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Inexact relative smoothness and strong convexity for
optimization and variational inequalities by inexact model

Fedor Stonyakin, Alexander Gasnikov, Alexander Tyurin, Dmitry Pasechnyuk, Artem Agafonov, Pavel
Dvurechensky, Darina Dvinskikh, Sergei Artamonov, Victorya Piskunova

Abstract

In this paper we propose a general algorithmic framework for first-order methods in optimiza-
tion in a broad sense, including minimization problems, saddle-point problems and variational
inequalities. This framework allows to obtain many known methods as a special case, the list in-
cluding accelerated gradient method, composite optimization methods, level-set methods, Breg-
man proximal methods. The idea of the framework is based on constructing an inexact model
of the main problem component, i.e. objective function in optimization or operator in variational
inequalities. Besides reproducing known results, our framework allows to construct new methods,
which we illustrate by constructing a universal conditional gradient method and universal method
for variational inequalities with composite structure. These method works for smooth and non-
smooth problems with optimal complexity without a priori knowledge of the problem smoothness.
As a particular case of our general framework, we introduce relative smoothness for operators and
propose an algorithm for VIs with such operator. We also generalize our framework for relatively
strongly convex objectives and strongly monotone variational inequalities.

1 Introduction

In this paper we consider the following convex optimization problem

min
x∈Q

f(x), (1)

whereQ is a convex subset of finite-dimensional vector spaceE, f is generally a non-convex function.

Most of minimization methods for such problems are constructed using some model of the objective f
at the current iterate xk. This can be a quadratic model based on the L-smoothness of the objective

f(xk) + 〈∇f(xk), x− xk〉+
L

2
‖x− xk‖2

2. (2)

The step of gradient method is obtained by the minimization of this model [56]. More general models
are constructed based on regularized second-order Taylor expansion [59] or other Taylor-like models
[16] as well as other objective surrogates [46]. Another example is the conditional gradient method
[26], where a linear model of the objective is minimized on every iteration. Adaptive choice of the
parameter of the model with provably small computational overhead was proposed in [59] and applied
to first-order methods in [22, 52, 53]. Recently, first-order optimization methods were generalized to
the so-called relative smoothness framework [6, 45, 60], where 1

2
‖x−xk‖2

2 in the quadratic model (2)
for the objective is replaced with general Bregman divergence.
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F. Stonyakin et al. 2

The literature on first-order methods [8, 15, 21] considers also gradient methods with inexact informa-
tion, relaxing the model (2) to

fδ(xk) + 〈∇fδ(xk), x− xk〉+
L

2
‖x− xk‖2

2 + δ, (3)

with (fδ,∇fδ) called inexact oracle and this model being an upper bound for the objective. In partic-
ular, this relaxation allows to obtain universal gradient methods [53].

One of the goals of this paper is to describe and analyze first-order optimization methods which use
a very general inexact model of the objective function, the idea being to replace the linear part in (3)
by a general function ψδ(x, xk) and the squared norm by general Bregman divergence. The resulting
model includes as a particular case inexact oracle model and relative smoothness framework, and al-
lows to obtain many optimization methods as a particular case, including conditional gradient method
[26], Bregman proximal gradient method [11] and its application to optimal transport [69] and Wasser-
stein barycenter [65] problems, general Catalyst acceleration technique [44], (accelerated) composite
gradient methods [7, 52], (accelerated) level methods [42, 50]. First attempts to propose this gener-
alization were made in [29, 65] for non-accelerated methods and in [31] for accelerated methods, yet
without relative smoothness paradigm. In this paper we propose the inexact model in a very general
setting including adaptivity of the algorithms to the parameter L, possible relative strong convexity
and relative smoothness. We also provide convergence rates for the gradient method and accelerated
gradient method using inexact model of the objective. As an application of our general framework,
we develop a universal conditional gradient method, providing a parameter-free generalization of the
results in [54].

We believe that our model is flexible enough to be extended for problems with primal-dual structure1

[49, 51, 54], e.g. for problems with linear constraints [2, 12, 34, 58]; for random block-coordinate
descent [25]; for tensor methods [30, 55]; for distributed optimization setting [17, 18, 64, 68]; and
adaptive stochastic optimization [36, 61].

Optimization problem (1) is tightly connected with variational inequality (VI)

Find x∗ ∈ Q s.t. 〈g(x∗), x∗ − x〉 ≤ 0, ∀x ∈ Q,

where g(x) = ∇f(x). A special VI is also equivalent to finding a saddle-point of a convex-concave
function

min
u∈Q1

max
v∈Q2

f(u, v)

for x = (u, v) and g(x) = (∇uf(u, v),−∇vf(u, v)). This motivates the second part of this paper,
which consists in generalization of the inexact model of the objective function to an inexact model
for an operator in variational inequality. In particular, we extend the relative smoothness paradigm to
variational inequalities with monotone and strongly monotone operators and provide a generalization
of Mirror-Prox method [48], its adaptive version [28] (see also [3]) and universal version [24] to varia-
tional inequalities with such general inexact model of the operator. As a partucular case, our approach
allows to partially reproduce the results of [10]. We also apply the general framework for variational
inequalities to saddle-point problems.

To sum up, we present a unified view on inexact models for convex optimization problems, variational
inequalities, and saddle-point problems.

The structure of the paper is the following. In Section 2 we introduce inexact model of the objective
in optimization and provide several examples to illustrate the flexibility and generality of the proposed

1see recent results on this generalization in [67].
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Inexact model for optimization and variational inequalities 3

model. In particular, we demonstrate that relative smoothness and strong convexity are particular
cases of our general framework.

In Section 3 we consider adaptive gradient method (GM) and adaptive fast gradient method (FGM).
FGM has better convergence rate, yet it is not adapted to the relative smoothness paradigm. In section
3.3, we construct universal conditional gradient (Frank–Wolfe) method using FGM with inexact projec-
tion. To the best of our knowledge, this is the first attempt to combine Frank–Wolfe method [35, 37]
and universal method [53]. In Section 4 we generalize inexact model to variational inequalities and
saddle-point problems for the case of monotone and strongly monotode operators. In the former case,
we construct an adaptive generalization of the Mirror-Prox algorithm for variational inequalities and
saddle-point problems with such inexact model. In the latter case the proposed algorithm is acceler-
ated by the restart technique to have linear rate of convergence. We especially consider the case of
m-strong convexity of the model. The natural motivation for such a formulation are composite saddle
problems, and mixed variational inequalities with a m-strongly convex composite.

The contribution of this paper is follows:

1 We introduce inexact (δ, L, µ,m, V )-model for optimization problems and obtain convergence
rates for adaptive GM for optimization problems with this model.

2 We introduce inexact (δ, L, µ,m, V, ‖ · ‖)-model for optimization problems and obtain con-
vergence rates for adaptive FGM for optimization problems with such model. Using FGM with
inexact model we construct a universal conditional gradient (Frank–Wolfe) method.

3 We propose generalizations of the above models, namely (δ, L, V )-model and (δ, L, µ, V )-
model for variational inequalities and saddle-point problems. As a special case we introduce
relative smoothness for operators in variational inequalities, thus, generalizing [45] from opti-
mization to variational inequalities. We obtain convergence rates for adaptive versions of Mirror-
Prox algorithm for problems with inexact model.

2 Inexact Model in Minimization Problems. Definitions and Ex-
amples

We start with the general notation. Let E be an n-dimensional real vector space and E∗ be its dual.
We denote the value of a linear function g ∈ E∗ at x ∈ E by 〈g, x〉. Let ‖ · ‖ be some norm on
E, ‖ · ‖∗ be its dual, defined by ‖g‖∗ = max

x

{
〈g, x〉, ‖x‖ ≤ 1

}
. We use ∇f(x) to denote any

(sub)gradient of a function f at a point x ∈ domf . We define a continuous convex on Q function
d(x) to be distance generating function and V [y](x) = d(x) − d(y) − 〈∇d(y), x − y〉 to be the
corresponding Bregman divergence. Most typically it is assumed that d is 1-strongly convex on Q
w.r.t. ‖ · ‖-norm, which we refer to as (1-SC) assumption w.r.t. ‖ · ‖-norm. Namely, for all x, y ∈ Q,
d(x) − d(y) − 〈∇d(y), x − y〉 > 1

2
‖x − y‖2. We underline that, in general, we do not make this

assumption, and, in what follows, we explicitly write if this assumption is made.

Definition 1. Let δ, L, µ,m ≥ 0. We say that ψδ(x, y) is a (δ, L, µ,m, V )-model of the function f
at a given point y iff, for all x ∈ Q,

µV [y](x) 6 f(x)− (fδ(y) + ψδ(x, y)) 6 LV [y](x) + δ. (4)
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F. Stonyakin et al. 4

and ψδ(x, y) satisfies ψδ(x, x) = 0 for all x ∈ Q and

ψ(x) > ψ(z) + 〈∇zψ(z), x− z〉+mV [z](x) ∀x, z ∈ Q, (5)

where for fixed y ∈ Q and any x ∈ Q we denote ψ(x) = ψδ(x, y).

