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Optimality conditions for convex stochastic optimization
problems in Banach spaces with almost sure state constraints

Caroline Geiersbach, Winnifried Wollner

Abstract

We analyze a convex stochastic optimization problem where the state is assumed to belong to
the Bochner space of essentially bounded random variables with images in a reflexive and sepa-
rable Banach space. For this problem, we obtain optimality conditions that are, with an appropriate
model, necessary and sufficient. Additionally, the Lagrange multipliers associated with optimality
conditions are integrable vector-valued functions and not only measures. A model problem is
given demonstrating the application to PDE-constrained optimization under uncertainty.

1 Introduction

Let X1 and X2 be real, reflexive, and separable Banach spaces. (Ω,F ,P) denotes a complete prob-
ability space, where Ω represents the sample space, F ⊂ 2Ω is the σ-algebra of events on the power
set of Ω, and P : Ω → [0, 1] is a probability measure. We assume C1 ⊂ X1 is nonempty, closed,
and convex; X2,ad(x1, ω) ⊂ X2 is assumed to be nonempty, closed, and convex for all x1 ∈ C1 and
almost all ω ∈ Ω. We are interested in a convex stochastic optimization problem of the form

min
x1,x2(·)

{
E[J(x1, x2(·))] =

∫
Ω

J(x1, x2(ω)) dP(ω)

}
s.t.

{
x1 ∈ C1,

x2(ω) ∈ X2,ad(x1, ω) a.s.,

(1)

where J is a convex real-valued mapping. In this model, the variable x1, unlike x2, is independent of
the random data. As such, this problem can be interpreted as a static two-stage stochastic optimization
problem. By “static,” we mean to differentiate the problem from a stochastic optimization problem with
recourse, where the second-stage “decision” x2 is made only after observing a random element ω.
Here, the function ω 7→ x2(ω) is provided at the onset, which gives all possible decisions for each ω.

Such problems are of interest for applications to optimization with partial differential equations (PDEs)
under uncertainty, where the set to which x2(ω) belongs includes those states solving a PDE. This
field is a rapidly developing one, with many developments in understanding the modeling, theory, and
design of efficient algorithms; see, e.g., [9, 21, 27, 18, 1, 33, 14, 8, 12] and the references therein.
So far, research has mostly been limited to the case where the control (in our notation, the first-stage
variable x1) has been subject to additional constraints. In this case, optimality conditions have already
been established for risk-averse problems in [19, 20]. However, additional constraints on the state
(here, x2), beyond a uniquely solvable equation, have yet to be investigated thoroughly. Although
chance constraints have been handled in such applications, cf. [11], the treatment of pointwise almost
sure constraints on the state appear to be missing from the literature.

DOI 10.20347/WIAS.PREPRINT.2755 Berlin 2020



C. Geiersbach, W. Wollner 2

As a first step in this treatment, optimality conditions play a central role, and we pursue this in the cur-
rent paper. Pointwise state constraints, without uncertainty, have received some attention over the last
years. In general, optimality conditions require Lagrange multipliers coming from the non-separable
space of regular Borel measures, see, e.g., [5, 6]. Only in rare circumstances it can be shown that
multipliers can be found in more a regular, separable, space, see [7].

In this paper, we are focused on obtaining optimality conditions in the case where x2 belongs to the
Bochner space L∞(Ω, X2). This choice is motivated by the goal of including problems where there is
an almost sure bound such as

x2(ω) ≤K ψ(ω),

where ψ ∈ L∞(Ω, X2) and ≤K represents a partial order on X2. An example with this type of
inequality is given in Subsection 4.1. The choice of Lp(Ω, X2) for p < ∞ is not appropriate, as
the cone {v ∈ Lp(Ω, X2) : v(ω) ≤K 0} contains no interior points; this property is especially
important in the establishment of Lagrange multipliers for our application. Therefore, we will view the
problem presented in (1) in the framework of two-stage stochastic optimization (for an introduction,
see [32, 23]). This framework allows us to generalize results from a series of papers by Rockafellar
and Wets [28, 29, 30, 31], who established optimality theory of general convex stochastic optimization
problems with states belonging to the space L∞(Ω,Rn). As the class of problems we are treating
involve equality constraints, we include that theory here, which is not covered by the papers [28, 29,
30, 31]. Additionally, we emphasize that care must be taken in our setting, where the random variables
are vector-valued.

We will proceed by introducing our notation and proving essential results about subdifferentiability of
convex integral functionals on the space L∞(Ω, X) in Section 2. The core of the paper is contained
in Section 3, where we use the perturbation approach to show the existence of saddle points for a
suitably tailored generalized Lagrangian. This approach allows us to look for Lagrange multipliers in
the space L1(Ω, X∗), instead of (L∞(Ω, X))∗, and provide Karush–Kuhn–Tucker conditions for our
problem. In Section 4, we show an application to PDE-constrained optimization under uncertainty. We
close with some remarks in Section 5.

2 Background and Notation

Throughout, we shall employ the following notation. We assume that X is a real, reflexive, and sepa-
rable space; the dual is denoted by X∗ and the canonical dual pairing is written as 〈·, ·〉X∗,X . Given
a set C ⊂ X , δC denotes the indicator function, where δC(x) = 0 if x ∈ C and δC(x) = ∞ other-
wise. The interior of a set C is denoted by intC. The sum of two sets A and B with λ ∈ R is given
by A + λB := {a + λb : a ∈ A, b ∈ B}. We recall that for a proper function h : X → (−∞,∞],
the subdifferential (in the sense of convex analysis) is the set-valued operator defined by

∂h : X ⇒ X∗ : x 7→ {q ∈ X∗ : 〈q, y − x〉X∗,X + h(x) ≤ h(y) ∀y ∈ X}.

The domain of h is denoted by dom(h) := {x ∈ X : h(x) < ∞}. Given K ⊂ X , the support
function of K is denoted by

σ(K, v) := sup
x∈K
〈v, x〉X∗,X ∀v ∈ X∗.

A strongly P-measurable mapping from Ω to a Banach space X is referred to as an X-valued ran-
dom variable. As the underlying probability space is considered fixed, we will frequently write simply
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Stochastic optimization in Banach spaces 3

“measurable” instead of “P-measurable.” Additionally, since we only consider separable spaces, weak
and strong measurability coincide, in which case we can simply refer to measurability of a random
variable.1

Given a Banach space X equipped with the norm ‖·‖X , the Bochner space Lr(Ω, X) is the set of all
(equivalence classes of) X-valued random variables having finite norm, where the norm is given by

‖y‖Lr(Ω,X) :=

{
(
∫

Ω
‖y(ω)‖rX dP(ω))1/r, 1 ≤ r <∞,

ess supω∈Ω‖y(ω)‖X , r =∞.

An X-valued random variable x is Bochner integrable if there exists a sequence {xn} of P-simple
functions xn : Ω→ X such that limn→∞

∫
Ω
‖xn(ω)−x(ω)‖X dP(ω) = 0. The limit of the integrals

of xn gives the Bochner integral (the expectation), i.e.,

E[x] :=

∫
Ω

x(ω) dP(ω) = lim
n→∞

∫
Ω

xn(ω) dP(ω).

Clearly, this expectation is an element of X .

Recall that a property is said to hold almost surely (a.s.) provided that the set (in Ω) where the property
does not hold is a set of measure zero. As an example, two random variables ξ, ξ′ are said to be
equal almost surely, ξ = ξ′ a.s., if and only if P({ω ∈ Ω : ξ(ω) 6= ξ′(ω)}) = 0, or equivalently,
P({ω ∈ Ω : ξ(ω) = ξ′(ω)}) = 1.

2.1 Subdifferentiability of convex integral functionals on L∞(Ω, X)

In order to obtain optimality conditions for a problem of the form (1), we will first provide some back-
ground on convex integral functionals defined on the space L∞(Ω, X), where X is assumed to be a
real, reflexive, and separable Banach space.2 We denote the σ-algebra of Borel sets on X by B. We
study convex functionals of the form

If (x) :=

∫
Ω

f(x(ω), ω) dP(ω), (2)

where x : Ω → X and f : X × Ω → (−∞,∞]. The function f is called a convex integrand if
fω := f(·, ω) is convex for every ω (it is no loss of generality to redefine a functional that is only
convex for almost every ω). This integrand is called normal if it is not identically infinity, it is (B × F)-
measurable, and fω is lower semicontinuous in X for each ω ∈ Ω. An example of a function that
is normal is one that is finite everywhere and Carathéodory, meaning f measurable in ω for fixed
x and continuous in x for fixed ω. Normality of f makes it superpositionally measurable, meaning
ω 7→ f(x(ω), ω) is measurable if x : Ω→ X is measurable; see, e.g., [3, Lemma 8.2.3].

If ω 7→ f(x(ω), ω) is majorized by an integrable function, then the integral functional (2) is finite;
if no such majorant exists, by convention, we set If (x) = ∞. The conjugate of the normal convex
integrand fω is the function f ∗ω defined on X∗ by

f ∗ω(x∗) := sup
x∈X
{〈x∗, x〉X∗,X − fω(x)}.

1More precisely, for y : Ω → X , the following assertions are equivalent: 1) y is strongly measurable and 2) y is
separably-valued and measurable [16, Corollary 1.1.10].

