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Nonparametric change point detection in regression
Valeriy Avanesov

Abstract

This paper considers the prominent problem of change-point detection in regression. The
study suggests a novel testing procedure featuring a fully data-driven calibration scheme. The
method is essentially a black box, requiring no tuning from the practitioner. The approach is in-
vestigated from both theoretical and practical points of view. The theoretical study demonstrates
proper control of first-type error rate under H0 and power approaching 1 under H1. The experi-
ments conducted on synthetic data fully support the theoretical claims. In conclusion, the method
is applied to financial data, where it detects sensible change-points. Techniques for change-point
localization are also suggested and investigated.

1 Introduction

The current study works on a problem of change point detection, which applications range from
neuroimaging [9] to finance [17, 10, 20, 32]. In many fields practitioners have to deal with the pro-
cesses subject to an abrupt unpredictable change, hence arises the need to detect and localize
such changes. In the writing we refer to the former problem as break detection and the latter as
change-point localization, effectively adopting the terminology suggested in [4]. The importance of
the topic promotes an immense variety of considered settings and obtained results on the topic
[18, 2, 31, 28, 1, 48, 50, 15, 25, 16].

In the current paper we focus on break detection and change point localization in regression. Typically,
in a regression setting a dataset of pairs of (possibly) multivariate covariates and univariate responses
is considered, while the goal is to approximate the functional dependence between the two. Here
we assume, the data points are separated in time. The problem at hand is whether the functional
dependence stayed the same over time and if not, when did the break take place. This setting has been
attracting a plethora of attention for decades now. Most researches consider linear [36, 26, 7, 6, 8, 35,
30, 27] or piece-wise constant regression [5, 29, 34]. A recent paper [43] allows for a generalized linear
model, leaving the proper choice of a parametric model to the practitioner. In contrast, we develop a
fully nonparametric method, eliminating the need to choose a parametric family. Some papers (e.g.
[36, 6, 43]), however, rely on a fairly general framework of Likelihood-Ratio test, which we employ
in our study as well. Further, some researchers (see [21] for example) propose a test statistic, yet
leave the choice of the critical value to the practitioner, while we also suggest a fully data driven way
to obtain them. Naturally, the problem has also received a nonparametric treatment [46, 22, 42, 24].
Having suggested a test statistic, [24, 22] propose to rely on an asymptotic distribution in order to
acquire its quantiles, while [46, 42] also propose a bootstrap approach and justify its validity. On the
other hand, the suggested methodologies do not yield change-point localization and are not applicable
in case of multiple breaks.

Contribution of our work consists in a novel break detection approach in regression which is:

� fully nonparametric
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V. Avanesov 2

� fully data-driven

� working in black-box mode: has virtually no tuning parameters

� capable of multiple break detection

� naturally suitable for change-point localization

� featuring formal results bounding first type error rate (from above) and power (from below)

� performing well on simulated and on real-world data.

Formally, we consider the pairs of deterministic multidimensional covariates Xi ∈ X and correspond-
ing univariate responses yi ∈ R for i ∈ 1..N , where X is a compact in Rp. We wish to test a null
hypothesis

H0 = {∀i : yi = f ∗(Xi) + εi}

versus an alternative (only a single break is allowed for simplicity, Section 2.1 suggests a generaliza-
tion)

H1 =

{
∃τ, f ∗1 6= f ∗2 : yi = f ∗1 (Xi) + εi if i < τ

yi = f ∗2 (Xi) + εi otherwise

}
,

where εi denote centered independent identically distributed noise. The functions f ∗, f ∗1 and f ∗2 ,
mapping from the compact X to R, are assumed to be unknown along with the distribution of εi.

The approach relies on Likelihood Ratio test statistic. Assume for now, the break could happen only
at the time t. Then it makes sense to consider n data points to the left and n data points to the right
of t and consider the ratio of likelihoods An(t) of 2n points under a single model and under a pair
of models explaining the portions of data to the left and to the right of t separately. Yet the break can
happen at any moment, so we consider the test statistics for all possible time moments simultaneously.
Finally, in order to resolve the issue of the proper choice of the window size n we suggest to consider
multiple window sizes n ∈ N ⊂ N at once (e. g. powers of 2).

The paper is organized as follows. Section 2 describes the approach. Further, the approach receives a
formal treatment in Section 3. Finally, the behavior of the approach is empirically examined in Section
4.

