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On the convexity of optimal control problems involving
non-linear PDEs or VIs and applications to Nash games (changed

title: Vector-valued convexity of solution operators with
application to optimal control problems)

Michael Hintermüller, Steven-Marian Stengl

Abstract

In the present article, generalized convexity induced by a preorder-relation is investigated for
solution operators of (generalized) equations. After the establishment of sufficient conditions, a
generalized subdifferential is established. Along with mild conditions on the objective to ensure
convexity of the optimization problem this concept can be used for the derivation of first-order
optimality conditions. Throughout, examples illustrating the theoretical findings are given.

1 Introduction

Many optimization problems incorporating models from economics, engineering, or physics are for-
mulated as mathematical programs with equilibrium constraints (abbr.: MPECs); see, e.g., [OKZ98,
LLPR96] for a selection of examples in finite dimensions and [BdP84] for infinite dimensions. Often, the
optimization problem is given in the form of an optimal control problem, distinguishing two classes of
variables: controls and states, respectively. Both variable types are typically linked via, e.g., a system
of partial differential equations (abbr.: PDEs) or variational inequalities (abbr.: VIs) appearing in the
constraint set of the optimal control problem. For instances of such problems see the selected works
[BdP84, TS10, LEG+12, HK11, HK09, NST07] and the many references therein.
From an analytical and also numerical standpoint convexity of optimization problems is a very appealing
property. This is in particular true as convex problems are well studied in the literature (see e.g. the
monographs [ET76, BZ06]) and stand out by a number of desirable properties. These include that all
local solutions are also global solutions, generalized differentiation concepts are available, there is a
deep interlinkage between analytical and geometrical notions, necessary conditions are also sufficient,
and the set of minimizers is convex – to name only a few examples. Returning to the class of optimal
control problems alluded to above, if, for example, the constraint set links states and controls via a
linear operator equation, then the optimal control problem or its control reduced form enjoy convexity
properties, if the objective is convex in controls and states. This, however, does not need to be the case
when the linear operator equation is replaced by non-linear PDEs or VIs.
Nevertheless, it is a priori not clear that the non-linearity in the constraints breaks the convexity of the
associated optimization problem and thus the present work takes the last observation as a starting
point for investigation. One of our central goals is to derive structural conditions to ensure convexity of
optimal control problems in a reduced formulation, where the state is considered as dependent on the
control. For this sake we utilize a preorder based vector-valued convexity notion imposed on the solution
operator, the so-called control-to-state mapping (cf. [CLV13, Chapter 19] and [BS00, Section 2.3.5]).
Exploiting its properties, we extend the theory of convex optimization to vector-valued operators with
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M. Hintermüller, S.-M. Stengl 2

regard to subdifferentials and also investigate calculus rules for the derivation of first-order optimality
systems. The latter is of independent interest in non-smooth optimization, in general. Especially in view
of MPECs involving VI constraints or bilevel optimization problems, differentiability of the control-to-
state-map is often not guaranteed. Hence, novel techniques need to be developed to derive necessary
optimality conditions.
The rest of this paper is organized as follows. In section 2 we introduce notation and preliminaries used
in the rest of the work. In section 3 we introduce vector-valued convex operators. After investigating
their properties, sufficient criteria for the K-convexity of solution operators of (generalized) equations
are identified. Here, K stands for a non-empty closed convex cone. Such generalized equations will
later appear as constraints in the optimization problems under investigation. Our results of this section
are then applied to examples that are linked to optimal control problems discussed in the literature. In
section 4 we draw our attention to the development of a subdifferential concept and its application to
the aforementioned examples. In section 5 we use our combined results and ensure the convexity of a
class of optimization problems containing a composition in the objective. Moreover, we derive calculus
rules for the subdifferential of the (control reduced) objective aiming at the derivation of first-order
optimality resp. stationarity conditions for the associated optimization problem. The work ends by an
application of our combined findings to a problem on doping optimization in semiconductor physics.

2 Notation and preliminaries

In the following, let (X, ‖ · ‖) be a Banach space and let X∗ denote its topological dual space. The
associated dual pairing 〈 · , · 〉X∗,X : X∗ ×X → R is defined by 〈x∗, x〉X∗,X := x∗(x). Oftentimes,
we simply denote 〈 · , · 〉, if the corresponding spaces are clear from the context. Two elements x∗ ∈ X∗
and x ∈ X are called orthogonal , if 〈x∗, x〉 = 0 and we write x∗ ⊥ x or x ⊥ x∗. The annihilator of a
subset M ⊆ X is defined as

M⊥ = {x∗ ∈ X∗ : 〈x∗, x〉 = 0 for all x ∈M} ,

and analogously for a set M∗ ⊆ X∗ as

M∗⊥ = {x ∈ X : 〈x∗, x〉 = 0 for all x∗ ∈M∗} .

For a single element we may write x⊥ := {x}⊥.
The closed unit ball of X is denoted by BX := {x ∈ X : ‖x‖ ≤ 1}. The interior of a set M ⊆ X is
defined by

int (M) := {x ∈M : there exists ε > 0 : x+ εBX ⊆M} .
and its closure as

cl (M) := {x ∈M : there exists (xn)n∈N ⊆M with xn → x} .

A subsetC ⊆ X is called convex, if for all t ∈ (0, 1) and x0, x1 ∈ C it holds that tx1 +(1−t)x0 ∈ C .
A set K ⊆ X is called a cone, if for all t ∈ R, t ≥ 0 and x ∈ K also tx ∈ K holds. The tangential
cone of C in x ∈ C is defined as

TC(x) := {d ∈ X : there exist tk ↘ 0, dk → d with x+ tkdk ∈ C ∀k ∈ N}

and the normal cone is defined as

NC(x) := {x∗ ∈ X∗ : 〈x∗, x′ − x〉X∗,X ≤ 0 for all x′ ∈ C} .
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Vector-valued convexity of solution operators 3

The core (or algebraic interior ) of a set M ⊆ X is defined by

core (M) := {x ∈M : ∀d ∈ X ∃ t̄ > 0 : x+ td ∈M for all |t| < t̄} .

We define the indicator functional IM : X → R ∪ {+∞} by

IM(x) :=

{
0, if x ∈M,

+∞, else.

A functional f : X → R ∪ {+∞} is called proper, if there exists an argument with finite value. It is
called lower semi-continuous, if for all sequences xn → x it holds that

f(x) ≤ lim inf
n→∞

f(xn)

and it is called weakly lower semi-continuous, if the above holds even for weakly convergent xn ⇀ x.
The functional is called convex , if

f(tx1 + (1− t)x0) ≤ tf(x1) + (1− t)(x0) holds for all t ∈ (0, 1), x0, x1 ∈ X.

The subdifferential of f in x ∈ X denoted ∂f(x) is defined as the set of all directions x∗ ∈ X∗ such
that

f(x′) ≥ f(x) + 〈x∗, x′ − x〉X∗,X holds for all x′ ∈ X.

A subset M ⊆ X is called absorbing, if for all x ∈ X there exists r > 0 such that for all |t| ≤ r one
has tx ∈M .
A convex subset C ⊆ X is called cs-closed (convex series closed) if for every sequence (ti)i∈N
of non-negative numbers with

∑∞
i=1 ti = 1 and sequence (xi)i∈N ⊆ C such that x :=

∑∞
i=1 tixi

exists, the inclusion x ∈ C follows. Moreover, C is called cs-compact (convex series compact) if for all
sequences (ti)i∈N of non-negative numbers with

∑∞
i=1 ti = 1 and an arbitrary sequence (xi)i∈N ⊆ C

the limit x :=
∑∞

i=1 tixi exists and x ∈ C holds.
A function F : X → P(Y ) is called a set-valued operator or correspondence and is denoted by
F : X ⇒ Y . Its graph is defined by

gph(F ) := {(x, y) ∈ X × Y : y ∈ F (x)}

and its (effective) domain by
D(F ) := {x ∈ X : F (x) 6= ∅} .

In the scope of this work we make use of some terminology and aspects of order theory, which will
be introduced next. For further references as well as details and additional information, the interested
reader is referred to the monographs [Sch74, Bec08].
We equip X with a preorder relation (an order relation without antisymmetry) ≤. Then, X is called a
preordered Banach space, if the preorder is compatible with the relation, i.e. for all z ∈ X and t ≥ 0
the implications x0 ≤ x1 ⇒ x0 + z ≤ x1 + z and x0 ≤ x1 ⇒ tx0 ≤ tx1 hold true.
Let a subset M ⊆ X be given. The infimum of M is an element x ∈ X such that x ≤ x′ for all
x′ ∈M and for every y ∈ X with y ≤ x′ for all x′ ∈M one infers y ≤ x. The supremum is defined
analogously.
An ordered Banach space is called a vector lattice, if for two elements x0, x1 the infimum min(x0, x1) =
x0 ∧ x1 := inf{x0, x1} as well as the supremum max(x0, x1) = x0 ∨ x1 := sup{x0, x1} exist,
respectively. For x ∈ X we also abbreviate x+ := max(x, 0).
Let K := {x ∈ X : x ≥ 0}. If (X,≤) is a preordered vector space, then K is a non-empty, convex
cone. On the other hand, let a vector space X and a non-empty, convex cone K ⊆ X be given. Then,
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M. Hintermüller, S.-M. Stengl 4

K induces a preorder relation ≤K for all x0, x1 ∈ X by x0 ≤K x1, if x1 − x0 ∈ K. By definition
(X,≤K) is a preordered vector space and ≤K induces an order, if and only if K ∩ (−K) = {0}. In
this sense, it is possible to characterize the order equivalently by the cone of non-negative elements.
Let d ∈ N\{0} and let Ω ⊆ Rd be a bounded, open domain. Associated to this domain we denote
the Borel algebra B(Ω) as the smallest σ-algebra generated by the system of open subsets of Ω. The
Lebesgue measure on the Borel-algebra is denoted by λd : B(Ω)→ [0,∞]. For a set E ∈ B(Ω) the
characteristic function of E is given by

1E(x) :=

{
1, x ∈ E,
0, else.

For p ∈ [1,∞) denote the Lebesgue space as

Lp(Ω) :=

{
u : Ω→ R measurable :

∫
Ω

|u|pdx < +∞
}

with its elements only identified up to null sets, i.e. sets of Lebesgue measure zero. This space equipped

with the norm ‖u‖Lp(Ω) :=
(∫

Ω
|u|pdx

) 1
p is a Banach space for all p ∈ [1,∞) and a reflexive Banach

space for p ∈ (1,∞). The Sobolev spaces W 1,p(Ω) are defined as

W 1,p(Ω) :=
{
u ∈ Lp(Ω) : ∇u ∈ Lp(Ω;Rd)

}
,

where∇u denotes the distributional derivative of u. Equipped with the norm ‖u‖W 1,p(Ω) :=
(
‖u‖pLp(Ω) +

∑d
i=1 ‖∂iu‖

p
Lp(Ω)

) 1
p
,

the space W 1,p(Ω) is a Banach space, and for p ∈ (1,∞) a reflexive Banach space. For p = 2
one also denotes H1(Ω) = W 1,2(Ω). For further details on Sobolev spaces the interested reader is
referred to [AF03].

