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Dynamical phase transitions for flows on finite graphs
Davide Gabrielli , D.R. Michiel Renger

Abstract

We study the time-averaged flow in a model of particles that randomly hop on a finite directed
graph. In the limit as the number of particles and the time window go to infinity but the graph
remains finite, the large-deviation rate functional of the average flow is given by a variational
formulation involving paths of the density and flow. We give sufficient conditions under which the
large deviations of a given time averaged flow is determined by paths that are constant in time.
We then consider a class of models on a discrete ring for which it is possible to show that a better
strategy is obtained producing a time-dependent path. This phenomenon, called a dynamical
phase transition, is known to occur for some particle systems in the hydrodynamic scaling limit,
which is thus extended to the setting of a finite graph.

1 Introduction

One of the main challenges of statistical mechanics is to understand the thermodynamics of particle
systems that are not in detailed balance. A violation of detailed balance means that even in a steady
state, there can be non-trivial net flows. It is therefore natural to study flows, currents and their corre-
sponding large deviations, which is the basis of macroscopic fluctuation theory [5]. Various limits and
large deviations of flows and currents have been studied in the literature, e.g. steady-state or pathwise
large deviations as the number N of particles and/or lattice sites goes to infinity, e.g. [13, 5], or large
deviations of time-averaged flows as time T goes to infinity, e.g. [6, 7]. In this work we are concerned
with large deviations of time-averaged flows 1

T

∫ T
0
QN(t) dt, where first the numberN of particles and

then the time horizon T is sent to infinity, as for example in [3, 2, 4, 8, 9]. This yields a large deviation
principle of the type:

Prob
(

1
T

∫ T
0
QN(t) dt ≈ q

) N→∞
T→∞∼ e−NTΨ(q),

with

Ψ(q) := lim
T→∞

inf
(ρ,q):

1
T

∫ T
0 q(t) dt=q,

ρ̇(t)+div q(t)=0

1

T

∫ T

0

L(ρ(t), q(t)) dt, (1.1)

where the infimum ranges over paths of particle densities ρ(t) and particle flows q(t), and L is some
non-negative cost function.

In many cases, the infimum over paths is attained or approximated by constant paths, i.e. ρ(t)
constant and q(t) constant and divergence free. In this case the above expression simplifies to
Ψ(q) = infρ L(ρ, q) [8]. Such simplification will fail if a time-dependent flow q(t) is significantly
less costly than its corresponding time-averaged flow q. In that case we say that a dynamical phase
transition occurs (the transition being in parameter q), see Definition 3.1.
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D. Gabrielli, D.R.M. Renger 2

Dynamical phase transitions have been shown to occur for systems like exclusion processes with
an external bulk force [9] or the KMP model [3], in the hydrodynamic scaling limit. See also [17] for
numerial simulations and [28], [15] and references therein for problems of this type for different models.
In this case the mesh of the underlying graph goes to zero in the many-particle limit, yielding quadratic
large-deviation cost functions, i.e. L(ρ, j) = 1

2
‖j − k(ρ)‖2

L2(1/χ(ρ)) for some mobility χ(ρ) and
expected flow k(ρ). By contrast, we consider a finite graph (X , E) that is not rescaled but remains
discrete in the limit; in that case the cost function is typically entropic, i.e.L(ρ, q) =

∑
(x,y)∈E s

(
qx,y |

kx,y(ρ)
)
, where s is a relative entropy like functional of qx,y with respect to kx,y(ρ). The precise model,

assumptions, and large-deviations statements are introduced in Section 2.

Entropic cost functions are in many aspects more challenging than quadratic ones. For example, they
can only induce generalised gradient flows [26], they can only be decomposed using a generalised
notion of orthogonality [18, 31], and it is not clear whether they relate to some manifold or more general
geometry.

In this work we focus on jump processes on finite graphs with corresponding entropic cost functions,
and study whether and when dynamical phase transitions occur.

The paper is organised as follows. In Section 2 we introduce the general setting that we work in; in
Section 3 we present general properties of dynamical phase transitions, and in particular sufficient
assumptions to rule them out. In Section 4 we restrict to zero-range processes on a discrete ring and
give sufficient conditions under which a dynamical phase transition does occur.

2 Particle systems, limits and large deviations

In Section 2.1 we introduce the general particle systems that we work with; the limiting behavior and
large deviations asN →∞ are discussed in Section 2.2, and the limit and large deviations of average
flows as N →∞, T →∞ are discussed in Section 2.3.

2.1 Particle systems

Let (X , E) be a finite directed graph, where the directed edges are E ⊆ X × X , excluding the
diagonal. The particle system consists of N identical particles X1(t), . . . , XN(t) on X .

The initial states (xi)
N
i=1 of the particles are chosen deterministically so that the empirical measure

converges, as N → +∞, to some fixed measure:

ρNx (0) :=
m

N

N∑
i=1

1xi(x) =
m

N
#{particles at site x at time 0} → ρ∗x.

Each single particle carries a mass of m/N , so that the total mass in the system can be tuned by the
parameter m > 0, and ρN(0), ρ∗ ∈ Mm(X ), the set of non-negative measures on X of total mass
m. The precise choice of the initial condition does not play a key role in this paper, since from the next
section on we are only interested in the long-time behaviour.