2 The approach

Let us introduce some notation first. Denote the maximal and the minimal window sizes as n+ :=
maxN and n− := minN. Define a set of central points for each window size n as Tn := {n, n +
1, .., N − n}. Further, for each n ∈ N and t ∈ Tn define vectors yln(t) composed of the responses
{yi}ti=t−n+1 belonging to the window to the left of t. Correspondingly, vectors yrn(t) are composed of
{yi}t+ni=t+1. The concatenation of these two vectors is denoted as yn(t). Also, we use X l

n(t), Xr
n(t)

and Xn(t) to denote the tuples of covariates corresponding to yln(t), yrn(t) and yn(t) respectively.
For each window size n ∈ N and central point t ∈ Tn we define the test statistic

An(t) := L
(
yln(t), X l

n(t)
)

+ L (yrn(t), Xr
n(t))− L(yn(t), Xn(t)),
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Nonparametric change point detection in regression 3

where L is a likelihood function which is defined below. Intuitively, the statistic should take extremely
large values when the two portions of data before and after t are much better explained by a pair of
distinct models than by a common one. As we aim to construct a nonparametric approach, we defineL
relying on a well known technique named Gaussian Process Regression [37]. Formally, we model the
noise with a normal distribution and impose the zero-mean Gaussian Process prior with covariance
function k(·, ·) on the regression function

f ∼ GP (0, ρk(·, ·)) ,
yj ∼ N

(
f(Xj), σ

2
)

for j ∈ 1..M,

where M is the number of response-covariate pairs under consideration and ρ is a regularization
parameter (see (3.1) and (3.2) for its choice). Integrating f out we can easily see, the joint distri-
bution of responses y ∈ RM given the covariates X = {Xj}Mj=1 is modelled as a multivariate
normal distribution with zero mean and covariance matrix K (X) ∈ RM×M , such that K (X)jj′ :=

ρk(Xj, Xj′)+σ2δjj′ , where δjj′ is Kronecker delta. This observation followed by taking the logarithm
and abolishing the non-random additive constants leads to the following definition of the likelihood L:

L(y,X) := −1

2
yTK(X)−1y.

Remark 2.1. The suggested approach shares its local nature with the ones presented in [4, 3, 43] as
they use only a portion of the dataset (of size 2n) to construct a test statistic for time t. Alternatively,
one could use the whole dataset as in [47], yet, this is not the best option in presence of multiple
breaks. Consider a setting where a function f ∗1 changes to f ∗2 and back to f ∗1 shortly afterwards. The
long tails might ”water down”the test statistic. To that end a method called Wild Binary Segmentation
suggests to choose multiple random continuous sub-datasets of random lengths [21]. Unfortunately,
this might lead to excessively long sub-datasets and significantly increase computational complexity.
Our approach is free of either of these issues. Also see Remark 3.1 for another motivation for an
approach of a local nature.

The approach being suggested rejects the H0 if for some window size n ∈ N and some central point
t ∈ Tn the test statistic An(t) exceeds its corresponding critical level xn,α(t) given the significance
level α. Formally, the rejection set is

{∃n ∈ N, t ∈ Tn : An(t) > xn,α(t)} . (2.1)

As the joint distribution of An(t) is unknown, we mimic it with a residual bootstrap scheme in order
to allow for the proper choice of the critical levels. First, let us choose some subset of indices I[ ⊆
1..N we use for bootstrap. We assume the response-covariate pairs {(yi, Xi)}i∈I[ follow the same
distribution, hence we require I[ to be located either to the left, or to the right from τ (we presume the
former without loss of generality). Given a collection of pairs {(yi, Xi)}i∈I[ , we construct estimates
ŷi of E [yi] and the corresponding residuals ε̂i := yi − ŷi. Now define the bootstrap counterpart of
the response yi as

y[i = ŷi + ε[i, with ε[i := siε̂ji ,

where for all i ∈ 1..N we draw ji independently and uniformly with replacement from I[ and si are
independently and uniformly drawn from {−1, 1}. At this point we can trivially define the bootstrap
statistics A[n(t) in the same way their real-world counterparts An(t) are defined by plugging in y[i
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instead of yi. Next, using P[ to denote the bootstrap probability measure, we define the quantile
functions for each x ∈ [0, 1]

z[n,x(t) := inf
{
z : P[

{
A[n(t) > z

}
≤ x
}
.