Note that in Definition 1 we allow L to depend on δ. Definition 1 is a generalization of (δ, L)-model
from [29, 31, 65], where µ = 0 andm = 0. Further, we denote (δ, L, 0, 0, V )-model as (δ, L)-model.

Let us illustrate the above definitions by several examples.

Example 2. Composite optimization, [7, 52]. Assume that in (1), f(x) = g(x) + h(x) with L-
smooth w.r.t. norm ‖ · ‖ part g and simple convex part h. In this case we assume that V [y](x)
satisfies (1-SC) condition w.r.t ‖ · ‖, and define fδ(x) = f(x) + h(x) and ψδ(x, y) = 〈∇g(y), x−
y〉 + h(x) − h(y). It is clear that (4) holds with δ = 0 and µ = 0 and we are in the situation of
Definition 1 with m = 0. If h turns out to be relatively m-strongly convex [45] relatively to d, i.e.
h(x)− h(y)− 〈∇h(y), x− y〉 ≥ mV [y](x), then (5) holds, but in (4) µ = 0. On the other hand, if
g turns out to be relatively µ-strongly convex [45] relatively to d, i.e. g(x)− g(y)−〈∇g(y), x−y〉 ≥
µV [y](x), then (4) holds with δ = 0, but in (5) m = 0.

A particular example is the following minimization problem [1] motivated by traffic demands matrix
estimation from link loads

f(x) =
1

2
‖Ax− b‖2

2 +m
n∑
k=1

xk lnxk → min
x∈Sn(1)

.

In this case g(x) = 1
2
‖Ax − b‖2

2 and h(x) = m
n∑
k=1

xk lnxk. Choosing ‖ · ‖ = ‖ · ‖1 and d(x) =

n∑
k=1

xk lnxk, V [y](x) =
n∑
k=1

xk ln (xk/yk), we obtain that g is has Lipschitz gradient w.r.t. ‖ · ‖1 with

the constant L = max‖h‖1≤1〈h,ATAh〉 = maxk=1,...,n ‖Ak‖2
2, where Ak is the k-th column of A.

Finally, ψδ(x, y) = 〈∇g(y), x− y〉+h(x)−h(y) is a (0, L, 0,m, V )-model. At the same time, the
part g is not necessarily strongly convex. Thus, our framework allows to obtain (accelerated) gradient
method for composite optimization and their counterparts for inexact oracle models.

Example 3. Relative smoothness and relative strong convexity, [6, 45]. Assume that in (1), the
objective f is relatively smooth [6, 45] relative to d, i.e.

f(x)− f(y)− 〈∇f(y), x− y〉 ≤ (d(x)− d(y)− 〈∇d(y), x− y〉) = LV [y](x), ∀x, y ∈ Q

and relatively strongly convex [45] relative to d, i.e.

µV [y](x) = µ (d(x)− d(y)− 〈∇d(y), x− y〉) ≤ f(x)− f(y)− 〈∇f(y), x− y〉, ∀x, y ∈ Q.

Then, clearly, Definition 1 holds with m = 0, δ = 0, ψδ(x, y) = 〈∇f(y), x − y〉. Importantly, the
function d is not necessarily strongly convex.

Note that if V [y](x) ≤ Cn ‖x− y‖2 for some constant Cn = O(log n), the condition of (µCn)-
strong convexity w.r.t. norm ‖·‖, namely µCn ‖x− y‖2 + fδ(y) + ψδ(x, y) 6 f(x) implies the left
inequality in (4).

One of the main applications of general relative smoothness and strong convexity is the step of tensor
methods which use the derivatives of the objective of the order higher than 2 [30, 55]. Thus, our frame-
work allows to obtain gradient method for optimization with relative smoothness and strong convexity
and extend them to the case of inexact oracle setting.
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Inexact model for optimization and variational inequalities 5

Example 4. Superposition of functions, [50]. Assume that in (1) [42, 50] f(x) := g(g1(x), . . . , gm(x))→
minx∈Q, where each function gk(x) is a smooth convex function with Lk-Lipschitz gradient w.r.t. ‖ ·‖-
norm for all k. Function g(x) is a M -Lipschitz convex function w.r.t 1-norm, non-decreasing in each
of its arguments. The chosen Bregman divergence V [y](x) is assumed to satisfy (1-SC). From these
assumptions we have [9, 42] that function f(x) is also convex and

0 ≤ f(x)− f(y)− g(g1(y) + 〈∇g1(y), x− y〉, . . . , gm(y) + 〈∇gm(y), x− y〉) + f(y) ≤

≤M

∑m
i=1 Li
2

‖x− y‖2 ≤MV [y](x)
m∑
i=1

Li, ∀x, y ∈ Q.

Therefore,

ψδ(x, y) = g(g1(y) + 〈∇g1(y), x− y〉, . . . , gm(y) + 〈∇gm(y), x− y〉)− f(y),

is (0,M · (
∑m

i=1 Li))-model of f with fδ(y) = f(y) at a given point y. Thus, our framework allows
to obtain (accelerated) level gradient methods considered in [42, 50] as a special case. Moreover, we
generalize these methods for the case of inexact oracle information.

Example 5. Proximal method, [11]. Let us consider optimization problem (1), where f is an arbitrary
convex function (not necessarily smooth). Then, for arbitrary L ≥ 0, ψδ(x, y) = f(x) − f(y)
is (0, L)-model of f with fδ(y) = f(y) at a given point y. Thus, our framework allows to obtain
(Bregman) proximal gradient methods [11, 63] as a special case and extend them to the case of inexact
oracle setting. In particular, based on this model (with Bregman divergence to be Kullback–Leibler
divergence) we propose in [65] proximal Sinkhorn’s algorithm for Wasserstein distance calculation
problem and in [39] proximal IBP for Wasserstein barycenter problem.

Example 6. Min-min problem. Assume that in (1) f(x) := minz∈Q F (z, x), the set Q is convex
and bounded, function F is smooth and convex w.r.t. all variables. Moreover, assume that

‖∇F (z′, x′)−∇F (z, x)‖2 ≤ L ‖(z′, x′)− (z, x)‖2 , ∀z, z
′ ∈ Q, x, x′ ∈ Rn.

Let V [y](x) = 1
2
‖x− y‖2

2. If we can find a point z̃δ(y) ∈ Q such that

〈∇zF (z̃δ(y), y), z − z̃δ(y)〉 ≥ −δ, ∀z ∈ Q,

then F (z̃δ(y), y)− f(y) ≤ δ and ψδ(x, y) = 〈∇zF (z̃δ(y), y), x− y〉 is (6δ, 2L, 0, 0, V )-model of
f with fδ(y) = F (z̃δ(y), y)− 2δ at a given point y.

Example 7. Saddle point problem, [15]

Assume that in (1) f(x) = maxz∈Q [〈x, b− Az〉 − φ(z)] → minx∈Rn , where φ(z) is a µ-strongly
convex function w.r.t. p-norm (1 ≤ p ≤ 2). Then f is smooth and convex and its gradient is Lipschitz
continuous with constant L = 1

µ
max‖z‖p≤1 ‖Az‖2

2. If zδ(y) ∈ Q is an approximate solution to
auxiliary max-problem, i.e.

max
z∈Q

[〈y, b− Az〉 − φ(z)]− [〈y, b− Azδ(y)〉 − φ(zδ(y))] ≤ δ,

then ψδ(x, y) = 〈b−Azδ(y), x− y〉 is (δ, 2L, 0, 0, V )-model of f with fδ(y) = 〈y, b−Azδ(y)〉−
φ(zδ(y)) at the point y if we define V [y](x) = 1

2
‖x− y‖2

2.

DOI 10.20347/WIAS.PREPRINT.2709 Berlin 2020
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Example 8. Augmented Lagrangians, [15]. Let us consider

min
Az=b, z∈Q

φ(z) +
µ

2
‖Az − b‖2

2

and the corresponding dual problem

min
x∈Rn

f(x) = max
z∈Q

(
〈x, b− Az〉 − φ(z)− µ

2
‖Az − b‖2

2

)
︸ ︷︷ ︸

Λ(x,z)

 .

If zδ(y) is an approximate solution of auxiliary max-problem, i.e.

max
z∈Q
〈∇zΛ(y, zδ(y)), z − zδ(y)〉 ≤ δ,

then ψδ(x, y) = 〈b− Azδ(y), x− y〉 is (δ, µ−1, 0, 0, V )-model of f with

fδ(y) = 〈y, b− Azδ(y)〉 − φ(zδ(y))− µ

2
‖Azδ(y)− b‖2

2

at the point y if we take V [y](x) = 1
2
‖x− y‖2

2.

Example 9. Moreau envelope of the objective function, [15]. Let us consider optimization problem:

min
x∈Rn

fL(x) := min
z∈Q

{
f(z) +

L

2
‖z − x‖2

2

}
︸ ︷︷ ︸

Λ(x,z)

 .

Assume that f is convex and, for some zL(y),

max
z∈Q

{
Λ(y, zL(y))− Λ(y, z) +

L

2
‖y − zL(y)‖2

2

}
≤ δ.

Then ψδ(x, y) = 〈L(y − zL(y)), x− y〉 is (δ, L, 0, 0, V )-model of f with

fδ(y) = f(zL(y)) +
L

2
‖zL(y)− y‖2

2 − δ

at the point y if we take V [y](x) = 1
2
‖x− y‖2

2.