3 Vector-valued convex operators

Targeting solution maps of (generalized) equations, we introduce and study convexity for vector-valued
operators in this section. This concept will later be utilized for PDEs and VIs. We start with basic facts
on the polar, respectively dual cone associated with a subset M ⊆ X .
Let M ⊆ X . The polar cone of M is defined as

M◦ := {x∗ ∈ X∗ : 〈x∗, x〉 ≤ 0 for all x ∈M}.

and the dual cone M+ is defined as

M+ := −M◦ = {x∗ ∈ X∗ : 〈x∗, x〉 ≥ 0 for all x ∈M}. (1)

Using the notation in (1) one observes for a closed, convex set C the relation NC(x) := (C − x)◦ (cf.
[Sch07, Definition 11.2.1 and Lemma 11.2.2]). Next, we establish some calculus rules for the dual cone.
For the statements as well as their proofs we refer to [RW09, Corollary 11.25] (in finite dimensions) as
well as to [BS00, Proposition 2.40]. To remain self-contained, we provide short proofs in the appendix.

Lemma 1. Let X be a topological vector space and let the subsets M,M1,M2 ⊆ X be given. Then
the following assertions hold true.

(i) If M1 ⊆M2, then M+
2 ⊆M+

1 .
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(ii) M+ = (cl (M))+.

(iii) If M is a non-empty, closed, convex cone, then M++ = M .

(iv) If 0 ∈M1 ∩M2, then we have

(M1 +M2)+ = M+
1 ∩M+

2 .

(v) Let Mj be closed, convex cones, then it holds that

(M1 ∩M2)+ = cl
(
M+

1 +M+
2

)
.

Next, we introduce convexity in a vector-valued setting, see [BS00]. Since the notion therein is related
to a preorder cone and we work with different cones in different spaces simultanously, we use the term
K-convexity to keep track of the cone involved.

Definition 2. Consider Banach spaces U and Y . Let a non-empty closed, convex cone K ⊆ Y
inducing a preorder relation≥K on Y be given. A set-valued mapping A : U ⇒ Y is called K-convex,
if for all t ∈ (0, 1) and u0, u1 ∈ U the relation

tA(u1) + (1− t)A(u0) ⊆ A(tu1 + (1− t)u0) +K

holds true, and A is called K-concave, if it is (−K)-convex, i.e., for all u0, u1 ∈ U and t ∈ (0, 1)
holds

tA(u1) + (1− t)A(u0) ⊆ A(tu1 + (1− t)u0)−K.

As mentioned, we use the term K-convexity over just convexity to keep track of the involved cone and
is not to be confused with the one in [Sca59].
We note here that A : U ⇒ Y is K-convex, if and only if the epigraph epiK (A) of A with respect to
K , defined by

epiK (A) := {(x, y) : y ∈ A(x) +K} ,

is a convex subset of U × Y . By defining the set-valued mapping AK : U ⇒ Y via AK(x) :=
A(x) +K one can rewrite

epiK (A) = gph(AK).

A special instance is the case of a single-valued operator S : U → Y . Then, the K-convexity reads

S(tu1 + (1− t)u0) ≤K tS(u1) + (1− t)S(u0)

for all u0, u1 ∈ X and t ∈ (0, 1). It is noteworthy that for a convex set C ⊆ Y with C −K ⊆ C its
preimage under S is convex. To see this, take u0, u1 ∈ S−1(C) and t ∈ (0, 1). By the K-convexity of
S we obtain

S(tu1 + (1− t)u0) ∈ tS(u1) + (1− t)S(u0)−K ∈ C −K ⊆ C,

and thus tu1 + (1− t)u0 ∈ S−1(C). In this setting we can establish the following characterization.

Lemma 3. Let U, Y be Banach spaces and let K ⊆ Y be a non-empty, closed, convex cone inducing
the preorder relation≤K on Y . Consider an operator S : U → Y . If S is (twice) Fréchet-differentiable,
let DS (D2S) denote its (second) Fréchet-derivative. Then, the following statements are equivalent:
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(i) S is K-convex.

(ii) For all y∗ ∈ K+ the functional u 7→ 〈y∗, S(u)〉 is convex.

(iii) If S is continuously Fréchet-differentiable, then for all u1, u0 ∈ U it holds that

DS(u0)(u1 − u0) + S(u0) ≤K S(u1).

(iv) If S is continuously differentiable, then for all u1, u0 ∈ U it holds that

(DS(u1)−DS(u0))(u1 − u0) ≥K 0.

(v) If, moreover, S is twice continuously differentiable, then for all u ∈ U and d ∈ U it holds that

D2S(u)(d, d) ≥K 0.

Proof. Consider K+ = {y∗ ∈ Y ∗ : 〈y∗, y〉 ≥ 0 for all y ∈ K}. By (iii) in Lemma 1 it holds that
y ∈ K , if and only if y ∈ K++. The latter is equivalent to

〈y∗, y〉 ≥ 0 for all y∗ ∈ K+.

Hence, S is K-convex if and only if for all y∗ ∈ K+ the functionals u 7→ 〈y∗, S(u)〉 are convex, which
proves the equivalence (i)⇔ (ii).
For the C1- and C2-case we can hence utilize the characterization of convex functionals and obtain
the equivalence of the remaining statements.

3.1 Vector-valued convexity of solution operators of inverse problems

In this subsection we investigate conditions guaranteeing the solution operator of a generalized equation
to be K-convex. This problem class covers a variety of problems including PDEs and VIs. For this
sake consider a set-valued operator A : Y ⇒ W and an arbitrary w ∈ W . We are interested in the
following generalized equation:
Seek y ∈ Y such that

w ∈ A(y). (GE)

In the following theorem we derive conditions on the operator A that guarantee the convexity of the
solution mapping associated with (GE).

Theorem 4. Let Y ,W be Banach spaces both equipped with non-empty closed, convex conesK ⊆ Y
and KW ⊆ W , respectively. Let A : Y ⇒ W be a set-valued operator and assume:

(i) A is KW -concave.

(ii) The mappingA−1 : W ⇒ Y is single-valued, its effective domain isW and it isKW -K-isotone,
i.e. for w1, w0 ∈ W with w1 ≥KW

w0 it holds that A−1(w1) ≥K A−1(w0).

Then, the mapping A−1 : W ⇒ Y is K-convex.
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Vector-valued convexity of solution operators 7

Proof. Let t ∈ (0, 1) and w0, w1 ∈ W . We denote by yj ∈ Y the unique solution of wj ∈ A(yj) for
j = 0, 1. Let y ∈ Y be the solution of tw1 + (1 − t)w0 ∈ A(y). Then we obtain by the assumed
KW -concavity

tw1 + (1− t)w0 ∈ tA(y1) + (1− t)A(y0) ⊆ A(ty1 + (1− t)y0)−KW .

Hence, there exists kW ∈ KW with tw1 +(1− t)w0 +kW ∈ A(ty1 +(1− t)y0) and by the assumed
isotonicity of the inverse A−1 we obtain

y = A−1(tw1 + (1− t)w0) ≤K A−1(tw1 + (1− t)w0 + kW ) = ty1 + (1− t)y0,

which proves the K-convexity of A−1.

After establishing our core result for this subsection, we derive a variation of Theorem 4 aiming at
formally more complicated generalized equations involving two components with different roles being
assigned to them.
Given u ∈ U,w ∈ W , find y ∈ Y such that

w ∈ A(u, y). (2)

Corollary 5. Consider the Banach spaces U , Y and W , the latter two equipped with non-empty,
closed, convex cones K ⊆ Y and KW ⊆ W , respectively. Let A : U × Y ⇒ W be a set-valued
operator and assume:

(i) The mapping A is KW -concave.

(ii) For every fixed u ∈ U , the mapping A(u, · )−1 : W ⇒ Y is single-valued, KW -K-isotone
and its domain is W .

Then the solution mapping S : W × U → Y of (2) is K-convex.

Proof. In order to apply Theorem 4, we define Ā : U × Y ⇒ W × U by

Ā(v, y) := A(v, y)× {v}

and equip the product spaces with the non-empty, closed, convex cones

K̄ := {0} ×K ⊆ U × Y and K̄W := KW × {0} ⊆ W × U.

We check the conditions of Theorem 4:
The K̄W -concavity is immediately clear from the definition of Ā. Considering the inverse, we see
Ā−1(w, u) = (u,A−1(u, · )(w)) and obtain (w1, u1) ≥K̄W

(w2, u2) if and only if u1 = u2 =: u
and w1 ≥KW

w2. By our assumption it holds that A−1(u, · )(w1) ≥K A−1(u, · )(w2) and we deduce
Ā−1(w1, u1) ≥K̄ Ā−1(w2, u2), which proves the isotonicity and by Theorem 4, the K̄-convexity.
Hence, we see that (w, u) 7→ (u, S(w, u)) = Ā−1(w, u) is K̄-convex, which is equivalent to S being
K-convex.

The following corollary addresses a yet more specific case of (GE).
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Corollary 6. Consider the Banach spaces U , Y and W , the latter two equipped with the non-empty,
closed, convex cones K and KW , respectively. Let A : Y → W be invertible and KW -concave
and B : U → W be KW -convex. Assume that A,B are Fréchet-differentiable and the operator
DA(y) ∈ L(Y,W ) has a K-KW -isotone inverse. Then, the solution mapping S : U → Y of the
equation

A(y) = B(u)

is K-convex.

Proof. Consider the mapping Ã(u, y) := A(y) − B(u). Evidently, the mapping is KW -concave
and Ã(u, · )−1 is a singleton and defined on all of W . Moreover, it is KW -K-isotone. Let therefore
w1 ≥KW

w0, and we see, writing A(yt) = tw1 + (1− t)w0, that

A−1(w1)− A−1(w0) =

∫ 1

0

D(A−1)(tw1 + (1− t)w0)(w1 − w0)dt

=

∫ 1

0

DA(yt)
−1(w1 − w0)dt ≥K 0.

The assertion follows by Corollary 5.

Next, we illustrate these results by several practically relevant examples.

3.2 Applications

In the upcoming subsection we apply our results to a selection of examples. Precisely, we show the
K-convexity of the solution operators associated to a partial differential equation (abbr.: PDE) and a
variational inequality (abbr.: VI). These problem classes enjoy an active research interest also with
respect to optimal control problems as an underlying constraint in the context of MPECs (mathematical
programming with equilibrium constraints, see e.g. [OKZ98, LLPR96]). We will revisit these examples
in Section 4.1 and Section 4.2, respectively when we calculate their (generalized) subdifferentials. Now,
we show the K-convexity of the solution operators.