2While we continue using the probability space (Ω,F ,P), the results of this section also hold for more general σ-finite
complete measure spaces.
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C. Geiersbach, W. Wollner 4

By [22, Proposition 6.1], f ∗ω is a normal convex integrand and (f ∗ω)∗ = fω. We recall, see, e.g., [3,
Proposition 6.5.4] that if fω is convex,

x∗ ∈ ∂fω(x) if and only if 〈x∗, x〉X∗,X = fω(x) + f ∗ω(x∗). (3)

Even if the Radon–Nikodym property is satisfied for X , there is not generally an isometry between
(L∞(Ω, X))∗ and L1(Ω, X∗). However, there is a useful decomposition on this dual space; namely,
elements can be decomposed into absolutely continuous and singular parts. A continuous linear func-
tional v ∈ (L∞(Ω, X))∗ of the form

v(x) =

∫
Ω

〈x∗(ω), x(ω)〉X∗,X dP(ω)

for some x∗ ∈ L1(Ω, X∗) is said to be absolutely continuous. These functionals form a closed sub-
space of (L∞(Ω, X))∗ that is isometric to L1(Ω, X∗). This subspace has a complement consisting
of singular functionals, defined next.

Definition 2.1. A functional v◦ ∈ (L∞(Ω, X))∗ is called singular (relative to P) if there exists a
sequence {Fn} ⊂ F with Fn+1 ⊂ Fn for all n, P(Fn) → 0 as n → ∞, and v◦(x) = 0 for all
x ∈ L∞(Ω, X) satisfying x(ω) ≡ 0 for almost all ω ∈ Fn for some n.

The following decomposition result was proven in [17, Appendix 1, Theorem 3].

Theorem 2.2 (Ioffe and Levin). Each functional v∗ ∈ (L∞(Ω, X))∗ has a unique decomposition

v∗ = v + v◦, (4)

where v is absolutely continuous, v◦ is singular relative to P, and

‖v∗‖(L∞(Ω,X))∗ = ‖v‖(L∞(Ω,X))∗ + ‖v◦‖(L∞(Ω,X))∗ .

The next result characterizes the convex conjugate of a functional If defined on L∞(Ω, X). By defi-
nition, the convex functional on (L∞(Ω, X))∗ that is conjugate to If is given by

I∗f (v∗) := sup
z∈L∞(Ω,X)

{v∗(z)− If (z)}. (5)

This functional is closely related to the integral functional If∗ , where f ∗ denotes the conjugate of the
normal convex integrand f as before. The following theorem relates I∗f to If∗ and was proven for
X = Rn in [25, Theorem 1] and later for separable (generally non-reflexive) Banach spaces in [22,
Theorem 6.4].

Theorem 2.3 (Levin). Assume f is a normal convex integrand and If (x) < ∞ for some x ∈
L∞(Ω, X). Then the functional I∗f can be represented by the decomposition

I∗f (v∗) = If∗(x
∗) + σ(dom(If ), v

◦), (6)

where x∗ ∈ L1(Ω, X∗) corresponds to the absolutely continuous part of v∗ and v◦ ∈ (L∞(Ω, X))∗

corresponds to the singular part of v∗, and σ(dom(If ), v
◦) denotes the support functional of dom(If )

in v◦.
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Stochastic optimization in Banach spaces 5

Remark 2.4. The assumption that If (x) < ∞ for some x ∈ L∞(Ω, X) implies that If∗ is a well-
defined convex functional on L1(Ω, X∗) with values in (−∞,∞]. Indeed, since f ∗ω and fω are con-
jugate to each other, we have for all ω and all x∗ ∈ L1(Ω, X∗) that

f ∗ω(x∗(ω)) ≥ 〈x∗(ω), x(ω)〉X∗,X − fω(x(ω)). (7)

The right side is integrable by assumption, so If∗ > −∞ on L1(Ω, X∗). If one additionally has
If∗(x

∗) <∞ for some x∗ ∈ L1(Ω, X∗), then one shows in the same way that If is well-defined on
L∞(Ω, X) with values in (−∞,∞].

The following result gives a bound on the singular element v◦.

Theorem 2.5. Let f be a normal convex integrand. Let x̄ ∈ L∞(Ω, X) be such that there exists r > 0
and an integrable function kr of ω satisfying fω(x(ω)) ≤ kr(ω) as long as ‖x − x̄‖L∞(Ω,X) < r.
Then the conjugate integrand f ∗ω(x∗(ω)) is majorized by an integrable function of ω for at least one
x∗ ∈ L1(Ω, X∗). Additionally, If is continuous at x as long as ‖x− x̄‖L∞(Ω,X) < r and the function
σ(dom(If ), ·) given in (6) can be bounded as follows:

σ(dom(If ), v
◦) ≥ v◦(x̄) + r‖v◦‖(L∞(Ω,X))∗ . (8)

Proof. We proceed as in [25, Theorem 2], making modifications for the infinite-dimensional setting.
Using (3), we have

∂fω(x̄(ω)) = {q ∈ X∗ : 〈q, x̄(ω)〉X∗,X = fω(x̄(ω)) + f ∗ω(q)}.

We show that the set-valued map ω 7→ ∂fω(x̄(ω)) is measurable by first proving that the support
function of ∂fω(x̄(ω)) is measurable. Since fω is convex and finite on a neighborhood of x̄(ω), it is
continuous at x̄(ω), so the set ∂fω(x̄(ω)) is a nonempty, convex, and weakly* compact subset of X∗

and fω is Hadamard directionally differentiable in x̄(ω) [4, Proposition 2.126]. Since X is reflexive,
the support function of ∂fω(x̄(ω)) in x is given by

σ(∂fω(x̄(ω)), x) = sup
q∈∂fω(x̄(ω))

〈x, q〉X,X∗ .

Thus, since fω is convex, we have

σ(∂fω(x̄(ω)), x) = f ′ω(x̄(ω);x)

= lim
t→0+

1

t

(
fω(x̄(ω) + tx)− fω(x̄(ω))

)
= inf

t≥0

1

t

(
fω(x̄(ω) + tx)− fω(x̄(ω))

)
≤ fω(x̄(ω) + x)− fω(x̄(ω)).

(9)

Measurability of ω 7→ σ(∂fω(x̄(ω)), x) follows from the fact that the limit of a sequence of mea-
surable functions is measurable [3, p. 307]. Since X is reflexive and separable, we obtain from [3,
Theorem 8.2.14] that ω 7→ ∂fω(x̄(ω)) is measurable. The measurable selection theorem [3, The-
orem 8.1.3] guarantees the existence of a measurable function x∗ : Ω → X∗ such that x∗(ω) ∈
∂fω(x̄(ω)) for every ω ∈ Ω. From (9) it follows for this x∗ that

〈x, x∗(ω)〉X,X∗ ≤ σ(∂fω(x̄(ω)), x) ≤ fω(x̄(ω) + x)− fω(x̄(ω)).

DOI 10.20347/WIAS.PREPRINT.2755 Berlin 2020
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As long as x ∈ X satisfies ‖x‖X < r, we obtain by assumption that

r‖x∗(ω)‖X∗ = sup
x:‖x‖X≤r

〈x, x∗(ω)〉X,X∗ ≤ kr(ω)− fω(x̄(ω)). (10)

The right-hand side of (10) is integrable, thus x∗ must also be integrable, i.e., x∗ ∈ L1(Ω, X∗).

Now, by (3), we have for this x∗ ∈ L1(Ω, X∗)

f ∗ω(x∗(ω)) = 〈x∗(ω), x̄(ω)〉X∗,X − fω(x̄(ω)),

from which we immediately obtain that f ∗ω(x∗(ω)) is majorizable.

For any x ∈ L∞(Ω, X) satisfying ‖x− x̄‖L∞(Ω,X) < r, we get

If (x) ≤
∫

Ω

kr(ω) dP(ω) <∞,

implying If (x) is bounded above and continuous at x. Of course, this means that x ∈ dom(If ), so

σ(dom(If ), v
◦) = sup

x∈dom(If )

v◦(x) ≥ sup
x:‖x−x̄‖L∞(Ω,X)<r

v◦(x)

= v◦(x̄) + r‖v◦‖(L∞(Ω,X))∗ .

This is the expression (8), so the proof is complete.

The next two results can be obtained as in [25, Corollary 2A, 2C].

Corollary 2.6. Assume f is a normal convex integrand and f(x(ω), ω) is an integrable function of
ω for every x ∈ L∞(Ω, X). Then If and If∗ are well-defined convex functionals on L∞(Ω, X) and
L1(Ω, X∗), respectively, that are conjugate to each other in the sense that

If∗(x
∗) = sup

x∈L∞(Ω,X)

{∫
Ω

〈x∗(ω), x(ω)〉X∗,X dP(ω)− If (x)

}
,

If (x) = sup
x∗∈L1(Ω,X∗)

{∫
Ω

〈x∗(ω), x(ω)〉X∗,X dP(ω)− If∗(x∗)
}
.

Furthermore, if v∗ is an absolutely continuous functional corresponding to a function x∗ ∈ L1(Ω, X∗),
then I∗f (v∗) = If∗(x

∗), while I∗f (v∗) =∞ for any v∗ that is not absolutely continuous.