Finally, we correct the significance level α for multiplicity

α∗ := sup
{

x : P[
{
∃n ∈ N, t ∈ Tn : A[n(t) > z[n,x(t)

}
≤ α

}
(2.2)

and define the critical levels x[n,α(t) := z[n,α∗(t).

If the method rejects H0, one can localize the change-point as follows. First, define the earliest central
point, where H0 is rejected

τ̃n := min{t ∈ Tn : An(t) > x[n,α(t)}.

Now, ifAn(t) > x[n,α(t), the change point is located in the interval [t−n, t+n) (up to the significance
level α). Therefore, we suggest to define the earliest detecting window

n∗ := arg min
n∈N

(τ̃n + n)

and use the following change-point location estimator

τ̂ := arg max
t∈[τ̃n∗−n∗,τ̃n∗+n∗)

An+(t). (2.3)

Remark 2.2. To sum it up, the practitioner needs to provide a set of window sizes N and the param-
eters driving the Gaussian Process prior – covariance functoin k(·, ·) and the standard deviation of
noise σ. In the absence of additional knowledge about the problem it is viable to use an exponential
grid, e.g. N = {5, 10, 20, . . . } (this strategy is employed in the experimental study, see Section 4).
The choice of covariance function k(·, ·) and variance σ2 is of great importance as well. Thankfully,
Gaussian Process Regression is known to be a “fairly reliable black-box function approximator” [19].
Typically, a parametric family of covariance functions {kθ(·, ·)}θ∈Θ is considered and the optimal com-
bination of hyper-parameters θ and σ2 is chosen via evidence maximization (see Section 4.5.1 in [37]
for details). Eventually, the user only has to provide the confidence level α. Therefore, we conclude
our approach is a “black-box”.

Remark 2.3. The estimates ŷi may be obtained with any regression method as long as they are
consistent under H0. As we strive for a nonparametric methodology, Gaussian Process Regression
trained on {(yi, Xi)}i∈I[ is suggested. The theoretical results can be trivially adapted to any kind of
a consistent regressor used instead.

Remark 2.4. In practice it may be computationally difficult to obtain enough samples of the bootstrap
statistics A[n(t) for the large number of quantiles to be simultaneously estimated. Alternatively, we
suggest to choose the critical levels x[n,α(t) = x[n,α independently of the central point t, effectively
replacing the rejection region (2.1) with{

∃n ∈ N : max
t∈Tn

An(t) > x[n,α

}
as the smaller number of quantiles can be reliably estimated based on much fewer number of the
samples drawn. Clearly, this may lead to some drop of sensitivity.

Remark 2.5. The method can be easily extended for break detection in multivariate regression. In that
case one can consider Aln(t) for l-th component of outcome, alter the calibration scheme accordingly
and make multiplicity correction (2.2) also account for the dimensionality of responses (not only for the
windows and break locations).
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2.1 Multiple break detection

In spite of the fact that we allow for at most one break, the local nature of the test statisticAn(t) allows
for a straightforward application of the test in presence of multiple breaks as well. Again, consider
a dataset {(Xi, yi)}Ni=1 but assume H1 allows for multiple change-points {τk}Kk=1 (K is unknown).
Formally, extending the notation τ0 := 1 and τK+1 = N ,

H1 :=


∃{f ∗k}K+1

k=1 : f ∗k 6= f ∗k+1

yi = f ∗k (Xi) + εi if τk−1 ≤ i < τk

for all k

 .

Then we estimate the location of the first change-point as

τ̂1 := arg max
t∈[τ̃n∗−n∗,τ̃n∗+n∗)

An+(t).

Next, the procedure is recursively called on the rest of the dataset {(Xi, yi)}Ni=τ̃n∗+n∗ .

3 Theoretical results

This section is devoted to the theoretical results. Namely, Section 3.2 presents the bootstrap validity
result, claiming that the critical levels x[n,α(t) yielded by the calibration procedure are indeed chosen
in accordance with the critical level α. The sensitivity result is reported in Section 3.3. It defines the
minimal window width sufficient for the detection of a break and is also followed by a corollary providing
change-point localization guaranties.

3.1 Assumptions and definitions

In order to state the theoretical results we need to formulate some assumptions and definitions. Par-
ticularly, we rely on definition of sub-Gaussian variables and vectors.

Definition 3.1 (Sub-Gaussianity). We say a centered random variable x is sub-Gaussian with g2 if

E [exp(sx)] ≤ exp
(
g2s2/2

)
, ∀s ∈ R.