3.2.1 Application to semilinear elliptic PDEs

As first application we propose conditions to a type of semilinear elliptic PDEs with homogeneous
Dirichlet boundary condition. For an open, bounded domain Ω ⊆ Rd with Lipschitz boundary and
d ∈ N\{0}, take Y := H1

0 (Ω) and consider the following partial differential equation:
Given w ∈ H−1(Ω), seek y ∈ H1

0 (Ω) such that

−∆y + Φ(y) = w in Ω,

y = 0 on ∂Ω,
(PDE)

where Φ : R → R is a continuous, non-decreasing and concave function inducing a continuous
superposition operator Φ : L2(Ω) → L2(Ω). Take as operator associated to (PDE) A : H1

0 (Ω) →
H−1(Ω) defined by 〈A(y), v〉 = (∇y,∇v)L2(Ω;Rd) + (Φ(y), v)L2(Ω) for arbitrary v ∈ H1

0 (Ω).
Then, the associated solution operator S : H−1(Ω) → H1

0 (Ω) is K-convex with respect to K :=
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{v ∈ H1
0 (Ω) : v ≥ 0 a.e. on Ω}. To show this, we apply Theorem 4. For this purpose, let W =

H−1(Ω) and

KW := K+ =
{
ξ ∈ H−1(Ω) : 〈ξ, v〉H−1(Ω),H1

0 (Ω) ≥ 0 for all v ∈ H1
0 (Ω)

}
.

By the assumed concavity of Φ : R→ R we obtain for an arbitrary test function v ∈ K that

〈A(ty1 + (1− t)y0), v〉H−1(Ω),H1
0 (Ω) = t(∇y1,∇v)L2(Ω) + (1− t)(∇y0,∇v)L2(Ω)

+ (Φ(ty1 + (1− t)y0), v)L2(Ω) ≥ t
(
(∇y1,∇v)L2(Ω) + (Φ(y1), v)L2(Ω)

)
+ (1− t)

(
(∇y0,∇v)L2(Ω) + (Φ(y0), v)L2(Ω)

)
= t〈A(y1), v〉H−1(Ω),H1

0 (Ω) + (1− t)〈A(y0), v〉H−1(Ω),H1
0 (Ω)

and hence the KW -concavity of A. By the monotonicity of Φ the operator A is strongly monotone
and moreover, it is continuous by the assumed continuity of Φ and hence we obtain its invertibility
by the Browder-Minty Theorem, see [Cia13, Theorem 9.14-1]. Using Theorem 4 yields the claimed
K-convexity. In fact, a closer look at the above arguments shows that the arguments can be used for
other semilinear elliptic PDEs, e.g. involving Neumann boundary conditions as well. We will come back
to this in the last section of this work. As a practically relevant case, choose Φ(y) := −(−y)+, which
is equivalent to the setting of [CMWC18].

3.2.2 Application to variational inequalities

Let Y be a reflexive and preordered Banach space as well as a vector lattice with order cone K and
consider a K+-concave, demicontinuous (i.e. for all sequences (yn)n∈N with yn → y in Y it holds
A(yn) ⇀ A(y) in Y ∗, cf. [Rou05, Definition 2.3]) and strongly monotone (cf. [Rou05, Definition 2.1
(iii)]) operator A : Y → Y ∗, that is moreover strictly T-monotone (cf. [Rod87, Equation (5.7)]), i.e.,

〈A(y + z)− A(y), (−z)+〉Y ∗,Y < 0 for z ∈ Y with (−z)+ 6= 0.

Furthermore, letC : U ⇒ Y be a set-valued operator with a convex graph and values with lower bound,
i.e. for all u ∈ U it holds that C(u) + K ⊆ C(u) and y0, y1 ∈ C(u) implies min(y0, y1) ∈ C(u)
(see [Wac16, Definition 5.4.9]). Moreover, let w ∈ Y ∗ be given. We consider the following variational
inequality problem (VI):
Seek y ∈ C(u) such that

w ∈ A(y) +NC(u)(y), (VI)

where NC(u)( · ) denotes the normal cone mapping (see [AF90]). We have NC(u)(y) = (C(u)− y)◦.
Then, the solution operator S : Y ∗ × U → Y is K-convex:
Setting Ā(u, y) := A(y) +NC(u)(y), we check the conditions of Corollary 5. The strong monotonicity
and the existence theory for VIs (cf. [KS80]) yield the single-valuedness of Ā(u, · )−1.
To prove the isotonicity condition take w1 ≥KW

w0 and set yj = S(wj, u) for j = 0, 1. By testing with
z1 := max(y0, y1) = y1 + (y0 − y1)+ ∈ C(u) and z0 := min(y0, y1) = y0 − (y0 − y1)+ ∈ C(u)
we obtain

〈A(y1), z1 − y1〉Y ∗,Y = 〈A(y1), (y0 − y1)+〉Y ∗,Y ≥ 〈w1, (y0 − y1)+〉Y ∗,Y
≥ 〈w0, (y0 − y1)+〉Y ∗,Y ≥ 〈A(y0), (y0 − y1)+〉Y ∗,Y
= 〈A(y0), y0 − z0〉Y ∗,Y

and hence 〈A(y1)− A(y0), (y0 − y1)+〉 ≥ 0, which implies y1 ≥K y0 by the strict T-monotonicity.
To show the K+-concavity of Ā we use the K+-concavity of A. Since C(u) + K ⊆ C(u) we can
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easily show that NC(u)(y) ⊆ −K+ and since 0 ∈ NC(u)(y) for y ∈ C(u) we have NC(u)(y) −
K+ = −K+. Letting (uj, yj) ∈ gph(C) for j = 0, 1 we obtain by the convexity of the graph
ty1 + (1− t)y0 ∈ C(tu1 + (1− t)u0), which implies NC(tu1+(1−t)u0)(ty1 + (1− t)y0) 6= ∅. Hence,
the concavity condition reads as

tNC(u1)(y1) + (1− t)NC(u0)(y0) ⊆ NC(tu1+(1−t)u0)(ty1 + (1− t)y0)−K+

= −K+,

which is fulfilled since NC(uj)(yj) ⊆ −K+. Hence, we have verified the assumptions in Corollary 5
and deduce the K-convexity of the solution operator.

4 Subdifferential of vector-valued convex operators

In the previous section, we devoted our attention to the vector-valued convexity of solution operators.
After deriving results on the abstract level we applied them to a selection of applications. We want to
proceed in this manner and return to optimal control problems. A central task is the derivation of first-
order optimality conditions. The latter is challenging, if the underlying solution operator is non-smooth
as it is the case for VIs. On the one hand, we are interested in extending the preceding generalization
of convexity to (generalized) subdifferentials for vector-valued convex operators. On the other hand, the
presence of possibly non-smooth solution operators necessitates a weakened differentiation concept,
not only in view of optimal control problems. Regarding the latter, the establishment of calculus rules
incorporating compositions of convex functionals and K-convex operators is of interest. As a starting
point, we prove some basic properties on S, respectively SK( · ) := S( · ) + K with SK : U ⇒ Y ,
where K ⊆ Y is again a non-empty, closed, convex cone in the Banach space Y .

Theorem 7. Let S : U → Y be a locally bounded, K-convex operator. Then, the normal cone of the
graph of SK is characterized as

Ngph(SK)(u, y) = {(h∗, d∗) ∈ U∗ × Y ∗ : d∗ ∈ NK(y − S(u)),

h∗ ∈ ∂〈−d∗, S( · )〉(u)}.

Proof. Defining the set

N := {(h∗, d∗) ∈ U∗ × Y ∗ : d∗ ∈ NK(y − S(u)), h∗ ∈ ∂〈−d∗, S( · )〉(u)}

we have to prove Ngph(SK)(u, y) = N :
Step 1: Ngph(SK)(u, y) ⊆ N .
For u ∈ U and y ∈ SK(u) the relation (h∗, d∗) ∈ Ngph(SK)(u, y) holds if and only if

〈h∗, v − u〉U∗,U + 〈d∗, z − y〉Y ∗,Y ≤ 0 for all (v, z) ∈ gph(SK).

By SK( · ) = S( · ) +K we can write y = S(u) + k and z = S(v) + k̃, with k, k̃ ∈ K respectively.
Taking v = u we obtain

〈d∗, z − y〉Y ∗,Y = 〈d∗, k̃ − k〉Y ∗,Y ≤ 0 for all k̃ ∈ K,

which yields d∗ ∈ NK(k) = NK(y− S(u)) (⊆ −K+). Hence, we obtain with z = S(v) and v ∈ U
that

〈h∗, v − u〉U∗,U ≤ 〈−d∗, S(v)− S(u)〉Y ∗,Y + 〈d∗, k〉Y ∗,Y
≤ 〈−d∗, S(v)〉Y ∗,Y − 〈−d∗, S(u)〉Y ∗,Y
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for all v ∈ U . Since −d∗ ∈ K+, the functional 〈−d∗, S( · )〉 : U → R is convex and the above
inequality characterizes

h∗ ∈ ∂ (〈−d∗, S( · )〉) (u).

So we obtain Ngph(SK)(u, y) ⊆ N .
Step 2:N ⊆ Ngph(SK)(u, y).

Take on the other hand (h∗, d∗) ∈ N . Then we get for arbitrary v ∈ U and z = (S(v) + k̃) ∈ SK(v)
with some k̃ ∈ K that

〈h∗, v − u〉U∗,U + 〈d∗, z − y〉Y ∗,Y = 〈h∗, v − u〉U∗,U + 〈d∗, S(v)− S(u)〉Y ∗,Y
+ 〈d∗, k̃ − k〉Y ∗,Y ≤ 0 + 0 = 0,

which proves the equality.

From the above lemma we are able to formulate the coderivative of the multifunction SK : U ⇒ Y
in (u, y) ∈ gph(SK), see [Mor06, Definition 1.32] for the general definition of the coderivative of a
mapping. In fact, we have

D∗SK(u, y)(y∗) = {u∗ ∈ U∗ : (u∗,−y∗) ∈ Ngph(SK)(u, y)}

=

{
∂〈y∗, S(·)〉(u), if − y∗ ∈ NK(y − S(u)),

∅, else.

(3)

Based on (3) we formulate our definition of the subdifferential of a vector-valued convex operator

Definition 8. Let Banach spaces U, Y be given, the latter equipped with a closed, convex cone
K ⊆ Y . The subdifferential D∗S(u) : K+ ⇒ Y ∗ is for u ∈ U and y∗ ∈ K+ defined by

D∗S(u)(y∗) = D∗SK(u, S(u))(y∗) = ∂〈y∗, S( · )〉(u).

Using the standard sum rule for subdifferentials it is straightforward to deduce the linearity relation

D∗S(u)(λy∗1 + y∗2) = λD∗S(u)(y∗1) +D∗S(u)(y∗2)

for all y∗1, y
∗
2 ∈ K+ and λ ≥ 0.

In the light of our previously discussed results for solution operators on generalized equations, we
derive a characterization of the subdifferential for a solution operator of (GE) in the following inversion
formula.

Theorem 9. Let y∗ ∈ K+. Then, it holds that

w∗ ∈ D∗S(w)(y∗) if and only if (−y∗, w∗) ∈ Ngph(A−KW
)(S(w), w)

with A−KW
(y) = A(y)−KW for all y ∈ Y .