For the dynamics of the system, one particle randomly hops from site x to y with model-specific rate
Nkx,y(ρ

N(t)) where the empirical measure is:

ρNx (t) :=
m

N

N∑
i=1

1Xi(t)(x) =
m

N
#{particles at site x and time t}. (2.1)
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Dynamical phase transitions on finite graphs 3

The empirical measure ρN(t) is a Markov process inMm(X ) with generator

L̂Nf(ρ) =
∑

(x,y)∈E

Nkx,y(ρ)
[
f(ρ+ m

N
(1y − 1x)− f(ρ)

]
. (2.2)

For this model, we introduce the integrated flow on an edge (x, y) ∈ E as

WN
x,y(t) :=

m

N
#
{

particles jumped from x to y in time interval (0, t]
}
. (2.3)

This definition also fixes the initial condition WN(0) ≡ 0. The integrated flow WN(t) ∈ M(E) is
a non-negative measure on edges, related to the empirical measure through the discrete continuity
equation:

ρN(t) = ρN(0)− divWN(t) where divWx :=
∑

y:(x,y)∈E

Wx,y −
∑

y:(y,x)∈E

Wy,x. (2.4)

The pair (ρN(t),WN(t)) is again a Markov process, now inMm(X )×M(E), with generator

LNf(ρ, w) =
∑

(x,y)∈E

Nkx,y(ρ)
[
f
(
ρ+ m

N
(1y − 1x) , w + m

N
1(x,y)

)
− f

(
ρ, w

)]
. (2.5)

The initial condition will be always of the form WN(0) = 0 and ρNx (0) = nxm
N

for some integers nx
such that

∑
x∈X nx = N . Since the intensities depend on the density ρ only, ignoring the integrated

flows reduces this process to the process with generator (2.2).

Note that the rates kx,y(ρ) may depend on all coordinates (ρz)z∈X , allowing for example for attraction
or catalysis. Here we recall the technical assumtions on k used in [29] to prove a large deviations
principle. The exact assumptions on k do not play a key role in the current paper, but we briefly
mention them here for completeness:

1 each kx,y(ρ)→ 0 sufficiently fast when ρx → 0;

2 each kx,y(ρ) is Lipschitz continuous and non-decreasing in ρ with respect to the natural partial
ordering onMm(X );

3 there exists a non-decreasing bijection φ : [0, 1] → [0, 1] so that kx,y(δρ) ≥ φ(δ)kx,y(ρ) for
all ρ ∈Mm(X ), δ ∈ [0, 1] and (x, y) ∈ E.

The first condition is needed to prevent negative densities. The continuity implies in particular that the
process does not blow up and that the random paths are almost surely of bounded variation, so that the
time derivatives (ρ̇N(dt), ẆN(dt)) always exist as measures in time. We call QN(dt) := ẆN(dt).
The monotonicity and the lower bound are rather technical assumptions needed in the proof of the
large-deviation principle Theorem 2.4 that we discuss in the next section.

Remark 2.1. In the limit N → ∞ and the corresponding large-deviation regime, the paths become
more regular and their derivatives exists as L1-densities (ρ̇(t), ẇ(t)). The precise topology on the
path space and rigorous proofs of scaling limits and large-deviations principles will not be discussed
here. We will use the notation q(t) := ẇ(t).
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D. Gabrielli, D.R.M. Renger 4

Remark 2.2. We believe that our results can be extended to more general models. For example, the
microscopic jump rates can beNkx,y(ρ) in approximation only, and the continuity equation (2.4) could
include more general linear operators than the discrete divergence. This would include the classical
Kurtz model for chemical reactions [22], allowing also for annihilation and creation of mass. We could
consider even models with mass randomly flowing across each edge and not necessarily transported
by particles, like for example in the KMP model [20]. The monotonicity of the rates kx,y should also
be generalisable as to include repulsion effects, but the best of our knowledge this has not yet been
carried out in the literature.

2.2 Limit and large deviations as N →∞

The many-particle limit follows by a similar argument as the classic results by Kurtz:

Theorem 2.3 ([22, 23, 29]). The random paths (ρN ,WN) ∈ BV(0, T ;Mm(X )×M(E) converge
narrowly as N →∞ to the solution (ρ, w) ∈ W 1,1(0, T ;Mm(X )×M(E)) of the problem

ẇ(t) = k(ρ(t)), ρ̇(t) + div ẇ(t) = 0,

w(0) = 0, ρ(0) = ρ∗. (2.6)

Fluctuations around this limit are quantified by the following large-deviation principle. Recall that we
use the notation w(t) =:

∫ t
0
q(s)ds.

Theorem 2.4 ([29]). The random paths (ρN ,WN) ∈ BV(0, T ;Mm(X )×M(E)) satisfy a large-
deviation principle as N →∞ with speed N :

Prob
(
(ρN ,WN) ≈ (ρ, w)

)
∼ e−NI[0,T ](ρ,ẇ|ρ∗)

with rate functional

I[0,T ](ρ, q | ρ∗) =
∑

(x,y)∈E
∫ T

0
s
(
qx,y(t) | kx,y(ρ(t))

)
dt, if ρ ∈ W 1,1(0, T ;Mm(X )), q ∈ L1(0, T ;M(E)),

ρ̇+ div q = 0 and ρ(0) = ρ∗ ,

+∞, otherwise ,
(2.7)

where

s(a | b) :=


a log

a

b
− a+ b, a, b > 0,

b, a = 0,

+∞, otherwise.

(2.8)

The reader is referred to [30, 29] for a proof of the above Theorem. Note that the integrand in (2.7) can
be interpreted as a kind of Lagrangian with corresponding HamiltonianH(ρ, p) :=

∑
(x,y)∈E kx,y(ρ)

(
epx,y−

1
)
, where p are the variables dual to the variables q [27]. See also [1] for a similar rate functional ob-

tained in the framework of time periodic Markov chains and Appendix A for the outline of a simple
derivation in the case of independent particles using a Sanov Theorem for paths.
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Dynamical phase transitions on finite graphs 5

Remark 2.5. Clearly, the limit densities (2.6) satisfy the closed equation:

ρ̇(t) + div k(ρ(t)) = 0 . (2.9)

In general it is possible to construct models for which the equations (2.9) have several stable and
unstable equilibrium points or even limit cycles (see for example [24]). We are however mostly inter-
ested in dynamical phase transitions for models for which (2.9) has a unique and globally attractive
equilibrium. This corresponds to the behavior of a thermodynamic system relaxing to equilibrium.

