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Runge–Kutta methods for rough differential equations
Martin Redmann, Sebastian Riedel

ABSTRACT. We study Runge-Kutta methods for rough differential equations which can be used to
calculate solutions to stochastic differential equations driven by processes that are rougher than a
Brownian motion. We use a Taylor series representation (B-series) for both the numerical scheme and
the solution of the rough differential equation in order to determine conditions that guarantee the desired
order of the local error for the underlying Runge-Kutta method. Subsequently, we prove the order of the
global error given the local rate. In addition, we simplify the numerical approximation by introducing a
Runge-Kutta scheme that is based on the increments of the driver of the rough differential equation.
This simplified method can be easily implemented and is computational cheap since it is derivative-
free. We provide a full characterization of this implementable Runge-Kutta method meaning that we
provide necessary and sufficient algebraic conditions for an optimal order of convergence in case that
the driver, e.g., is a fractional Brownian motion with Hurst index 1/4 < H ≤ 1/2. We conclude this
paper by conducting numerical experiments verifying the theoretical rate of convergence.

INTRODUCTION

Ordinary differential equations (ODEs) have many real life applications. They, e.g., describe chemi-
cal, physiological and ecological processes or they appear as spatially discretized partial differential
equations like the heat equation. Often analytic solutions to ODEs do not exist which requires nu-
merical approximations in order to solve these equations. An important class of such schemes are
Runge-Kutta methods [But87, HNW10, HW10] which can be of arbitrary order of convergence. These
are often preferred in practice since they are derivative-free in contrast to Taylor methods. Computing
derivatives of the right hand side function f0 of an ODE can either be very costly or closed form ex-
pressions might not be available.
However, in many applications uncertainties need to be taken into account. Therefore, for a more ac-
curate modeling in such cases, a noise term can be added to an ODE leading to stochastic differential
equations (SDEs). Runge-Kutta schemes for SDEs driven by a Brownian motion have already been
established, see, e.g., [BB00, DK09, KP99, MT04, Röß10].

Lyons’ rough paths theory provides an alternative way to SDEs which goes far beyond the scope of
usual Itō equations. In this paper, we are interested in studying numerical schemes to solve rough
differential equations (RDEs) of the form

dy(t) = f0(y(t)) dt+ f(y(t)) dX(t), y(t0) = y0 ∈ Rm,(0.1)

where X is a suitable rough path above some α-Hölder path X = (X1, . . . , Xd) : [0, T ] → Rd,
f = (f1, . . . , fd) and fi : Rm → Rm are vector fields for every i = 0, . . . , d. Such equations
represent SDEs driven by stochastic processes that are potentially rougher than a Brownian motion if
X is a random rough path, i.e. a stochastic process with sample paths lying in a rough paths space.
One benefit of rough paths theory compared to Itō’s theory is that one is not restricted to the martingale
framework. In fact, there is a large class of stochastic processes which have “natural extensions” to
rough paths valued processes, cf. [FV10b]. For instance, many Gaussian processes possess such a
“natural lift” including the fractional Brownian motion with Hurst parameter H > 1/4, but even more
general processes like the bifractional Brownian motion, Volterra processes or processes which can
be represented by random Fourier series, cf. [FGGR16] for a discussion.

In the context of rough paths theory, numerical schemes are indispensable when simulating the solu-
tion to an RDE driven by a random rough path or when discretizing rough stochastic partial differential
equations [BBR+18]. In fact, numerical schemes played a fundamental role in rough paths theory
from the very beginning. This is probably most visible in the work of Davie [Dav07], where the Milstein
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scheme is used to solve rough differential equations theoretically. This approach was generalized to
higher order Taylor-type schemes by Friz and Victoir [FV10b]. However, in a stochastic context, these
schemes are of little use in practice since they contain iterated stochastic integrals whose distribution
is unknown in general. To overcome this difficulty, Deya, Neuenkirch and Tindel introduced so-called
simplified schemes in [DNT12] in which the iterated stochastic integrals are replaced by products of
increments of the driving process. These schemes were successfully used in different contexts, cf.
e.g. [BFRS16, BBR+18]. However, as Taylor methods, these numerical approximations suffer from
the need to calculate or simulate derivatives of the vector fields fk. As mentioned above, even if the
derivatives are available, this can be very expensive especially in a large scale setting (e.g. spatially
discretized rough partial differential equation). Moreover, the simplified scheme is difficult to imple-
ment in general. Therefore, we see the need of studying Runge-Kutta methods for rough differential
equations that can easily be implemented and are derivative-free.

Our approach to establish Runge-Kutta methods is classical, both in the deterministic and the sto-
chastic context: First, we define a class of equations which can be expanded in a B-series. Second,
we have to find a B-series representation of the equation (0.1). Comparing both series, we can, in
principle, deduce the order conditions of the Runge-Kutta method by matching their coefficients. A
B-series representation of an ODE contains combinations of products and derivatives of the defin-
ing vector field which can be described in the language of trees. For SDEs, integrated products of
iterated stochastic integrals have to be considered in addition which can be described in the same
language. We call such objects tree-iterated (stochastic) integrals in the sequel. A rough path in the
sense of Lyons [Lyo98, LQ02, LCL07] is a collection of objects which “mimic” the iterated integrals
of the underlying path. Lyons’ theory is able to solve differential equations driven by geometric rough
paths, i.e. those which obey the usual chain rule. Gubinelli realized in [Gub10] that one can even solve
rough differential equations driven by non-geometric rough paths if one additionally assumes that all
tree-iterated integrals are known. He calls such objects branched rough paths. Thinking of B-series
representations of SDEs, this is a very natural approach to solve equations of the form (0.1). For us,
it is therefore reasonable to use his theory and to interpret the equation (0.1) as a rough differential
equation driven by a branched rough path. Doing this, we are able to deduce the B-series expansion
of (0.1) in Theorem 2.10. Comparing bothB-series and matching their coefficients up to a given order
for an arbitrary multidimensional driving process X and its tree-iterated integrals can be very hard,
cf. [BB00, Section 4] for a 2-dimensional example. However, we already pointed out that in practice,
one is not able to simulate the tree-iterated integrals anyway. We therefore make the same ansatz as
in [DNT12] and replace the tree-iterated integrals by products of increments. This simplifies the task
of matching the coefficients a lot, and one is able to deduce the order conditions, in principle, up to
any order, cf. Theorem 3.3 and the subsequent remark. We call such schemes simplified Runge-Kutta
methods. As in [DNT12], the Wong-Zakai error plays a fundamental role in their convergence analysis.
Loosely speaking, our main result is the following:

Theorem. Let X be an α-Hölder rough path (branched or geometric) and assume that f0 and f
are sufficiently smooth and bounded with bounded derivatives. If the Wong-Zakai error to approx-
imate (0.1) is of order r0, a simplified Runge-Kutta method (3.5) of order p converges with rate
min{(p+ 1)α− 1, r0}.