Example 10. Clustering by Electorial Model, [65].

Another example of an optimization problem that allows for (δ, L, 0,m, V )-model with strong convex-
ity of the function ψδ(x, y) is proposed in [65] to address a non-convex optimization problem which
arises in an electoral model for clustering introduced in [57]. In this model, voters (data points) select
a party (cluster) iteratively by minimizing the following function

min
z∈Sn(1),p∈Rm+

{
fµ1,µ2(x = (z, p)) = g(x) + µ1

n∑
k=1

zk ln zk +
µ2

2
‖p‖2

2

}
.

DOI 10.20347/WIAS.PREPRINT.2709 Berlin 2020



Inexact model for optimization and variational inequalities 7

Let us choose ‖x‖2 = ‖z‖2
1 + ‖p‖2

2 and assume that, in general non-convex, g(x) has Lg–Lipschitz
continuous gradient

‖∇g(x)−∇g(y)‖∗ ≤ Lg ‖x− y‖ ∀x, y ∈ Sn(1)× Rm
+

and Lg ≤ µ1 and Lg ≤ µ2. It can be shown (see [65]) that

ψδ(x, y) = 〈∇g(y), x− y〉 − Lg ·KL(zx|zy)−
Lg
2
‖px − py‖2

2

+µ1(KL(zx|1)−KL(zy|1)) +
µ2

2

(
‖px‖2

2 − ‖py‖2
2

)
is a (0, 2Lg, 0,min{µ1, µ2}−Lg, V )-model of fµ1,µ2(x). Here KL(zx|zy) =

∑m
i=1[zx]i ln([zx]i/[zy]i)

and

V [y](x) = KL(zx|zy) +
1

2
‖px − py‖2

2.

We finish this section by defining an approximate solution to an optimization problem. This definition
will be used to allow inexact solutions of auxiliary minimization problems on each iteration of our
algorithms.

Definition 11. For a convex optimization problem minx∈Q Ψ(x), we denote by Arg minδ̃x∈Q Ψ(x) a
set of such x̃ that

∃h ∈ ∂Ψ(x̃): ∀x ∈ Q →〈h, x− x̃〉 ≥ −δ̃.

We denote by argminδ̃x∈Q Ψ(x) some element of Arg minδ̃x∈Q Ψ(x).

3 Gradient Method with Inexact Model.

In this section we consider adaptive gradient-type methods for problems with (δ, L, µ,m, V )-model
of the objective. First, we consider non accelerated gradient method and then an accelerated version.
We note that non-accelerated Algorithm 1 is suitable for the problems with relative smoothness and
relative strong convexity, also there is no accumulation of errors. Accelerated Algorithm 2 gives a better
estimate with errors close to zero, however, accumulation of errors is possible. We consider Algorithm
2 for the narrower class of problems with (δ, L, µ,m, V, ‖ · ‖)-models (see Definition 13) w.r.t norm
‖ · ‖. It means, that non-accelerated method (Algorithm 1) is suitable for a wider class of problems.

3.1 Adaptive Gradient Method with (δ, L, µ,m, V )-Model

In this section we consider adaptive gradient method for problem (1), which uses a (δ, L, µ,m, V )-
model of the objective. For the case when µ + m > 0 our method has linear convergence and for a
more general case µ = 0 and m = 0, we prove a sublinear convergence rate.

We assume that in each iteration k, the method has access to (δ, L̄k+1, µ,m, V )-model of f w.r.t
V [y](x) (see Definition 1). In general, constant L̄k+1 may vary from iteration to iteration and we only
assume that the (δ, L̄k+1, µ,m, V )-model exists. We do not use L̄k+1 in Algorithm 1 explicitly and,
moreover, our method is adaptive to this constant.

DOI 10.20347/WIAS.PREPRINT.2709 Berlin 2020



F. Stonyakin et al. 8

Algorithm 1 Adaptive gradient method with (δ, L, µ,m, V )-model

1: Input: x0 is the starting point, µ ≥ 0 and δ.
2: Set S0 := 0
3: for k ≥ 0 do
4: Find the smallest integer ik ≥ 0 such that

fδ(xk+1) ≤ fδ(xk) + ψδ(xk+1, xk) + Lk+1V [xk](xk+1) + δ, (6)

where Lk+1 = 2ik−1Lk for Lk > 2µ and Lk+1 = 2ikLk for Lk ≤ 2µ,
αk+1 := 1

Lk+1
, Sk+1 := Sk + αk+1.

φk+1(x) := ψδ(x, xk) + Lk+1V [xk](x), xk+1 := arg min
x∈Q

δ̃φk+1(x). (7)

5: end for

We consider the case of m-strong convexity of the function ψδ(x, y) and prove convergence rate
theorem for Algorithm 1, in particular, we prove a linear convergence for µ > 0 or m > 0.

For Lk > µ and all k ≥ 0, we denote

qk
def
=
Lk − µ
Lk +m

, Qk
j

def
=

k∏
i=j

qi.

We assume that Qk
j = 1 for j > k.

Theorem 12. Assume that ψδ(x, y) is a (δ, L, µ,m, V )-model according to Definition 1. Denote by
yN = argmink=1,...,N f(xk). Then, after N iterations of Algorithm 1 we have

f(yN)− f(x∗) ≤ min

{
(LN +m)QN

1 ,
1∑N

i=1
1

Li+m

}
V [x0](x∗) + δ̃ + 2δ, (8)

V [xN ](x∗) ≤ QN
1 V [x0](x∗) + (δ̃ + 2δ)

N∑
i=1

QN
i+1

Li +m
. (9)

To prove Theorem 12 we need the following lemma.

Lemma 1. Let ψ(x) be a m-strongly convex function, m ≥ 0, and

y = argmin
x∈Q

δ̃{ψ(x) + βV [z](x)},

where β ≥ 0. Then

ψ(x) + βV [z](x) ≥ ψ(y) + βV [z](y) + (β +m)V [y](x)− δ̃, ∀x ∈ Q.

Proof. By Definition 11:

∃g ∈ ∂ψ(y), 〈g + β∇yV [z](y), x− y〉 ≥ −δ̃, ∀x ∈ Q.
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Inexact model for optimization and variational inequalities 9

Then inequality

ψ(x)− ψ(y) ≥ 〈g, x− y〉+mV [y](x) ≥ 〈β∇yV [z](y), y − x〉 − δ̃ +mV [y](x)

and equality

〈∇yV [z](y), y − x〉 = 〈∇d(y)−∇d(z), y − x〉 = d(y)− d(z)− 〈∇d(z), y − z〉+
+d(x)− d(y)− 〈∇d(y), x− y〉 − d(x) + d(z) + 〈∇d(z), x− z〉 =

= V [z](y) + V [y](x)− V [z](x)

complete the proof.

Proof of Theorem 12. Since by Definition 1 with x = y, f(x)− δ 6 fδ(x) 6 f(x), and (6), we have
the following series of inequalities

f(xN) ≤ fδ(xN) + δ ≤ fδ(xN−1) + ψδ(xN , xN−1) + LNV [xN−1](xN) + 2δ.

Using Lemma 1 for (7) we have

f(xN) ≤ fδ(xN−1) + ψδ(x, xN−1) + LNV [xN−1](x)− (LN +m)V [xN ](x) + δ̃ + 2δ.

In view of the left inequality (4), we have

f(xN) ≤ f(x) + (LN − µ)V [xN−1](x)− (LN +m)V [xN ](x) + δ̃ + 2δ. (10)

Taking x = x∗ and using inequality f(x∗) ≤ f(xN), we obtain

(LN +m)V [xN ](x∗) ≤ (LN − µ)V [xN−1](x∗) + δ̃ + 2δ.

Thus, we have that

V [xN ](x∗) ≤ qNV [xN−1](x∗) +
δ̃ + 2δ

LN +m
≤ QN

1 V [x0](x∗) + (δ̃ + 2δ)
N∑
i=1

QN
i+1

Li +m
.

The last inequality proves (9). Now we rewrite (10) for x = x∗ as

V [xN ](x∗) ≤
1

LN +m
(f(x∗)− f(xN) + δ̃ + 2δ) + qNV [xN−1](x∗).

Recursively, we have

V [xN ](x∗) ≤
N∑
i=1

(
QN
i+1

Li +m
(f(x∗)− f(xi) + δ̃ + 2δ)

)
+QN

1 V [x0](x∗).

Using that V [xN ](x∗) ≥ 0 and the definition of yN , we get

QN
1 V [x0](x∗) ≥

N∑
i=1

(
QN
i+1

Li +m
(f(xi)− f(x∗)− δ̃ − 2δ)

)

≥ (f(yN)− f(x∗))
N∑
i=1

QN
i+1

Li +m
− (δ̃ + 2δ)

N∑
i=1

QN
i+1

Li +m
.
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Dividing by
∑N

i=1

QNi+1

Li+m
, we obtain

f(yN)− f(x∗) ≤
QN

1∑N
i=1

QNi+1

Li+m

V [x0](x∗) + δ̃ + 2δ.