2.3 Limit and large deviations as N →∞ and T →∞

We now study the time-averaged flow (recall the notation introduced just before Remark 2.1),

Q
N

(T ) :=
1

T

∫ T

0

QN(dt) :=
1

T
WN(T ),

in the limit where N → ∞ and TN → ∞ sufficiently slow as a function of N . To simplify the
arguments we always take N →∞ first and subsequently T →∞. Under sufficient conditions, the

average flow Q
N

(T ) converges to k(ρ) where ρ is the unique attractive steady state of (2.9).

In order to state the corresponding large-deviation principle we first need to introduce some notation
and facts. Let

I[0,T ](ρ, q) := I[0,T ](ρ, q | ρ(0)) (2.10)

be the functional that coincides with (2.7) but without the constraint on the initial condition. We then
define

ΨT,m(q̄ | ρ∗) :=
1

T
inf

(ρ,q)∈AT,m(q̄)
I[0,T ](ρ, q | ρ∗) , (2.11)

ΨT,m(q̄) :=
1

T
inf

(ρ,q)∈AT,m(q̄)
I[0,T ](ρ, q) , (2.12)

where the infima are taken over the set,

AT,m(q) :=
{

(ρ, q) ∈ W 1,1([0, T ];Mm(X ))× L1([0, T ];M(E)) :

ρ̇+ div q = 0,
1

T

∫ T

0

q(t) dt = q
}
. (2.13)

Note there is a slight ambiguity in the notation (2.11) since ρ∗ fixes the total mass m, but we include
the index m for consistency with the other function. The following auxiliary proposition allows to show
that the functions

Ψm(q̄ | ρ∗) := lim
T→+∞

ΨT,m(q̄ | ρ∗) and Ψm(q̄) := lim
T→+∞

ΨT,m(q̄)

are well defined and have certain properties. In particular, in this limit for large times, the dependence
on the initial condition vanishes.

Proposition 2.6 (Well-posedness of Ψ). For any q ∈M(E) and ρ∗ ∈Mm(X );

(i) Ψm(q | ρ∗) = infT>0 ΨT,m(q | ρ∗) and Ψm(q) = infT>0 ΨT,m(q) and hence the limits are
well-defined;

DOI 10.20347/WIAS.PREPRINT.2746 Berlin 2020



D. Gabrielli, D.R.M. Renger 6

(ii) Ψm(q|ρ∗) and Ψm(q) are convex in q;

(iii) Ψm(q) =∞ if div q̄ 6= 0;

(iv) Ψm(q | ρ∗) = Ψm(q) (i.e. Ψm does not depend on ρ∗);

(v) the convergence in item (i) is a pointwise and a Gamma-convergence.

Sketch of proof. The proof follows the same arguments of [2, 3, 4], and we do not discuss the full
details. The subadditivity that implies existence and item (i) is obtained by glueing paths together one
after the other. Convexity follows by a similar construction. If div q̄ 6= 0 we obtain after a long enough
time a negative mass somewhere that is impossible. The independence of the initial condition follows
by the fact that one can construct a finite-time finite-cost path between any two initial conditions. The
fact that the convergence is also a Gamma-convergence is obtained by combining item (i) and (ii)
along the lines of [4, Sec. 4].

We can now state the main statement of this section.

Theorem 2.7.

(i) The average flow Q
N

(T ) satisfies a large-deviation principle with speed N and rate functional

q̄ → TΨT,m(q̄ | ρ∗).

(ii) The average flow Q
N

(T ) satisfies a large-deviation principle (where first N → ∞ and then
T →∞) with speed NT and rate functional Ψm(q̄).

Sketch of proof. The first statement follows from a straight-forward contraction principle [12, Th. 4.2.1].
The second item can be written formally as

− 1

NT
logPN

(
{QN

(T ) ≈ q}
)
−−−→
N→∞

1

T
ΨT,m(q | ρ∗) −−−→

T→∞
Ψm(q). (2.14)

In order for the statement to be interpretable as a large-deviation principle, the second convergence
must be a Gamma limit, which holds by Proposition 2.6(v).

3 Dynamical phase transitions I: absence and occurrence

We now consider a system that consists of the graph (X , E), jump rates k and total mass m as
explained in the previous section. In this section we study dynamical phase transitions for the general
function Ψm, and study when phase transitions can not occur, and when they do occur. We then
illustrate the conditions for a simple two-state example.

Let us first provide a more precise definition of dynamical phase transitions, following the general
framework of [2, 3, 4, 5]:

DOI 10.20347/WIAS.PREPRINT.2746 Berlin 2020



Dynamical phase transitions on finite graphs 7

Definition 3.1. We say that the system undergoes a dynamical phase transition in the average flow
q ∈M(E) if

Ψm (q) < Ψ+
m (q) ,

where

Ψ+
m (q) =

{
infρ∈Mm(X )

∑
(x,y)∈E s

(
qx,y | kx,y(ρ)

)
, div q = 0,

∞, otherwise.
(3.1)

Recall that Ψm(q) is the large-deviation cost to observe an atypical average flow q. If the system
does not undergo a dynamical phase transition for this q, then the infimum over AT,m can be taken
over paths that are constant in time, which corresponds to an (atypical) stationary steady state. On
the other hand, if a dynamical phase transition occurs at q, then the system will have time-dependent
behaviour when constrained to have an atypical flow q. Furthermore, recall from Proposition 2.6 that
when div q 6= 0 then Ψm(q) =∞ and hence there can not be a dynamical phase transition.

3.1 Dynamical phase transitions and lower and upper bounds

We now study upper and lower bounds for Ψm, from which we deduce a sufficient condition under
which dynamical phase transition can not occur, and a sufficient condition under which it does. The
upper bound Ψ+

m is already introduced in (3.1). A lower bound is constructed as follows. Considering
the rate k as an operatorMm(X )→ RE

+ with range

Ranm(k) := {(kx,y(ρ))(x,y)∈E ∈ RE
+ : ρ ∈Mm(X )}, (3.2)

one can rewrite the upper bound as

Ψ+
m(q) = inf

K∈Ranm(k)

∑
(x,y)∈E

s(qx,y | Kx,y) .

