht,x,n(X)+Ht,x,n(X̃))

]
≤ K

√
n

4
E[Zn(t, x)]2

]
Now, by Lemma 10.8 and A.1,

E[Zn(t, x)2]

E[Zn(t, x)]2
= E⊗2

t,x,n[e2β2
nLt,x,n(X,X̃)] ≤ C1,

for some finite C1 = C1(a) and for all |x| ≤ a, n ≥ 1. Hence, by Paley-Zygmund’s inequality,

P
[
Zn(t, x) ≥ 1

2
E[Zn(t, x)]

]
≥ E[Zn(t, x)]2

E[Zn(t, x)2]
≥ 1

4C1

,

for all |x| ≤ a and n ≥ 1. Now, by Chebyshev’s inequality,

P
[
E⊗2
t,x,n

[
Lt,x,n(X, X̃)eβn(Ht,x,n(X)+Ht,x,n(X̃))

]
>
K
√
n

4
E[Zn(t, x)]2

]
≤ 4

K
√
nE[Zn(t, x)]2

E
[
E⊗2
t,x,n

[
Lt,x,n(X, X̃)eβn(Htn(X)+Htn(X̃))

]]
=

4

K

1√
n
E⊗2
t,x,n

[
Lt,x,n(X, X̃)eβ

2
nLt,x,n(X,X̃)

]
,

which is finite by Lemma A.1, uniformly in |x| ≤ a and n ≥ 1. The proof follows by taking K large
enough.
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We can now complete the proof:

Proof of Theorem 10.4. By translation invariance, it is enough to obtain uniform deviation bounds on
Zn(t, x). Recall that, if B = B̄ + h with h ∈ H1, then

logZn,B(t, x) ≥ logZn,B̄(t, x)− βn
√
〈Lt,x,n(X, X̃)〉⊗2

t,x,n,B̄
‖h‖H1 .

If B̄ ∈ An(t, x,K), this further yields

logZn,B(t, x) ≥ logE[Zn(t, x)]− log 2−
√
K‖h‖H1 .

Hence,

logZn,B(t, x) ≥ logE[Zn(t, x)]− log 2−
√
KqAn(t,x,K)(B).

Then, for appropriate constants c1 and c2, we have

P
[

logZn(t, x) < logE[Zn(t, x)]− c1 − c2u
]
≤ P

[
qAn(t,x,K) > cp + u

]
≤ 2e−

u2

2 ,

where the use of Proposition 10.5 is justified by Lemma 10.10.
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A Estimates on the Poisson process

Recall that we denote Et,x,n[·] = E[·|Xtn−x
√
n = tn] and Lt,x,n(X, X̃) = Ltn−x√n(X, X̃).

Lemma A.1. For all a > 0 and t > 0, we have

sup
|x|≤a

E⊗2
t,x,n

[
eβ

2
nLt,x,n(X,X̃)

]
<∞,

sup
|x|≤a

β2
nE
⊗2
t,x,n

[
Lt,x,n(X, X̃)eβ

2
nLt,x,n(X,X̃)

]
<∞.

Proof. First, it is enough to prove the first statement for all fixed t > 0 and a > 0, as then the second
statement follows by Cauchy-Schwartz inequality. Write s = tn − x

√
n and m = tn for simplicity
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and assume without loss of generality that m is an integer. We shall reduce the problem to estimate
the overlap over half of the trajectories. Let

L′s/2(X, X̃) =

∫ s

s/2

1Xr=X̃rdr,

and note that under Et,x,n, Ls/2(X, X̃) and L′s/2(X, X̃) have the same law, by considering the
processes backwards in time and recalling the jump times have Lebesgue measure zero. Cauchy-
Schwartz inequality then implies

E⊗2
t,x,n

[
eβ

2
nLt,x,n(X,X̃)

]
= E⊗2

t,x,n

[
eβ

2
n(Ls/2(X,X̃)+L′

s/2
(X,X̃))

]
≤ E⊗2

t,x,n

[
e2β2

nLs/2(X,X̃)
]
.

Next, we will de-condition the trajectories: let p(t; k, l) = P [Xt = l|X0 = k], then

E⊗2
t,x,n

[
e2β2

nLs/2(X,X̃)
]

=

∑m
k,k̃=1E

⊗2
[
e2β2

nLs/2(X,X̃)1Xs/2=k1X̃s/2=k̃1Xs=X̃s=m

]
p(s; 0,m)2

=

∑m
k,k̃=1E

⊗2
[
e2β2

nLs/2(X,X̃)1Xs/2=k1X̃s/2=k̃

]
p(s/2; k,m)p(s/2; k̃,m)

p(s; 0,m)2

≤ max
k=1,...,m

p(s/2; k,m)2

p(s; 0,m)2
E⊗2

[
e2β2

nLs/2(X,X̃)1Xs/2,X̃s/2≤m

]
≤ C(a)E⊗2

[
e2β2

nLs/2(X,X̃)1Xs/2,X̃s/2≤m

]
,

where the maximum before the last inequality is bounded byC(a) uniformly in n ≥ 1 and |x| ≤ a
√
n

by the local central limit theorem.

Now, we let W = X − X̃ and we observe that W is a symmetric continuous-time random walk with
jump rate 2. The overlap of X and X̃ then corresponds to the local time of W at 0. Let us denote
the jump times of W by (σi)i≤1 and define T1 = σ1 and Ti = σi − σi−1 for i ≥ 2. This way,
(Ti)i≥1 are i.i.d exponential random variables with parameter 2. Let also Si = Wσi and observe
that S is a simple symmetric discrete-time random walk which is independent of (Ti)i≥1. If we let
Nt = max{i : σi ≤ t}, then

Ls/2(X, X̃) =

Ns/2∑
i=1

Ti1Si=0.