As an application, we can study the scheme when the driving process is a fractional Brownian motion
with Hurst parameter H ∈ (1/4, 1/2]. In this case, the Wong-Zakai error is arbitrarily close to 2H −
1/2, cf. [FR14]. We therefore obtain:

Corollary. For a fractional Brownian motion with Hurst parameter H ∈ (1/4, 1/2], a simplified
Runge-Kutta scheme of order 3 converges with rate arbitrarily close to 2H − 1/2.
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We already pointed out that numerical schemes studied in the context of rough paths theory are mostly
of Taylor-type. To our knowledge, the only exception is the article by Hong, Huang and Wang [HHW18]
where a class of symplectic Runge-Kutta methods is considered to solve Hamiltonian equations driven
by Gaussian processes. Our article differs from [HHW18] in several regards. On the technical level,
no B-series are used in [HHW18], the authors have to prove all necessary estimates “by hand” in
the framework of geometric rough paths. Consequently, they do not provide general order conditions.
For instance, no explicit Runge-Kutta methods are deduced in [HHW18]. Moreover, their approach is
probably hard to generalize to schemes of arbitrary order, whereas our approach does not have any
limitations in this regard.

The article is structured as follows. In Section 1, we define the equations which can be expanded to
obtain the desired B-series. Section 2 explains the concept of branched rough paths, deduces the
B-series representation for equation (0.1) and discusses the local error of full Runge-Kutta methods.
Simplified Runge-Kutta methods are defined in Section 3, where the necessary order conditions are
derived to obtain the local error of the numerical scheme. In Section 4, we deduce the global error for
our methods. The article closes with numerical experiments presented in Section 5.

Let us finally mention that in the whole article, we will discard the drift in (0.1) and consider equations
of the form

dy(t) = f(y(t)) dX(t), y(t0) = y0,(0.2)

only which simplifies the exposition a lot. Furthermore, this is not a real limitation if we assume that
the first component of X is just the path t 7→ t.

NOTATION AND BASIC DEFINITIONS

General notation. Let I be an interval in R and V be a linear space. We call a functionX : I → V a
path and Xs,t := X(t)−X(s) an increment. For a general two-parameter function X : I × I → V ,
we will often write Xs,t instead of X(s, t). If | · | is a norm on V and X : I × I → V , we set

‖X‖α := ‖X‖α;I := sup
s,t∈I
s 6=t

|Xs,t|
|t− s|α

for α ∈ (0, 1] and call it the α-Hölder (semi-)norm of X . For x ∈ R, we use the notation bxc :=
max{k ∈ Z : k ≤ x}. Let γ > 0 and γ = [γ] + {γ} where [γ] is an integer and {γ} ∈ (0, 1].
We will say that a vector field f : Rm → Rm belongs to the class Lipγ if f is [γ]-times continuously
differentiable and the [γ]-th derivative is locally {γ}-Hölder continuous. f is of class Lipγb if, in addition,
f and all its derivatives are bounded and if the [γ]-th derivative is globally {γ}-Hölder continuous.
More generally, a collection of vector fields f = (f1, . . . , fd) is of class Lipγ resp. Lipγb if every fi,
i = 1, . . . , d, is of class Lipγ resp. Lipγb .

Trees and the Connes-Kreimer Hopf algebra. Let T be the set of all rooted, labeled trees with
vertex decorations from the set {1, . . . , d}. We will use a recursive definition to construct trees. The
empty tree will be denoted by 1. We use the convention that 1 /∈ T and set T 0 := T ∪ {1}. If
τ1, . . . τm ∈ T 0, [τ1 · · · τm]a denotes the tree obtained by attaching all trees τ1, . . . τm to a new
vertex which we label by a ∈ {1, . . . , d}. We use the notation •a = [1]a for the single vertex tree with
label a. The order of the branches of the tree does not matter, i.e. [τσ(1) · · · τσ(m)]a = [τ1 · · · τm]a
holds for every permutation σ. If τ ∈ T 0 is a tree, |τ | denotes the number of vertices. The set TN
consists of all trees τ ∈ T such that |τ | ≤ N and we set T 0

N := TN ∪ {1}. We let

F := {τ1 · · · τm : τi ∈ T , m ∈ N}
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denote the set of unordered forests and define F0 := F ∪ {1}. The map | · | is extended to F0 by
setting

|τ1 · · · τm| := |τ1|+ . . .+ |τm|.
As before, FN contains all h ∈ F with |h| ≤ N and F0

N := FN ∪ {1}.
We define (H, ·) to be the commutative polynomial algebra generated by the variables T . Alter-
natively, we can view H as the real vector space spanned by the elements in F0. A coproduct
∆: H → H⊗H is defined recursively by setting ∆1 := 1⊗1 and

∆[τ1 · · · τm]a := [τ1 · · · τm]a⊗1 + (id⊗Ba
+)(∆τ1 · · ·∆τm)

for a tree [τ1 · · · τm]a where Ba
+ is the operator defined by Ba

+(τ1 · · · τn) := [τ1 · · · τn]a on the
forest τ1 · · · τn. We then extend the definition to forests by setting ∆(τ1 · · · τm) := ∆τ1 · · ·∆τm and
eventually define ∆ onH by linear extension. We will use Sweedler’s notation

∆h =
∑
(h)

h(1) ⊗ h(2).

One can also construct an antipode S : H → H, i.e. a map which satisfies

M(id⊗S)∆x = M(S⊗ id)∆x = x

for every x ∈ H where M(x⊗y) := xy. Then, (H, ·,∆, S) is called the Connes-Kreimer Hopf
algebra [CK98], cf. also [HK15, Chapter 2]. The dual Hopf algebra will be denoted by (H∗, ?, δ, S∗).

For a general account on Hopf algebras, cf. [Swe69] or [Abe80]. The Connes-Kreimer Hopf algebra is
also discussed in [Man06].

1. THE FULL RUNGE-KUTTA METHOD

In this section, we will define s-stage Runge-Kutta methods. We follow the approach developed by
Burrage and Burrage in [BB00]. Let Z(1), . . . , Z(d) be given s× s-matrices and z(1), . . . , z(d) vectors
in Rs. For given yn ∈ Rm, consider the equations

Yi = yn +
d∑

k=1

s∑
j=1

Z
(k)
ij fk(Yj)

yn+1 = yn +
d∑

k=1

s∑
i=1

z
(k)
i fk(Yi).