For the lower bound we introduce, denoting by co the convex hull,

Ψ−m(q) := inf
K∈co(Ranm(k))

∑
(x,y)∈E

s(qx,y | Kx,y) .

Proposition 3.2. For any divergence-free q,

Ψ−m(q) ≤ Ψm(q) ≤ Ψ+
m(q) .

Proof. Take an arbitrary ρ ∈ Mm(X ). Since q is divergence-free, the constant path (ρ, q) is an
element ofAT,m(q). Therefore

Ψm(q) ≤ lim
T→∞

1

T

∑
(x,y)∈E

∫ T

0

s
(
qx,y | kx,y(ρ)

)
dt =

∑
(x,y)∈E

s
(
qx,y | kx,y(ρ)

)
.

Optimising over all possible ρ ∈Mm(X ) yields the upper bound.

DOI 10.20347/WIAS.PREPRINT.2746 Berlin 2020



D. Gabrielli, D.R.M. Renger 8

Now take an arbitrary path (ρ, q) ∈ AT,m(q). Applying Jensen’s inequality to the jointly convex
function s(· | ·) yields

∑
(x,y)∈E

1

T

∫ T

0

s
(
qx,y(t) | kx,y(ρ(t)

)
dt ≥

∑
(x,y)∈E

s
(
qx,y | 1

T

∫ T
0
kx,y(ρ(t)) dt

)
≥ Ψ−m(q) ,

because T−1
∫ T

0
k(ρ(t)) dt ∈ co(Ranm(k)). The claimed lower bound is obtained by taking the

infimum over all paths (ρ(t), q(t))t∈[0,T ] ∈ AT,m(q) and then letting T →∞.

As a direct consequence we obtain the first condition to rule out phase transitions.

Corollary 3.3. If the set Ranm(k) is convex then there are no dynamical phase transitions for any
value of q.

Proof. If Ranm(k) is convex then Ψ−m(q) = Ψm(q) = Ψ+
m(q).

Remark 3.4. In this paper we are restricting to conservative models for which the total mass is pre-
served. The arguments are however easily extendible to non conservative models. In this case Ran(k)
may be unbounded and the validity for example of condition of Corollary 3.3 are more likely to be ver-
ified. This seems to confirm the phenomenon observed in [16] for which the addition of boundary
conditions non preserving mass may inhibit dynamic phase transitions.

The upper bound in Proposition 3.2 can be improved, and the lower bound can be replaced by another
one. To describe the lower bound, recall from (3.1) that Ψ+

m(q) = +∞ if div q 6= 0. By contrast, we
define another function

Ψ#
m(q) := inf

ρ∈Mm(X )

∑
(x,y)∈E

s
(
qx,y | kx,y(ρ)

)
,

defined even in the case div q 6= 0, so that that Ψ#
m(q) = Ψ+

m(q) when div q = 0. In the following
lower and upper bounds “co” now denotes the convex envelope.

Proposition 3.5. For any q, (
co Ψ#

m

)
(q) ≤ Ψm(q) ≤

(
co Ψ+

m

)
(q) . (3.3)

Proof. The upper bound follows by the upper bound in 3.2 and the convexity of Ψm (property (ii) of
Proposition 2.6).

The lower bound is obtained by the following argument. For any T > 0 and any pair (ρ, q) ∈ AT,m(q),

1

T
I[0,T ](ρ, q) =

1

T

∫ T

0

∑
(x,y)∈E

s
(
qx,y(t) | kx,y(ρ(t))

)
dt

≥ 1

T

∫ T

0

Ψ#
m(q(t)) dt ≥ 1

T

∫ T

0

(
co Ψ#

m

)
(q(t)) dt

(Jensen)
≥

(
co Ψ#

m

)
(q) .

The result follows by minimising over (ρ, q) ∈ AT,m(q) and taking T →∞.

Together with the theory from Section 2.3 we obtain a condition under which a phase transition occurs.

DOI 10.20347/WIAS.PREPRINT.2746 Berlin 2020



Dynamical phase transitions on finite graphs 9

Corollary 3.6. If Ψ+
m is not convex, then the system undergoes a dynamical phase transition.

Proof. In this case there exists a q ∈M(E) such that we have for the convex envelope (co Ψ+
m)(q) <

Ψ+
m(q). By the upper bound in Proposition 3.5 we deduce that Ψm(q) < Ψ+

m(q) so that we have a
dynamic phase transition at q.

When Ψ+
m is not convex and Ψm = co Ψ+

m the typical behaviour of the system is to spend fractions
of times with different typical densities and flows (see [2, 3] for an extended discussion).

3.2 Dynamical phase transitions and joint convexity

In this section we derive an alternative condition to rule out dynamical phase transitions, again by a
convexity argument, but now by joint convexity of the function,

Mm(X )×M(E) 3 (ρ, q) 7→
∑

(x,y)∈E

s(qx,y | kx,y(ρ)) ∈ R+ . (3.4)

Proposition 3.7. If the jump rates kx,y are such that the function (3.4) is jointly convex in (ρ, q) ∈
Mm(X )×M(E), then there are no dynamical phase transitions.

Proof. Consider a pair (ρ, q) ∈ AT,m(q). By Jensen’s inequality:

1

T
I[0,T ](ρ, q) =

1

T

∫ T

0

∑
(x,y)∈E

s
(
qx,y(t) | kx,y(ρ(t))

)
dt

≥
∑

(x,y)∈E

s
(

1
T

∫ T
0
qx,y(t) dt | kx,y

(
1
T

∫ T
0
ρ(t) dt

))
=:

∑
(x,y)∈E

s
(
qx,y | kx,y(ρ̃T )

)
≥ Ψ+

m(q) ,

where we used the definition of AT,m(q) and we called ρ̃T := 1
T

∫ T
0
ρsds ∈ Mm(X ). Taking the

infimum over all (ρ, q) ∈ AT,m(q) and then letting T → ∞ yields Ψm(q) ≥ Ψ+
m(q), which shows

that there are no dynamical phase transitions.