Proof. Since f(x(ω), ω) is integrable for all x, it is also integrable for x ≡ 0. Now, by [22, Theorem
5.1], this implies the existence of a r > 0 and integrable function kr such that fω(0 + x) ≤ kr(ω)
a.s. for all x ∈ X such that ‖x‖X ≤ r. Theorem 2.5 gives the bound (8), which in combination with
(6) gives the conclusion with r =∞.

Corollary 2.7. Let f and x̄ satisfy the assumptions of Theorem 2.5. Then v∗ ∈ (L∞(Ω, X))∗ is an
element of ∂If (x̄) if and only if

x∗(ω) ∈ ∂fω(x̄(ω)) a.s., (11)

where x∗ ∈ L1(Ω, X∗) corresponds to the absolutely continuous part v of v∗ and the singular part v◦

of v∗ satisfies σ(dom(If ), v
◦) = v◦(x̄). Moreover, ∂If (x̄) can be identified with a nonempty, weakly

compact subset of L1(Ω, X∗). In particular, v∗ belongs to ∂If (x̄) if and only if v◦ ≡ 0 and v = x∗

satisfies (11).
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Proof. By Theorem 2.5, If is finite on a neighborhood of x̄ and is continuous at x̄; it is naturally convex
by convexity of f . In particular ∂If (x̄) is a nonempty, weakly* compact subset of (L∞(Ω, X))∗.

Using (4), notice that by (3) v∗ ∈ ∂If (x̄) if and only if

0 = I∗f (v∗) + If (x̄)− v∗(x̄)

= sup
z∈L∞(Ω,X)

{v◦(z) + v(z)− If (z)}+ If (x̄)− v◦(x̄)− v(x̄),

i.e., the supremum is attained in z = x̄. Now, by Theorem 2.3 and (7) it follows that

v◦(x̄) + v(x̄)− If (x̄) = I∗f (v∗)

= If∗(x
∗) + σ(dom(If ), v

◦)

≥ v(x̄)− If (x̄) + σ(dom(If ), v
◦)

and thus v◦(x̄) ≥ σ(dom(If ), v
◦). By (8), this can be the case if and only if v◦ ≡ 0. Thus using (6),

we have that

0 = I∗f (v∗) + If (x̄)− σ(dom(If ), v
◦)−

∫
Ω

〈x∗(ω), x̄(ω)〉X∗,X dP(ω)

= If∗(x
∗) + If (x̄)−

∫
Ω

〈x∗(ω), x̄(ω)〉X∗,X dP(ω).

=

∫
Ω

f ∗ω(x∗(ω)) + fω(x̄(ω))− 〈x∗(ω), x̄(ω)〉X∗,X dP(ω). (12)

Notice that the integrand in (12) is non-negative by definition of the conjugate f ∗ω, i.e., (7). We obtain
that the integrand (12) is almost surely equal to zero and, recalling the equivalent expression for the
subdifferential (3), (11) follows.

For the second claim, since X is reflexive and separable, we have the isometric isomorphism [16,
Corollary 1.3.22]

(L1(Ω, X∗))∗ ' L∞(Ω, X∗∗) = L∞(Ω, X). (13)

Since all elements of the subdifferential in fact belong to L1(Ω, X∗), ∂If (x̄) can be identified with a
subset of L1(Ω, X∗). The fact that this subset is weakly compact follows from (13).

3 Lagrangian Duality and Optimality Conditions

In everything that follows, we will consider the case where the admissible set of states from (1) contains
both an equality and inequality (cone) constraint. Let W and R be real, reflexive, and separable
Banach spaces. The equality and inequality constraint are defined by the mappings e : X1 × X2 ×
Ω → W and i : X1 × X2 × Ω → R, respectively. Given a cone K ⊂ R, the partial order ≤K is
defined by

r ≤K 0 ⇔ −r ∈ K,

or equivalently, r ≥K 0 if and only if r ∈ K . The corresponding dual cone is denoted by K⊕ :=
{r∗ ∈ R∗ : 〈r∗, r〉R∗,R ≥ 0∀r ∈ K}. With that, the admissible set takes the form

X2,ad(x1, ω) := {x2 ∈ C2 : e(x1, x2, ω) = 0, i(x1, x2, ω) ≤K 0}.
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Additionally, we assume that the integrand takes the form

J(x1, x2) := J1(x1) + J2(x1, x2). (14)

The problem introduced in (1) is now defined over x := (x1, x2) ∈ X := X1 × L∞(Ω, X2) by

min
x∈X

{j(x) := J1(x1) + E[J2(x1, x2(·))]}

s.t.


x1 ∈ C1,

x2(ω) ∈ C2 a.s.,

e(x1, x2(ω), ω) = 0 a.s.,

i(x1, x2(ω), ω) ≤K 0 a.s.

(P)

We make the following assumptions about Problem (P).

Assumption 3.1. Let C1 ⊂ X1 and C2 ⊂ X2 be nonempty, closed, and convex sets and let K ⊂
R be a nonempty, closed, and convex cone. Assume that the integrand (x1, x2) 7→ J(x1, x2) is
convex onX1×X2 and is everywhere defined and finite. Moreover, assume that there exist functions
ar : X1 → R such that

|J2(x1, x2)| ≤ ar(x1)

for all ‖x2‖X2 ≤ r. Assume e(x1, x2, ω) is continuous and linear in (x1, x2) and i(x1, x2, ω) is
continuous and convex in (x1, x2); e(x1, x2, ω) and i(x1, x2, ω) are measurable and there exist
functions br : X1 → R such that for all ‖x2‖X2 ≤ r it is

‖e(x1, x2, ω)‖W ≤ br(x1),

‖i(x1, x2, ω)‖R ≤ br(x1).

Remark 3.2. By Assumption 3.1 the mappings J2, e, and i are Carathéodory and thus for any x2 ∈
L∞(Ω;X2) and x1 ∈ X1 the mappings

ω 7→ J2(x1, x2(ω), ω 7→ e(x1, x2(ω), ω), ω 7→ i(x1, x2(ω), ω)

are measurable, see, [3, Corollary 8.2.3]. The respective growth conditions assert that

J2(x1, x2(·)) ∈ L∞(Ω),

e(x1, x2(·), ·) ∈ L∞(Ω,W ), i(x1, x2(·), ·) ∈ L∞(Ω, R).

For more on growth conditions, see, e.g., [2, Section 3.7].

To obtain optimality conditions, it is natural to define the Lagrangian

L(x, λ̃) = j(x) + 〈λ̃e, e(x1, x2(·), ·)〉(L∞(Ω,W ))∗,L∞(Ω,W )

+ 〈λ̃i, i(x1, x2(·), ·)〉(L∞(Ω,R))∗,L∞(Ω,R).

However, λ̃e and λ̃i do not have natural representations in their corresponding dual spaces. We will
show that under certain conditions, Lagrange multipliers can be found in the space L1(Ω,W ∗) for
the equality constraint and L1(Ω, R∗) for the inequality constraint. To this end, we will show when
saddle points of a (generalized) Lagrangian exist in Subsection 3.1. This will allow us to formulate
Karush–Kuhn–Tucker (KKT) conditions for Problem (P) in Subsection 3.2.
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3.1 The Generalized Lagrangian and Existence of Saddle Points

In this section, we define a generalized Lagrangian and discuss the existence of saddle points for
Problem (P). We will use the perturbation approach, meaning that we first introduce the perturbed
problem

min
x∈X

ϕ(x, u)

s.t.


x1 ∈ C1,

x2(ω) ∈ C2 a.s.,

e(x1, x2(ω), ω) = ue(ω) a.s.,

i(x1, x2(ω), ω) ≤K ui(ω) a.s.

(Pu)

where ϕ(x, u) = j(x) if all constraints of (Pu) are fulfilled, and ϕ(x, u) = ∞ otherwise. We define
the space of perturbations by

U := L∞(Ω,W )× L∞(Ω, R)

and the space of Lagrange multipliers by

Λ := L1(Ω,W ∗)× L1(Ω, R∗).

These spaces can be paired for u = (ue, ui) ∈ U and λ = (λe, λi) with the bilinear form

〈u, λ〉U,Λ :=

∫
Ω

〈ue(ω), λe(ω)〉W,W ∗ + 〈ui(ω), λi(ω)〉R,R∗ dP(ω). (15)

The generalized Lagrangian on X × Λ is defined by

L(x, λ) := inf
u∈U
{〈u, λ〉U,Λ + ϕ(x, u)} . (16)

Given the sets

X0 := {x = (x1, x2) ∈ X : x1 ∈ C1 and x2(ω) ∈ C2 a.s.},
Λ0 := {λ = (λe, λi) ∈ Λ : λi(ω) ∈ K⊕ a.s.},

it is possible to show (see Appendix) that the Lagrangian takes the form

L(x, λ) =


J1(x1) + E[J̄2(x1, x2(·), λ(·), ·)], if x ∈ X0, λ ∈ Λ0

−∞, if x ∈ X0, λ 6∈ Λ0,

∞, if x 6∈ X0,

(17)

where

J̄2(x1, x2, λ, ω) := J2(x1, x2) + 〈λe, e(x1, x2, ω)〉W ∗,W
+ 〈λi, i(x1, x2, ω)〉R∗,R.