(1.1)

In applications, Z and z can (and will) be random. Moreover, both values will depend on the step
size h > 0 of the numerical scheme (1.1). Note that the first equation can be implicit in which case
the existence of a solution is not guaranteed. In fact, this question will depend on the properties of
the vector fields fi. For instance, it can be shown that solutions exist in case that all vector fields
are bounded, cf. [HHW18, Proposition 4.1]. However, we will not address this question here and just
assume that solutions exist.

Set Φ(1)(h) := 1s := (1, · · · , 1)T ∈ Rs for i = 1, . . . , d and for a tree τ = [τ1 · · · τn]i,

Φ(τ)(h) := Πn
j=1(Z(i)Φ(τj)(h)), a(τ)(h) := 〈z(i),Πn

k=1Φ(τk)(h)〉.
Notice that above, the product of two vectors has to be understood component-wise.

Definition 1.1. Let f = (f1, . . . , fd) be sufficiently smooth such that all derivatives below exist. For
a tree τ ∈ T 0, we define the elementary differentials F (τ) : Rm → Rm recursively by setting

(i) F (1)(y) := y,
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(ii) F (•i)(y) := fi(y) and

(iii) F (τ)(y) := f
(n)
i (y)(F (τ1)(y), . . . , F (τn)(y)) for a tree τ = [τ1 · · · τn]i where f (n)

i denotes
the n-th total derivative of fi

for y ∈ Rm.

Next,we define some combinatoric quantities. For unlabeled trees, we set

γ(1) = 0, γ(•) = 1, γ([τ1, . . . , τk]) = |[τ1, . . . , τk]|
k∏
i=1

γ(τi),

and

β(1) = 1, β(•) = 1, β(τ) :=

( |τ | − 1

|τ1|, . . . , |τk|

)
1

r1! · · · rq!
k∏
j=1

β(τj)

where τ = [τ1, . . . , τk] = [(τ1)r1 , . . . , (τq)
rq ], τ1, . . . , τq being pairwise distinct trees. For labeled

trees, we use the same definition. The main result in [BB00] we are going to use is the following:

Theorem 1.2. The Taylor series expansion of (1.1) is

y1 = y0 +
∑
τ∈T

γ(τ)

|τ |! β(τ)a(τ)(h)F (τ)(y0).(1.2)

Proof. [BB00, Theorem 2.5]. �

The coefficients in (1.2) are sometimes noted in a different form which we recall now. Following
[Gub10], we define the symmetry factor σ for unlabeled trees as

σ(1) = 1, σ(•) = 1, σ(τ) = r1! · · · rq!
k∏
j=1

σ(τj)

where τ = [τ1, . . . , τk] = [(τ1)r1 , . . . , (τq)
rq ] with τ1, . . . , τq being pairwise distinct trees. For la-

beled trees, the same definition is used.

Lemma 1.3. For every tree τ ∈ T 0,

1

σ(τ)
=
γ(τ)

|τ |! β(τ).

Proof. We prove this lemma by induction on the height of τ for unlabeled trees. The equality is true
for τ = 1 and τ = •. Let us assume that the claim is true for each sub-tree of τ = [τ1, . . . , τk] =
[(τ1)r1 , . . . , (τq)

rq ]. Then, we have

β(τ) =
(|τ | − 1)!

|τ1|! · · · |τk|!
1

r1! · · · rq!
k∏
j=1

β(τj)

=
(|τ | − 1)!

|τ1|! · · · |τk|!
1

r1! · · · rq!
k∏
j=1

|τj|!
γ(τj)

1

σ(τj)

=
(|τ | − 1)!

r1! · · · rq!
|τ |
γ(τ)

k∏
j=1

1

σ(τj)

=
|τ |!
γ(τ)

1

σ(τ)
.
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�

2. BRANCHED ROUGH PATHS AND B-SERIES EXPANSION FOR ROUGH DIFFERENTIAL EQUATIONS

In this section, we recall the concept of a branched rough paths introduced by Gubinelli in [Gub10].
We use a similar approach and notation as Hairer and Kelly in [HK15]. Our main goal is to deduce
the B-series expansion of (0.2) which we will eventually achieve in Theorem 2.10. Note that Hairer
and Kelly state a similar result in [HK15, Proposition 3.8]. However, we can not use their result for two
reasons: First, it is not quantitative, i.e. the order of the truncation error is not specified. Second, it
is not entirely correct since the expansion in [HK15, Proposition 3.8] lacks the symmetry factor. The
proof of [HK15, Proposition 3.8] was corrected in the Master thesis of Rosa Preiß, and we are grateful
to her for providing us with the corrected version.

Definition 2.1. Let α ∈ (0, 1]. A α-branched rough path is a map X : [0, T ] × [0, T ] → H∗ such
that

1 for all s, t ∈ [0, T ] and all h1, h2 ∈ H,

〈Xs,t, h1〉〈Xs,t, h2〉 = 〈Xs,t, h1 · h2〉
2 for all s, u, t ∈ [0, T ],

Xs,t = Xs,u ?Xu,t

3 for every τ ∈ T ,

sup
s 6=t

|〈Xs,t, τ〉|
|t− s|α|τ | <∞.

The space of α-branched rough paths will be denoted by C α([0, T ],Rd). It is a complete metric space
with metric

%α(X,Y) :=
∑
τ∈TN

sup
s6=t

|〈Xs,t −Ys,t, τ〉|
|t− s|α|τ |

where N = b1/αc.
Example 2.2. Let X = (X1, . . . , Xd) : [0, T ] → Rd be a piece-wise C1-path. We define X by
setting

〈Xs,t, •i〉 = X i(t)−X i(s) and 〈Xs,t, [τ1 · · · τn]i〉 =

∫ t

s

〈Xs,u, τ1〉 · · · 〈Xs,u, τn〉 dX i(u)

for any tree τ = [τ1 · · · τn]i ∈ T and

〈Xs,t, τ1 · · · τn〉 = 〈Xs,t, τ1〉 · · · 〈Xs,t, τn〉
for any forest τ1 · · · τn. We can now extend X linearly to a map on H and therefore obtain a map
X : [0, T ] × [0, T ] → H∗. It can be shown that this map defines a α-branched rough path for every
α ∈ (0, 1]. If X is α-Hölder continuous for some α ∈ (1/2, 1], we can use the Young integral to
define X as above. In this case, it can be shown that X defines a α′-branched rough path for every
α′ ∈ (0, α]. In this case, X is called the natural lift of the (smooth) path X to a branched rough path.