As we will illustrate in Section 3.3 the above proposition is not very powerful, but can be strengthened
by requiring joint convexity in a small neighbourhood only.

Remark 3.8. In [9], the authors construct a dynamical phase transition by considering small perturba-
tions around time independent trials (ρ̃, q̄). We consider (ρε(t), qε(t)) where qε(t) = q̄ + εv(t), for

some periodic perturbation v such that
∫ T

0
v(s)ds = 0 and ρε is determined by the continuity equa-

tion. The first variation d
dε
I(0,T )(ρε, qε)|ε=0 = 0 since (ρ̃, q̄) is a critical point for the time independent

trials. If one can find a v(t) for which the second variation becomes negative, this shows that a small
periodic perturbation can decrease the cost of a constant state, which corresponds to a dynamical
phase transition. For a general local cost function L (as in the introduction), the second variation is

d2

dε2
I(0,T )(ρε, qε)|ε=0 =

∫ T

0

[
m(t)
v(t)

]T
∇2L(ρ̃, q)

[
m(t)
v(t)

]
dt.

where at first order in ε we have ρε(t) = ρ̃+ εm(t). Therefore, the second variation cannot become
negative if L is jointly convex, which is related to our Proposition 3.7.
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3.3 A simple two-state example

We give a geometric illustration of the conditions from the previous section in the simplest network with
|X | = 2, i.e.X = {1, 2}. In this caseMm(X ) = {(ρ1,m−ρ1) : ρ1 ∈ [0,m]} is one dimensional,
and any choice of the jump rates can be rewritten as a zero-range process; this means that the rate
at which the mass flows exiting from a given site only depends on the amount of mass present at that
site. By Proposition 2.6 we only need to consider divergence-free flows div q̄ = 0; this corresponds
to q̄1,2 = q̄2,1 both of which we shall denote as q̄. For simplicity (and with a slight abuse of notation)
we consider an homogeneous model, i.e. we assume that k1,2(ρ) = k(ρ1) and k2,1(ρ) = k(m−ρ1)
for some function k : R+ → R+.

We first study the implication of the range condition from Corollary 3.3 for the two-state example. The
range (3.2) can now be parametrised by

Ranm(k) :=
{(
α, k(m− k−1(α))

)
: α ∈ [0, k(m)]

}
.

Clearly for a linear k the function α → k(m − k−1(α)) is linear and hence its graph is a con-
vex set, see Figure 1(A), which rules out dynamical phase transitions by Corollary 3.3. This special
case corresponds to independent particles jumping on the network. If k is a convex function, then
α → k(m − k−1(α)) is a convex function, in which case its graph Ranm(k) is not a convex
set, see Figure 1(B). However, for a small q the gradient of K 7→

∑
(x,y)∈E s(qx,y | Kx,y) points

left/downwards, and so the minimiser K ∈ co(Ranm(k)) in Ψ−(q) will still lie on Ran(k), implying
that Ψ−(q) = Ψ+(q). So for a convex function k dynamical phase transitions can only occur for
flows q that lie above the set Ranm(k), see Figure 1(B). Similarly, for a concave function k, dynamical
phase transitions are only possible for flows that lie below the set Ranm(k), see Figure 1(C).

k2,1

k1,2

k(m)
R
an
m

(k)

k(m)

q

(A) k linear

k2,1

k1,2

k(m)

R
an

m
(k)

k(m)

q

(B) k convex

k2,1

k1,2

k(m)
Ran

m (k)

k(m)

q

(C) k concave

Figure 1: Three possible phase space plots. The grey areas depict the convex hull co(Ranm(k)), and
double stroked lines depict divergence-free flows q for which dynamical phase transition are not ruled
out by Corollary 3.3.

Remark 3.9. From Figure 1 one sees that by changing the total mass m in the system the set
Ranm(k) can be moved upward or downward, which influences the region of possible dynamical
phase transitions. The flexibility to play with m will become more apparant and crucial in the next
section where we construct an example of a dynamical phase transition.

We now study what the joint convexity condition of Proposition 3.7 implies for the two-state homoge-
neous example. In that case joint convexity of the sum (3.4) is implied by the joint convexity of the
function R2 3 (ρ, q) 7→ s(q | k(ρ)), which corresponds to positive semidefiniteness of its Hessian

DOI 10.20347/WIAS.PREPRINT.2746 Berlin 2020



Dynamical phase transitions on finite graphs 11

matrix: [
−q(log k)′′(ρ) + k′′(ρ) −(log k)′(ρ)

−(log k)′(ρ) 1/q

]
.

By Sylvester’s criterion, this matrix is positive semidefinite if and only if all its principal minors are
non-negative, i.e.: 

−q(log k)′′(ρ) + k′′(ρ) ≥ 0,
1/q ≥ 0,

−(log k)′′(ρ) + k′′(ρ)/q − ((log k)′(ρ))2 ≥ 0 .

The second inequality is trivial since q ≥ 0, and the first inequality is contained in the third. Proposi-
tion 3.7 thus means that dynamical phase transitions do not occur when the third inequality holds, that
is:

k′′(ρ)

(
1

q
− 1

k(ρ)

)
≥ 0. (3.5)

Actually this inequality holds for all ρ, q if and only if k′′(ρ) ≥ 0 and −k′′(ρ)/k(ρ) ≥ 0, which can
only be true for linear functions k. In this sense Proposition 3.7 is just ruling out the independent
particles case. However, the same argument can be used to rule out phase transitions obtained by
small oscillatory perturbations within a small neighbourhood of a critical time-independent (ρ, q) (see
Remark 3.8). With this interpretation, we can deduce from (3.5) that for a convex k dynamical phase
transitions (with small oscillations) can only occur for large flows q, and the other way around for
concave k. Indeed, this statement is consistent with the phase space diagrams from Figure 1.