A saddle point of L is by definition a point (x̄, λ̄) ∈ X × Λ such that

L(x̄, λ) ≤ L(x̄, λ̄) ≤ L(x, λ̄) ∀(x, λ) ∈ X × Λ. (18)

Now, we define the dual problem

max
λ∈Λ

{
g(λ) := inf

x∈X
L(x, λ)

}
. (D)
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By basic duality, the question of the existence of saddle points is the same as identifying those (x̄, λ̄)
for which the minimum of Problem (P) and maximum of Problem (D) is attained, i.e.,

inf P = inf
x∈X

sup
λ∈Λ

L(x, λ) = sup
λ∈Λ

inf
x∈X

L(x, λ) = sup D.

By the above definitions, it is clear that for all x ∈ X0, j(x) = supλ∈Λ L(x, λ) and ϕ(x, 0) = j(x),
from which we get

ϕ(x, u) = sup
λ∈Λ0

{L(x, λ)− 〈u, λ〉U,Λ}.

It is straightforward to show that L is convex in x for given λ ∈ Λ0 and concave in λ and that ϕ is
convex in (x, u). Moreover, ϕ 6≡ ∞. It will be convenient to define X ′ = X∗1 × L1(Ω, X∗2 ) and the
pairing

〈x, x′〉X,X′ = 〈x1, x
′
1〉X1,X∗1

+

∫
Ω

〈x2(ω), x′2(ω))〉X2,X∗2
dP(ω). (19)

Lemma 3.3. Let Assumption 3.1 be satisfied. Then the function ϕ : X × U → R ∪ {∞} is weak∗

lower semicontinuous.

Proof. We argue as in [29, Proposition 3]. Let Y := X ×U and denote the pairing on Z := X ′ ×Λ
by

〈y, z〉Y,Z := 〈x, x′〉X,X′ + 〈u, λ〉U,Λ. (20)

Since Y = Z∗, the topology induced by the pairing (20) coincides with the weak∗ topology on Y . We
define ϕ1(x1) = J1(x1), if x1 ∈ C1 and ϕ1(x1) =∞ if x1 6∈ C1 and

ϕ2(x1, x2, u, ω) =


J2(x1, x2), if x2(ω) ∈ C2, e(x1, x2, ω) = ue,

i(x1, x2, ω) ≤K ui,

∞, otherwise.

Obviously, ϕ(x, u) = ϕ1(x1) +
∫

Ω
ϕ2(x1, x2(ω), u(ω), ω) dP(ω). Let 〈·, ·〉Y ′,Z′ denote the pairing

of Y ′ := X1 ×X2 × (W × R) with Z ′ := X∗1 ×X∗2 × (W ∗ × R∗); then the conjugate integrand
to ϕ2 is given by

ϕ∗2(z′, ω) = sup
y′∈Y ′
{〈y′, z′〉Y ′,Z′ − ϕ2(y′, ω)}.

Defining h(y′, ω) = J2(x1, x2) for y′ = (x1, x2, u) we have h(y′, ω) ≤ ϕ2(y′, ω) a.s. The function
h is a normal convex integrand and is integrable on X1 × L∞(Ω, X1)× (L∞(Ω,W )× L∞(Ω, R))
by Assumption 3.1. Thus with the conjugate integrand h∗, Ih and Ih∗ are conjugate to each other by
Corollary 2.6, meaning that Ih∗ 6≡ ∞.
Since, h ≤ ϕ2 we have h∗ ≥ ϕ∗2, and hence there exists a point z ∈ Z such that Iϕ∗2(z) < ∞.
Since there clearly exists a point such that Iϕ2 is finite, it follows that Iϕ2 and Iϕ∗2 are conjugate to
one another and are weak∗ lower semicontinuous, see [24, p. 227]. Since ϕ1 is also weakly lower
semicontinuous with respect to the natural pairing on the reflexive spaceX1, ϕ1 and hence ϕ are also
weak∗ lower semicontinuous.

The following result is based on [29, Theorem 3]. We define the value function

v(u) := inf
x∈X

ϕ(x, u). (21)

Obviously, v(0) = inf P. For the next result, we define the second-stage admissible set by

X2,0 = {x2 ∈ L∞(Ω, X2) : x2(ω) ∈ C2 a.s.}. (22)
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Theorem 3.4. Let Assumption 3.1 be satisfied. Supposing C1 and C2 are bounded sets, then

−∞ < min P = sup D.

Proof. We first show that X2,0 is compact with respect to the weak∗ topology on L∞(Ω, X2). This is
argued by showing that Ih and Ih∗ are conjugate to each other, where

h(x2, ω) := δC2(x2)

and h∗ denotes the conjugate of h. Since C2 6= ∅ is convex and closed, h is a normal convex
integrand. It is easy to see that h∗(0, ω) = 0, so in particular Ih∗(0) < ∞, meaning there exists a
point where Ih∗ is finite. Note Ih is also finite in at least one point since C2 is nonempty. It follows
that Ih and Ih∗ are conjugate to one another, meaning that Ih is lower semicontinuous with respect to
the weak∗ topology on L∞(Ω, X2). In particular, for a weak∗ convergent sequence {yn} ⊂ X ′2,0 :=
{x2 ∈ L∞(Ω, X2) : Ih(x2) ≤ 0} such that yn ⇀∗ ȳ it follows that

lim inf
n→∞

Ih(yn) ≥ Ih(ȳ),

so ȳ ∈ X ′2,0; hence,X ′2,0 is closed with respect to to the weak∗ topology. By definition of h, we deduce
that ȳ(ω) ∈ C2 a.s. and therefore X2,0 is also closed. Of course, X2,0 is bounded, so X2,0 is weak∗

compact, see, e.g., [10, Corollary V.4.3]. It is clear that the set C1 is compact in X1 with respect to the
weak topology on X1. It therefore follows that X0 is weak∗ compact.

SinceX0 is weak∗ compact and by Lemma 3.3, ϕ is weak∗ lower semicontinuous onX×U , we have
for all u ∈ U that

inf
x∈X

ϕ(x, u) = inf
x∈X0

ϕ(x, u) = min
x∈X0

ϕ(x, u) = v(u) > −∞.

It is easy to verify−v∗(−λ) = g(λ) and hence v∗∗(u) = supλ∈Λ{g(λ)− 〈λ, u〉Λ,U}. It follows that

v∗∗(0) = sup
λ∈Λ

g(λ) = sup D.

To conclude the proof, we show that v is weak∗ lower semicontinuous in U . Notice that the level set

levαϕ = {(x, u) ∈ X × U : ϕ(x, u) ≤ α}

is weak∗-closed by weak∗ lower semicontinuity of ϕ, see Lemma 3.3. Additionally, ϕ is finite only if
x ∈ X0, so the projection of levαϕ onto X is contained in X0. Thus the projection of levαϕ onto U ,
which corresponds to the level set {u ∈ U : v(u) ≤ α}, is closed in the weak∗ topology, from which
we conclude that v is weak∗ and weak lower semicontinuous. Since v > −∞ and v is convex and
lower semicontinuous, we have that v∗∗ = v (cf. [4, Theorem 2.113]) and therefore

−∞ < min P = v(0) = v∗∗(0) = sup D.

Corollary 3.5. Let Assumption 3.1 be satisfied and j be radially unbounded, i.e., j(x) → ∞ as
‖x‖ → ∞ then

−∞ < min P = sup D.
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Proof. Inspection of the proof of Theorem 3.4 shows that the only place where boundedness of C1

and C2 comes into play is the weak∗ compactness of X0. However, if x0 ∈ X is an arbitrary feasible
point of (Pu) then the set N0 := {x ∈ X | j(x) ≤ j(x0)} is bounded due to radial unboundedness
of j. Hence, clearly,

inf
x∈X

ϕ(x, u) = inf
x∈X0∩N0

ϕ(x, u) = min
x∈X0∩N0

ϕ(x, u) = v(u) > −∞

holds and the proof of Theorem 3.4 can be repeated.

Theorem 3.4 has shown that a necessary condition for the minimum to be obtained in Problem (P)
is for C1 and C2 to be bounded sets. We will now focus on establishing sufficient conditions. Recall-
ing Definition 2.1, let Se and Si denote the sets of singular functionals defined on L∞(Ω,W ) and
L∞(Ω, R), respectively. We define

Λ◦ = {λ◦ = (λ◦e, λ
◦
i ) ∈ Se × Si},

Λ◦0 = {λ◦ = (λ◦e, λ
◦
i ) ∈ Λ◦ : λ◦i (y) ≥ 0 ∀y ∈ L∞(Ω, R) : y ≥K 0 a.s.},

as well as
L◦(x, λ◦) = λ◦e(e(x1, x2(·), ·)) + λ◦i (i(x1, x2(·), ·)).

Given λ◦ ∈ Λ◦0, notice the implication

e(x1, x2(ω), ω) = 0, i(x1, x2(ω), ω) ≤K 0 a.s.⇒ L◦(x, λ◦) ≤ 0. (23)

Also, from the results in Subsection 2.1, we have (λe, λ
◦
e) ∈ L1(Ω,W ) × Se ∼= (L∞(Ω,W ))∗ and

(λi, λ
◦
i ) ∈ L1(Ω, R∗)× Si ∼= (L∞(Ω, R))∗. This means that Λ× Λ◦ characterizes the dual space

(L∞(Ω,W ) × L∞(Ω, R))∗. Here, we are interested in finding conditions under which the singular
part Λ◦ vanishes in the optimum.