Since
∑N

i=1

QNi+1

Li+m
≥ 1

LN+m
and QN

i ≥ QN
1 for all i ≥ 1, we get

f(yN)− f(x∗) ≤ min

{
(LN +m)QN

1 ,
1∑N

i=1
1

Li+m

}
V [x0](x∗) + δ̃ + 2δ.

This proves (8).

Remark 1. Let us assume that L0 ≤ L, and we know that L̄k+1 ≤ L for all k ≥ 0 (or in other
words, (δ, L, µ,m, V )-model exists for all k ≥ 0). This means that Lk ≤ 2L for all k ≥ 0
due to (δ, L, µ,m, V )–model definition and Lk selection rule. From this fact we can obtain that∑N

i=1
1

Li+m
≥ N

2L+m
and qk ≤ q

def
= 2L−µ

2L+m
. In view of the last two inequalities, we have

f(yN)− f(x∗) ≤ min

{
2L+m

N
, (2L+m)qN

}
V [x0](x∗) + δ̃ + 2δ,

V [xN ](x∗) ≤ qNV [x0](x∗) + (δ̃ + 2δ)
N∑
i=1

QN
i+1

Li +m
.

Remark 2. The advantage of Algorithm 1 is that there is no need to know the true values of the
parameters L and m. Using the standard argument [20] one can show that the number of oracle calls
is less than 2N + log2

2L
L0

, where N is the number of iterations of Algorithm 1.

3.2 Adaptive Fast Gradient Method with (δ, L, µ,m, V, ‖ · ‖)-model

In this section we consider accelerated method for problems with (δ, L, µ,m, V, ‖ · ‖)-model of the
objective (see Definition 13). The method is close to accelerated mirror-descent type of methods (see
[22, 41, 66]). In contrast to the previous section, in this section we make a stronger assumption on the
model, which is required to obtain acceleration of the gradient method. Namely, we use the square
of the norm in the r.h.s. of (4) instead of the function V , which gives the following modification of
Definition 1.

Definition 13. Let δ, L, µ,m ≥ 0. We say that ψδ(x, y) is a (δ, L, µ,m, V, ‖ · ‖)-model of the
function f at a given point y iff, for all x ∈ Q,

µV [y](x) 6 f(x)− (fδ(y) + ψδ(x, y)) 6
L

2
‖x− y‖2 + δ.

and ψδ(x, y) satisfies ψδ(x, x) = 0 for all x ∈ Q and

ψ(x) > ψ(z) + 〈∇zψ(z), x− z〉+mV [z](x) ∀x, z ∈ Q,

where for fixed y ∈ Q and any x ∈ Q we denote ψ(x) = ψδ(x, y).
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Inexact model for optimization and variational inequalities 11

As in the previous subsection we assume that there exists some constant L̄k+1 such that (δk, L̄k+1, µ,m, V, ‖·
‖)-model of f exists at k-th step (k = 0, .., N−1) of Algorithm 2. Unlike Algorithm 1, we assume that

the errors δ̃, δ can depend on the iteration counter k, which is indicated by input sequences {δ̃k}k≥0

and {δk}k≥0. For instance, this allows to obtain Universal Fast Gradient Method in which different
values of {δk}k≥0 are required (see [4, 53]).

Theorem 14. Assume that ψδ(x, y) is a (δ, L, µ,m, V, ‖ · ‖)-model according to Definition 13. Also
assume that V [y](x) satisfies (1-SC) condition w.r.t. ‖ · ‖-norm. Then, after N iterations of Algorithm
2 we have

f(xN)− f(x∗) ≤
V [u0](x∗)

AN
+

2
∑N−1

k=0 Ak+1δk
AN

+

∑N−1
k=0 δ̃k
AN

, (11)

V [uN ](x∗) ≤
V [u0](x∗)

(1 + ANµ+ ANm)
+

2
∑N−1

k=0 Ak+1δk
(1 + ANµ+ ANm)

+

∑N−1
k=0 δ̃k

(1 + ANµ+ ANm)
. (12)

Remark 3. Despite the adaptive structure of Algorithm 2 as in [53] it can be shown that in average
the algorithm up to logarithmic terms requires four computations of function and two computations of
(δ, L, µ,m, V, ‖ · ‖)-model per iteration.

Algorithm 2 Fast adaptive gradient method with (δ, L, µ,m, V, ‖ · ‖)-model

1: Input: x0 is the starting point, µ ≥ 0, m ≥ 0, {δ̃k}k≥0, {δk}k≥0 and L0 > 0.
2: Set y0 := x0, u0 := x0, α0 := 0, A0 := α0

3: for k ≥ 0 do
4: Find the smallest integer ik ≥ 0 such that

fδk(xk+1) ≤ fδk(yk+1) + ψδk(xk+1, yk+1) +
Lk+1

2
‖xk+1 − yk+1‖2 + δk, (13)

where Lk+1 = 2ik−1Lk, αk+1 is the largest root of

Ak+1(1 + Akµ+ Akm) = Lk+1α
2
k+1, Ak+1 := Ak + αk+1. (14)

yk+1 :=
αk+1uk + Akxk

Ak+1

. (15)

φk+1(x) = αk+1ψδk(x, yk+1) + (1 + Akµ+ Akm)V [uk](x) + αk+1µV [yk+1](x).

uk+1 := argmin
x∈Q

δ̃kφk+1(x). (16)

xk+1 :=
αk+1uk+1 + Akxk

Ak+1

. (17)

5: end for

In order to prove Theorem 14 we need the following lemma.

Lemma 2. Let ψ(x) be a m-strongly convex function, m ≥ 0, and

y = argmin
x∈Q

δ̃{ψ(x) + βV [z](x) + γV [u](x)},

where β ≥ 0 and γ ≥ 0. Then

ψ(x)+βV [z](x)+γV [u](x) ≥ ψ(y)+βV [z](y)+γV [u](y)+(β+γ+m)V [y](x)−δ̃, ∀x ∈ Q.
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We omit the proof of Lemma 2 since it is similar to the proof of Lemma 1.

Lemma 3. For all x ∈ Q, we have

Ak+1f(xk+1)− Akf(xk) + (1 + Ak+1µ+ Ak+1m)V [uk+1](x)− (1 + Akµ+ Akm)V [uk](x)

≤ αk+1f(x) + 2δkAk+1 + δ̃k.

Proof. Since by Definition 13 with x = y, f(x)− δ 6 fδ(x) 6 f(x), and (13), we have

f(xk+1) ≤ fδk(yk+1) + ψδk(xk+1, yk+1) +
Lk+1

2
‖xk+1 − yk+1‖2 + 2δk.

Using definitions (17) and (15) of sequences xk+1 and yk+1 we can show that

f(xk+1) ≤ fδk(yk+1) + ψδk

(
αk+1uk+1 + Akxk

Ak+1

, yk+1

)
+
Lk+1

2

∥∥∥∥αk+1uk+1 + Akxk
Ak+1

− yk+1

∥∥∥∥2

+ 2δk

= fδk(yk+1) + ψδk

(
αk+1uk+1 + Akxk

Ak+1

, yk+1

)
+
Lk+1α

2
k+1

2A2
k+1

‖uk+1 − uk‖2 + 2δk.

Since ψδk(·, y) is convex, we have

f(xk+1) ≤ Ak
Ak+1

(fδk(yk+1) + ψδk(xk, yk+1)) +
αk+1

Ak+1

(fδk(yk+1) + ψδk(uk+1, yk+1))

+
Lk+1α

2
k+1

2A2
k+1

‖uk+1 − uk‖2 + 2δk.

In view of definition (14) for the sequence αk+1, we obtain

f(xk+1) ≤ Ak
Ak+1

(fδk(yk+1) + ψδk(xk, yk+1)) +
αk+1

Ak+1

(
fδk(yk+1) + ψδk(uk+1, yk+1)

+
1 + Akµ+ Akm

2αk+1

‖uk+1 − uk‖2
)

+ 2δk.

Using (1-SC) condition w.r.t. norm for V and the left inequality in (4), we get

f(xk+1) ≤ Ak
Ak+1

fδk(xk) +
αk+1

Ak+1

(
fδk(yk+1) + ψδk(uk+1, yk+1)

+
1 + Akµ+ Akm

αk+1

V [uk](uk+1)
)

+ 2δk.

(18)

By Lemma 2 for the optimization problem in (16), it holds that

αk+1ψδk(uk+1, yk+1) + (1 + Akµ+ Akm)V [uk](uk+1) + αk+1µV [yk+1](uk+1)

+ (1 + Ak+1µ+ Ak+1m)V [uk+1](x)− δ̃k
≤ αk+1ψδk(x, yk+1) + (1 + Akµ+ Akm)V [uk](x) + αk+1µV [yk+1](x).

From the fact that V [yk+1](uk+1) ≥ 0, we have

αk+1ψδk(uk+1, yk+1) + (1 + Akµ+ Akm)V [uk](uk+1)

≤ αk+1ψδk(x, yk+1) + (1 + Akµ+ Akm)V [uk](x)

− (1 + Ak+1µ+ Ak+1m)V [uk+1](x) + αk+1µV [yk+1](x) + δ̃k.