We say a centered random vectorX is sub-Gaussian with g2 if for all unit vectors u the product 〈u,X〉
is sub-Gaussian with g2.

Further, we consider two broad classes of smooth functions: Sobolev and Hölder.

Definition 3.2 (Sobolev and Hölder classes). Consider an orthonormal basis {ψj} in L2(Rp) and a
function f =

∑
j fjψj ∈ L2(Rp). We call it ℵ-smooth Sobolev if

∃B :
∞∑
j=1

j2ℵf 2
j ≤ B2

and we call it ℵ-smooth Hölder if

∃B :
∞∑
j=1

jℵ |fj| ≤ B2.
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These properties drive the choice of the regularization parameter ρ. Namely, for sample size M large
enough we choose

ρ =
B2

logM
(3.1)

if the function is Sobolev and

ρ =

(
B2

logM

)2ℵ/(2ℵ+1)(
1

M

)1/(2ℵ+1)

(3.2)

if the function is ℵ-Hölder.

Throughout the paper we use a variety of norms. We use ‖·‖ to denote Euclidean norm of a vector
or a spectral norm of a matrix. Further, ‖·‖∞ refers to sup-norm for both vectors and matrices (the
maximal absolute value of an element), as well as functions (the maximal absolute value of an element
of its image), while ‖·‖F stands for Frobenius norm of a matrix.

The result Lemma F.1 (by [49]) we rely upon imposes the following two assumptions.

Assumption 3.1. Let there exist Cψ and Lψ s.t. for eigenfunctions {ψj(·)}∞j=1 of covariance function
k(·, ·)

max
j
‖ψj‖∞ ≤ Cψ

and for all t, s ∈ Rp

|ψj(t)− ψj(s)| ≤ jLψ ‖t− s‖ .
Assumption 3.2. Let for the eigenvalues {µj}∞j=1 of covariance function k(·, ·) exist positive c and
C s.t. cj−2ℵ ≤ µj ≤ Cj−2ℵ for ℵ > 1/2.

Matérn kernel with smoothness index ℵ − 1/2 satisfy these assumptions. In [49] the authors claim,
their results also hold for kernels with non-polynomially decaying eigenvalues, like RBF and polynomial
kernels. And as long as we do not use these assumptions in our proofs directly, so do ours.

Finally, we introduce the assumptions required by our machinery.

Assumption 3.3. Let K̃n(t)−1 have the same elements as K(Xn(t))−1 with exception for the diag-
onal and diagK̃n(t)−1 = 0. Assume, exists a positive γ s.t. for all t ∈ Tn for n→∞∥∥∥K̃n(t)−1E [yn(t)]

∥∥∥
∞

= O(nγ). (3.3)

It would be natural to expect K(Xn(t))−1 in (3.3) instead of K̃n(t)−1, e.g.∥∥K(Xn(t))−1E [yn(t)]
∥∥
∞ = O(nγ). (3.4)

On the one hand, if the design {Xi}Ni=1 is regular, (e.g. a uniform grid), (3.4) implies (3.3), yet in
general, particularly (3.3) is the desired assumption. We prove the bootstrap validity result (Theorem
3.1) using our Gaussian approximation Lemma B.3. There we have to treat the diagonal and off-
diagonal elements of the quadratic forms separately. This is reminiscent of the results in [23] where
they study an asymptotic distribution of a single quadratic form (we, in contrast, work with a joint
distribution of numerous quadratic forms).

Assumption 3.4. Let there exist a positive constant C independent of n s.t. ∀t
‖K(Xn(t))‖ < C.

Informally, Assumption 3.3 does not let the GP prior be too unrealistic, while Assumption 3.4 prohibits
concentrations of measurements in a local area. Neither would we like Assumption 3.4 violated looking
from a practical perspective, as it ensures K(Xn(t)) being well-conditioned.
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3.2 Bootstrap validity

In this section we demonstrate closeness of measures P and P[ in some sense which is a theoretical
justification of our choice of the calibration scheme.