Proof. Let w∗ ∈ D∗S(w)(y∗). Then w∗ ∈ ∂〈y∗, S( · )〉(u) holds or in other words

〈w∗, w′ − w〉W ∗,W + 〈−y∗, S(w′)− S(w)〉W ∗,W ≤ 0 for all w′ ∈ W.

Taking now w′ = w − kW with kW ∈ KW and w′ ∈ A(y′), which is the same as y′ = S(w′), we
find by the isotonicity of the solution operator y′ ≤K S(w) and hence

〈w∗,−kW 〉 = 〈w∗, w′ − w〉 ≤ 〈y∗, y′ − S(w)〉 ≤ 0,
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which yields w∗ ∈ K+
W . Hence, for y′ ∈ Y and w′ = w̄ − kW with w̄ ∈ A(y′) and kW ∈ KW we

have

〈w∗, w′ − w〉W ∗,W + 〈−y∗, y′ − S(w)〉Y ∗,Y = 〈w∗,−kW 〉W ∗,W + 〈w∗, w̄ − w〉W ∗,W
+ 〈−y∗, S(w′)− S(w)〉Y ∗,Y ≤ 0,

which means (w∗,−y∗) ∈ Ngph(A−KW
)(w, S(w)).

For the other direction we assume the latter. Then, take w′ = w − kW ∈ A(S(w)) − KW for an
arbitrary kW ∈ KW . We have 〈w∗,−kW 〉W ∗,W ≤ 0 and hence w∗ ∈ K+

W . For w′ ∈ A(y′) the
assumption yields

〈w∗, w′ − w〉W ∗,W + 〈−y∗, S(w′)− S(w)〉Y ∗,Y ≤ 0.

Since by assumption y∗ ∈ K+, the map w 7→ 〈y∗, S(w)〉 is convex and hence the above reads
w∗ ∈ ∂〈y∗, S( · )〉(w) = D∗S(w)(y∗).

We continue our investigation with A : W → Y being single-valued. In this case, we obtain the
following result.

Corollary 10. Let S : W → Y denote the solution operator of the equation w = A(y) for an operator
A : W → Y being KW -concave with an isotone inverse. Then, for y∗ ∈ K+ it holds that

w∗ ∈ D∗S(w)(y∗) if and only if − y∗ ∈ D∗(−A)(S(w))(w∗).

Proof. By Theorem 9 we have w∗ ∈ D∗S(w)(y∗) if and only if (−y∗, w∗) ∈ Ngph(A−KW
)(y, w) with

y = S(w). The latter is equivalent to

〈−y∗, y′ − y〉Y ∗,Y + 〈w∗, w′ − w〉W ∗,W ≤ 0 for all y′ ∈ Y and w′ ∈ A(y′)−KW .

Setting y′ = y and w′ = w − kW for an arbitrary kW ∈ KW yields again w∗ ∈ K+
W . Since A

is KW -concave, the mapping y 7→ 〈w∗,−A(y)〉W ∗,W is a convex functional. Testing with arbitrary
y′ ∈ Y and w′ = A(y′), we obtain

〈−y∗, y′ − y〉Y ∗,Y + 〈w∗,−A(y)〉W ∗,W ≤ 〈w∗,−A(y′)〉W ∗,W ,

which yields −y∗ ∈ D∗(−A)(y)(w∗). The other direction follows as in the proof of Theorem 9.

With these results at hand, we return to the applications represented in the Subsections 3.2.1 and 3.2.2
and calculate the subdifferentials of the respective solution operators.

4.1 Application to semilinear elliptic PDEs

As a first application of the results in Section 4, we return to the class of semilinear elliptic PDEs
discussed in Subsection 3.2.1. The characterization of the subdifferential of the solution operator is
presented in the following theorem.
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Theorem 11. Let S : H−1(Ω) → H1
0 (Ω) denote the solution operator of the following elliptic PDE

problem:
Given w ∈ H−1(Ω) seek y ∈ H1

0 (Ω) such that

−∆y + Φ(y) = w in Ω,

y = 0 on ∂Ω
(4)

holds. Assume Φ : R → R to be a continuous, non-decreasing and concave function inducing a
continuous superposition operator Φ : L2(Ω)→ L2(Ω).
Let y∗ ∈ K+ with K := {z ∈ H1

0 (Ω) : z ≥ 0 a.e. on Ω}. Then w∗ ∈ D∗S(w)(y∗) holds if and
only if there exists a measurable function m : Ω → R with −m(x) ∈ ∂(−Φ)(y(x)) a.e. such that
the following PDE is satisfied

−∆w∗ +mw∗ = y∗ in Ω,

w∗ = 0 on ∂Ω.
(5)

Proof. First let w∗ ∈ D∗S(w)(y∗). Define the operator A : H1
0 (Ω)→ H−1(Ω)

〈A(y), z〉H−1(Ω),H1
0 (Ω) = (∇y,∇z)L2(Ω;Rd) + (Φ(y), z)L2(Ω).

By Corollary 10 this is equivalent to−y∗ ∈ D∗(−A)(y)(w∗), where it is also proven thatw∗ ∈ K+
W =

K . Hence, w∗ ≥ 0 a.e. on Ω. For arbitrary z ∈ H1
0 (Ω) we obtain for y∗ the following inequality:

〈−y∗, z〉H−1(Ω),H1
0 (Ω) ≤ −〈−∆z + Φ(y + z)− Φ(y), w∗〉H−1(Ω),H1

0 (Ω)

= −〈Φ(y + z)− Φ(y), w∗〉H−1(Ω),H1
0 (Ω) − 〈−∆w∗, z〉H−1(Ω),H1

0 (Ω)

(6)

and hence 〈∆w∗+y∗, z〉 ≥ 〈Φ(y+z)−Φ(y), w∗〉. Testing now with z ∈ K yields 〈∆w∗+y∗, z〉 ≥ 0
by the non-decreasing nature of Φ : R→ R. Hence, we can identify the distribution ∆w∗ + y∗ with
a Borel measure µ. Let E ∈ B(Ω) be a Borel set. Since C∞0 (Ω) ⊆ L2(Ω) is dense, there exists a
sequence ϕ̃n ∈ C∞0 (Ω) with ϕ̃n → 1E in L2(Ω), where 1E denotes the characteristic function of
E. Taking a subsequence we also obtain the pointwise convergence (Fischer–Riesz) and by setting
ϕn := min (max (ϕ̃n, 0) , 1) we have a non-negative sequence in H1

0 (Ω) pointwise bounded by 1
from above and converging pointwise and in L2(Ω) to 1E . Using Fatou’s Lemma we obtain

0 ≤ µ(E) =

∫
Ω

1Edµ =

∫
Ω

lim inf
n→∞

ϕndµ ≤ lim inf
n→∞

∫
Ω

ϕndµ

≤ lim inf
n→∞

〈Φ(y)− Φ(y − ϕn), w∗〉 =

∫
E

(Φ(y)− Φ(y − 1))w∗dx <∞,

where we used L2(Ω) 3 Φ(y) − Φ(y − 1) ≥ Φ(y) − Φ(y − ϕn) ≥ 0 a.e. on Ω as well as the
continuity of Φ : R→ R, which gives by dominated convergence the last equality. If λd(E) = 0, then
we obtain µ(E) = 0 and hence we infer that the measure µ is absolutely continuous with respect to
the Lebesgue measure. Thus, by the Radon–Nikodym theorem there exists a non-negative function
ρ ∈ L1(Ω) with µ(E) =

∫
E
ρ dx for all E ∈ B(Ω). Testing with E ⊆ {w∗ = 0} yields as well

µ(E) = 0 and ρ = 0 on {w∗ = 0} and we rewrite ρ = mw∗ for a measurable function m : Ω→ R.
Using the characterization in equation (6) we get∫

Ω

(
(−Φ)(y + z)− (−Φ)(y) +mz

)
w∗dx ≥ 0
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for all z ∈ H1
0 (Ω). Using the same density argument as before with mw∗ ∈ L1(Ω), we can as well

test with z = t1E ∈ L∞(Ω) for t ∈ R and E again a Borel set. Hence, we find on {w∗ > 0} that for
all t ∈ R it holds that

(−Φ)(y + t)− (−Φ)(y) ≥ −mt a.e. on {w∗ > 0},

which, due to the convexity of −Φ, implies −m(x) ∈ ∂(−Φ)(y(x)) for almost all x ∈ {w∗ > 0}.
Since the values of m on {w∗ = 0} do not matter, we can deduce without loss of generality−m(x) ∈
∂(−Φ)(y(x)) on the entire domain Ω. Hence, we conclude that for all z ∈ H1

0 (Ω) it holds that

0 = 〈−∆w∗ − y∗, z〉+

∫
Ω

zdµ =

∫
Ω

(∇w∗ · ∇z +mw∗z) dx− 〈y∗, z〉,

which is the weak formulation of the PDE in the assertion.
For the other direction let now m be a measurable function with −m(x) ∈ ∂(−Φ)(y(x)) a.e. on Ω
and let w∗ ∈ H1

0 (Ω) be the solution of (5). For an arbitrary function z ∈ H1
0 (Ω) we find

(−Φ)(y + z)− (−Φ)(y) ≥ −mz a.e. on Ω as well as

(−Φ)(y − z)− (−Φ)(y) ≥ mz a.e. on Ω.

Together, we get
Φ(y + z)− Φ(y) ≤ mz ≤ Φ(y)− Φ(y − z)

and since by assumption Φ : H1
0 (Ω)→ L2(Ω) is well defined, we obtain mz ∈ L2(Ω). Since Φ is

non-decreasing m ≥ 0 a.e. on Ω holds, so testing (5) with z = (−w∗)+ yields

0 ≥ −‖∇(−w∗)+‖L2(Ω;Rd)
2 ≥ −‖∇(−w∗)+‖L2(Ω;Rd)

2 −
∫

Ω

m
(
(−w∗)+

)2
dx

= (∇w∗,∇(−w∗)+)L2(Ω;Rd) +

∫
Ω

mw∗(−w∗)+dx

= 〈y∗, (−w)+〉H−1(Ω),H1
0 (Ω) ≥ 0,

from which we deduce w∗ ≥ 0. Multiplying (5) by the solution of (4) yields

〈−y∗, z〉H−1(Ω),H1
0 (Ω) = 〈∆w∗ −mw∗, z〉H−1(Ω),H1

0 (Ω) = 〈∆z, w∗〉H−1(Ω),H1
0 (Ω) +

∫
Ω

(−mz)w∗dx

≤ 〈∆z, w∗〉H−1(Ω),H1
0 (Ω) − 〈Φ(y + z)− Φ(y), w∗〉H−1(Ω),H1

0 (Ω)

= −〈−∆z + Φ(y + z)− Φ(y), w∗〉H−1(Ω),H1
0 (Ω)

for all z ∈ H1
0 (Ω), which proves y∗ ∈ D∗A(y)(−w∗) and equivalently w∗ ∈ D∗S(w)(y∗).