With that goal in mind, we define an extension of the Lagrangian (17) for Problem (P) on the space
X × Λ× Λ◦ via

L̄(x, λ, λ◦) =


L(x, λ) + L◦(x, λ◦) if x ∈ X0, (λ, λ

◦) ∈ Λ0 × Λ◦0,

−∞, if x ∈ X0, (λ, λ
◦) 6∈ Λ0 × Λ◦0,

∞, if x 6∈ X0.

(24)

The corresponding extended dual problem is given by

max
(λ,λ◦)∈Λ×Λ◦

{
ḡ(λ, λ◦) := inf

x∈X
L̄(x, λ, λ◦)

}
. (D̄)

Clearly, ḡ(λ, 0) = g(λ) and thus sup D ≤ sup D̄. Additionally, sup D̄ ≤ inf P, since by (23), we have

sup
(λ,λ◦)

ḡ(λ, λ◦) = sup
(λ,λ◦)

inf
x∈X
{L(x, λ) + L◦(x, λ◦)}

≤ inf
x∈X

sup
(λ,λ◦)

{L(x, λ) + L◦(x, λ◦)}.

For a sufficient condition, we introduce the induced feasible set for the first-stage variable x1:

C̃1 := {x1 ∈ X1 : ∃x2 ∈ L∞(Ω, X2) s.t. e(x1, x2(ω), ω) = 0 a.s.,

i(x1, x2(ω), ω) ≤K 0 a.s., x2(ω) ∈ C2 a.s.}

Problem (P) is said to satisfy the relatively complete recourse condition if and only if

C1 ⊂ C̃1. (25)

DOI 10.20347/WIAS.PREPRINT.2755 Berlin 2020



Stochastic optimization in Banach spaces 13

Remark 3.6. In fact, it is possible to relax this assumption to ri C1 ⊂ C̃◦1 , where ri C1 denotes the
relative interior of C1 and C̃◦1 represents the singularly induced feasible set ; see [31] for more details.

Additionally, we will require a regularity condition. We call the problem strictly feasible if the value
function v, defined in (21), satisfies

0 ∈ int dom v. (26)

Remark 3.7. The condition (26) implies by [26, Theorem 18] that v is bounded above in a neigh-
borhood of zero and is continuous at zero. Notice that v(u) = infx∈X ϕ(x, u) is only finite (and
equal to j(x)) if the constraints are satisfied, meaning x1 ∈ C1 and almost surely x2(ω) ∈ C2,
e(x1, x2(ω), ω) = ue, i(x1, x2(ω), ω) ≤K ui. This condition can therefore be thought of as an
“almost sure” Slater condition.

Theorem 3.8. Let Assumption 3.1 be satisfied. Suppose the relatively complete recourse condi-
tion (25) is satisfied and Problem (P) is strictly feasible, i.e., (26) holds. Then

inf P = max D <∞.

Proof. We modify the arguments from [30, Theorem 3] to fit our setting. By Remark 3.7, v is bounded
above on a neighborhood of zero, so we have by [26, Theorem 17] that

inf P = max D̄ <∞. (27)

In the next step, we prove that condition (25) implies

ḡ(λ, λ◦) ≤ g(λ) ∀(λ, λ◦) ∈ Λ0 × Λ◦0. (28)

With this the proof will be complete since now,

max D̄ ≤ sup D ≤ max D̄

is asserted and a solution (λ, λ◦) of (D̄) gives a solution λ of (D).

To show (28), let (λ, λ◦) ∈ Λ0 × Λ◦0 be arbitrary. Recalling the feasible set (22), we define

`(x1, λ
◦) = inf

x2∈X2,0

L◦(x, λ0).

We skip the trivial case ḡ(λ, λ◦) = −∞ and now show that

ḡ(λ, λ◦) = inf
x∈X0

{L(x, λ) + `(x1, λ
0)}. (29)

It is obvious that

inf
x2∈X2,0

{
E[J̄2(x1, x2(·), λ(·), ·)] + L◦(x, λ0)

}
≥ inf

x2∈X2,0

E[J̄2(x1, x2(·), λ(·), ·)] + inf
x2∈X2,0

L◦(x, λ0).

By definition, for the functional λ◦e there exists a decreasing sequence of sets {Fe,n} ⊂ Fn such that
P(Fe,n)→ 0 as n→∞ and λ◦e(w) = 0 for all w ∈ L∞(Ω,W ) such that w = 0 a.s. on Fe,n. The
sets Fi,n corresponding to λ◦i are defined analogously. We define Fn = Fe,n ∪ Fi,n and

yn(ω) =

{
y′(ω), ω ∈ Fn
y′′(ω), ω 6∈ Fn
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for arbitrary y′, y′′ ∈ X2,0. If ω ∈ Fn, then e(x1, yn(ω), ω) = e(x1, y
′(ω), ω) and i(x1, yn(ω), ω) =

i(x1, y
′(ω), ω), meaning that

λ◦e(e(x1, yn(ω), ω)) = λ◦e(e(x1, y
′(ω), ω))

and

λ◦i (i(x1, yn(ω), ω)) = λ◦i (i(x1, y
′(ω), ω)).

Thus, for any y′, y′′, and ε > 0, there exists an n0 such that for n ≥ n0 and x2 = yn it holds that

E[J̄2(x1, x2(·), λ(·), ω)] + λ◦e(e(x1, x2(·), ·)) + λ◦i (i(x1, x2(·), ·))
≤ E[J̄2(x1, y

′′(·), λ(·), ·)] + λ◦e(e(x1, y
′(·), ·)) + λ◦i (i(x1, y

′(·), ·)) + ε.

With that, we have shown (29). We now define

h(x1) =

{
infx2∈X2,0 L(x, λ), if x1 ∈ C1,

∞, else

and

k(x1) = −`(x1, λ
◦).

Notice that ḡ(λ, λ◦) = infx1∈X1{h(x1) − k(x1)}. Additionally, h 6≡ ∞ is convex and k > −∞
is concave. In fact, since ḡ is finite, k cannot be identical to∞ and h must be proper. Therefore by
Fenchel’s duality theorem (cf. [3, Theorem 6.5.6]), with h∗(v) = supx1∈X1

{〈v, x1〉X∗1 ,X1 − h(x1)}
and k∗(v) = infx1∈X1{〈v, x1〉X∗1 ,X1 − k(x1)}, we have

ḡ(λ, λ◦) = max
x∗1∈X∗1

{k∗(x∗1)− h∗(x∗1)}. (30)

Let x∗1 denote the maximizer of (30), meaning ḡ(λ, λ◦) = k∗(x∗1)− h∗(x∗1). Then by definition of h∗,
we have for all x1 ∈ X1 that

h(x1)− 〈x∗1, x1〉X∗1 ,X1 ≥ ḡ(λ, λ◦)− k∗(x∗1). (31)

Likewise by definition of k and k∗, we get

`(x1, λ
◦) + 〈x∗1, x1〉X∗1 ,X1 ≥ k∗(x∗1).

It is straightforward to see that `(x1, λ
◦) ≤ 0 for all x1 ∈ C̃1. Indeed, x1 ∈ C̃1 implies that there

exists a x2 ∈ X2,0 satisfying e(x1, x2(ω), ω) = 0 and i(x1, x2(ω), ω) ≤K 0 a.s. Recalling (23), we
get

〈x∗1, x1〉X∗1 ,X1 ≥ k∗(x∗1)

for all x1 ∈ C̃1 ⊃ C1. From (31) we thus have for all x1 ∈ C1 that h(x1) ≥ ḡ(λ, λ◦) holds, and
hence

L(x, λ) ≥ h(x1) ≥ ḡ(λ, λ◦)

for all x ∈ X0 and all (λ, λ◦) ∈ Λ× Λ◦. It follows that g(λ) ≥ infx∈X0 L(x, λ) ≥ ḡ(λ, λ◦) and we
have shown (28) finishing the proof.
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3.2 Karush–Kuhn–Tucker Conditions

In Section 3.1, we showed that saddle points of the generalized Lagrangian exist under relatively mild
assumptions. We require that the constraint sets C1 and C2 are bounded. Additionally, the problem
must satisfy an almost sure strict feasibility condition in addition to a standard assumption in stochastic
models known as a relative recourse assumption. We now turn to obtaining optimality conditions under
the assumption that a saddle point exists. This leads us to the following central result.

Theorem 3.9. Let Assumption 3.1 be satisfied. Then a point (x̄, λ̄) ∈ (X1 × L∞(Ω, X2)) ×
(L1(Ω,W ∗)× L1(Ω, R∗)) is a saddle point of the Lagrangian (17) if and only if the following condi-
tions are satisfied:

(i) There exists a function ρ ∈ L1(Ω, X∗1 ) such that

x1 7→ J1(x1) + 〈E[ρ], x1〉X∗1 ,X1

attains its minimum over C1 at x̄1.