Theorem 3.1. Let H0, Assumption 3.1, Assumption 3.2 hold, εi be sub-Gaussian with g2. Let f ∗ be
ℵ-smooth Sobolev and κ := (ℵ − 1/2) /(2ℵ) or ℵ-smooth Hölder and κ := ℵ/(2ℵ + 1). Let n−,
n+, |N| and N grow. Also assume for some positive γ and δ

log15 (|N|N)

n1−6γ
−

= o(1), (3.5)

(
log
∣∣I[∣∣
|I[|

)κ

n
1/2+δ+γ
+ = o(1) (3.6)

and finally, let Assumption 3.3 hold for γ. Then on a set of arbitrarily high probability

sup
cn(t)

|P {∀n ∈ N, t ∈ Tn : An(t) < cn(t)}−

P[
{
∀n ∈ N, t ∈ Tn : A[n(t) < cn(t)

}∣∣ = o(1).

Proof of the theorem is given in Section A. The strategy of the proof is typical for bootstrap valid-
ity results. First, we approximate the joint distribution of the test statistics {An(t)}n∈N,t∈Tn with a
distribution of some function of a high-dimensional Gaussian vector. This step is handled with our
Gaussian approximation result Lemma B.4. Next, the same is done for their bootstrap counterparts
{A[n(t)}n∈N,t∈Tn using a different Gaussian vector. Finally, we build the bridge between the two ap-
proximating distributions using the fact that the mean and variance of these Gaussian vectors are
close to each other (see Lemma C.1). The assumptions (3.5) and (3.6) enforce negligibility of the re-
mainder terms involved in Lemma B.4 and Lemma C.1 respectively. In turn, the Gaussian approxima-
tion result (Lemma B.4) is obtained using a novel, significantly tailored version of Lindeberg principle
[33, 38, 11, 12]. The proof of Gaussian comparison result (Lemma C.1) is inspired by the technique
used in [45]. We use Slepian smart interpolant too, yet applying it in a non-trivial way. We believe,
Lemma B.4 can also be proven via Slepian smart interpolant instead of Lindeberg principle, which
might yield slightly better convergence rate. We leave this for the future research.

3.3 Sensitivity result

Consider a setting under H1. For simplicity, assume there is a single change point at τ . In order for
the break to be detectable we have to impose some discrepancy condition on f ∗1 and f ∗2 . Moreover, in
order to guarantee detection we have to require the choice of covariates Xi to make this discrepancy
observed. Keeping that in mind we define the observed break extent

B2
n :=

1

n

τ+n−1∑
i=τ

(f ∗1 (Xi)− f ∗2 (Xi))
2 . (3.7)

Theorem 3.2. Let the setting described above hold, εi be sub-Gaussian with g2. Let f ∗, f ∗1 , f ∗2 be
ℵ-smooth Sobolev and κ := (ℵ − 1/2) /(2ℵ) or ℵ-smooth Hölder and κ := ℵ/(2ℵ + 1). Also let
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n∗ ∈ N, n∗, N → +∞ and Bn∗ → 0. Also impose Assumption 3.1, Assumption 3.2, Assumption
3.3 (for t < τ ), Assumption 3.4, (3.5), (3.6) and

B−1
n∗

(
log n∗
n∗

)κ
= o(1). (3.8)

Then

P {H0 is rejected} → 1.

We defer proof to Appendix D. It is fairly straightforward. First, we bound the test statistics An(τ)
with high probability, next we use Theorem 3.1 to also bound the critical levels xn,α(τ) and finally, we
bound the test statistic An(τ) from below and make sure it exceeds the critical level. The assumption
(3.8) essentially requires the observed break extent to exceed the precision of Gaussian Process
Regression predictor.

Remark 3.1. The sensitivity result gives rise to another motivation behind simultaneous consideration
of wider and narrower windows (and also it is another argument for local statistics in the first place,
also see Remark 2.1). Consider a hostile setting, where the values of functions f ∗1 and f ∗2 coincide for
most of the arguments. For instance, let B′ := |f ∗1 (Xτ )− f ∗2 (Xτ )| and let f ∗1 (Xi) = f ∗2 (Xi) for all
i > τ . Then by definition Bn = B′/n and hence the assumption (3.8) implies

B′−1n1−κ
∗ logκ n∗ = o(1).

Clearly, a narrower window detects a smaller break of such a kind.

Remark 3.2. In the setting allowing for multiple change-points (see Section 2.1) assumption (3.8)
dictates the requirement for the minimal distance ∆τ := mink,k′:k 6=k′ |τk − τk′| between two consec-
utive change-points as ∆τ ≥ 2n∗ +

∣∣I[∣∣ which is sufficient for detection of all the change-points with
probability approaching 1.

Finally, we formulate a trivial corollary providing change-point localization guaranties.