An exact characterisation of when a dynamical phase transition indeed occurs is computationally not
easy, even in the simple two-state case. Instead of using a direct computational approach we will
show the existence of a dynamical phase transition using a limiting procedure and a comparison with
a continuous framework where the computations are easier.

4 Dynamical phase transition II: an example

In the previous section we mostly focussed on sufficient conditions under which a dynamical phase
transition can not occur; in this section we present an example where it does. The dynamics corre-
sponds to a totally asymmetric zero range dynamics on a discrete ring with L sites. The dynamics is
spatially homogeneous and with strictly increasing jump rates

kx,y(ρ) := Lκ(ρx)1x+1(y), (4.1)

that we discuss in more detail in Section 4.1, see also Figure 2. Note that the rates k on the left hand
side of (4.1) depend on the size L even if we are not writing explicitely such a dependence. We will
fix the function κ on the right hand side of (4.1) in such a way that (3.4) is strictly concave on a region
and such that there is just one single globally attractive stationary solution to equation (2.9), which is
natural in light of Remark 2.5. We refer to [10, 11] for discussions of dynamical phase transitions for
asymmetric dynamics of particle systems in the hydrodynamic rescaling. We stress again that the limit
considered here is very different from the hydrodynamic one.

More precisely we have the following result that allows to deduce the existence of a dynamical phase
transition.

Theorem 4.1. Consider a family of models on rings withL sites and defined by the rates (4.1). Assume
that there exist Φ, τ, δ > 0 and µ ≥ 0 such that the function

φ 7→ s
(
φ | κ(µ+ τφ)

)
(4.2)
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is strictly concave on [Φ − δ,Φ + δ]. If for average flow qx,x+1 ≡ Φ and any large L > 0, the
minimisation problem in the definition (3.1) of Ψ+(q) has a unique minimiser, then for L sufficiently
large and m := L(µ+ τΦ) the system with rates Lκ undergoes a dynamical phase transition in q.

The dynamical phase transition will be constructed in two stages. In Section 4.2 we perform an auxil-
iary computation on a continuous ring. We introduce a cost functional that is a continuous version of
the discrete one and show that for this functional a travelling wave is less costly then a constant flow.
In Section 4.3 we discretize the continuous travelling wave to show that the same result holds on the
discrete ring, for L sufficiently large but finite. This will conclude the proof of the result. In Section 4.4
we present an example of a rate k and flow q that satisfy the conditions in Theorem 4.1 so that a
dynamical phase transition takes place.

1

Lκ(ρ1)
2

3

L

Figure 2: A directed discrete ring

4.1 Totally asymmetric spatially homogeneous zero-range processes on a dis-
crete ring.

The graph now consists of a discrete ring X := {1, 2, . . . , L} with directed nearest-neighbour edges
E = {(x, x + 1) , x = 1, . . . , L} where the sum is modulo L, see Figure 2. This means that mass
can flow through the directed ring in one direction only, and that the divergence-free condition from
Proposition 2.6 imposes that q is a constant.

We assume that the jump rates are zero-range and spatially homogeneous, i.e. (4.1) for some smooth
strictly increasing function κ : R+ → R+ satisfying the assumptions mentioned in Section 2.1.
Indeed, this setting is similar to the two-state model from Section 3.3, where the rates are now rescaled
with a factor L.

The limiting system of equations (2.9) associated to this class is given by

ρ̇x(t) = Lκ(ρx−1(t))− Lκ(ρx(t)) , x ∈ X . (4.3)

with corresponding large-deviation rate functional for the paths,

I[0,T ](ρ, q) =
L∑
x=1

∫ T

0

s
(
qx,x+1(t) | Lκ(ρx(t))

)
dt.

Since κ is strictly increasing, for any fixed m there exists a unique stationary solution ρ ∈ Mm(X )
of (4.3), given by ρx = m

L
. Similarly, if the minimiser in the Definition (3.1) of Ψ+

m(q) is unique, then by
symmetry,

Ψ+
m(q) = Ls

(
q | Lκ(m/L)

)
. (4.4)

As mentioned in Remark 2.5, for systems with multiple equilibria and unstable behaviours one can
easily imagine the occurrence of dynamical phase transitions, especially if the limit equation (4.3)
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itself already has a time-dependent solution. Therefore it is important that the equilibrium ρ is unique
and globally attractive, so that the typical behaviour of the system is to relax to this equilibrium. This
follows automatically from the fact that the equation is dissipative, which we will now derive from the
monotonicity of κ.

The invariant measure of the zero range model is known to be:

νN
(
ρN
)

=
L∏
x=1

1

ZL̂κ(ρNx )
,

when ρN ∈ Mm(X ) ∩ (m
N
N)L. Here L̂κ

(
mi
N

)
:=
∏i

j=1 Lκ
(
mj
N

)
for i ≥ 1 and L̂κ(0) := 1,

and Z is a normalisation factor, see [19, Sec. 2.3]. A direct computation shows that when distributed
according to νN and conditioned on the total mass

∑
x ρ

N
x = m, then ρN satisfies a large-deviation

principle with speed N inMm(X ) with rate functional:

Vm(ρ) =
1

m

L∑
x=1

∫ ρx

ρ

log κ(α) dα , (4.5)

where the equilibrium ρ now serves as a normalisation constant such that Vm(ρ) = 0. Note that due to
monotonicity of κ, the function Vm is convex and has unique minimiser ρ. By macroscopic fluctuation
techniques [31, Prop. 5.3] it can be proved that the functional Vm decreases along solutions ρ(t)
of (4.3), which can also be seen from the direct computation:

dVm(ρ(t))

dt
=
∑
x∈L

L

m

[
κ(ρx−i(t))− κ(ρx(t))

]
log κ(ρx(t))

= −L
m

∑
x∈L

s
(
κ(ρx(t))

∣∣∣κ(ρx+1(t)
)
≤ 0 .

This shows that Vm is indeed a Lyapunov functional, from which we deduce the asymptotic stability,
that is, the limit equation (4.3) is dissipative and so ρ is globally attractive.