(ii) The function

(x1, x2) 7→J2(x1, x2) + 〈λ̄e(ω), e(x1, x2, ω)〉W ∗,W
+ 〈λ̄i(ω), i(x1, x2, ω)〉R∗,R − 〈ρ(ω), x1〉X∗1 ,X1

attains its minimum in X1 × C2 at (x̄1, x̄2(ω)) for almost every ω ∈ Ω.

(iii) It holds that x̄1 ∈ C1 and the following conditions hold almost surely:

e(x̄1, x̄2(ω), ω) = 0, x̄2(ω) ∈ C2, λ̄i(ω) ∈ K⊕,
i(x̄1, x̄2(ω), ω) ≤K 0, 〈λ̄i(ω), i(x̄1, x̄2(ω), ω)〉R∗,R = 0.

The appearance of this extra Lagrange multiplier ρ in Theorem 3.9 might seem surprising; however,
it is standard in two-stage stochastic optimization. It is known as a “nonanticipativity” constraint and
comes from this particular setting, where the first stage variable x1 is deterministic and the second-
stage variable x2 is random.

Proof of Theorem 3.9. We follow the arguments from [28, Section 3]. We first show that the ex-
istence of a saddle point implies condition (iii). Notice that (x̄, λ̄) can only be a saddle point if
(x̄, λ̄) ∈ X0 × Λ0, which immediately implies

x̄1 ∈ C1, x̄2(ω) ∈ C2 a.s., λ̄i(ω) ∈ K⊕ a.s.

For x̄ = (x̄1, x̄2), we have by definition of the Lagrangian (17) that

sup
λ∈Λ0

L(x̄, λ) = sup
λ∈Λ0

{
J1(x̄1) +

∫
Ω

J̄2(x̄1, x̄2(ω), λ(ω), ω) dP(ω)
}
.

We show that supλ∈Λ0
L(x̄, λ) = ∞ unless e(x̄1, x̄2(ω), ω) = 0 and i(x̄1, x̄2(ω), ω)) ≤K 0 a.s.

Indeed, suppose that the set

E := {ω ∈ Ω : −i(x̄1, x̄2(ω), ω) 6∈ K}
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has positive probability, meaning P(E) > 0. Then defining λn ≡ n on E and λn ≡ 0 on Ω\E,
one gets E[〈λn, i(x1, x2(·), ·)〉R∗,R] → ∞ as n → ∞. An analogous argument can be applied
to the equality constraint. Now, since λ̄i(ω) ∈ K⊕ and i(x̄1, x̄2(ω), ω) ≤K 0 a.s., we have that
〈λ̄i(ω), i(x̄1, x̄2(ω), ω)〉R∗,R ≤ 0 a.s. The supremum of L(x̄, λ) can therefore only be attained at λ̄
if and only if 〈λ̄i(ω), i(x̄1, x̄2(ω), ω)〉R∗,R = 0 a.s. We have shown that if (x̄, λ̄) is a saddle point,
then condition (iii) is fulfilled.

It is easy to see that conditions (i)–(iii) imply that (x̄, λ̄) is a saddle point. Indeed, for every x =
(x1, x2) ∈ X , conditions (i)–(ii) imply

L(x̄, λ̄)

= J1(x̄1) + 〈E[ρ], x̄1〉X∗1 ,X1 + E[J̄2(x̄1, x̄2(·), λ̄(·), ω)− 〈ρ(·), x̄1〉X∗1 ,X1 ]

≤ J1(x1) + 〈E[ρ], x1〉X∗1 ,X1 + E[J̄2(x1, x2(·), λ̄(·), ω)− 〈ρ(·), x1〉X∗1 ,X1 ]

= L(x, λ̄).

To show that L(x̄, λ) ≤ L(x̄, λ̄) for all λ ∈ Λ, it is enough to show that

E[J̄2(x̄1, x̄2(·), λ(·), ω)] ≤ E[J̄2(x̄1, x̄2(·), λ̄(·), ω)] ∀λ ∈ Λ. (32)

Since e(x̄1, x̄2(ω), ω) = 0 and 〈λi(ω), i(x̄1, x̄2(ω), ω)〉R∗,R ≤ 0 a.s., (32) must certainly be satis-
fied, since (as we argued before) the maximum of L(x̄, λ) can only be attained if

〈λ̄i(ω), i(x̄1, x̄2(ω), ω)〉R∗,R = 0

a.s.

Now, for the most involved part of the proof, we show that if (x̄, λ̄) is a saddle point, then conditions
(i) and (ii) must be satisfied. To simplify, we redefine λ̄i so that λ̄i(ω) ≥ 0 for all ω ∈ Ω. We define

h2(x1, x2, ω)

= J2(x1, x2) + 〈λ̄e, e(x1, x2, ω)〉W ∗,W + 〈λ̄i, i(x1, x2, ω)〉R∗,R.
(33)

The function h2 is clearly convex in X ; h2(x1(ω), x2(ω), ω) is integrable by Assumption 3.1 and the
fact that λ̄e ∈ L1(Ω,W ∗) and λ̄i ∈ L1(Ω, R∗). In particular, we get by by Corollary 2.6 that

H2(x1, x2) :=

∫
Ω

h2(x1(ω), x2(ω), ω) dP(ω)

is well-defined and finite on L∞(Ω, X1)× L∞(Ω, X2) as well as convex and continuous.

Let ι : X1 × L∞(Ω, X2) → L∞(Ω, X1) × L∞(Ω, X2) be the continuous injection, which maps
elements of X1 to the corresponding constant in L∞(Ω, X1) and maps each element of L∞(Ω, X2)
to itself. Setting H1(x1, x2) = J1(x1) if x ∈ X0 and H1(x1, x2) =∞ otherwise, we have

L(x, λ̄) = H1(x1, x2) +H2(ι(x1, x2)) ∀x ∈ X0.

From L(x̄, λ̄) = minx∈X0 L(x, λ̄) it follows that

H1(x̄1, x̄2) +H2(ι(x̄1, x̄2)) = min
(x1,x2)∈X0

H1(x1, x2) +H2(ι(x1, x2)).

By the Moreau–Rockafellar theorem (cf., e.g., [4, Theorem 2.168]) we have, where ι∗ maps (L∞(Ω, X1)
×L∞(Ω, X2))∗ to (X1 × L∞(Ω, X2))∗,

0 ∈ ∂H1(x̄1, x̄2) + ι∗∂H2(ι(x̄1, x̄2)).
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In particular, there exists q ∈ (L∞(Ω, X1)× L∞(Ω, X2))∗ such that

−ι∗q ∈ ∂H1(x̄1, x̄2) and q ∈ ∂H2(ι(x̄1, x̄2)).

Since h2 satisfies the conditions of Corollary 2.7, it follows that ∂H2(x̄1, x̄2) ⊂ (L∞(Ω, X1) ×
L∞(Ω, X2))∗ consists of continuous linear functionals on L∞(Ω, X1) × L∞(Ω, X2), which can be
identified with pairs (q1, q2) ∈ L1(Ω, X∗1 )× L1(Ω, X∗2 ) such that

q(ω) = (q1(ω), q2(ω)) ∈ ∂h2(x̄1, x̄2(ω), ω) a.s. (34)

Notice that for q∗1 ∈ L1(Ω, X∗1 ), the adjoint ι∗1 : (L∞(Ω, X1))∗ → X∗1 satisfies, for any x1 ∈ X1,

〈ι∗1q∗1, x1〉X∗1 ,X1 = 〈q1, ι1x1〉L1(Ω,X∗1 ),L∞(Ω,X1) = E[〈q1(·), x1〉X∗1 ,X1 ].

Hence ι∗q = (E[q1], q2) ∈ X∗1 × L1(Ω, X∗2 ). Thus −ι∗q ∈ ∂H1(x̄1, x̄2) can be written as

H1(x1, x2) ≥ H1(x̄1, x̄2)− 〈E[q1], x1 − x̄1〉X∗1 ,X1 − E[〈q2, x2 − x̄2〉X∗2 ,X2 ]

for all (x1, x2) ∈ X . Recalling H1(x1, x2) = J1(x1) if x ∈ X0, we get

J1(x1) ≥ J1(x̄1)− 〈E[q1], x1 − x̄1〉X∗1 ,X1 ∀x1 ∈ C1 (35)

and
E[〈q2, x2 − x̄2〉X∗2 ,X2 ] ≥ 0 ∀x2 ∈ L∞(Ω, X2) : x2(ω) ∈ C2 a.s. (36)

The expression (35) is clearly equivalent to condition (i).

We claim that (36) implies

〈q2(ω), x2 − x̄2(ω)〉X∗2 ,X2 ≥ 0 ∀x2 ∈ C2 a.s. (37)

Let Ĉ2 be a countable dense subset of C2. For x2 ∈ Ĉ2, we define

x̃2(ω) :=

{
x2, if 〈q2(ω), x2 − x̄2(ω)〉X∗2 ,X2 < 0

x̄2(ω), otherwise
.