Theorem 11 is related to the results in [CMWC18] as follows:
Consider the case Φ(z) := −(−z)+ yielding the PDE

−∆y − (−y)+ = w in Ω,

y = 0 on ∂Ω

for given w ∈ H−1(Ω). Then, for y∗ ∈ H−1(Ω) our subdifferential reads as w∗ ∈ D∗S(w)(y∗), if
and only if there exists a function m ∈ L∞(Ω) with

0 ≤ m ≤ 1 a.e. on {y = 0},
m = 1 a.e. on {y < 0}, and

m = 0 a.e. on {y > 0},
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such that
−∆w∗ +mw∗ = y∗ on Ω,

w∗ = 0 on ∂Ω.

This corresponds to the strong-weak Bouligand subdifferential calculated in [CMWC18]. For the sake
of brevity we do not introduce the details of Bouligand subdifferentials here. In the next subsection,
we return to variational inequalities, where we apply our results on an abstract level as well as for the
obstacle problem (cf. [KS80, Rod87]).

4.2 Applications to VI solution operators

Returning to the setup in Subsection 3.2.2, we draw our attention to (VI), where we additionally assume
the operator A : Y → Y ∗ to be linear, bounded and coercive.
There, we provided the K-convexity of the solution operator S : U × Y ∗ → Y of (VI). For the
calculation of its subdifferential we utilize the inversion formula given in Theorem 9 and obtain the
following result.

Theorem 12. Let S : Y ∗ × U → Y denote the solution operator of (VI) and take y∗ ∈ K+. The
subdifferential of S in (w, u) reads with y := S(w, u) as

D∗S(w, u)(y∗) = {(w∗, u∗) ∈ Y × U∗ : w∗ ∈ K ∩ {Ay − w}⊥ and

(u∗, A∗w∗ − y∗) ∈ Ngph(C)(u, y)}.

Proof. Our aim is the use of Theorem 9. For this purpose we introduce — as in the proof of Corollary 5
— the mapping Ā : U × Y → Y ∗ × U defined by Ā(u, y) := (Ay +NC(u)(y))× {u} and obtain
as solution mapping (w, u) 7→ S̄(w, u) := (u, S(w, u)). From the inversion formula in Theorem 9,
we infer for y∗ ∈ K+ that

(w∗, u∗) ∈ D∗S(w, u)(y∗) if and only if (w∗, u∗) ∈ D∗S̄(w, u)(0, y∗),

which is equivalent to

(0,−y∗, w∗, u∗) ∈ Ngph(Ā−K+×{0})
(u, S(w, u), w, u).

Hence, it is left to calculate the normal cone of the graph of Ā − (K+ × {0}). For this sake let
(u, y, w, u) ∈ gph(Ā−K+×{0}) and (−v∗,−y∗, w∗, u∗) ∈ Ngph(Ā−K+×{0})

(u, y, w, u). Since for

u′ ∈ U it holds that C(u′) +K ⊆ C(u′) we obtain for all y′ ∈ C(u′) thatNC(u′)(y
′) ⊆ −K+, which

yields Ā(u′, y′) −K+ × {0} = (Ay′ −K+) × {u′}. With ξ := Ay − w ∈ K+ we obtain for all
(w′, u′) = (Ay′ − ξ′, u′) ∈ (Ay′ −K+)× {u′} that

0 ≥ 〈w′ − w,w∗〉Y ∗,Y + 〈u∗, u′ − u〉U∗,U + 〈−v∗, u′ − u〉U∗,U + 〈−y∗, y′ − y〉Y ∗,Y
= −〈ξ′ − ξ, w∗〉Y ∗,Y + 〈A∗w∗ − y∗, y′ − y〉Y ∗,Y + 〈u∗ − v∗, u′ − u〉U∗,U

(∗)

for all ξ′ ∈ K+, u′ ∈ U, y′ ∈ C(u′).
First, we test (∗) with y′ = y and u′ = u. Then, we get 〈ξ′ − ξ,−w∗〉Y ∗,Y ≤ 0 for all ξ′ ∈ K+.
By setting ξ′ = ξ + k+ for a k+ ∈ K+ we see 〈k+, w∗〉Y ∗,Y ≥ 0 and using k+ = ξ especially
〈ξ, w∗〉Y ∗,Y ≥ 0. Setting ξ′ = 0 yields 〈ξ, w∗〉Y ∗,Y ≤ 0 and thus w∗ ∈ K ∩ {Ay−w}⊥. By testing
with an arbitrary u′ ∈ U with y′ ∈ C(u′) and ξ′ = 0 we get (u∗ − v∗, A∗w∗ − y∗) ∈ Ngph(C)(u, y).
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To show the other direction, let w∗ ∈ K ∩{Ay−w}⊥ such that (u∗− v∗, A∗w∗− y∗) ∈ Ngph(C)(y)
and write again ξ = Ay − u. Then we get

0 ≥ 〈ξ′ − ξ,−w∗〉Y ∗,Y + 〈A∗w∗ − y∗, y′ − y〉Y ∗,Y + 〈u∗ − v∗, u′ − u〉U∗,U
= 〈(Ay′ − ξ′)− (Ay − ξ), w∗〉Y ∗,Y + 〈u∗, u′ − u〉U∗,U
+ 〈−v∗, u′ − u〉U∗,U + 〈−y∗, y′ − y〉Y ∗,Y

for all ξ′ ∈ K+, u′ ∈ U and y′ ∈ C(u′). This implies (−v∗,−y∗, w∗, u∗) ∈ Ngph(Ā−K+×{0})
(u, y, w, u).

Summarizing, we obtain for the operator S

D∗S(w, u)(y∗) = D∗S̄(w, u)(0, y∗)

= {(w∗, u∗) ∈ Y × U∗ : w∗ ∈ K ∩ {Ay − w}⊥ and

(u∗, A∗w∗ − y∗) ∈ Ngph(C)(u, y)},

which yields the assertion.

An important subclass of VIs is associated with C(u) = C for all u ∈ U with C ⊆ Y a non-empty,
closed, convex set. In this case, it holds that Ngph(C)(u, y) = NU×C(u, y) = {0} × NC(y) for all
y ∈ C and u ∈ U . For the characterization of the subdifferential some aspects and results from
Capacity Theory (cf. [BS00]) are provided in the appendix and are used in the following theorem.

Theorem 13. Let S : Y ∗ → Y,w 7→ y, denote in the setting of Theorem 12 the solution operator of
the following VI:
Seek y ∈ Y such that

w ∈ Ay +NC(y) in Y ∗. (7)

Then, we obtain for y := S(w) that

D∗S(w)(y∗) =
{
w∗ ∈ Y : w∗ ∈ K ∩ {Ay − w}⊥ and A∗w∗ − y∗ ∈ NC(y)

}
.

Proof. We apply Theorem 12 using C(u) = C for all u ∈ U . Further, one observes

w∗ ∈ D∗S(w)(y∗)⇔ (w∗, 0) ∈ D∗S̄(w, u)(y∗),

where S̄ is the solution operator defined in the proof of Theorem 12. This yields−w∗ ∈ K∩{Ay−w}⊥
and (0, A∗w∗ − y∗) ∈ Ngph(C)(u, S̄(w, u)) = {0} ×NC(S(w)) and thus the assertion.

Next, we study the special case of the obstacle problem. For this, we let Y = H1
0 (Ω) be equipped with

the order cone K := {z ∈ H1
0 (Ω) : z ≥ 0 a.e. on Ω}. For the VI we assume A = −∆ and

C := {z ∈ H1
0 (Ω) : z ≥ ψ a.e. on Ω}

with ψ ∈ H1(Ω), ψ ≤ 0 on ∂Ω. For w ∈ H−1(Ω) we set y = S(w) and define the inactive set
I(y) := {x ∈ Ω : y(x) > ψ(x)}, the active set A(y) := Ω\I(y) and the strictly active set as
As(y) := f-supp(w + ∆y), where f-supp denotes the fine support, see Lemma 21 in the appendix.
Then it can be shown, that the tangential cone of C in y ∈ C reads

TC(y) = {z ∈ H1
0 (Ω) : z ≥ 0 q.e. onA(y)},

where ‘q.e.’ stands for ‘quasi-everywhere’ (cf. [BS00] for more details). By the techniques involving
capacitary measures from [RW19] and the references therein we deduce the following characterization
of the subdifferential of S:

DOI 10.20347/WIAS.PREPRINT.2759 Berlin, September 11, 2020/rev. November 17, 2021



Vector-valued convexity of solution operators 17

Theorem 14. Let w ∈ H−1(Ω) with y = S(w) and y∗ ∈ K+. Then, w∗ ∈ D∗S(w)(y∗) if and only
if there exists a capacitary measure m ∈M0(Ω) such that

m(I(y)) = 0 and m = +∞ onAs(y),

and w∗ ∈ H1
0 (Ω) ∩ L2

m(Ω) with L2
m(Ω) defined as in (13) in the appendix, solves the system

−∆w∗ +mw∗ = y∗ in Ω,

w∗ = 0 on ∂Ω, i.e.
(8)

for all v ∈ H1
0 (Ω) ∩ L2

m(Ω) it holds that

(∇w∗,∇v)L2(Ω) +

∫
Ω

w∗v dm = 〈y∗, v〉H−1(Ω),H1
0 (Ω).

Proof. We use the characterization of the subdifferential given in Theorem 13. Let first w∗ ∈ H1
0 (Ω)

be given with w∗ ∈ K ∩ {−∆y − w}⊥ and −∆w∗ − y∗ ∈ NC(y).
The latter implies ∆w∗ + y∗ ∈ K+ and according to Lemma 21 we can identify the functional with a
non-negative Borel measure. Let E ∈ B(Ω) be an arbitrary Borel set. We define the measure m as
follows

m(E) :=

{ ∫
E

1
w∗

d(y∗ + ∆w∗), if cap (E ∩ {w∗ = 0}) = 0,
+∞, else.

Since 〈w+ ∆y, w∗〉H−1(Ω),H1
0 (Ω) = 0 and w∗ ≥ 0 a.e. on Ω, we obtain that {w∗ = 0} q.e. onAs(y)

and hence m = +∞ onAs(y).
Since 〈y∗+∆w∗, v〉H−1(Ω),H1

0 (Ω) = 0 for all v ∈ H1
0 (I(y)) we see as well cap (f-supp(y∗ + ∆w∗) ∩ I(y)) =

0 and hence m(I(y)) = 0. It is left to show, that the system is fulfilled. At first we see that
w∗ ∈ L2

m(Ω) :∫
Ω

w∗2 dm =

∫
{w∗ 6=0}

w∗2 dm =

∫
{w∗ 6=0}

w∗d(y∗ + ∆w∗) =

∫
Ω

w∗d(y∗ + ∆w∗)

= 〈y∗ + ∆w∗, w∗〉H−1(Ω),H1
0 (Ω) <∞.