(19)
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Combining (18) and (19), we obtain

f(xk+1) ≤ Ak
Ak+1

f(xk) +
αk+1

Ak+1

(
fδk(yk+1) + ψδk(x, yk+1) + µV [yk+1](x)

+
1 + Akµ+ Akm

αk+1

V [uk](x)− 1 + Ak+1µ+ Ak+1m

αk+1

V [uk+1](x) +
δ̃k
αk+1

)
+ 2δk.

We finish the proof of Lemma 3 applying left inequality in (4)

f(xk+1) ≤ Ak
Ak+1

f(xk) +
αk+1

Ak+1

f(x)

+
1 + Akµ+ Akm

Ak+1

V [uk](x)− 1 + Ak+1µ+ Ak+1m

Ak+1

V [uk+1](x) + 2δk +
δ̃k
Ak+1

.

Proof of Theorem 14. We telescope the inequality in Lemma 3 for k from 0 toN−1 and take x = x∗:

ANf(xN) ≤ ANf(x∗) + V [u0](x∗)− (1 + AN(µ+m))V [uN ](x∗) + 2
N−1∑
k=0

Ak+1δk +
N−1∑
k=0

δ̃k.

(20)

Since V [uk+1](x∗) ≥ 0 for all k ≥ 0, we have

ANf(xN)− ANf(x) ≤ V [u0](x∗) + 2
N−1∑
k=0

Ak+1δk +
N−1∑
k=0

δ̃k.

The last inequality proves (11). Inequality (12) is straightforward from (20) since f(x) ≥ f(x∗) for all
x ∈ Q.

Next lemma is proved in Appendix B and gives the growth rate for AN , see [14, 32, 52].

Lemma 4. For all N ≥ 0,

AN ≥ max

1

2

(
N−1∑
k=0

1√
Lk+1

)2

,
1

L1

N−1∏
k=1

(
1 +

√
µ+m

2Lk+1

)2
 .

Remark 4. Let us assume that function f has L-Lipschitz continuous gradient. This means that for
Lk ≥ L inequality (13) always holds, whence, Lk ≤ 2L, assuming that L0 ≤ L. From Lemma 4 we
have AN ≥ N2

4L
and

AN ≥
1

2L

(
1 +

1

2

√
µ+m

L

)2(N−1)

≥ 1

2L
exp

(
N − 1

2

√
µ+m

L

)
.

In the last inequality we used inequality log(1 + 2x) ≥ x for all x ∈ [0, 1
4
]. Combining Theorem 14

and Lemma 4 we have

f(xN)− f(x∗) ≤ min

{
4L

N2
, 2L exp

(
−N − 1

2

√
µ+m

L

)}
V [u0](x∗)

+
2
∑N−1

k=0 Ak+1δk
AN

+

∑N−1
k=0 δ̃k
AN

.

(21)
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The first term in the right hand side of ineqaulity (21) up to a constant factor is optimal for µ–strongly
convex functions with L-Lipschitz continuous gradient.

Note that in [14] for non-adaptive fast gradient method with (δ, L, µ)–oracle for the case when δk is a
constant it is shown that∑N−1

k=0 Ak+1δ

AN
≤ min

{(
1

3
k + 2.4

)
,

(
1 +

√
L

µ

)}
δ.

This means that for µ > 0 error δ does not accumulate.

Remark 5. In view of assumptions from Remark 4. For the case when µ = m = 0 Algorithm 2 can
guarantee the following convergence rate

f(xN)− f∗ ≤
4LV [x0](x∗)

N2
+ 2Nδ +

4Lδ̃

N
.

A similar result was shown in [31].

Remark 6. Let us analyze the convergence rate of the argument (12) from Theorem 14. There are
two different scenarios:

1 µ = m = 0. In this case we have:

V [uN ](x∗) ≤ V [u0](x∗) + 2
N−1∑
k=0

Ak+1δk +
N−1∑
k=0

δ̃k.

For non-strongly convex case we can only bound V [uN ](x∗) by V [u0](x∗) up to additive noise.

2 µ + m > 0. Using Lemma 4 we can see that Theorem 14 guarantees linear convergence in
argument up to additive noise.

Note that convergence rates for the objective and for the argument are obtained for different sequences
xN and uN , respectively.

3.3 Universal conditional gradient (Frank–Wolfe) method

Let us show an example of (δ, L, µ,m, V, ‖ · ‖)–model application. We use Algorithm 2 as a proxy
method for universal Frank–Wolfe method with µ = 0 and m = 0. In order to construct universal
Frank–Wolfe method let us introduce the following constraints to the optimization problem (1):

1 The set Q is bounded w.r.t V [y](x): ∃RQ ∈ R : V [y](x) ≤ R2
Q ∀x, y ∈ Q.

2 The function f(x) has Holder-continuous subgradients:

‖∇f(x)−∇f(y)‖∗ ≤ Lν ‖x− y‖ν ∀x, y ∈ Q.

From this we can get an inequality (see [53]):

0 ≤ f(x)− f(y)− 〈∇f(y), x− y〉 ≤ L(δ)

2
‖x− y‖2 + δ ∀x, y ∈ Q,

where

L(δ) = Lν

[
Lν
2δ

1− ν
1 + ν

] 1−ν
1+ν

and δ > 0 is a free parameter.
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Inexact model for optimization and variational inequalities 15

First, let us take δk = ε αk+1

4Ak+1
. With this choice of δk and the fact that the objective function has Holder

continues subgradient as in Theorem 3 from [53] we can get the following inequality for AN :

AN ≥
N

1+3ν
1+ν ε

1−ν
1+ν

2
3+5ν
1+ν L

2
1+ν
ν

. (22)

It it shown in [31] that in order to construct the classical Frank–Wolfe method instead of an auxiliary
problem φk+1(x) = αk+1ψδk(x, yk+1) + V [uk](x) in Algorithm 2 for m = 0 and µ = 0 (see also

section 3, [31]) we can take an auxiliary problem φ̃k+1(x) = αk+1ψδk(x, yk+1). Let us look at this

substitution from the view of δ̃k–precision from Definition 11. As in [31] we can show that an error
in sense of Definition 11 would not be greater than 2R2

Q. Therefore, we can take δ̃k = 2R2
Q. From

Theorem 14 we can get the following inequality:

f(xN)− f(x∗) ≤
R2
Q

AN
+
ε

2
+

2R2
QN

AN
≤

3R2
QN

AN
+
ε

2
.

Using inequality (22), we can finally get the following upper bound for the number of steps in order to
get ε-solution:

N ≤ inf
ν∈(0,1]

2
3+4ν
ν

(
LνR

1+ν
Q

ε

) 1
ν

 .
This inequality for ν = 1 has the same convergence rate as in the classical Frank–Wolfe method,
however, universal Frank–Wolfe method can work with any function that has Holder continuous sub-
gradients with constant ν > 0. Note that in the classical Frank–Wolfe method ψδk(x, yk+1) =
〈∇f(yk+1), x− yk+1〉. However, here we assume that ψδk(x, yk+1) can have a more general repre-
sentation (see Definition 13).

4 Inexact Model for Variational Inequalities

In this section, we go beyond minimization problems and propose an abstract inexact model counter-
part for variational inequalities. As a special case in Example 17 we introduce relative smoothness for
operators in the spirit of [45], where it was introduced for optimization problems. Further, we propose
a generalization of the Mirror-Prox algorithm for this general case of inexact model of the operator
and abstract variational inequalities.One of the main features of our algorithm is its adaptation to
generalized inexact parameter of smoothness. As a special case we propose a universal method for

variational inequalities with complexity O
(

infν∈[0,1]

(
1
ε

) 2
1+ν

)
, where ε is the desired accuracy of the

solution and ν is the Hölder exponent of the operator. According to the lower bounds in [62], this al-
gorithm is optimal for ν = 0 (bounded variation of the operator) and ν = 1 (Lipschitz continuity of the
operator). Based on the model for VI and functions, we introduce inexact model for saddle-point prob-
lems (see Definition 20). We are also motivated by mixed variational inequalities [5, 38] and composite
saddle-point problems [10].

Formally speaking, we consider the problem of finding the solution x∗ ∈ Q for VI in the following
abstract form

ψ(x, x∗) > 0 ∀x ∈ Q (23)
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for some convex compact set Q ⊂ Rn and some function ψ : Q × Q → R. Assuming the abstract
monotonicity of the function ψ

ψ(x, y) + ψ(y, x) 6 0 ∀x, y ∈ Q, (24)

any solution to (23) is a solution of the following inequality

max
x∈Q

ψ(x∗, x) 6 0 (25)

In the general case, we make an assumption about the existence of a solution x∗ of the problem (23).
As a particular case, if for some operator g : Q→ Rn we set ψ(x, y) = 〈g(y), x− y〉 ∀x, y ∈ Q,
then (23) and (25) are equivalent, respectively, to a standard strong and weak variational inequality
with the operator g.

We propose an adaptive proximal method for the problems (23) and (25). We start with a concept of
(δ, L, V )-model for such problems.