Next, we define a class of paths which we can integrate against a branched rough path.

Definition 2.3. Let X be a α-branched rough path and N = b1/αc. A path Z : [0, T ] → HN−1

satisfying

〈h,Z(t)〉 = 〈Xs,t ? h,Z(s)〉+Rh
s,t(2.1)
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for each h ∈ F0
N−1 where |Rh

s,t| ≤ C|t − s|(N−|h|)α is called controlled by X. We will also say
that Z is a controlled path above the path t 7→ Z(t) := 〈1,Z(t)〉. More generally, we call a path
Z : [0, T ] → (HN−1)m controlled by X if (2.1) holds, understood as an equation in Rm. The space
of controlled paths Z : [0, T ] → (HN−1)m will be denoted by QX(Rm) which is a Banach space
with the norm

‖Z‖QX(Rm) := |Z(0)|+
∑

h∈F0
N−1

‖Rh‖(N−|h|)α.

The following lemma is given as an exercise in [HK15]. We provide a full proof here for the reader’s
convenience.

Lemma 2.4. Let X be a α-branched rough path and Z be controlled by X. Set

Z̃s,t :=
∑

h∈F0
N−1

〈h,Z(s)〉〈Xs,t, [h]i〉.

Then,

Z̃s,t − Z̃s,u − Z̃u,t = −
∑

h∈F0
N−1

〈Xu,t, [h]i〉Rh
s,u.

Proof. Let h̃ ∈ F0
N−1. Then,

〈Xs,t ? h̃,Z(s)〉 =
∑

h∈F0
N−1

〈Xs,t ? h̃, h〉〈h,Z(s)〉

=
∑

h∈F0
N−1

〈Xs,t ⊗ h̃,∆h〉〈h,Z(s)〉

=
∑

h∈F0
N−1

∑
(h)

〈Xs,t ⊗ h̃, h(1)⊗h(2)〉〈h,Z(s)〉

=
∑

h∈F0
N−1

∑
(h)

1{h(2)=h̃}〈Xs,t, h
(1)〉〈h,Z(s)〉.

For h ∈ F0
N−1,

〈Xs,t, [h]i〉 = 〈Xs,u ?Xu,t, [h]i〉
= 〈Xs,u ⊗Xu,t,∆[h]i〉
= 〈Xs,u ⊗Xu,t, [h]i ⊗ 1〉+ 〈Xs,u ⊗Xu,t, (id⊗Bi

+)∆h〉
= 〈Xs,u, [h]i〉+

∑
(h)

〈Xs,u, h
(1)〉〈Xu,t, [h

(2)]i〉.
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It follows that

Z̃s,t − Z̃s,u − Z̃u,t =
∑

h∈F0
N−1

〈h,Z(s)〉 (〈Xs,t, [h]i〉 − 〈Xs,u, [h]i〉)− 〈h,Z(u)〉〈Xu,t, [h]i〉

=
∑

h∈F0
N−1

∑
(h)

〈h,Z(s)〉〈Xs,u, h
(1)〉〈Xu,t, [h

(2)]i〉 − 〈h,Z(u)〉〈Xu,t, [h]i〉

=
∑

h∈F0
N−1

∑
(h)

∑
h̃∈F0

N−1

1{h(2)=h̃}〈h,Z(s)〉〈Xs,u, h
(1)〉〈Xu,t, [h̃]i〉 − 〈h,Z(u)〉〈Xu,t, [h]i〉

=
∑

h̃∈F0
N−1

∑
h∈F0

N−1

∑
(h)

1{h(2)=h̃}〈h,Z(s)〉〈Xs,u, h
(1)〉〈Xu,t, [h̃]i〉 − 〈h̃,Z(u)〉〈Xu,t, [h̃]i〉

=
∑

h̃∈F0
N−1

〈Xu,t, [h̃]i〉
(
〈Xs,u ? h̃,Z(s)〉 − 〈h̃,Z(u)〉

)
= −

∑
h̃∈F0

N−1

〈Xu,t, [h̃]i〉Rh̃
s,u.

�

Theorem 2.5 (Gubinelli). Let T > 0, X be a α-branched rough path and Z be controlled by X. Then,∫ t

s

Z(r) dXi(r) := lim
|P|→0

∑
[u,v]∈P

Z̃u,v

exists for every i ∈ {1, . . . , d} and [s, t] ⊆ [0, T ] where

Z̃u,v :=
∑

h∈F0
N−1

〈h,Z(u)〉〈Xu,v, [h]i〉

and P denotes a partition of [s, t] with mesh size |P|. Moreover,there exists a constant C depending
only on α and T such that∣∣∣∣∫ t

s

Z(r) dXi(r)− Z̃s,t
∣∣∣∣ ≤ C|t− s|(N+1)α

∑
h∈F0

N−1

‖〈X·,·, [h]i〉‖(|h|+1)α;[s,t]‖Rh‖(N−|h|)α;[s,t].

Proof. This is a consequence of the sewing lemma [FH14, Lemma 4.2] and Lemma 2.4. �

The above theorem defines a map which sends a controlled path Z to a path t 7→
∫ t

0
Z(r) dXi(r) ∈

Rm. In fact, this map can be naturally extended to a mapZ 7→
∫ ·

0
Z(r) dXi(r) where t 7→

∫ t
0
Z(r) dXi(r)

is a controlled path above t 7→
∫ t

0
Z(r) dXi(r). To do this, we have to specify 〈h,

∫ t
0
Z(r) dXi(r)〉

for every dual element h ∈ F∗N−1 ∪ {1}. We set

〈1,
∫ t

0

Z(r) dXi(r)〉 :=

∫ t

0

Z(r) dXi(r)

and

〈[τ1 · · · τn]i,

∫ t

0

Z(r) dXi(r)〉 := 〈τ1 · · · τn,Z(t)〉.

In all other cases, we define

〈τ1 · · · τn,
∫ t

0

Z(r) dXi(r)〉 := 0.
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More generally, if Z = (Z1, . . . ,Zd) and every Zi is controlled by X, we define a controlled path
t 7→

∫ t
0
Z(r) · dX(r) by setting

〈1,
∫ t

0

Z(r) · dX(r)〉 :=
d∑
i=1

〈1,
∫ t

0

Zi(r) dXi(r)〉,

〈[τ1 · · · τn]i,

∫ t

0

Z(r) · dX(r)〉 := 〈τ1 · · · τn,Zi(t)〉

for a tree [τ1 · · · τn]i ∈ TN−1, i ∈ {1, . . . , d} and

〈τ1 · · · τn,
∫ t

0

Z(r) · dX(r)〉 := 0

otherwise.