Take now v ∈ H1
0 (Ω) ∩ L2

m(Ω). Then v = 0 q.e. on {w∗ = 0} by the construction of m, and we
obtain ∫

Ω

w∗v dm =

∫
{w∗ 6=0}

w∗v dm =

∫
{w∗ 6=0}

v d(y∗ + ∆w∗)

=

∫
Ω

v d(y∗ + ∆w∗) = 〈y∗ + ∆w∗, v〉H−1(Ω),H1
0 (Ω),

which proves the assertion.
To prove the other direction let now m ∈ M0(Ω) be a capacitary measure with m(I(y)) = 0 and
m = +∞ on As(y). Let w∗ ∈ H1

0 (Ω) ∩ L2
m(Ω) denote (8). Then, we see that w∗ = 0 q.e. on

As(y), and since y∗ ∈ K+ we deduce by testing with v = (−w∗)+ that

0 ≥ −‖∇(−w∗)+‖2
L2(Ω) −

∫
{w∗<0}

(−w∗)2 dm = 〈y∗, (−w∗)+〉H−1(Ω),H1
0 (Ω) ≥ 0,

and hence w∗ ≥ 0 a.e. on Ω, which proves w∗ ∈ K ∩ {Ay − w}⊥. Let now v ∈ TC(w) and define
similar to the proof of [DMG94, Proposition 2.6] vn := min

(
1
n
v, w∗

)
. Then we see 0 ≤ vn ≤ w∗ q.e.

onA(y) and vn = 0 q.e. onAs(y). Since m(I(y)) = 0 we obtain∫
Ω

v2
n dm =

∫
A(y)\As(y)

v2
n dm ≤

∫
A(y)\As(y)

w∗2 dm <∞,
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and hence vn ∈ H1
0 (Ω) ∩ L2

m(Ω). Testing (8) with vn we obtain similarly to before

1

n
〈y∗, v〉H−1(Ω),H1

0 (Ω) ≥ 〈y∗, vn〉H−1(Ω),H1
0 (Ω) = (∇w∗,∇vn)L2(Ω) +

∫
Ω

w∗vn dm

=

∫
{nw∗≤v}

|∇w∗|2dx+
1

n

∫
{nw∗>v}

∇w∗ · ∇vdx+

∫
A(y)

w∗vn dm

≥ 1

n

∫
{nw∗>v}

∇w∗ · ∇vdx.

We multiply by n, let n → ∞ and obtain using ∇w∗ = 0 on {w∗ = 0} that 〈y∗ + ∆w∗, v〉 ≥ 0.
Hence, we deduce −∆w∗ − y∗ ∈ NC(y).

As mentioned before, also in this case the involved operator corresponds to the strong-weak Bouligand
subdifferential (cf. [RW19]).

5 Convex optimization problems involving vector-valued convex
operators

In the previous sections, a preorder-related notion of vector-valued convex operators and an extended
subdifferential concept for these operators have been introduced. Aiming at optimal control problems
we might be confronted with the treatment of optimization problems of the following type:

minimize f(u) + g(S(u)) over u ∈ U. (9)

The minimization problem in (9) matches the reduced formulation of an optimal control problem,
where S represents the solution operator of a partial differential equation or a variational inequality as
discussed in the previous subsections. The derivation of necessary optimality conditions is a central
task. Especially in the context of VIs this is non-trivial and requires the use of generalized differentiation
concepts. In view of the latter the previously derived results for the subdifferential will be analyzed
next for their use for the derivation of first-order conditions. For this sake, the upcoming section is
devoted to the derivation of calculus rules addressing compositions of a K-convex operators with
convex functionals which are compatible with the preorder relation. We start with the derivation of a
chain rule.

Lemma 15. LetU , Y be Banach spaces, the latter one equipped with a non-empty, closed, convex cone
K. Let g : Y → R ∪ {+∞} be a convex, lower semi-continuous, proper and K-isotone functional.
Suppose S : U → Y is a locally bounded, K-convex operator. Then, g ◦ S : U → R ∪ {+∞} is
convex as well.
Moreover, consider u ∈ U with S(u) ∈ D(∂g) and let the following constraint qualification hold

0 ∈ core (S(U)− dom (g)) .

Then, for the subdifferential it holds that

∂(g ◦ S)(u) = D∗S(u)
(
∂g(S(u))

)
=

⋃
y∗∈∂g(S(u))

∂〈y∗, S( · )〉(u).
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Proof. Let u ∈ U be as above and define M :=
⋃
y∗∈∂g(S(u)) ∂〈y∗, S( · )〉(u). By the assumption on

u we get ∂g(S(u)) 6= ∅. Let y∗ ∈ ∂g(y) for some y ∈ D(∂g). Then we obtain for k ∈ K , that

0 ≥ g(y − k)− g(y) ≥ 〈y∗, y − k − y〉Y ∗,Y = −〈y∗, k〉Y ∗,Y
and hence we obtain ∂g(y) ⊆ K+ and further the convexity of u 7→ 〈y∗, S(u)〉. By the local
boundedness of S we obtain local boundedness of u 7→ 〈y∗, S(u)〉 as well and by [ET76, Lemma 2.1]
also its continuity on all of U . So the set M is well defined in the sense of the convex subdifferential
and non-empty.
Take u∗ ∈M . Then, there exists y∗ ∈ ∂g(S(u)) with u∗ ∈ ∂〈y∗, S( · )〉(u) such that

g(S(v)) ≥ g(S(u)) + 〈y∗, S(v)− S(u)〉Y ∗,Y ≥ g(S(u)) + 〈u∗, v − u〉U∗,U
and hence M ⊆ ∂(g ◦ S)(u). Since M 6= ∅ we can now take u∗ ∈ ∂(g ◦ S)(u) and obtain by the
Fenchel-Legendre identity, that

〈u∗, u〉U∗,U = (g ◦ S)(u) + (g ◦ S)∗(u∗).

Hence, we know that u ∈ argminv∈U(g(S(v))− 〈u∗, v〉). Using the K-isotonicity this is equivalent
to

(u, S(u)) ∈ argminv∈U,y∈Y
(
g(y)− 〈u∗, v〉+ Igph(SK)(v, y)

)
,

with IM Hence, the first-order condition holds at (u, S(u)), i.e.,

0 ∈ ∂
(
g(prY ( · ))− 〈u∗, prU( · )〉+ igph(SK)( · )

)
(u, S(u)), (10)

where prU and prY denote the projection operator on the component in U and Y , respectively.
By our constraint qualification we know that for every z ∈ Y there exists a t > 0 such that z ∈
t (S(U)− dom (g)) . Thus, there exists a pair (u1, y2) ∈ U × dom (g) with z = t(S(u1) − y2).
For an arbitrary v ∈ U choose u2 = u1 − 1

t
v and y1 = S(u1). Then, we obtain v = t(u1 − u2) and

z = t(y1 − y2), which means that (v, z) ∈ t (gph(SK)− U × dom (g)) . This yields the constraint
qualification 0 ∈ core (gph(SK)− U × dom (g)) and allows us to use the sum rule in the inclusion
(10), which yields

0 ∈ {−u∗} × ∂g(S(u)) +Ngph(SK)(u, S(u)).

Utilizing Theorem 7 we deduce the existence of y∗ ∈ ∂g(S(u)) together with d∗ ∈ NK(S(u) −
S(u)) = −K+ as well as h∗ ∈ ∂〈−d∗, S( · )〉(u) such that

0 = y∗ + d∗,

0 = −u∗ + h∗,

which yields u∗ = h∗ ∈ ∂〈−d∗, S( · )〉(u) = ∂〈y∗, S( · )〉(u) and eventually u∗ ∈M .

Next, we derive a differentiation rule combining a sum as well as a composition.

Theorem 16. Let U , Y be Banach spaces, the latter one equipped with a closed, convex cone K.
Let f : U → R ∪ {+∞} and g : Y → R ∪ {+∞} be convex, proper, lower semi-continuous
functionals, and moreover let g be K-isotone. Consider S : U → Y a locally bounded, K-convex
operator. Then, the functional f + g ◦S : U → R∪{+∞} is convex. Moreover, consider u ∈ D(∂f)
with S(u) ∈ D(∂g) and let the following constraint qualification hold:

0 ∈ core (dom (f)× dom (g)− gph(S)) .

Then, the subdifferential reads as

∂(f + g ◦ S)(u) = ∂f(u) +D∗S(u)
(
∂g(S(u))

)
.
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Proof. Consider the functional h(u, y) := f(u) + g(y) together with the convex, closed cone K̄ :=
{0} ×K and the operator T : U → U × Y defined by T (u) := (u, S(u)). Then the operator T
is K̄-convex and locally bounded, and the functional h is convex, proper, lower semi-continuous and
K̄-isotone. By assumption on u we have (u, S(u)) = T (u) ∈ D(∂h) = D(∂f)×D(∂g) and the
constraint qualification reads as 0 ∈ core (dom (h)− T (U)). Hence, we are in the position to use
Lemma 15 and obtain with

D∗T (u)(u∗, y∗) = ∂〈(u∗, y∗), T ( · )〉(u) = ∂〈u∗, ·〉U∗,U(u) + ∂〈y∗, S( · )〉Y ∗,Y (u)

= u∗ +D∗S(u)(y∗)

finally for the subdifferential that

∂(f + g ◦ S)(u) = ∂(h ◦ T )(u) = D∗T (u)
(
∂h(T (u))

)
= D∗T (u)

(
∂f(u)× ∂g(S(u))

)
= ∂f(u) +D∗S(u)

(
∂g(S(u))

)
.

Next, we propose a variant of the previous result using a different constraint qualification. For this
purpose we need a generalization of the Moreau-Rockafellar theorem suitable for our framework. For
this sake we adapt the techniques in [BZ06, Section 4.3].

Proposition 17. Let U , Y be Banach spaces, the latter one equipped with a closed, convex cone
K. Let f : U → R ∪ {+∞} and g : Y → R ∪ {+∞} be convex, proper, lower semi-continuous
functionals and moreover let g be K-isotone. Consider S : U → Y a demi-continuous, K-convex
operator. Suppose the following constraint qualification to be satisfied

0 ∈ core (dom (g)− S(dom (f))) .

Then, there exists y∗ ∈ Y ∗ such that for all u ∈ U and y ∈ Y it holds that

inf
u∈U

(f(u) + g(S(u))) ≤
(
f(u) + 〈y∗, S(u)〉Y ∗,Y

)
+
(
g(y)− 〈y∗, y〉Y ∗,Y

)
.

Proof. The lemma and the proof are strongly based on the one of [BZ06, Lemma 4.3.1].
Define the functional h : Y → [−∞,+∞] by

h(y) := inf
u∈U

(f(u) + g(S(u) + y)) .

Then h is a convex functional with dom (h) = dom (g)−S(dom (f)). We show that 0 ∈ int (dom (h)).
Without loss of generality we assume f(0) = g(S(0)) = 0 (else take ū ∈ dom (f), ȳ ∈ dom (g)
and consider f̄(u) := f(u+ ū)− f(ū) and ḡ(y) := g(y + ȳ − S(0))− g(ȳ)). Define the set

M :=
⋃
u∈BU

{y ∈ Y : f(u) + g(S(u) + y) ≤ 1}.