Definition 15. We say that function ψ has (δ, L, V )-model ψδ(x, y) for some fixed values δ > 0 and
L = L(δ) > 0 if the following properties hold for each x, y, z ∈ Q:

(i) ψ(x, y) ≤ ψδ(x, y) + δ;

(ii) ψδ(x, y) convex in the first variable;

(iii) ψδ(x, x) = 0;

(iv) (abstract δ-monotonicity)

ψδ(x, y) + ψδ(y, x) ≤ δ; (26)

(v) (generalized relative smoothness)

ψδ(x, y) 6 ψδ(x, z) + ψδ(z, y) + LV [z](x) + LV [y](z) + δ. (27)

Example 16. For some operator g : Q→ Rn and a convex function h : Q→ Rn choice

ψ(x, y) = 〈g(y), x− y〉+ h(x)− h(y)

leads to a mixed variational inequality from [5, 38]

〈g(y), y − x〉+ h(y)− h(x) 6 0,

which in the case of the monotonicity of the operator g implies

〈g(x), y − x〉+ h(y)− h(x) 6 0.

Remark 7. Similarly to Definition 1 above, in general case, we do not need the (1-SC) assumption for
V [y](x) in Definition 15. In some situations we make (1-SC) assumption for V [y](x) (see Example
18 and Section 5).
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Note that for δ = 0 the following analogue of (27) for some fixed a, b > 0

ψ(x, y) 6 ψ(x, z) + ψ(z, y) + a‖z − y‖2 + b‖x− z‖2 ∀x, y, z ∈ Q (28)

was introduced in [47]. Condition (28) is used in many works on equilibrium programming. Our ap-
proach allows us to work with non-Euclidean set-up without (1-SC) assumption and inexactness δ,
that is important for the ideology of universal methods [53] (see Example 18 below).

One can directly verify that if ψδ(x, y) is (δ/3, L, 0, 0, V )-model of the function f at a given point y
then ψδ(x, y) is (δ, L, V )-model in the sense of Definition 15.

Let us consider some examples.

Example 17. Relative smoothness for optimization and VI. Let us consider a minimization problem
(1) with the function f being convex and relatively L-smooth w.r.t. to d [45], i.e., for all x, y ∈ Q,

f(x)− f(y)− 〈∇f(y), x− y〉 ≤ LV [y](x).

In this case, (1) is equivalent to abstract VI (25) with ψδ(x, y) := 〈∇f(y), x − y〉. Properties (i)-(iv)
in Definition 15 obviously hold with δ = 0. Let us check that (v) also holds. Indeed,

ψδ(x, y)− ψδ(x, z)− ψδ(z, y) = 〈∇f(y), x− y〉 − 〈∇f(z), x− z〉 − 〈∇f(y), z − y〉
= (f(x)− f(z)− 〈∇f(z), x− z〉) + (f(z)− f(y)− 〈∇f(y), z − y〉)
− (f(x)− f(y)− 〈∇f(y), x− y〉) ≤ LV [z](x) + LV [y](z),

where we used relative L-smoothness and convexity of f . This example shows that our inexact model
for VI as a particular case contains the concept of relative smoothness introduced in optimization. In
this particular case we say that an operator g is relatively L-smooth if

〈g(y)− g(z), x− z〉 ≤ LV [z](x) + LV [y](z), ∀x, y, z ∈ Q.

Example 18. Variational Inequalities with monotone Hölder continuous operator. Assume that V
satisfies (1-SC) condition w.r.t. some norm ‖ · ‖ and for a monotone operator g there exists ν ∈ [0, 1]
such that

‖g(x)− g(y)‖∗ ≤ Lν ‖x− y‖ν , ∀x, y ∈ Q.

Then we have: 〈g(z)− g(y), z − x〉 ≤ ‖g(z)− g(y)‖∗‖z − x‖ ≤ Lν‖z − y‖ν‖z − x‖

≤ L(δ)

2
||z − x||2 +

L(δ)

2
||z − y||2 + δ ≤ LV [z](x) + LV [y](z) + δ (29)

for

L(δ) =

(
1

2δ

) 1−ν
1+ν

L
2

1+ν
ν (30)

with arbitrary δ > 0. In this case ψδ(x, y) := 〈g(y), x− y〉 is (δ, L, V )-model.

Note that for the previous two examples in Algorithm 3 and Theorem 19 we need V [z](x) to satisfy
(1-SC) condition.

Next, we introduce our novel adaptive method (Algorithm 3) for abstract variational inequalities with
inexact (δ, L, V )-model. This method adapts to the local values of L and allows us to construct
universal method for variational inequalities by applying it to VI with Hölder interpolation (29) for δ = ε

2

and L = L
(
ε
2

)
.
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Algorithm 3 Generalized Mirror Prox for VI

Require: accuracy ε > 0, oracle error δ > 0, initial guess L0 > 0, prox set-up: d(x), V [z](x).
1: Set k = 0, z0 = arg minu∈Q d(u).
2: repeat
3: Find the smallest integer ik ≥ 0 such that

ψδ(zk+1, zk) ≤ ψδ(zk+1, wk) + ψδ(wk, zk) + Lk+1(V [zk](wk) + V [wk](zk+1)) + δ, (31)

where Lk+1 = 2ik−1Lk and

wk = argmin
x∈Q

{ψδ(x, zk) + Lk+1V [zk](x)} . (32)

zk+1 = argmin
x∈Q

{ψδ(x,wk) + Lk+1V [zk](x)} . (33)

4: until SN :=
∑N−1

k=0
1

Lk+1
>

max
x∈Q

V [x0](x)

ε
.

Ensure: ŵN = 1∑N−1
k=0

1
Lk+1

∑N−1
k=0

1
Lk+1

wk.

Next we state convergence rate result for the proposed method.

Theorem 19. For Algorithm 3 the following inequality holds

− 1

SN

N−1∑
k=0

ψδ(x,wk)

Lk+1

≤ V [z0](x)

SN
+ δ + 2δ̃ ∀x ∈ Q.

It means that:

max
u∈Q

ψ(ŵN , u) ≤ 2Lmaxu∈Q V [z0](u)

N
+ 3δ + 2δ̃

Note that the Algorithm 3 works no more than⌈
2Lmaxu∈Q V [z0](u)

ε

⌉
(34)

iterations.

Proof. After (k + 1)-th iteration (k = 0, 1, 2 . . .) from (32) and (33) we have for each u ∈ Q:

ψδ(wk, zk) 6 ψδ(u, zk) + Lk+1V [zk](u)− Lk+1V [wk](u)− Lk+1V [zk](wk) + δ̃

and

ψδ(zk+1, wk) ≤ ψδ(u,wk) + Lk+1V [zk](u)− Lk+1V [zk+1](u)− Lk+1V [zk](zk+1) + δ̃.

The first inequality means that

ψδ(wk, zk) 6 ψδ(zk+1, zk) + Lk+1V [zk](zk+1)− Lk+1V [wk](zk+1)− Lk+1V [zk](wk) + δ̃.

Taking into account (31), we obtain for all u ∈ Q

−ψδ(u,wk) ≤ Lk+1V [zk](u)− Lk+1V [zk+1](u) + δ + 2δ̃.
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So, the following inequality holds:

−
N−1∑
k=0

ψδ(u,wk)

Lk+1

≤ V [z0](u)− V [zN ](u) + SN(δ + 2δ̃).

By virtue of (27) and the choice of L0 6 2L, it is guaranteed that Lk+1 6 2L ∀k = 0, N − 1 and
we have from Definition 15

max
u∈Q

ψ(ŵN , u) 6 max
u∈Q

ψδ(ŵN , u) + δ

6 − 1

SN

N−1∑
k=0

ψδ(u,wk)

Lk+1

+ 2δ 6
2Lmaxu∈Q V [z0](u)

N
+ 3δ + 2δ̃.

Remark 8. For universal method to obtain precision εwe can choose δ = ε
2

andL = L
(
ε
2

)
according

to (29) and (30) and the estimate (34) reduces to⌈
2 inf
ν∈[0,1]

(
2Lν
ε

) 2
1+ν

·max
u∈Q

V [z0](u)

⌉
. (35)

Note that estimate (35) is optimal for variational inequalities and saddle-point problems in the cases
ν = 0 and ν = 1.

Thus, the introduced concept of the (δ, L, V )-model for variational inequalities allows us to extend the
previously proposed universal method for VI to a wider class of problems, including mixed variational
inequalities [5, 38] and composite saddle-point problems [10].

Now we introduce inexact model for saddle-point problems. The solution of variational inequalities
reduces the so-called saddle points problems, in which for a convex in u and concave in v functional
f(u, v) : Rn1+n2 → R (u ∈ Q1 ⊂ Rn1 and v ∈ Q2 ⊂ Rn2) needs to be found the point (u∗, v∗)
such that:

f(u∗, v) 6 f(u∗, v∗) 6 f(u, v∗) (36)

for arbitrary u ∈ Q1 and v ∈ Q2. Let Q = Q1 × Q2 ⊂ Rn1+n2 . For x = (u, v) ∈ Q, we assume
that ||x|| =

√
||u||21 + ||v||22 (|| · ||1 and || · ||2 are the norms in the spaces Rn1 and Rn2). We agree

to denote x = (ux, vx), y = (uy, vy) ∈ Q.

It is well known that for a sufficiently smooth function f with respect to u and v the problem (36)
reduces to VI with an operator g(x) = (f ′u(ux, vx), −f ′v(ux, vx)).