Theorem 2.6. The map

I : QX(Rm)d → QX(Rm)

Z 7→
∫ ·

0

Z(r) · dX(r)

is well-defined and continuous.

Proof. [Gub10, Theorem 8.5]. �

The next lemma shows that controlled paths composed with sufficiently smooth functions are again
controlled.

Lemma 2.7. Let φ : Rm → Rm be sufficiently smooth such that all derivatives below exist. For
Z ∈ QX(Rm), we define 〈1, φ(Z(t))〉 := φ(Z(t)) and

〈h, φ(Z(t))〉 :=
N−1∑
n=1

∑
h1···hn=h

1

n!
φ(n)(Z(t)) (〈h1,Z(t)〉, . . . , 〈hn,Z(t)〉)

for h ∈ F∗N−1. Then, φ(Z) ∈ QX(Rm).

Proof. [Gub10, Lemma 8.4]. �

We are now able to say what a solution to (0.2) actually means.

Definition 2.8. A path y : [0, T ] → Rm is a solution to (0.2) if y(t0) = y0 and if there exists a
controlled path Y ∈ QX(Rm) above y such that

Y(t)−Y(s) =

∫ t

s

f(Y(r)) · dX(r)(2.2)

holds for every s ≤ t, s, t ∈ [t0, T ], where we set f(Y(r)) := (f1(Y(r)), . . . fd(Y(r))).

Proving that (2.2) admits a (unique) solution is done by a standard fixed-point argument [Gub10,
Theorem 8.8]. If f is of class Lipγ−1 for some γ > 1

α
, a local solution to (2.2) exists. If Lipγ−1

b ,
the solution exists on every time interval. For f being of class Lipγ resp. Lipγb , the local resp. global
solution is unique. Moreover, in the second case, the solution map is continuous.

Recall the definition of the elementary differential F (τ) for τ ∈ T 0 given in Definition 1.1.
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Lemma 2.9. Let Y : [0, T ] → HN−1 with y(t) = 〈1,Y(t)〉 be a solution to (2.2). Then, the coeffi-
cients of Y are given by

〈τ,Y(t)〉 =
1

σ(τ)
F (τ)(y(t))

for τ ∈ T ∗N−1 ∪ {1} and 〈τ1 · · · τn,Y(t)〉 = 0 for τ1 · · · τn ∈ F∗N−1 \ T ∗N−1.

Proof. Being a solution to (2.2) means that

y(t)− y(s) = 〈1,
∫ t

s

f(Y(r)) · dX(r)〉

and

〈[τ1 · · · τn]i,Y(t)〉 = 〈[τ1 · · · τn]i,

∫ t

0

f(Y(r)) · dX(r)〉(2.3)

for all [τ1 · · · τn]i ∈ T ∗N−1, i ∈ {1, . . . , d}, and

〈τ1 · · · τn,Y(t)〉 = 0

for all τ1 · · · τn ∈ F∗N−1 \ T ∗N−1. We prove the assertion for all trees τ ∈ T ∗N−1 by induction on the
height of τ . For τ = 1, the claim follows by definition. Now let τ = [τ1 · · · τn]i = [(τ1)r1 · · · (τq)rq ]i ∈
T ∗N−1 for some i ∈ {1, . . . , d} and pairwise distinct trees τ1, . . . , τq. From (2.3), we have

〈τ,Y(t)〉 = 〈[τ1 · · · τn]i,

∫ t

0

f(Y(r)) · dX(r)〉

= 〈τ1 · · · τn, fi(Y(t))〉

=
∑

λ1,··· ,λn∈T ∗N−2
λ1···λn=τ1···τn

1

n!
f

(n)
i (y(t)) (〈λ1,Y(t)〉, . . . , 〈λn,Y(t)〉)

=
1

r1! · · · rq!
1

n!

∑
σ∈sym(n)

f
(n)
i (y(t))

(
〈τσ(1),Y(t)〉, . . . , 〈τσ(n),Y(t)〉

)
=

1

r1! · · · rq!
f

(n)
i (y(t)) (〈τ1,Y(t)〉, . . . , 〈τn,Y(t)〉)

=
1

r1! · · · rq!
1

σ(τ1) · · ·σ(τn)
f

(n)
i (y(t)) (F (τ1)(y(t)), . . . , F (τn)(y(t)))

=
1

σ(τ)
F (τ)(y(t))

by induction hypothesis.

�

Theorem 2.10. Let h > 0. Then, (0.2) has the expansion

y(t0 + h) = y0 +
∑
τ∈Tp

1

σ(τ)
F (τ)(y0)〈Xt0,t0+h, τ〉+O(h(p+1)α)

for every p ≥ b1/αc.

Proof. Let s < t. Note that

y(t)− y(s) =
d∑
i=1

∫ t

s

fi(y(r)) dXi(r).
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For i ∈ {1, . . . , d}, set

Z̃i
s,t :=

∑
h∈F0

p−1

〈h, fi(Y(s))〉〈Xs,t, [h]i〉 =
∑

h∈F0
p−1

1

σ([h]i)
F ([h]i)(y(s))〈Xs,t, [h]i〉

where we use Lemma 2.9 for the equality. We therefore obtain

y(t)− y(s) =
d∑
i=1

Z̃i
s,t +Rs,t =

∑
τ∈Tp

1

σ(τ)
F (τ)(y(s))〈Xs,t, τ〉+Rs,t

where

Rs,t =
d∑
i=1

∫ t

s

fi(y(r)) dXi(r)− Z̃i
s,t.

Using Lemma 2.4 and the sewing Lemma [FH14, Lemma 4.2], we conclude that Rs,t is of order
O((t− s)(p+1)α).