Remark 4.2. For models for which the invariant measure cannot be computed explicitly, (4.5) and
similar expressions can often still be derived from a Hamilton-Jacobi equation along the lines of a
discrete version of Macroscopic Fluctuation Theory.

4.2 An inequality on the continuous torus

Here we introduce an auxiliary functional on smooth density and flows that is related to the rate func-
tional for a large ring under suitable conditions. It may correspond heuristically to a model on a contin-
uous ring where mass can flow anticlockwise only. Although it is not obvious whether this framework
actually corresponds to a large-deviation principle (flows may develop shocks), the computation will be
useful to prove and to understand the origin of the dynamical phase transition. Indeed the scaling limit
of the discrete functionals is an interesting problem. Quantities on the continuous ring will be denoted
by a hat (̂).

On the continuous torus, [0, 1] with periodic boundary conditions, we consider smooth non-negative
flows and densities q̂(x, t), ρ̂(x, t) ≥ 0 such that the continuous version of the continuity equation is
satisfied:

∂tρ̂(x, t) + ∂xq̂(x, t) = 0 , x ∈ [0, 1] . (4.6)
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For any such pair the corresponding continuous version of the rate functional is given by

Î[0,T ](q̂, ρ̂) :=

∫ T

0

∫ 1

0

s
(
q̂(x, t) | κ(ρ̂(x, t)

)
dx dt. (4.7)

Note that in this expression appears κ and this functional will be approximated by discrete models with
a large number L of sites and having rates Lκ.

We first construct a specific travelling wave solution of equation (4.6), under the assumption of Theo-
rem 4.1 with given Φ, τ, δ > 0 and µ ≥ 0. Let Φ : [0, 1]→ [Φ− δ,Φ + δ] be a smooth and periodic
non-constant function with average

∫ 1

0
Φ(x) dx = Φ, and define the travelling wave (TW) as:

ρ̂TW(x, t) := µ+ τΦ(x− t/τ). and q̂TW(x, t) := Φ(x− t/τ) (4.8)

Then clearly, this pair (q̂TW, ρ̂TW) solves (4.6), it is τ -periodic in t and 1-periodic in x. Without loss
of generality we may assume that T is a multiple of τ , so that the average flow is

1

T

∫ T

0

q̂TW(x, t) dt =

∫ 1

0

Φ(x)dx := Φ,

and the corresponding total mass is given by

m :=

∫ 1

0

ρ̂TW(x, t) dx = µ+ τΦ .

We may therefore write (ρ̂TW, q̂TW) ∈Mm([0, 1])×M([0, 1]). The functional (4.7) for this special
pair is

Î[0,T ](ρ̂
TW, q̂TW) =

∫ T

0

∫ 1

0

s
(
Φ(x− t/τ) | κ(µ+ τΦ(x− t/τ))

)
dx dt.

Since the function Φ is periodic of period one, exchanging the order of integrations, the integrand of
the integral on dx does not depend on x and the integral can be removed computing the integrand on
0. With the change of variable u = −t/τ and again assuming that T is a multiple of τ ,

1

T
Î[0,T ](ρ̂

TW, q̂TW) =

∫ 1

0

s
(
Φ(u) | κ(µ+ τΦ(u))

)
du.

Next, let us compare the travelling wave to its corresponding constant profile

ρ̂const(x, t) := µ+ τΦ. and q̂const(x, t) := Φ (4.9)

Then clearly
∫ 1

0
ρ̂const(x, t) dx = m =

∫ 1

0
ρ̂TW(x, t) dx and 1

T

∫ T
0
q̂const(x, t) dt = Φ = 1

T

∫ 1

0
q̂TW(x, t) dt.

By the strict concavity of (4.2) and the fact that Φ is not constant, Jensen’s inequality yields that

1

T
Î[0,T ](ρ̂

TW, q̂TW) =

∫ 1

0

s
(
Φ(u) | κ(µ+ τΦ(u))

)
du

<s
(
Φ | κ(µ+ τΦ)

)
=

1

T
Î[0,T ](ρ̂

const, q̂const), (4.10)

which can be heuristically interpreted as a dynamical phase transition on the continuous torus. We will
use this strict inequality to prove the existence of a dynamical phase transition for a finite ring.
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4.3 Discretisation of density-flow pairs

The construction of the dynamical phase transition on the finite ring is obtained by discretising any
smooth density and flow pair (ρ̂, q̂) ∈ Mm([0, 1]) ×M([0, 1]) as follows. We embed the ring on
the continuous torus associating the vertex x ∈ {1, . . . , L} to the point x/L ∈ [0.1]. We consider
discretized masses and flows

ρLx (t) := L

∫ x+1/2
L

x−1/2
L

ρ̂(y, t) dy and qLx,x+1(t) := Lq̂
(x+1/2

L
, t
)
.

It is easy to see that if (ρ̂, q̂) satisfies the continuous continuity equation (4.6) then (ρLx , q
L
x ) satisfies

the discrete continuity equation (2.4).

We apply this discretisation to the two different profiles from the previous section. For the travelling
wave (ρ̂TW, q̂TW) from (4.8) with discretisation (ρL,TW, qL,TW). Recalling that the rates are Lκ, we
compute,

1

T
I[0,T ](ρ

L,TW, qL,TW) =
L∑
x=1

L

T

∫ T

0

s

(
q̂TW

(x+1/2
L

, t)
∣∣∣κ(L ∫ x+1/2

L
x−1/2

L

ρ̂TW(y, t) dy
))

dt

= L2

∫ 1

0

s
(

Φ(u)
∣∣∣κ(µ+ τL

∫ u
u−1/L

Φ(z) dz
))

du. (4.11)

For the constant profile (ρ̂const, q̂const) from (4.9) with discretisation (ρL,const, qL,const),

1

T
I[0,T ](ρ

L,const, qL,const) = L2s(Φ | κ
(
µ+ τΦ)

) (4.4)
= Ψ+

L(µ+τΦ)
(LΦ). (4.12)

Observe that both discretised paths (ρL,TW, qL,TW), (ρL,const, qL,const) are feasible in the sense that
they lie in the setAT,L(µ+τΦ)(LΦ) from (2.13).