For saddle-point problems we propose some adaptation of the concept of the (δ, L, V )-model for
abstract variational inequality.

Definition 20. We say that the function ψδ(x, y) (ψδ : Rn1+n2×Rn1×n2 → R) is a (δ, L, V )-model
for the saddle-point problem (36) if the conditions (ii) – (v) of Definition 15 hold and in addition

f(uy, vx)− f(ux, vy) 6 −ψδ(x, y) + δ ∀x, y ∈ Q.

Example 21. The proposed concept of the (δ, L, V )-model for saddle-point problems is quite appli-
cable, for example, for composite saddle point problems of the form considered in the popular article
[10]:

f(u, v) = f̃(u, v) + h(u)− ϕ(v)
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for some convex in u and concave in v subdifferentiable functions f̃ , as well as convex functions h
and ϕ. In this case, we can put

ψδ(x, y) = 〈g̃(y), x− y〉+ h(ux) + ϕ(vx)− h(uy)− ϕ(vy),

where

g̃(y) =

(
f̃ ′u(uy, vy)

−f̃ ′v(uy, vy)

)
.

Theorem 19 implies

Theorem 22. If for the saddle problem (36) there is a (δ, L, V )-model ψδ(x, y), then after stopping
the algorithm we get a point

ŷN = (uŷN , vŷN ) := (ûN , v̂N) :=
1

SN

N−1∑
k=0

yk
Lk+1

,

for which the following inequality is true:

max
v∈Q2

f(ûN , v)− min
u∈Q1

f(u, v̂N) 6
2Lmax(u,v)∈Q V [u0, v0](u, v)

N
+ 2δ̃ + 2δ.

5 Inexact Model for Strongly Monotone VI

In this section similarly with the concept of (δ, L, µ,m, V )-model in optimization we consider inexact
model for VI with a stronger version of monotonicity condition (26).

Definition 23. We say that functional ψ has (δ, L, µ, V )-model ψδ(x, y) at a given point y if the
following properties hold for each x, y, z ∈ Q:

(i) ψ(x, y) ≤ ψδ(x, y) + δ;

(ii) ψδ(x, y) convex in the first variable;

(iii) ψδ(x, y) continuous in x and y;

(iii) ψδ(x, x) = 0;

(iv) (µ-strong δ-monotonicity)

ψδ(x, y) + ψδ(y, x) + µ‖x− y‖2 ≤ δ; (37)

(v) (generalized relative smoothness)

ψδ(x, y) 6 ψδ(x, z) + ψδ(z, y) + LV [z](x) + LV [y](z) + δ

for some fixed values L > 0, δ > 0.

Remark 9. We note that we cannot replace ‖x − y‖2 on V [y](x) in (37) since it is essentially used
in the proof of Theorem 24.
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Now we propose method with linear rate of convergence for VI with (δ, L, µ, V )-model. We slightly
modify the assumptions on prox-function d(x). Namely, we assume that argminx∈Q d(x) = 0 and
that d is bounded on the unit ball in the chosen norm ‖ · ‖, that is

d(x) ≤ Ω

2
, ∀x ∈ Q : ‖x‖ ≤ 1, (38)

where Ω is some known constant. Note that for standard proximal setups Ω = O(ln dimE). Finally, we
assume that we are given a starting point x0 ∈ Q and a numberR0 > 0 such that ‖x0−x∗‖2 ≤ R2

0,
where x∗ is the solution to abstract VI. The procedure of restating of Algorithm 3 is applicable for
abstract strongly monotone variational inequalities.

Algorithm 4 Restarted Generalized Mirror Prox

Require: accuracy ε > 0, µ > 0, Ω s.t. d(x) ≤ Ω
2
∀x ∈ Q : ‖x‖ ≤ 1; x0, R0 s.t.‖x0−x∗‖2 ≤ R2

0.

1: Set p = 0, d0(x) = d
(
x−x0
R0

)
.

2: repeat
3: Set xp+1 as the output of Algorithm 3 after Np iterations of Algorithm 3 with prox-function dp(·)

and stopping criterion
∑Np−1

k=0
1

Lk+1
≥ Ω

µ
.

4: Set R2
p+1 = R2

0 · 2−(p+1).

5: Set dp+1(x)← d
(
x−xp+1

Rp+1

)
.

6: Set p = p+ 1.

7: until p > log2
R2

0

ε

Ensure: xp+1.

Theorem 24. Assume that ψδ is a (δ, L, µ, V )-model for ψ. Also assume that the prox function d(x)
satisfies (38) and the starting point x0 ∈ Q and a number R0 > 0 are such that ‖x0 − x∗‖2 ≤ R2

0,
where x∗ is the solution to (25). Then, for each p ≥ 0

‖xp − x∗‖2 ≤ R2
0 · 2−p +

δ

µ
+

2δ̃

µ
≤ ε+

δ

µ
+

2δ̃

µ
.

The total number of iterations of the inner Algorithm 3 does not exceed⌈
2LΩ

µ
· log2

R2
0

ε

⌉
, (39)

where Ω satisfies (38).

Proof. We show by induction that for p ≥ 0

‖xp − x∗‖2 ≤ R2
0 · 2−p +

δ

µ
+

2δ̃

µ
,

which leads to the statement of the Theorem. For p = 0 this inequality holds by the Theorem assump-
tion. Assuming that it holds for some p ≥ 0, our goal is to prove it for p + 1 considering the outer
iteration p + 1. Observe that the function dp(x) defined in Algorithm 4 is 1-strongly convex w.r.t. the
norm ‖ · ‖/Rp.
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This means that, at each step k of inner Algorithm 3, LNp changes to LNp · R2
p. Using the definition

of dp(·) and (38), we have, since xp = argminx∈Q dp(x)

Vp[xp](x∗) = dp(x∗)− dp(xp)− 〈∇dp(xp), x∗ − xp〉 ≤ dp(x∗) ≤
Ω

2
.

Denote by

SNp :=

Np−1∑
k=0

1

Lk+1

.

Thus, by Theorem 19, taking u = x∗, we obtain

− 1

SNp

Np−1∑
k=0

ψδ(x∗, wk)

Lk+1

≤
R2
pVp[xp](x∗)

SNp
+ δ + 2δ̃ ≤

ΩR2
p

2SNp
+ δ + 2δ̃.

Since the operator ψ is continuous and abstract monotone, we can assume that the solution to weak
VI (23) is also a strong solution and −ψ(wk, x∗) ≤ 0, k = 0, ..., Np − 1 and, by Definition 23 (i),
−ψδ(ωk, x∗) ≤ δ (k = 0, . . . , Np − 1). This and (37) gives, that for each k = 0, ..., Np − 1,

−ψδ(x∗, wk) ≥ −δ − ψδ(x∗, wk)− ψδ(wk, x∗) ≥ −δ + µ‖wk − x∗‖2,

−ψδ(x∗, ωk) ≥ −δ − ψδ(x∗, ωk)− ψδ(ωk, x∗) ≥ −δ + µ‖ωk − x∗‖2.

Thus, by convexity of the squared norm, we obtain

−2δ + µ‖xp+1 − x∗‖2 = −2δ + µ

∥∥∥∥∥ 1

SNp

Np−1∑
k=0

wk
Lk+1

− x∗

∥∥∥∥∥
2

≤ −2δ +
µ

SNp

Np−1∑
k=0

‖wk − x∗‖2

Lk+1

≤ −2δ − 1

SNp

Np−1∑
k=0

ψδ(x∗, wk)

Lk+1

≤
ΩR2

p

2SNp
− δ + 2δ̃.

Using the stopping criterion SNp ≥ Ω
µ

we have

‖xp+1 − x∗‖2 ≤
R2
p

2
+
δ + 2δ̃

µ
=

1

2
R2

0 · 2−p +
δ + 2δ̃

µ

= R2
0 · 2−(p+1) +

δ + 2δ̃

µ
,

which finishes proof by induction.

Remark 10. If for some m > 0 ψδ(x, y) is a m-strongly convex function in x then for Algorithm 4 we
can prove estimate

‖xp − x∗‖2 ≤ R2
0 · 2−p +

δ

m+ µ
+

2δ̃

m+ µ
≤ ε+

δ

m+ µ
+

2δ̃

m+ µ

for each p ≥ 0 and instead of (39) we obtain⌈
2LΩ

m+ µ
· log2

R2
0

ε

⌉
.
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6 Conclusion

In this paper, we consider convex optimization problem (1). It is well known (see [15, 21, 33]) that if
there is an inexact gradient∇δf(y) of f , s.t., for all x, y ∈ Q,

f(y) + 〈∇δf(y), x− y〉 − δ1 ≤ f(x) ≤ f(y) + 〈∇δf(y), x− y〉+
L

2
‖x− y‖2

2 + δ2, (40)

then the corresponding versions of Gradient Method (GM) and Fast Gradient Method (FGM) have
convergence rate

f(xN)− f(x∗) = O

(
LR2

Np
+ δ1 +Np−1δ2

)
, (41)

where p = 1 corresponds to GM and p = 2 corresponds to FGM, x∗ – is a solution of (1), R is an
upper bound for ‖x0 − x∗‖2. We show2 that under an appropriate generalization of (40) to

f(y) + ψδ(x, y)− δ1 ≤ f(x) ≤ f(y) + ψδ(x, y) +
L

2
‖x− y‖2

2 + δ2

as well as appropriate generalizations of GM and FGM, the sequence generated by these methods
satisfy (41). It should be noted that, despite there are many variants of FGM, we are aware of only one
which can be generalized for problems with inexact model, namely accelerated mirror descent type of
FGM [23, 41, 66]. An important feature of this method is that it requires only one projection step on
each iteration. A primal-dual extension of the proposed framework is made in [67].