�

We introduce the local error by le(t0, y0;h) := y(t0 + h)− y1 which is the error of one step with the
iterative scheme (1.1) starting in the exact value y0. Comparing Theorems 1.2 and 2.10 and exploiting
Lemma 1.3, we see that the local error is

|le(t0, y0;h)| = O(h(p+1)α)(2.4)

for sufficiently small h > 0 if and only if

〈Xt0,t0+h, τ〉 = a(τ)(h) ∀τ ∈ T with |τ | ≤ p.(2.5)

3. SIMPLIFIED RUNGE KUTTA METHODS

In the following, X denotes an α-branched rough path for some α ∈ (0, 1]. Assume that there is a
smooth path Xh such that its natural lift Xh to a branched rough path, cf. Example 2.2, approximates
X, i.e., %α(Xh,X) → 0 for h → 0. This implies that X is a geometric rough path [HK15, Section
4] and that %gα(Xh,X)→ 0 where %gα denotes the inhomogeneous rough paths metric for geometric
rough paths [FV10b]. We introduce the equation associated to the smooth driver by

dyh(t) = f(yh(t)) dXh(t), yh(t0) = y0.(3.1)

This equation can be solved by consideringX as a branched rough path or a geometric rough path, the
solution is the same in both cases. It also coincides with the solution to the corresponding Riemann-
Stieltjes equation which is well-defined since Xh is smooth by assumption. Since the solution to (0.2)
is a locally Lipschitz continuous function of X, cf. [FV10b] in the case of geometric rough paths or
[Gub10, Theorem 8.8] for branched rough paths, i.e.,

sup
t∈[t0,T ]

|y(t)− yh(t)| . %gα(Xh,X),(3.2)

we find that yh is close to y for sufficiently small h. In this section, we restrict ourselves to branched
rough paths X that are the limit of a lifted piece-wise linear approximationXh ofX . This, e.g., includes
semi-martingales, fractional Brownian motions with Hurst indexH > 1

4
and other Gaussian processes

[FV10b]. This piece-wise linear approximation to X on some grid t0 < t1 < . . . < tN = T is
constructed as follows:

Xh(t) = X(tk) +
t− tk
hk

[X(tk+1)−X(tk)] , t ∈ (tk, tk+1],(3.3)

DOI 10.20347/WIAS.PREPRINT.2708 Berlin 2020



M. Redmann, S. Riedel 12

where hk = tk+1−tk and k = 0, 1, . . . , N−1. We assume that this piece-wise linear approximation
converges with rate r0 > 0, meaning that

%gα(Xh,X) = O(hr0)

for sufficiently small h, where h = maxk=0,...,N−1 |tk+1 − tk|.
Example 3.1. In [FR14], the almost sure convergence rate of Xh to X is calculated for the natural lift
X (in the sense of [FV10a]) of a large class of Gaussian processes X in the metric %gα. In particular,
for the lift of a fractional Brownian motion with Hurst parameter H ∈ (1/4, 1, 2], one can show that
the rate r0 is arbitrarily close to 2H − 1/2 provided one chooses α sufficiently small.

Below, we analyze the order of the local error of some simplified Runge-Kutta scheme if the underlying
driver is Xh, considered as α-branched rough path. This scheme is obtained by setting

Z
(k)
ij = aijX

k
tn,tn+1

and z
(k)
i = biX

k
tn,tn+1

(3.4)

in (1.1), where Xk
tn,tn+1

denotes the increment of the kth component of X on [tn, tn+1]. Method (1.1)
then becomes

Y h
i = yhn +

d∑
k=1

s∑
j=1

aijfk(Y
h
j )Xk

tn,tn+1
= yhn +

s∑
j=1

aijf(Y h
j )Xtn,tn+1

yhn+1 = yhn +
d∑

k=1

s∑
i=1

bifk(Y
h
i )Xk

tn,tn+1
= yhn +

s∑
i=1

bif(Y h
i )Xtn,tn+1 ,

(3.5)

where A = (aij) is a deterministic matrix and b = (bi) a deterministic vector. This Runge-Kutta
method based on the increments of X was considered in [HHW18] in the context of implicit schemes
for equations driven by a certain class of Gaussian processes. We aim to find general conditions on
the coefficients b and A that guarantee the desired order of the local error when approximating (3.1).
We begin with a result characterizing the branched rough path if the underlying path is given by (3.3).

Proposition 3.2. Let τ ∈ T be a tree of order p, i.e, |τ | = p. Then, for the branched rough path
associated to the piece-wise linear approximation in (3.3), we have

〈Xh
tk,tk+1

, τ〉 =
1

γ(τ)
X i1
tk,tk+1

X i2
tk,tk+1

. . . X
ip
tk,tk+1

where the i` ∈ {1, 2, . . . , d} are the labels of the tree τ and X i
tk,tk+1

is the increment of the ith
component of X on [tk, tk+1].

Proof. We prove by induction on the height of τ that

〈Xh
tk,t
, τ〉 =

1

γ(τ)

(
t− tk
hk

)p
X i1
tk,tk+1

X i2
tk,tk+1

. . . X
ip
tk,tk+1

(3.6)

for t ∈ (tk, tk+1]. Setting t = tk+1 then yields the claim. The identity is true for τ = 1 and τ = •i1 .
Let us assume that (3.6) is true for all sub-trees of τ = [τ1, . . . , τn]ip . Then, according to Example
2.2, we have

〈Xh
tk,t
, τ〉 =

∫ t

tk

〈Xh
tk,u

, τ1〉 · · · 〈Xh
tk,u

, τn〉 dXh,ip(u) =

∫ t

tk

〈Xh
tk,u

, τ1〉 · · · 〈Xh
tk,u

, τn〉
X
ip
tk,tk+1

hk
du

=

∫ t

tk

1

γ(τ1)

(
u− tk
hk

)p1
X ĩ1
tk,tk+1

· · ·X ĩp1
tk,tk+1

· · · 1

γ(τn)

(
u− tk
hk

)pn
X ī1
tk,tk+1

· · ·X īpn
tk,tk+1

X
ip
tk,tk+1

hk
du,
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where pi := |τi| (i = 1, . . . , n). Since
∑n

i=1 pi = p− 1 and Πn
i=1

1
γ(τi)

= p
γ(τ)

, we obtain

〈Xh
tk,t
, τ〉 =

∫ t

tk

p

γ(τ)

(
u− tk
hk

)p−1
1

hk
X i1
tk,tk+1

· · ·X ip
tk,tk+1

du =
1

γ(τ)

(
t− tk
hk

)p
X i1
tk,tk+1

· · ·X ip
tk,tk+1

which concludes the proof of this proposition. �

The local error of the simplified Runge-Kutta scheme applied to (3.1) is defined as leh(t0, y0;h) :=
yh(t0 +h)−yh1 . We can now rewrite (2.4) and (2.5) using Proposition 3.2. Moreover, within the series
representation given in Theorem 1.2, a(τ)(h) is replaced by ah(τ)(h) if the simplifying ansatz (3.4)
is used. Now, the order of the local error of (3.5) is

|leh(t0, y0;h)| = O(h(p+1)α)(3.7)

for sufficiently small h > 0 if and only if

1

γ(τ)
X i1
t0,t0+hX

i2
t0,t0+h . . . X

i|τ |
t0,t0+h = ah(τ)(h) ∀τ ∈ T with |τ | ≤ p,(3.8)

where α is the Hölder regularity of X . Based on (3.8), we aim to find proper choices of A and b in
(3.5) that provide the desired local rate in (3.7). In order to simplify the notation in the result below, we
introduce ci :=

∑s
j=1 aij . We now formulated conditions for the order of the local error associated to

the simplified Runge-Kutta scheme.