As on the event {Xs/2, X̃s/2 ≤ m} it holds that Ns/2 ≤ 2m, it holds that

Ls/2(X, X̃) ≤
2m∑
i=1

Ti1Si=0.

and, in particular,

E⊗2
[
e2β2

nLs/2(X,X̃)1Xs/2,X̃s/2≤m

]
≤ E⊗2

[
e2β2

n

∑2m
i=1 Ti1Si=0

]
.
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Let S = σ(Si : i ≥ 1). Then, using the explicit distribution of the Ti’s together with independence,

E⊗2
[
e2β2

n

∑2m
i=1 Ti1Si=0

]
= E⊗2

[
E⊗2

[
e2β2

n

∑2m
i=1 Ti1Si=0

∣∣∣S]]
= E⊗2

[
2m∏
i=1

E⊗2
[
e2β2

nTi1Si=0

∣∣∣S]]

= E⊗2

[
2m∏
i=1

(
1− 2β2

n1Si=0

)−1

]
= E⊗2

[(
1− 2β2

n

)−L2m(S)
]

for n large enough, where L2m(S) =
∑2m

i=1 1Si=0. Summarizing all of the above discussion and
using the standard estimate 1− ε ≤ ε` for all ` > 0 and ε ∈ R, we have

E⊗2
t,x,n

[
eβ

2
nLt,x,n(X,X̃)

]
≤ C(a)E⊗2

[
e2β2

nL2m(S)
]
.

The problem is then reduced to a standard pinning estimate. From [DerGiaLacTon09, Proof of Lemma
4.1], we can then find two finite constants C1 = C1(a, t) and C2 = C2(a, t) such that

E⊗2
t,x,n

[
eβ

2
nLt,x,n(X,X̃)

]
≤ C1e

C2β4
nm.

This proves the first statement.

B A glimpse at the intermediate disorder regime

To provide some heuristics on the intermediate disorder regime aimed at the reader who is not familiar
with the topic, we include below two comments.

The first one consists in exhibiting a discrete SPDE for the discrete model. Recall that Zβ,θ(t, n)
denotes the partition function of the stationary directed polymer model introduced in Section 2.4 for
n ≥ 1 and define Zβ,θ(t, 0) = eβB0(t)+θt. In this regime, the parameters of the model satisfy the

relation θ = 1 + β2

2
. Let z(t, j) = e−θtZβ,θ(t, j). Then, a simple application of Itô’s formula shows

that

dz(t, j) =
(
z(t, j − 1)− z(t, j)

)
dt+ βz(t, j) dBj(t), j ≥ 1.

This can be seen as a discrete version of the SHE. Indeed, even though the discrete gradient may
look odd at first, we recall that the intermediate disorder regime involves the skew scaling (t, x) 7→
(nt − x

√
n, nt) which mixes the time and space coordinates and leads to a Laplacian in the limit.

Recall also that β = βn = n−1/4 which corresponds to the square root of the space scale and yields
the white noise in the SHE as the scaling of the family of Brownian motions.

The second comment appeals to the interpretation of the models as random measures on paths. If the
random potential W was smooth, the Feynman-Kac formula would allow us to express the solution of
the stationary SHE as

ZST(t, x) = Et,x

[
eB(Wt)e

∫ t
0 W (t−s,Wt−s)ds

]
,

DOI 10.20347/WIAS.PREPRINT.2763 Berlin 2020



J.-D. Deuschel, G.R. Moreno Flores, T. Orenshtein 34

where, underEt,x,W is a Brownian motion withW0 = x and we recall that B is a two-sided Brownian
motion which is independent of W . The above relation can be formalized as presented, for instance,
in [Qua12]. We may think of Wt−· as the trajectory of a polymer based at the space-time point (t, x)
and going backwards until it reaches the line {(0, x) : x ∈ R} where it collects the boundary
condition eB.

Now, except for a harmless additive constant, the discrete model can be written as

z(t, n) = Et,n
[
eβB0(σ0)eβHt(X)

]
,

where B0 is a two-sided Brownian motion and, under Et,n, X is an integer valued totally asymmetric
continuous time random walk which jumps from level j + 1 to level j at rate 1 until it reaches level 0
at time σ0 and initial position X0 = n. The energy of a path X is given by

Ht(X) =
n∑
j=1

Bj(t− σj−1, t− σj),

where σj denotes the hitting time of level j for X with the convention σn = 0, and {Bj, j ≥ 1} are
independent two-sided Brownian motions which are independent ofB0. Once again, we can seeX as
a polymer based at the space-time point (t, n), jumping down until it reaches the line {(s, 0) : s ∈ R}
where it collects the boundary condition eβB0 .

Now, we may think of the skew scaling as mapping the semi-discrete space-time point (s, j) to the
continuum space-time point ( s

n
, j−s√

n
). This way, the point (tn − x

√
n, tn) is mapped to (t − x√

n
, x)

which becomes (t, x) in the limit. In particular, in the limit, the line {(s, 0) : s ∈ R} that carries the
boundary condition eβB0 becomes the line {(0, x) : x ∈ R} on which the initial condition for the SHE
eB is placed. On the other hand, the walk X becomes a Brownian motion in such a diffusive scaling.
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