It is straightforward to argue the convexity of M . We show that M is absorbing and cs-closed.
We start by showing the former. For this purpose let y ∈ Y . We need to prove, that there exists r > 0
such that λy ∈M for |λ| ≤ r. By the assumed constraint qualification 0 ∈ core (dom (g)− S(dom (f))),
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there exists t̄ > 0 with ty ∈ dom (g)− S(dom (f)) for all |t| ≤ t̄. Hence, there exist u± ∈ dom (f)
with S(u±)± ty ∈ dom (g) and we define

α := max(f(u±) + g(S(u±)± t̄y), 1) <∞.

Then we see for |t| ≤ t̄ with ut := |t| t̄−1usign(t) and ut ∈ BU that

f(ut) + g(S(ut) + ty) = f

(
|t|
t̄
usign(t)

)
+ g

(
S

(
|t|
t̄
usign(t)

)
+
|t|
t̄

sign (t) t̄y

)
≤ |t|

t̄

(
f(usign(t)) + g(S(usign(t)) + sign (t) t̄y)

)
≤ |t|

t̄
α ≤ α.

Choose now m := max (‖u±‖, α, 1). Then we see that ut
m
∈ BU and further

f
(ut
m

)
+ g

(
S
(ut
m

)
+

t

m
y

)
≤ 1

m
(f(ut) + g(S(ut) + ty)) ≤ α

m
≤ 1.

Hence, we can choose r = t̄
m

to obtain λy ∈ M for all λ ≤ r. To prove the cs-closedness take
y =

∑∞
k=1 λkyk where λk ≥ 0,

∑∞
k=1 λk = 1, and (yk)k∈N is a sequence in M . By the definition of

M there exist (uk)k∈N ⊆ BU with

f(uk) + g(S(uk) + yk) ≤ 1 for all k ∈ N.

Since BU is bounded and closed it is cs-closed and hence also cs-compact (cf. [Jam74, Theorem
22.2]). By this we set u :=

∑∞
k=1 λkuk. As the operator S is assumed to be demi-continuous and g is

convex, lower semi-continuous and hence weakly lower semi-continuous we obtain

f(u) + g(S(u) + y) ≤ 1,

which yields y ∈M .
Due to the cs-closedness we obtain core (M) = int (M) by [Sch07, Proposition 1.2.3] and since M
is absorbent 0 ∈ core (M), which implies 0 ∈ int (dom (h)). From this we see that ∂h(0) 6= ∅ and
take y∗ ∈ ∂h(0). Eventually, we observe for all u ∈ U and y ∈ Y that

inf
u∈U

(
f(u) + g(S(u))

)
= h(0) ≤ h(y − S(u))− 〈y∗, y − S(u)〉

≤ f(u) + g(S(u) + y − S(u))− 〈y∗, y − S(u)〉

≤
(
f(u) + 〈y∗, S(u)〉

)
+
(
g(y)− 〈y∗, y〉

)
,

which proves the assertion.

We are now ready to state another version of the differentiation rule given in Theorem 16.

Theorem 18. Let U , Y be Banach spaces, the latter one equipped with a closed, convex cone K . Let
f : U → R∪{+∞} and g : Y → R∪{+∞} be convex, proper, lower semi-continuous functionals
and moreover let g be K-isotone. Suppose S : U → Y to be a demi-continuous, K-convex operator.
Then the functional f + g ◦ S : U → R ∪ {+∞} is convex. Moreover, consider u ∈ D(∂f) with
S(u) ∈ D(∂g) and let the following constraint qualification hold

0 ∈ core (S (dom (f))− dom (g)) .

Then, the subdifferential reads as

∂(f + g ◦ S)(u) = ∂f(u) +D∗S(u)
(
∂g(S(u))

)
.
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Proof. The inclusion ∂f(u) + D∗S(u) (∂g(S(u))) ⊆ ∂(f + g ◦ S)(u) is straightforward and its
proof will therefore be omitted here. To show the reverse direction let u∗ ∈ ∂(f + g ◦ S)(u). Then we
obtain by the Fenchel-Legendre identity the relation

f(u) + g(S(u)) + (f + g ◦ S)∗(u∗) = 〈u∗, u〉.

Applying Lemma 17 to f − 〈u∗, · 〉 (instead of f ) we deduce the existence of y∗ ∈ Y ∗ such that for all
v ∈ U and y ∈ Y it holds that

f(u) + g(S(u))− 〈u∗, u〉 = −(f + g ◦ S)∗(u∗)

= inf
w∈U

(
f(w)− 〈u∗, w〉+ g(S(w))

)
≤ f(v)− 〈u∗, v〉+ 〈y∗, S(v)〉+ g(y)− 〈y∗, y〉.

On the one hand, setting v = u implies

g(S(u)) + 〈y∗, y − S(u)〉 ≤ g(y) for all y ∈ Y,

which yields y∗ ∈ ∂g(S(u)). Since g is assumed to be K-isotone it holds that y∗ ∈ K+.
On the other hand, setting y = S(u) implies

f(u) + 〈y∗, S(u)〉+ 〈u∗, v − u〉 ≤ f(v) + 〈y∗, S(v)〉 for all v ∈ U.

Hence, we see u∗ ∈ ∂ (f + 〈y∗, S( · )〉) (u). Since S is defined on all of U , the second function has
a domain equal to the entire space. Hence, we can apply the usual sum rule to deduce

u∗ ∈ ∂f(u) +D∗S(u)(y∗) ⊆ ∂f(u) +D∗S(u)
(
∂g(S(u))

)
,

which proves the assertion.

A closer comparison of the two versions of chain rules formulated in Theorem 16 and Theorem 18
shows, that the additional requirement of S being demicontinuous is traded with a weaker constraint
qualification. The difference between these two does not occur for linear operators and is thus of
interest. We briefly address the relation between these conditions in the following theorem.

Theorem 19. Let U , Y be Banach spaces the latter one equipped with a closed, convex cone K.
Then the following assertions hold:

(i) If S is demi-continuous, then it is locally bounded.

(ii) Let S : U → Y be a K-convex operator. If S is locally bounded and K is an order cone (i.e.:
K ∩ (−K) = {0}), then S is demi-continuous.

Proof. ad (i): If S is not locally bounded, then there exists a point u ∈ U such that for all n ∈ N there
exists un ∈ u+ 1

n
BU with ‖S(un)‖Y ≥ n. Then this holds un → u in U and by the demi-continuity

S(un) ⇀ S(u) in Y implying the boundedness of (S(un))n∈N — a contradiction.
ad (ii): We consider first y∗ ∈ K+. Then the mapping u 7→ 〈y∗, S(u)〉 is convex and locally bounded
from above in every point and hence continuous by [ET76, Lemma 2.1]. Then we deduce the continuity
of the functional also for y∗ ∈ K+ −K+. Let now y∗ ∈ Y ∗ be arbitrary. By the calculus rules of the
dual cone in Lemma 1 we see that

cl
(
K+ −K+

)
= cl

(
K+ + (−K)+

)
= (K ∩ (−K))+ = {0}+ = Y ∗.
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So for every ε > 0 we find y∗ε ∈ K+ −K+ such that ‖y∗ − y∗ε‖Y ∗ < ε. Taking now a convergent
sequence un → u we get by assumption the boundedness of S(un) by some constant B. This yields

|〈y∗, S(un)〉 − 〈y∗, S(u)〉| ≤ |〈y∗ε , S(un)〉 − 〈y∗ε , S(u)〉|
+ |〈y∗ − y∗ε , S(un)− S(u)〉|
≤ |〈y∗ε , S(un)〉 − 〈y∗ε , S(u)〉|+ 2Bε.

Using the continuity of 〈y∗ε , S( · )〉 the first term tends to zero as n→∞, and we finally see that

0 ≤ lim sup
n→∞

|〈y∗, S(un)〉 − 〈y∗, S(u)〉| ≤ 2Bε.

Since the choice of ε was arbitrary we deduce the desired continuity of u 7→ 〈y∗, S(u)〉 and hence the
demi-continuity of S.

Interestingly, Theorem 19 can also be interpreted as a generalization of [Har77, Theorem 3, Part (a)].
This has the following consequence: Having a vector lattice Y with order cone K , we obtain that the
mapping y 7→ y+ = max(0, y) is demi-continuous, if and only if it is locally bounded (see also [Har77,
Proposition 1]).

5.1 Application to doping optimization

In the last part we draw our attention to the following optimization problem, that gained some interest
recently in [KS20, Section 5.2]. Here, we want to discuss in our notation the deterministic counterpart
of the problem therein. Therefore consider an open, bounded domain Ω ⊆ Rd with d ∈ {1, 2} and
Lipschitz boundary ∂Ω as well as Ωo ⊆ Ω an open subset.

min
u∈Uad

1

2

∫
Ωo

(1− z)2+dx+
α

2

∫
Ω

u2dx,

− div (κ∇z) + c sinh z = Bu+ b in Ω,

κ
∂z

∂ν
= 0 on ∂Ω,

with B as the solution operator of

−r∆d+ d = z in Ω,

r
∂d

∂ν
= 0 on ∂Ω.

(11)

Within the scope of this example we assume Uad ⊆ L2
+(Ω) and b ∈ L2

+(Ω). First, we introduce the
variable y = −z. As the hyperbolic sine is an odd function, we rewrite (11) as

min
z∈Uad

1

2

∫
Ωo

(y + 1)2+dx+
α

2

∫
Ω

z2dx,

− div (κ∇y) + c sinh y = −Bu− b in Ω,

κ
∂y

∂ν
= 0 on ∂Ω.

with B as above.

First, we need to discuss the exponential non-linearity involved in the hyperbolic sine. For this sake,
we use the version of the Trudinger–Moser inequality given in [LR08]. First, the well-definedness of
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the expression sinh : H1(Ω)→ L2(Ω) is ensured. Given u ∈ H1(Ω), there exists n ∈ N such that
‖u− un‖H1(Ω) ≤ 1 with un := min(max(u,−n), n). Then, we obtain by multiple use of the Young
inequality the relation

exp(|u|) ≤ exp

(
1

2αd

)
exp

(αd
2
u2
)

= exp

(
1

2αd

)
exp

(αd
2

(un + (u− un))2
)

≤ exp

(
1

2αd

)
exp(αdn

2) exp(αd(u− un)2),

where αd > 0 is as in [LR08] and thus
∫

Ω
exp(|u|)dx <∞ for all u ∈ H1(Ω). By using | sinh(u)| ≤

exp(|u|) we obtain the well definedness.
As we aim for the application of our combined results, we first ensure the K-convexity of the solution
operator S : u 7→ y withK := {y ∈ H1(Ω) : y ≥ 0 a.e. on Ω}. For this sake, we use the arguments
in Subsection 3.2.1 with homogenous Neumann boundary conditions instead. First, we observe, that
the right hand side of the state equation is pointwise non-positive, as b is non-negative and B is a
sign-preserving solution operator. Thus, y is non-positive, too. Next, introduce the concave, monotone
superposition operator Φ(y) := (− sinh(y))+ and formulate the modified equation

−∆y + Φ(y) = w in Ω,

∂y

∂ν
= 0 on ∂Ω.