Theorem 3.3. The simplified Runge-Kutta method (3.5) approximating (3.1) has a local error of order
(p+ 1)α, i.e.,

|leh(t0, y0;h)| = O(h(p+1)α)

if and only if the following conditions are satisfied for all ` = 1, . . . , p:

`

1
s∑
i=1

bi = 1

2
s∑
i=1

bici = 1
2

3
s∑
i=1

bic
2
i = 1

3
,

s∑
i=1

s∑
j=1

biaijcj = 1
6

TABLE 1. Algebraic conditions for the local error of the simplified Runge-Kutta method.

Proof. Let i1, i2, i3 ∈ {1, . . . , d}. We start analyzing (3.8) for all trees of order one, i.e., τ = •i1 .
Using the definition of ah(τ)(h), i.e., we plug in (3.4) in the definition of a(τ)(h), we obtain

ah(•i1)(h) := 〈z(i1),Φ(1)(h)〉 =
s∑
i=1

z
(i1)
i =

s∑
i=1

biX
i1
t0,t0+h.

Inserting this into (3.8), we find

1

γ(•i1)
X i1
t0,t0+h =

s∑
i=1

biX
i1
t0,t0+h
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which is equivalent to
∑s

i=1 bi = 1. We continue with the trees of order two. These are of the form
τ = [•i2 ]i1 . Again, we determine ah(τ)(h) which is

ah(τ)(h) := 〈z(i1),Φ(•i2)(h)〉 = 〈z(i1), Z(i2)Φ(1)(h)〉 = 〈b,A1s〉X i1
t0,t0+hX

i2
t0,t0+h,

using the representations in (3.4). With this expression for ah(τ)(h), (3.8) becomes

1

2
X i1
t0,t0+hX

i2
t0,t0+h = 〈b,A1s〉X i1

t0,t0+hX
i2
t0,t0+h

exploiting that γ(τ) = 2. This is equivalent to
∑s

i=1 bici = 1
2
. We conclude this proof by considering

the order three trees. We start with trees of the form τ = [[•i3 ]i2 ]i1 . Then, ah(τ)(h) is

ah(τ)(h) = 〈z(i1),Φ([•i3 ]i2)(h)〉 = 〈z(i1), Z(i2)Φ(•i3)(h)〉 = 〈z(i1), Z(i2)Z(i3)1s〉
= 〈b,A(A1s)〉X i1

t0,t0+hX
i2
t0,t0+hX

i3
t0,t0+h.

Moreover, we see that γ(τ) = 6. Using the above, (3.8) for τ = [[•i3 ]i2 ]i1 is equivalent to

1

6
= 〈b,A(A1s)〉 =

s∑
i=1

s∑
j=1

biaijcj.

Now, the only type of tree left is the branched tree τ = [•i2 , •i3 ]i1 . The corresponding ah(τ)(h) is

ah(τ)(h) = 〈z(i1),Φ(•i2)(h)Φ(•i3)(h)〉 = 〈z(i1), Z(i2)1sZ
(i3)1s〉

= 〈b, (A1s)(A1s)〉X i1
t0,t0+hX

i2
t0,t0+hX

i3
t0,t0+h.

Notice that the product of two vectors is meant component-wise. For this tree, (3.8) therefore is equiv-
alent to

1

3
=

1

γ(τ)
= 〈b, (A1s)(A1s)〉 =

s∑
i=1

bic
2
i

which finally proves the claim. �

Remark 3.4. In fact, we can easily find algebraic conditions for any ` > 3 in Table 1 by considering
trees τ ∈ T with |τ | > 3 in (3.8). This means that we can achieve a local rate of (p + 1)α for the
simplified Runge-Kutta method for arbitrary p ∈ N.

The conditions given in Table 1 are nothing but the consistency conditions known for the case of
f ≡ 0 in (0.1), see, e.g., [HLW06]. The consistency order is the order in the step size h of the
expression le(t0,x0;h)

h
. If all conditions in Table 1 are fulfilled, then one has a scheme of consistency

order 3 assuming f ≡ 0 in (0.1). Such 3rd order schemes are well-studied in the ordinary differential
equation scenario. Below, we provide just a few examples that satisfy these conditions.

Example 3.5. We introduce the general Butcher-scheme:

BS :=

c1 a11 a12 . . . as1
c2 a21 a22 . . . a2s
...

...
...

. . .
...

cs as1 as2 · · · ass
b1 b2 · · · bs

.

(i) An explicit Runge-Kutta scheme satisfying all conditions in Table 1 is Heun’s third-order method:

BS =

0 0 0 0
1/3 1/3 0 0
2/3 0 2/3 0

1/4 0 3/4

.
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Hence, the iterative scheme (3.5) is

yhn+1 = yhn +
1

4
[f(yhn) + 3f(Y h

3 )]Xtn,tn+1

where Y h
3 is given by

Y h
3 = yhn +

2

3
f(Y h

2 )Xtn,tn+1 with Y h
2 = yhn +

1

3
f(yhn)Xtn,tn+1 .

(ii) Another explicit method fulfilling the conditions in Table 1 is Kutta’s third order scheme:

BS =

0 0 0 0
1/2 1/2 0 0
1 −1 2 0

1/6 2/3 1/6

.

Consequently, the simplified Runge-Kutta method is

yhn+1 = yhn +
1

6
[f(yhn) + 4f(Y h

2 ) + f(Y h
3 )]Xtn,tn+1 ,

where Y h
2 and Y h

3 are computed by

Y h
2 = yhn +

1

2
f(yhn)Xtn,tn+1 and Y h

3 = yhn + [−f(yhn) + 2f(Y h
2 )]Xtn,tn+1 .

Notice that there is much more schemes satisfying the above conditions, e.g., [HHW18, Corollary
5.1] provide two implicit Runge-Kutta methods (for stochastic differential equations driven by a certain
class of Gaussian processes) that satisfy the requirements in Table 1.