We also show that in the case of µ-strongly convex objective (model) the estimate (41) can be im-
proved to

f(xN)− f(x∗) = O

(
∆f exp

(
−O(1)

(µ
L

) 1
p
N

)
+ δ1 +

(
L

µ

) p−1
2

δ2

)
,

where ∆f = f(x0)− f(x∗), p = 1 for GM and p = 2 for restarted FGM.

In this paper we also propose a generalization of this inexact model framework for saddle-point prob-
lems and variational inequalities. We consider universal (adaptive) generalizations in the spirit of [53]
and relative smoothness generalizations, generalizing the framework [6, 45] from optimization prob-
lems to saddle-point problems and VI. We also investigate the sensitivity of the convergence results
to the accuracy of auxiliary minimization on each iteration.

Due to the lack of the space we only briefly mention here an extension of our framework for block-
coordinate descent using the randomized version of FGM in [25] and stochastic optimization problems
using the ideas from [29]. For the latter case we indicate that if we additionally assume that δ1, δ2

are independently chosen at each iteration random variables such that Eδ1 = 0 and δ1,
√
δ2 have

correspondingly (δ′1)2-subgaussian variance and δ′2-subgaussian second moment [33] then with high
probability (41) changes to

f(xN)− f(x∗) = Õ

(
LR2

Np
+

δ′1√
N

+Np−1δ′2

)
.

From this result and mini-batch trick [29] one can obtain the main estimates for convex and strongly
convex stochastic optimization problems [19, 27, 33, 40].

As further generalizations we point a generalization for tensor methods [30, 55] and for incremental
and variance reduction methods for finite-sum minimization [13, 43].

2For simplicity in the paper we consider the case δ1 = δ2 = δ, but one can easily rewrite all the results of this paper to
obtain (41). See [33] for details.
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A Auxiliary facts

Let us commenton the inexact solution of the auxiliary problem.

Remark 11. We can show that if x̃ ∈ Arg minδ̃x∈Q Ψ(x), then Ψ(x̃)− Ψ(x∗) ≤ δ. Indeed, we have

Ψ(x∗) ≥ Ψ(x̃) + 〈h, x∗ − x̃〉 ≥ Ψ(x̃)− δ̃. The converse statement is not always true. However, for
some general cases we can resolve the problem (see [31] and Example 25).

Example 25. Let us show an example, how we can resolve the problem in Remark 11. Note, that if
Ψ(x) is µ-strongly convex; has L-Lipschitz continuous gradient in ‖ · ‖ norm (To say more precisely

L = max
‖h‖≤1,x∈[x̃,x∗]

〈h,∇2Ψ(x)h〉.

and R = maxx,y∈Q ‖x− y‖, then Ψ(x̃)−Ψ(x∗) ≤ ε̃ entails that [65]

δ̃ ≤ (LR + ‖∇Ψ(x∗)‖∗)
√

2ε̃/µ, (42)

where x∗ = argminx∈Q Ψ(x). If one can guarantee that ∇Ψ(x∗) = 0, then (42) can be improved

δ̃ ≤ R
√

2Lε̃.

B Proof for Lemma 4

Proof. In view of definition (14) of sequence αk+1, we have:

AN ≤ AN(1 + µAN−1 +mAN−1) = LN(AN − AN−1)2

≤ LN(A
1/2
N − A

1/2
N−1)2(A

1/2
N + A

1/2
N−1)2 ≤ 2LNAN(A

1/2
N − A

1/2
N−1)2.

We can see that

A
1/2
N ≥ A

1/2
N−1 +

1

2LN

and

AN ≥
1

2

(
N−1∑
k=0

1√
Lk+1

)2

.
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For the case when µ+m > 0 we obtain:

(µ+m)AN−1AN ≤ AN(1 + µAN−1 +mAN−1) ≤ 2LNAN(A
1/2
N − A

1/2
N−1)2.

From the fact that A1 = 1/L1 and the last inequality we can show that

A
1/2
N ≥

(
1 +

√
µ+m

2LN

)
A

1/2
N−1 ≥

1√
L1

N−1∏
k=1

(
1 +

√
µ+m

2Lk+1

)
.

C Fast gradient method with (δ, L, µ,m, V, ‖ · ‖)-model. Restart
technique.

Let us consider the case of a strongly convex functional f and show how to accelerate the work of the
Algorithm 1 using the restart technique. Let us assume that

ψδ(x, x∗) ≥ 0 ∀x ∈ Q.

Note that this assumption is natural, e.g. ψδ(x, y) := 〈∇f(y), x − y〉 ∀x, y ∈ Q. We also modify
the concept of µ-strong convexity in the following way

Definition 26. Say that the function f is a left relative µ-strongly convex if the following inequality

µV [x](y) ≤ f(x)− f(y)− ψδ(x, y) ∀x, y ∈ Q

holds.

Remark 12. Let us remind that if d(x−y) ≤ Cn ‖x− y‖2 forCn = O(log n), (where n is dimension
of vectors fromQ) then V [y](x) ≤ Cn ‖x− y‖2. This assumption is true for many standard proximal
setups. In this case the condition of (µCn)-strong convexity

µCn ‖x− y‖2 + fδ(y) + ψδ(x, y) 6 f(x)

entails right relative strong convexity:

µV [y](x) + fδ(y) + ψδ(x, y) 6 f(x).

Note that concepts of right and left relative strongly convexity from Definitions 1 and 26 are equivalent
in the case of an assumption from Remark 12 (V [x](y) ≤ Cn‖x− y‖2 for each x, y ∈ Q).

We show that using the restart technique can also accelerate the work of non-adaptive version of
Algorithm 1 (Lk+1 = L) for (δ, L, 0, 0, V, ‖ · ‖)-model and relative µ-strogly convex function f in
sense Definition 26:

µV [x](y) + f(y) + ψδ(x, y)− δ ≤ f(x) ≤ f(y) + ψδ(x, y) +
L

2
‖x− y‖2 + δ.

for each x, y ∈ Q. By Theorem 14 and Remark 5:

f(xN)− f(x∗) 6
4LV [x0](x∗)

N2
+

4Lδ̃

N
+ 2Nδ. (43)

Consider the case of relatively µ-strongly convex function f . We will use the restart technique to obtain
the method for strongly convex functions.
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Theorem 27. Let f be a left relative µ-strongly convex function and ψδ(x, y) is a

(δ, L, 0, 0, V, ‖ · ‖)-model. Let δ and δ̃ satisfy 4µ
√

10
L

(
5δ
⌈√

L
µ

⌉3

+ δ̃L
⌈√

L
µ

⌉)
6 ε. Then, using

the restarts of Algorithm 1, we need

N =

⌈
log2

µR2

ε

⌉
·

⌈√
10L

µ

⌉
.

iterations to achieve ε accuracy by function: f(xN)− f(x∗) 6 ε.

Proof. By (43) and Definition 26:

µV [xN1 ](x∗) ≤ f(xN1)− f(x∗) ≤
4LV [x0](x∗)

N2
+

4Lδ̃

N
+ 2Nδ. (44)

Let’s choose N1 so that the following inequality holds:

4Lδ̃

N1

+ 2N1δ ≤
LV [x0](x∗)

N2
1

. (45)

We restart method as V [xN1 ](x∗) ≤
V [x0](x∗)

2
. Using (44), we obtain an estimation for the number of

iterations on the first restart:
5L

µN2
1

≤ 1

2
. Therefore, let’s choose

N1 =

⌈√
10L

µ

⌉
. (46)

Then afterN1 iterations we restart method. Similarly, we restart afterN2 iterations, such that V [xN2 ](x∗) ≤
V [xN1

](x∗)

2
. We obtain N2 =

⌈√
10L
µ

⌉
. So, after p-th restart the total number of iterations is M =

p ·
⌈√

10L
µ

⌉
.

Now let’s consider how many iterations is needed to achieve accuracy ε = f(xNp) − f(x∗). From

(43) and (46) we take p =

⌈
log2

µR2

ε

⌉
and the total number of iterations is M =

⌈
log2

µR2

ε

⌉
·⌈√

10L

µ

⌉
.

We have chosen our errors as δ and δ̃ to satisfy (45). Indeed, from (45) using Nk =

⌈√
10L

µ

⌉
we

can deduce the following inequality:

ε ≥ 4
√

10µ

L

5δ

⌈√
L

µ

⌉3

+ δ̃L

⌈√
L

µ

⌉ .

One can see that such a choice of δ and δ̃ as above satisfies that inequality.

Remark 13. Partially, we can choose δ = O

(
εL

µ
⌈√

10L
µ

⌉3
)

and δ̃ = O

(
ε

µ
⌈√

10L
µ

⌉
)

.
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