By the above sign argument it is evident, that the solution does not change, when sinh is substituted
with Φ. In order to show continuity and differentiability it is sufficient to show the Fréchet-differentiability
of sinh : H1(Ω) → L2(Ω) as the proof for Φ is analogous. Next, we will show, that the operator is
Fréchet differentiable with first derivative D sinh(u)h = cosh(u)h. For this sake, consider the Taylor
expansion for a sequence hn → 0 in H1(Ω) reading as

‖Φ(u+ hn)− Φ(u)−DΦ(u)hn‖2
L2 =

∫
Ω

(sinh(u+ hn)− sinh(u)− cosh(u)hn)2dx.

Define
ξn := sinh(u+ hn)− sinh(u)− cosh(u)hn,

then we rewrite ξn as

ξn = sinh(u)(cosh(hn)− 1) + cosh(u)(sinh(hn)− 1)

and obtain
ξ2
n ≤ 2 sinh(u)2(cosh(hn)− 1)2 + 2 cosh(u)2(sinh(hn)− hn)2.

For an arbitrary t ∈ R we derive the estimates

0 ≤ cosh(t)− 1 ≤
∫ t

0

sinh(s)ds ≤ | sinh(t)||t|,

0 ≤ | sinh(t)− t| ≤
∣∣∣∣∫ t

0

(cosh(s)− 1)ds

∣∣∣∣ ≤ | cosh(t)− 1||t| and

0 ≤ cosh(t) ≤ exp(|t|) and | sinh(t)| ≤ exp(|t|).

Thus we get
ξ2
n ≤ 2 sinh(u)2 sinh(hn)2h2

n + 2 sinh(u)2 sinh(hn)2h4
n
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and using the embeddings H1(Ω) ↪→ L6(Ω) and H1(Ω) ↪→ L12(Ω) with constants C6, C12 > 0 we
obtain ∫

Ω

ξ2
ndx ≤ 2

(∫
Ω

sinh(u)6dx

) 1
3
(∫

Ω

sinh(hn)6dx

) 1
3
(∫

Ω

h6
ndx

) 1
3

+ 2

(∫
Ω

sinh(u)6dx

) 1
3
(∫

Ω

sinh(hn)6dx

) 1
3
(∫

Ω

h12
n dx

) 1
3

≤ C(u)
(
‖hn‖2

L6(Ω) + ‖hn‖4
L12(Ω)

)
≤ C(u)

(
C2

6‖hn‖2
H1(Ω) + C4

12‖hn‖4
H1(Ω)

)
→ 0 as hn → 0 in H1(Ω).

This proves the Fréchet-differentiability.
Thus, we can deduce from the arguments in Subsection 3.2.1 the K-convexity with Y = H1(Ω)
equipped with K := {v ∈ H1(Ω) : v ≥ 0 a.e. on Ω} and w ∈ H1(Ω)∗ with KW = K+. Setting
w = −Bz − b yields the same solution as the original state equation, thus on Uad ⊆ L2

+(Ω) both
solution mappings S and the one induced by Φ coincide. Thus, the K-convexity is proven.
It is straightforward to see, that the mapping ξ → (ξ + 1)2+ is increasing and convex. Thus, defining
f(u) := α

2

∫
Ω
u2dx as well as g(y) :=

∫
Ωo

(y + 1)2+dx and S : L2(Ω) → H1(Ω) the solution
operator z 7→ (−∆ + Φ)−1(−Bz − b) we see the conditions discussed in Theorem 16 and Theorem
18 fulfilled. Thus, the above optimization problem is indeed convex. In fact, the application of one of our
chain rules is not necessary and can be accomplished by standard analytical results and reads as

z − ProjZad

(
− 1

α
B∗p

)
= 0 in Ω,

− div (κ∇y) + c sinh(y) = −Bz − b in Ω,

− div(κ∇p) + c cosh(p) = (y + 1)+
1Ωo in Ω,

∂y

∂ν
=
∂p

∂ν
= 0 on ∂Ω.

6 Conclusion

In this paper, we investigated a class of operators fulfilling a generalized, order-based convexity concept
and their properties with regard to convex analysis and optimization theory. As part of we utilized and
generalized methods from non-smooth and set-valued analysis and illustrated the applicability of these
concepts to a selection of operator equations and variational inequalities closely related to the types of
problems discussed in the recent literature.

A Introduction to capacity theory and capacitary measures

For the sake of selfcontainment of the present work, we collect some basic definitions and results
regarding capacity theory. Our exposition is strongly inspired by the one in [RW19]. For more details
besides references mentioned below we refer to [BS00], [EG15].

Definition 20. (cf. [BS00, Definition 6.4.7], [BMA06, Section 5.8.2, Section 5.8.3], [DZ11, Definition
6.4])
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(i) For a subset A ⊆ Ω its capacity in the sense of H1
0 (Ω) is defined by

cap (A) := inf
{
‖v‖2

H1
0 (Ω) : v ∈ H1

0 (Ω), v ≥ 1 a.e in a neighborhood of A
}
.

(ii) A subset Ω̂ ⊆ Ω is called quasi-open if for all ε > 0 there exists and open set Oε ⊆ Ω such
that Ω̂ ∪Oε is open and cap (Oε) < ε holds.

(iii) A subset Ω̂ ⊆ Ω is called quasi-closed if its relative complement Ω\A is quasi-open.

(iv) A function v : Ω→ [−∞,+∞] is called quasi-continuous (quasi lower semi-continuous, quasi
upper semi-continuous) if for all ε > 0 there is an open set Oε ⊆ Ω with cap (Oε) < ε such
that v is continuous (lower semi-continuous, upper semi-continuous) on Ω\Oε.

In the same fashion as with the Lebesgue measure a pointwise property of a function on Ω is called to
hold quasi everywhere if it holds on subsets that differ from the whole domain only by a set of capacity
zero.
For two Borel sets E0, E1 ∈ B(Ω) such that E0 is a subset of E1 up to a set of capacity zero, we also
write E0 ⊆q E1. If both E0 ⊆q E1 and E1 ⊆q E0 hold, then we might also write E0 =q E1.

Lemma 21. (cf. [BS00, p. 564, 565] with [Rud87, Theorem 2.18] for (i),(ii); [HW18, Lemmata 3.5, 3.7],
[Wac14, Lemma A.4] for (iii)) Let ξ ∈ H−1(Ω) with 〈ξ, v〉 ≥ 0 for all v ∈ H1

0 (Ω) with v ≥ 0 a.e. on
Ω be given.

(i) The functional ξ can be identified with a regular Borel measure on Ω which is finite on compact
sets and which possesses the following property: For every Borel set E ⊆ Ω with cap (E) = 0,
we have ξ(E) = 0.

(ii) Every function v ∈ H1
0 (Ω) is ξ-integrable and it holds

〈ξ, v〉H−1(Ω),H1
0 (Ω) =

∫
Ω

v dξ.

(iii) There exists a quasi-closed set f-supp (ξ) ⊆ Ω with the property that for all v ∈ H1
0 (Ω) with

v ≥ 0 a.e. it holds that 〈ξ, v〉H−1(Ω),H1
0 (Ω) = 0 if and only if v = 0 q.e. on f-supp (ξ). The set

f-supp (ξ) is uniquely defined up to a set of zero capacity and is called the fine support of ξ.

One is able to extend the definition of Sobolev spaces to quasi-open subsets Ω̂ ⊆ Ω by

H1
0 (Ω̂) =

{
v ∈ H1

0 (Ω) : v = 0 q.e. on Ω\Ω̂
}

(12)

Definition 22. (cf. [DM87, Definition 2.1, 3.1]) LetM0(Ω) be the set of all Borel measures µ on Ω
such that µ(E) = 0 for every Borel set E ⊆ Ω with cap (E) = 0 and such that µ is regular in
the sense that µ(E) = inf {µ(O) : O quasi-open , E ⊆q O}. The setM0(Ω) is called the set of
capacitary measures on Ω.

For a given capacitary measure m ∈ M0(Ω) and for a quasi-continuous function v : Ω → R we
define the space

L2
m(Ω) :=

{
v : Ω→ R :

∫
Ω

|v|2dm < +∞
}
. (13)
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Let Tm ∈ L(H−1(Ω), H1
0 (Ω)) denote the solution operator which maps a given f ∈ H−1(Ω) to the

solution of the following equation:∫
Ω

∇y∇zdx+

∫
Ω

yz dm = 〈f, z〉H−1,H1
0

for all z ∈ H1
0 (Ω).

Definition 23. (cf. [DM87, Section 5], [RW19, Definition 3.2, Lemma 3.4]) Let a sequence of capacitary
measures (mn)n∈N ⊆M0(Ω) be given. We say that (mn)n∈N γ-converges towards m ∈ M0(Ω)
if the sequence of operators (Tmn) converges in the weak operator topology towards Tm, i.e., for all

h ∈ H−1(Ω) holds Tmnh ⇀ Tmh in H1
0 (Ω). If (mn)n∈N γ-converges to m we write mn

γ→ m.

Lemma 24. (cf. [RW19, Corollary 3.5]) The γ-convergence onM0(Ω) is metrizable with the metric

dM0(m,m
′) := ‖Tm(1)− Tm′(1)‖.

Moreover, (M0(Ω), dM0) is a complete metric space.

Theorem 25. (cf. [DMM87, Proposition 4.14]) Let (mn)n∈N be a sequence inM0(Ω). Then there

exists a subsequence (mnk
)k∈N and a measure m ∈M0(Ω) such that mnk

γ→ m.

B Appendix

Proof of Lemma 1. ad (i): Let x∗ ∈M+
2 . Then, 〈x∗, x〉 ≥ 0 for all x ∈M2 and hence especially for

all x ∈M1. This yields x∗ ∈M+
1 .

ad (ii): Since it always holds, that M ⊆ cl (M) we deduce (cl (M))+ ⊆ M+ by (i). Let now
x∗ ∈M+ and take x ∈ cl (M). Then there exists a sequence xn → x with xn ∈M and we obtain
〈x∗, x〉 = limn→∞〈x∗, xn〉 ≥ 0 and hence the equality.
ad (iii): see [BS00, Proposition 2.40].
ad (iv): Since 0 ∈ M1 ∩M2 we have that Mj ⊆ M1 + M2 and hence (M1 + M2)+ ⊆ M+

j for
j = 1, 2. This yields the inclusion (M1 +M2)+ ⊆M+

1 ∩M+
2 .

Let, on the other hand, x∗ ∈ M+
1 ∩ M+

2 . Then we get for all xj ∈ Mj that 〈x∗, x1 + x2〉 =
〈x∗, x1〉+ 〈x∗, x2〉 ≥ 0, which gives x∗ ∈ (M1 +M2)+.
ad (v): Since M+

j are closed, convex cones the set cl
(
M+

1 +M+
2

)
is a closed, convex cone as well.

Hence, by the application of (ii), (iii) and (iv) we obtain, that(
cl
(
M+

1 +M+
2

))+
=
(
M+

1 +M+
2

)+
= M++

1 ∩M++
2 = M1 ∩M2.

The subsequent application of (ii) yields

cl
(
M+

1 +M+
2

)
=
(
cl
(
M+

1 +M+
2

))++
= (M1 ∩M2)+.
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