4. GLOBAL RATES

4.1. Global rate of the full Runge-Kutta scheme. Let ys,y0t denote the solution to (0.2) at time t
starting in y0 at s, i.e., ys,y0s = y0. Let a numerical scheme be given as the following one step method:

yn+1 = yn + Φ(yn,Xtn,tn+1),

where t0 < t1 < . . . < tN = T is a partition of [t0, T ]. Below, we analyze the order of convergence
of the numerical method (1.1). The next proposition shows that we loose one order from the local to
the global error.

Proposition 4.1. If there is a constant C1 > 0 such that

|ys,y0t − y0 − Φ(y0,Xs,t)| ≤ C1|t− s|1+r(4.1)

for |t− s| being sufficiently small and if

|ys,y0t − ys,ỹ0t | ≤ C2|y0 − ỹ0|(4.2)

for some constant C2 > 0, where y0, ỹ0 ∈ Rm and 0 ≤ s ≤ t ≤ T . Then, there is some C > 0
such that

max
k=0,...,N

|y(tk)− yk| ≤ Chr

for r > 0, where h = maxk=0,...,N−1 |tk+1 − tk|.

Proof. We write the global error as follows

yk − y(tk) =
k−1∑
j=0

(
y
tj+1,yj+1

tk
− ytj ,yjtk

)
(4.3)
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using that yt0,y0tk
= y(tk) and ytk,yktk

= yk. We combine

y
tj ,yj
tk

= y
tj+1,y

tj ,yj
tj+1

tk
and yj+1 = yj + Φ(yj,Xtj ,tj+1

)

with (4.3) which yields

|y(tk)− yk| =
k−1∑
j=0

|ytj+1,yj+Φ(yj ,Xtj ,tj+1 )

tk
− y

tj+1,y
tj ,yj
tj+1

tk
| ≤ C2

k−1∑
j=0

|yj + Φ(yj,Xtj ,tj+1
)− ytj ,yjtj+1

|

≤ C1C2

k−1∑
j=0

|tj+1 − tj|r+1 ≤ C1C2h
r

k−1∑
j=0

(tj+1 − tj) ≤ C1C2(T − t0)hr

exploiting assumptions (4.1) and (4.2). This concludes the proof of this proposition. �

4.2. Global rate of the simplified Runge-Kutta scheme. In this section, we study a particular case
of X being an α-Hölder geometric rough path, 0 < α ≤ 1, that can be approximated by the lift
of its piece-wise linear approximated underlying path X . For such driver, the simplified Runge-Kutta
method (3.5) converges. Its order is shown in the following theorem.

Theorem 4.2. Let X be an α-Hölder geometric rough path in (0.2), 0 < α ≤ 1, and let its piece-wise
linear approximationXh be given by (3.3). We assume that the Wong-Zakai approximation converges
with rate r0 > 0, meaning that

sup
t∈[t0,T ]

|y(t)− yh(t)| = O(hr0)(4.4)

for sufficiently small h, where h = maxk=0,...,N−1 |tk+1−tk| is the maximal step size of the underlying
grid, y and yh are the solutions to (0.2) and (3.1), respectively. If all conditions in Table 1 are satisfied
and the right hand side f is of class Lipγb for some γ > 1

α
, then the simplified Runge-Kutta method

(3.5 converges with rate η = min{r0, 4α− 1} to the solution of (0.2), i.e., there is a constant C > 0
such that

max
k=0,...,N

|y(tk)− yhk | ≤ Chη

for sufficiently small h.

Proof. It holds that

|y(tk)− yhk | ≤ sup
t∈[t0,T ]

|y(t)− yh(t)|+ max
k=0,...,N

|yh(tk)− yhk |.

Theorem 3.3 gives us a rate of 4α for the local error of simplified Runge-Kutta method. Proposition
4.1 now provides that

max
k=0,...,N

|yh(tk)− yhk | = O(h4α−1)

if assumption (4.2) holds true. Let yh,s,y0t denote the solution to (3.1) with initial time s and initial state
y0. Since X is α Hölder and since Xh is convergent and hence bounded in h, there is a constant
K > 0 independent of h such that

|yh,s,y0t − yh,s,ỹ0t | ≤ K eK|t−s|
α |y0 − ỹ0|,

cf. [FV10b]. This implies (4.2) and concludes the proof. �

Remark 4.3. (i) From (3.2), a sufficient condition for (4.4) is that %gα′(X
h,X) = O(hr0) for some

0 < α′ ≤ α in which case one has to assume f ∈ Lipγb for some γ > 1
α′

.
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(ii) Theorem 4.2 is formulated for any roughness parameter α > 0. For a fractional Brownian
motion with Hurst parameter H ∈ (1/4, 1), it gives an optimal rate of convergence in the case
when H ∈ (1/4, 1/2]. Indeed, from [FR14], we know that r0 can be chosen arbitrarily close to
2H − 1/2. Since 2H − 1/2 < 4H − 1, the convergence rate of the simplified Runge-Kutta
scheme is arbitrarily close to 2H − 1/2. This rate is the same as for the simplified Milstein
scheme introduced in [DNT12], cf. [FR14], which is believed to be optimal due to the results
obtained in [NTU10].

5. NUMERICAL EXPERIMENTS

We illustrate the rate of convergence of a scheme presented in Example 3.5. In particular, we apply
Heun’s method to (0.2) with f1(y) = cos(y), f2(y) = sin(y) and y(t) ∈ R. Then, we have

dy(t) = cos(y(t)) dX1(t) + sin(y(t)) dX2(t), y(0) = 1, t ∈ [0, T ].(5.1)

We assume that X is a path of a two-dimensional fractional Brownian motion with independent com-
ponents and Hurst index H = 0.4. Moreover, X denotes its geometric lift and T = 0.25. This
example was considered by Deya, Neuenkirch and Tindel in [DNT12] in the context of rates of conver-
gence for a Milstein scheme. We use equidistant grid points, i.e., h = T

N
. We determine the maximal

discretization error

E(h) := max
k=0,...,N

|y(tk)− yhk |

for different h, where yhk is the kth iterate of the simplified scheme in (3.5) with coefficients defined
in Example 3.5 (i). There is no explicit representation for the solution to (5.1). Therefore, we create a
reference solution based on the numerical method for a very small step size. In Figure 1, the red circles
show E(h) in dependence of h for three paths X of a fractional Brownian motion. The theoretical rate
of convergence for the Heun method is 2H − 0.5 = 0.3. The slopes of the regression lines in blue
confirm this rate up to an acceptable deviation. This deviation can be explained by the fluctuations that
can be expected due to the underlying small rate of convergence.
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FIGURE 1. Maximum discretization error of Heun method applied to (5.1) for three
paths of fractional Brownian motion with H = 0.4.
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