The function x̃2 is clearly in L∞(Ω, X2). Since (36) holds we have

0 ≤ E[〈q2(·), x2 − x̄2(·)〉X∗2 ,X2 ] = E[min(0, 〈q2(·), x2 − x̄2(·)〉X∗2 ,X2)],

which gives 〈q2(ω), x2− x̄2(ω)〉X∗2 ,X2 ≥ 0 a.s. Since this is true for all x2 ∈ Ĉ2 and Ĉ2 is countable,
there exists a set Ω′ ⊂ Ω such that P(Ω′) = 1 and

〈q2(ω), x2 − x̄2(ω)〉X∗2 ,X2 ≥ 0 ∀x2 ∈ Ĉ2 and ∀ω ∈ Ω′.

Passing to the closure of Ĉ2, we get

〈q2(ω), x2 − x̄2(ω)〉X∗2 ,X2 ≥ 0 ∀x2 ∈ C2 and ∀ω ∈ Ω′,

and hence we have shown (37).

Finally, (34) implies with (37) that for all (x1, x2) ∈ X1 × C2,

h2(x1, x2, ω) ≥ h2(x̄1, x̄2(ω), ω) + 〈q1(ω), x1 − x̄1〉X∗1 ,X1 a.s.

With the definition of h2 given in (33), it follows that

J2(x1, x2) + 〈λ̄e, e(x1, x2, ω)〉W ∗,W
+ 〈λ̄i, i(x1, x2, ω)〉R∗,R − 〈q1(ω), x1〉X∗1 ,X1

≥ J2(x̄1, x̄2(ω)) + 〈λ̄e, e(x̄1, x̄2(ω), ω)〉W ∗,W
+ 〈λ̄i, i(x̄1, x̄2(ω), ω)〉R∗,R − 〈q1(ω), x̄1〉X∗1 ,X1

(38)

for all (x1, x2) ∈ X1×C2. The inequality (38) is clearly equivalent to condition (ii) with ρ(ω) := q1(ω).
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4 Model Problem with Almost Sure State Constraints

Before we proceed to a concrete example, we will discuss a particular class of problems that will
help us in verifying the measurability requirements posed in Assumption 3.1. Let L(Y,W ) denote the
space of all bounded linear operators from Y to W . A random linear operator A : Ω → L(Y,W ) is
called strongly measurable if for all y ∈ Y the W -valued random variable ω 7→ A(ω)y is strongly
measurable. Let A : Ω → L(Y,W ), B : Ω → L(X1,W ), and g : Ω → W be (strongly)
measurable random operators. We consider the random linear operator equation

A(ω)y = B(ω)x1 + g(ω). (39)

The inverse and adjoint operators are to be understood in the “almost sure” sense; e.g., for B, the
adjoint operator is the random operator B∗ such that for all (x1, w

∗) ∈ X1 ×W ∗,

P({ω ∈ Ω : 〈w∗,B(ω)x1〉W ∗,W = 〈B∗(ω)w∗, x1〉X∗1 ,X1}) = 1.

The following theorem will help us verify measurability in the application.

Theorem 4.1 (Hans [15]). Let A : Ω → L(Y,W ). Then A(ω) is invertible a.s if and only if
ran(A∗(ω)) = Y ∗ a.s. If these conditions are satisfied, then A∗(ω) is invertible and (A∗(ω))−1 =
(A−1(ω))∗. Moreover, if any of the operators A(ω), A−1(ω), A∗(ω), (A−1(ω))∗ is measurable,
then all four operators are measurable.

IfA(ω) ∈ L(Y,W ) is a linear isomorphism for almost everyω, thenA(ω) is invertible andA−1(ω) ∈
L(W,Y ). The existence and uniqueness of the solution to (39), given by

y(ω) = A−1(ω)(B(ω)u+ g(ω)) ∈ Y,

follows. By Theorem 4.1, A−1(ω) is measurable, hence y is strongly measurable as a product of
strongly measurable functions; see [16, Proposition 1.1.28, Corollary 1.1.28].

4.1 Example

LetD ⊂ R2 be a bounded Lipschitz domain.W 1,p(D) denotes the (reflexive and separable) Sobolev
space onD consisting of functions inLp(D) having first-order distributional derivatives also inLp(D).
W 1,p

0 (D) is the subset of functions inW 1,p
0 (D) that vanish on the boundary ∂D. Additionally,W−1,p(D)

denotes the dual space of W 1,p′

0 (D), where 1/p + 1/p′ = 1.

We set X1 = L2(D), Y = W 1,p
0 (D), for some suitable p > 2, and let C1 ⊂ X1 and C2 ⊂ Y be

nonempty, convex, and closed sets. The inner product on X1 is denoted by (·, ·)X1 . Given a target
yD ∈ X1, a constant α > 0, and a constraint ψ ∈ L∞(Ω, Y ), the problem is

min
(x1,y)∈X1×L∞(Ω,Y )

1

2
E
[
‖y − yD‖2

X1

]
+
α

2
‖x1‖2

X1

s.t.



x1 ∈ C1,

y(·, ω) ∈ C2 a.s.,

−∇ · (a(s, ω)∇y(s, ω)) = x1(s) + g(s, ω) on D × Ω a.e.,

y(s, ω) = 0 on ∂D × Ω a.e.,

y(s, ω) ≤ ψ(s, ω) on D × Ω a.e.,

(P′)

DOI 10.20347/WIAS.PREPRINT.2755 Berlin 2020



Stochastic optimization in Banach spaces 19

where “a.e.” signifies almost everywhere in D and almost surely in Ω. We note that the solution to the
PDE is a random field y : Ω × D → R; we use the shorthand yω := y(·, ω) to denote a single
realization. The random fields a : D × Ω → R and g : D × Ω → R are subject to the following
assumption.

Assumption 4.2. The function g satisfies g ∈ L∞(Ω, L2(D)). There exist amin, amax such that
0 < amin ≤ a(s, ω) ≤ amax < ∞ a.e. on D × Ω. Additionally, a ∈ L∞(Ω, Ct(D)) for some
t ∈ (0, 1].

It will be useful to define the (self-adjoint) operators

A(ω)y := bω(y, ·) for bω(y, φ) :=

∫
D

a(·, ω)∇y · ∇φ ds

and B(ω) := idX1 . We first address the solvability of the random PDE in Problem (P′).

Lemma 4.3. Under Assumption 4.2, there exists p > 2 such that for all x1 ∈ X1 and almost every
ω ∈ Ω, there exists a unique yω = y(·, ω) ∈ Y. Furthermore, y ∈ L∞(Ω, Y ).

Proof. Due to Assumption 4.2 and [13] there exists some p > 2 such that, a.s., A(ω) : Y =
W 1,p

0 (D) → W−1,p(D) is an isomorphism and ‖A−1(ω)‖L(W 1,p
0 (D),W−1,p(D)) ≤ c for a constant c

independent of ω.

Now, since D ⊂ R2, L2(D) ⊂ W−1,p(D) for all p <∞ and thus

yω = A(ω)−1(B(ω)x1 + g(·, ω)) ∈ Y

is well-defined with B : L2(D)→ L∞(Ω;L2(D)) being the mapping to constant functions in Ω.

Clearly, it holds a.s.

‖yω‖Y ≤ ‖A−1(ω)‖L(W 1,p
0 (D),W−1,p(D))‖B(ω)x1 + g(ω)‖W−1,p(D)

≤ c(‖x1‖W−1,p(D) + ‖g(ω)‖W−1,p(D))

≤ c(‖x1‖L2(D) + ‖g‖L∞(Ω;L2(D)))

Strong measurability of y follows as argued after Theorem 4.1 and thus the assertion follows.

To obtain necessary and sufficient KKT conditions, we first note that unless the constraint x2(s, ω) ≤
ψ(s, ω) is trivially satisfied almost surely, Problem (P′) does not satisfy the relatively complete re-
course condition (25). It therefore makes sense to modify the model to ensure that the second-stage
problem is always feasible. We introduce a slack variable z ∈ Y and constant α′ > 0; the second-
stage variable is then defined by x2 = (y, z) ∈ X2 := L∞(Ω, Y ) × L∞(Ω, Y ). This modified
problem is

min
x1,x2∈X1×X2

1

2
E
[
‖y − yD‖2

X1
+ α′‖z‖2

X1

]
+
α

2
‖x1‖2

X1

s.t.



x1 ∈ C1,

y(·, ω) ∈ C2 a.s.,

z(·, ω) ∈ C2 a.s.,

−∇ · (a(s, ω)∇y(s, ω)) = x1(s) + g(s, ω) on D × Ω a.e.,

y(s, ω) = 0 on ∂D × Ω a.e.,

y(s, ω) ≤ ψ(s, ω) + z(s, ω) on D × Ω a.e.

(P′s)
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It is clear that Problem (P′s) now satisfies the condition (25) of relatively complete recourse if C2 and
ψ are chosen appropriately. For example, by Lemma 4.3, one immediately obtains a unique solution
y to the PDE constraint where ‖y‖L∞(Ω;X2) ≤ c whenever C1 is bounded in L2(D). Then, if C2 is a
sufficiently large ball z := ψ − y is again in C2 and thus the pair (y, z) is feasible.

In this model, we have

J1(x1) =
α

2
‖x1‖2

X1
,

J2(x1, x2) =
1

2
‖y − yD‖2

X1
+
α′

2
‖z‖2

X1
,

e(x1, x2, ω) = A(ω)y − B(ω)x1 − g(·, ω) ∈ Y ∗,
i(x1, x2, ω) = y − ψ(·, ω)− z ∈ Y,

K = {y ∈ Y : y(s) ≥ 0 on D a.e.}.