Without loss of generality we may assume that δ is sufficiently small so that Φ ≥ Φ − δ > 0 and
so under the assumptions on κ, the function κ

(
µ + τL

∫ u
u−1/L

Φ(z) dz
)

is bounded from above and
from below away from zero. Therefore from formulas (4.11) and (4.12)

lim
L→+∞

1

L2T
I[0,T ](ρ

L,TW, qL,TW) =

∫ 1

0

s
(
Φ(u) | κ(µ+ τΦ(u))

)
du, and

lim
L→+∞

1

L2T
I[0,T ](ρ

L,const, qL,const) = s(Φ | κ(µ+ τΦ)) .

From the strict inequality (4.10) we thus find that for sufficiently large but finite L, (4.11) is strictly less
than (4.12). This proves the claim of Theorem 4.1 that for this L and m := L(µ + τΦ) the system
undergoes a dynamical phase transition for the average flow Φ.

4.4 An example

For this example we take the classical Young function, see Figure 3(A),

κ(ρ) := (ρ+ 1) log(ρ+ 1)− ρ,

and µ = 0 and τ = 1.
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Given q, the second condition in Theorem 4.1 is easily checked by rewriting,

Ls
(
q | Lκ(ρ)

)
= Lφ log

q

L
− Lq − Lq log κ(ρ) + L2κ(ρ). (4.13)

Since κ is strictly convex and strictly log-concave, this function is clearly strictly convex, which shows
the uniqueness of the minimiser in the Definition of Ψ+(q). Note that this strict convexity is related
but a bit different from the global attractiveness of the limit equation that we derived in Subsection 4.1,
since in this case we force a possible non-typical flow q on the system.

To show the strict concavity of (4.2) we calculate the second derivative:

H(φ) :=
d2

dφ2
s
(
φ | κ(φ)

)
(4.14)

=
1

φ
+

1

φ+ 1
− 2

log(φ+ 1)

(φ+ 1) log(φ+ 1)− φ
(4.15)

− φ

(φ+ 1)
(
(φ+ 1) log(φ+ 1)− φ

) +
φ(log(φ+ 1))2(

(φ+ 1) log(φ+ 1)− φ
)2 (4.16)

It is easily computed that H(1) < 0, and in fact limφ↓0H(φ) = −∞, so we may choose any Φ ≤ 1
and δ > 0 sufficiently small, see Figure 3. It follows from Theorem 4.1 that for any q ≡ Φ ≤ 1, there
exists a sufficiently large L so that a dynamical phase transition occurs with mass m = LΦ and rates
Lκ.

ρ

κ(ρ)

(A) The Young function

φ

1

Dynamical
phase
transition

(B) H(φ)

Figure 3: On the left, the Young function κ(ρ), and on the right the second derivative of s
(
φ | κ(φ)

)
.

We mention that the choice of κ for which a dynamical phase transition can occur is subtle. For
example, a similar calculation as (4.16) can be done for the concave function κ(ρ) := 2 log(ρ + 1),
showing that limφ↓0H(φ) = −1. However, this function κ(ρ) is strictly log-concave but not convex,
and so (4.13) ceases to be strictly convex for large L. Therefore, the minimiser in the definition of
Ψ+
m(q) may no longer be unique, so possibly Ψ+

m(q) < Ls(q | Lk(m/l)), which breaks down the
argument.

A A Sanov Theorem for paths

In this section we schetch a simple argument for Theorem 2.4 for the case of independent particles.
A similar Sanov argument with interacting particles but without flows can be found in [14, 25]. The
motivation of this Appendix is to give just the intuition on the specail form of the rate functional. An
even more general proof can be found in [29] and [21].
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Proof. Let Xi(t), i = 1, . . . , N be independent copies of a Markov chain on the graph (X , E) with
initial distribution m−1ρ∗ and transition rates kx,y. We consider the empirical measure of the random
trajectories Xi(·) := (Xi(t))t∈[0,T ] in D([0, T ];X ),

P̂N :=
1

N

N∑
i=1

δXi(·). (A.1)

By Sanov’s Theorem, P̂N satisfies a large-deviation principle in M1(D([0, T ];X )) with rate func-
tional

I[0,T ]

(
P̂
)

= H
(
P̂ | Pρ∗

)
, (A.2)

where Pρ∗ is the law on D([0, T ];X ) of the Markov chain X1(·) with transition rates kx,y and initial
distribution m−1ρ∗, and H(·|·) is the relative entropy.

Let πt[x(·)] := x(t) and ∆t[x(·)] := (x(t−), x(t)) be the evaluation maps (assuming càdlàg paths).
We can then write the pair (ρN ,WN), defined in (2.1),(2.3), as a function of P̂N :{

ρN(t) = mP̂N ◦ π−1
t ,

QN(t) = mP̂N ◦∆−1
t

(A.3)

Hence by the contraction principle,

I[0,T ](ρ, q) = inf
P̂∈M1(D([0,T ];X )):

ρ(·)=mP̂◦π−1
(·) , q(·)=mP̂◦∆−1

(·)

I[0,T ](P̂) ,

It can be checked that the minimiser is a Markovian measure P̂(ρ,q) with time-dependent transition
rates (assuming ρx > 0),

k̂x,y(t) :=
qx,y(t)

ρx(t)
, (A.4)

and initial condition m−1ρ∗.

The relative entropy between two Markovian processes can be explicitly computed, and so

I[0,T ](ρ, q) = I[0,T ](P̂(ρ,q)) = H
(
P̂(ρ,q)

∣∣∣Pρ∗)
=

∑
(x,y)∈E

∫ T

0

s
(
qx,y(t) | ρx(t)kx,y

)
dt .
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