It is clear that Assumption 3.1 is satisfied here. Indeed, J(x1, x2) = J1(x1) + J2(x1, x2) is convex,
everywhere defined, and continuous in X1 × X2. The function e(x1, x2, ω) is linear and continu-
ous in (x1, x2); measurability follows from the assumed measurability of the underlying operators.
Additionally, i(x1, x2, ω) is linear and continuous in x2 as well as measurable since ψ ∈ L∞(Ω, Y ).

Now, we can formulate KKT conditions for Problem (P′s).

Lemma 4.4. Suppose Assumption 4.2 is satisfied and C1, C2 are bounded. Then (x̄, λ̄) is a saddle
point of the Lagrangian (17) for Problem (P′s) if and only if there exist ρ ∈ L1(Ω, X∗1 ), λ̄e ∈ L1(Ω, Y ),
and λ̄i ∈ L1(Ω, Y ∗) such that for all x1 ∈ C1 and all (y, z) ∈ C2 × C2,

(αx̄1 + E[ρ], x1 − x̄1)X1 ≥ 0 (40a)

B∗(ω)λ̄e,ω + ρω = 0, (40b)

(ȳω − yD, y − ȳω)X1 + 〈A∗(ω)λ̄e,ω + λ̄i,ω, y − ȳω〉Y ∗,Y ≥ 0, (40c)

(α′z̄ω, z − z̄ω)X1 − 〈λ̄i,ω, z − z̄ω〉Y ∗,Y ≥ 0, (40d)

A(ω)ȳω − B(ω)x̄1 − gω = 0, (40e)

λ̄i,ω ∈ K⊕, ȳω − z̄ω ≤K ψω, 〈λ̄i,ω, ȳω − z̄ω − ψω〉Y ∗,Y = 0, (40f)

where (40b)–(40f) hold for almost all ω ∈ Ω. These conditions are necessary and sufficient for opti-
mality.

Proof. We apply the optimality conditions (i)–(iii) from Theorem 3.9.

Let f1(x1) := J1(x1) + 〈E[ρ], x1〉X∗1 ,X1 . We recall that the optimum x1 over C1 is attained if and
only if 〈f ′1(x̄1), x1 − x̄1〉X∗1 ,X1 ≥ 0 for all x1 ∈ C1. Hence condition (i) is equivalent to (40a). Now,
we define

f2(x1, x2, ω) := J2(x1, x2) + 〈λ̄e,ω, e(x1, x2, ω)〉Y,Y ∗
+ 〈λ̄i,ω, i(x1, x2, ω)〉Y ∗,Y − 〈ρω, x1〉X∗1 ,X1 .

Now, (ii) is equivalent to stationarity of f2 yielding (40b)–(40d). To see this, we compute

Dx1f2(x1, x2(ω), ω)[h] = 〈−B∗(ω)λ̄e,ω − ρω, h〉X∗1 ,X1 ,

so Dx1f2(x̄1, x̄2(ω), ω) = 0 a.s. if and only if (40b) holds. Recalling that x2 = (y, z), we compute

Dyf2(x1, x2(ω), ω)[k1] = (yω − yD, k1)X1 + 〈A∗(ω)λ̄e,ω + λ̄i,ω, k1〉Y ∗,Y ,
Dzf2(x1, x2(ω), ω)[k2] = (α′zω, k2)X1 − 〈λ̄i,ω, k2〉Y ∗,Y ,
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which at the optimum x̄2 = (ȳ, z̄) over C2 × C2 is equivalent to (40c)–(40d). Condition (iii) is clearly
equivalent to (40e) and (40f).

For the final statement, it suffices to verify that Problem (P′s) is strictly feasible. Since p > 2 and
D ⊂ R2 is bounded, W 1,p(D) is compactly embedded in C(D̄). Note that yω, zω ∈ W 1,p(D)
satisfying

i(x1, x2(ω), ω) = yω − ψ(·, ω)− zω <K 0

means ηω(s) := yω(s)−ψ(s, ω)−zω(s) < 0 a.e. on D̄.Now, the continuous function ηω must take
its maximum on the compact set D̄, so there exists a ε = ε(ω) such that ηω = i(x1, x2(ω), ω) < −ε
a.e. on D̄. If vω ∈ W 1,p(D) is chosen such that ‖vω‖∞ ≤ δ(ω), then

i(x1, x2(ω) + vω, ω) = i(x1, x2(ω), ω) + vω ≤ −ε+ ‖vω‖∞
≤ −ε+ δ(ω)

and therefore i(x1, x2(ω), ω) < vω if δ(ω) < ε. By Theorem 3.4 and Theorem 3.8, these conditions
are necessary and sufficient.

5 Conclusion

In this paper, we focused on obtaining necessary and sufficient first-order optimality conditions for a
class of stochastic convex optimization problems. The first stage variable x1 was assumed to belong
to a reflexive and separable Banach space, and the second-stage variable x2 was assumed to be
an essentially bounded random variable having an image in a reflexive and separable Banach space.
While the study of such problems in finite dimensions is classical, going back to a series of papers
from the 1970s by Rockafellar and Wets, its treatment in Bochner spaces, although cursorily handled
in [24, 26], was not complete enough to handle a class of problems of increasing interest, namely
PDE-constrained optimization under uncertainty. In such problems, it is desirable to find a control x1

such that a partial differential equation depending on the control is satisfied. The additional pointwise
constraints on the solution to the PDE presented surprising difficulties. In order to obtain necessary
and sufficient conditions for optimality, we built on the decomposition result provided by Ioffe and
Levin [17], in which the Bochner space L∞(Ω, X) is decomposed into its absolutely continuous part
and a singular part. We find that the singular part vanishes in the optimality conditions if strict feasi-
bility and relatively complete recourse conditions are satisfied. This provides necessary and sufficient
conditions for optimality with integrable Lagrange multipliers. While the example model problem we
chose to illustrate the theory involved smooth functions, we remark that the optimality conditions do
not require smoothness of the objective functions. Therefore we believe our theory to be applicable to
more general risk-averse problems.

A Appendix

Expansion of generalized Lagrangian (17). If x 6∈ X0, then x 6∈ domϕ(·, u) and therefore
L(x, λ) =∞ by definition of (16).

Now we observe the case x ∈ X0. The constraint i(x1, x2(ω), ω) ≤K ui is equivalent to ui −
i(x1, x2(ω), ω) ∈ K. Since x ∈ X0, ϕ can be redefined equivalently by

ϕ(x, u) := j(x) + E[δ{ue(·)}(e, x1, x2(·), ·)] + E[δK(ui(·)− i(x1, x2(·), ·))].
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(The equivalence is clear after one notices that the indicator function is non-negative.) Expanding (16),
we get

L(x, λ) = j(x)+ inf
u∈U

{
E[δ{ue(·)}(e(x1, x2(·), ·))]

+ E[δK(ui(·)− i(x1, x2(·), ·))] + 〈u, λ〉U,Λ
}
.

Recalling the definition of the pairing (15), we first see that

inf
ue∈L∞(Ω,W )

∫
Ω

δ{ue(ω)}(e(x1, x2(ω), ω))

+ 〈ue(ω), λe(ω)〉W ∗,W dP(ω)

=

∫
Ω

〈e(x1, x2(ω), ω), λe(ω)〉W ∗,W dP(ω)

+ inf
z∈L∞(Ω,W )

∫
Ω

δ{0}(z(ω))− 〈z(ω), λe(ω)〉W ∗,W dP(ω)

=

∫
Ω

〈e(x1, x2(ω), ω), λe(ω)〉W ∗,W dP(ω)

−
∫

Ω

δ∗{0}(λe(ω)) dP(ω)

=

∫
Ω

〈e(x1, x2(ω), ω), λe(ω)〉W ∗,W dP(ω),

(41)

where in the last step, we used that the conjugate of the indicator function is equal to the support
function.

Similarly,

inf
ui∈L∞(Ω,R)

∫
Ω

δK
(
ui(ω)− i(x1, x2(ω), ω)

)
+ 〈ui(ω), λi(ω)〉R,R∗ dP(ω)

=

∫
Ω

〈i(x1, x2(ω), ω), λi(ω)〉R,R∗ dP(ω)

− sup
z∈L∞(Ω,R)

∫
Ω

δK(−z(ω))− 〈z(ω), λi(ω)〉R,R∗ dP(ω)

=

∫
Ω

〈i(x1, x2(ω), ω), λi(ω)〉R,R∗ − sup
z′∈−K

〈z′, λi(ω)〉R,R∗ dP(ω)

=

∫
Ω

〈i(x1, x2(ω), ω), λi(ω)〉R,R∗ − δK⊕(λi(ω)) dP(ω).

(42)

If λi 6∈ K⊕, then the integral is equal to −∞. Otherwise, if λ ∈ Λ0 (and x ∈ X0), we get after
combining (41) and (42) the expression

L(x, λ) = j(x) + E[e(x1, x2(·), ·), λe(·)〉W ∗,W ] + E[〈i(x1, x2(·), ·), λi(·)〉R,R∗ ].
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