Corollary 3.1. Under the assumptions of Theorem 3.2

P {|τ̃ − τ | ≤ n∗} & 1− α.

4 Empirical Study

In this section we report the results of our experiments1. Section 4.1 presents the findings of the
simulation study supporting the bootstrap validity and sensitivity results, as well as empirically justifying
the simultaneous use of multiple windows and the change-point location estimator 2.3. In Section 4.2
we successfully apply the method to detect change-points in daily quotes of NASDAQ Composite
index.

1The code is available at github.com/akopich/gpcd
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Nonparametric change point detection in regression 9

Table 1: This table demonstrates average width of the narrowest detecting window n∗ (from Theorem
3.2) may be reduced employing multiple window sizes at once without noticeable loss of power.

N Power n∗
{40} 1.0 40.0
{40, 20} 1.0 20.5
{40, 20, 10} 1.0 15.7
{40, 20, 10, 5} 1.0 15.9

4.1 Experiment on synthetic data

We consider functions f ∗(x) = f ∗1 (x) = sin(x) and f ∗2 (x) = sin(x + φ) for various choices of
φ. Univariate covariates {xi}800

i=1 are shuffled 800 equidistant points between 0 and π. Under H0 the
responses are sampled independently as yi ∼ N (f ∗(xi), 0.1

2). Under H1 we choose the change-
point location τ = 700 and sample yi ∼ N (f ∗1 (xi), 0.1

2) for i < τ and yi ∼ N (f ∗2 (xi), 0.1
2) for

i ≥ τ . For our experiments we consider φ ∈ {π/2, π/5, π/10, π/20, π/40} and report the corre-
sponding observed break extent Bn (defined by (3.7)). In all the experiments I[ = {1, 2, .., 500},
the confidence level α was chosen to be 0.01. We choose RBF kernel family

kθ(x1, x2) = θ2
1 exp

(
−|x1 − x2|2

θ2
2

)
(4.1)

and choose optimal parameters θ and σ2 via evidence maximization using {xi}i∈I[ .
The suggested approach has demonstrated proper control of the first type error rate in all the config-
urations we consider, keeping it below 0.015.

The power the test exhibits is shown on Figure 1. As expected, larger window size n and larger
observed break extent Bn correspond to higher power. At the same time, the Figure 2 summarizes
root mean squared errors of the estimator τ̂ (defined by (2.3)). The estimator proves itself to be reliable
when the power of the test is high. Generally, wider windows and larger observable break extent lead
to higher accuracy of τ̂ .

Further, in order to investigate the behavior of the method in a multiscale regime (|N| > 1) we use
several choices of N for a single φ = π/10. Results, reported in the Table 1, exhibit a significant
decrease in the average width of the narrowest detecting window n∗ and hence an improvement in
change-point localization thanks to simultaneous use of wider and narrower windows. This should be
highly beneficial in presence of multiple change points, as it allows for smaller distance ∆τ between
them (see Section 2.1 and Remark 3.2).

4.2 Real-world dataset experiment

The prices of stock indexes are known to be subject to abrupt breaks [40, 41]. We consider a series
Xt of closing daily prices of NASDAQ Composite index. The dataset spans from February 1990 until
February 2019. We suggest to model the process using the following Stochastic Differential equation

dXt

Xt

= f(Xt)dt+ σdWt, σ > 0,

where Wt denotes a Wiener process. Now we wish to test the dataset for the presence of breaks.
In order to do so we employ the Euler–Maruyama method, effectively boiling the problem down to
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Figure 1: The plot demonstrates the dependence of the power of the test on the observable break
extent Bn (see (3.7)) for multiple window sizes n.
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Figure 2: The plot demonstrates the dependence of the root mean squared error of change point
localization on the observable break extent Bn (see (3.7)) for multiple window sizes n.
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Nonparametric change point detection in regression 11

a regression problem with univariate covariates xt := Xt and the corresponding responses yt :=
Xt+1−Xt

Xt
. Further we apply the scheme suggested in Section 2.1 with α = 0.01, N = {20}, I[ =

{1..300} and the kernel family (4.1). The method detects three breaks and all of them may be related
to the known events. Namely, computer virus CIH has activated itself and attacked Windows 9x in
August 1998, burst of the dot-com bubble and 2008 financial crisis.

A Proof of the bootstrap validity result

Proof of Theorem 3.1. Apply Lemma B.4 to An(t) and A[n(t), next apply Lemma C.1 and via triangle
inequality obtain on a set of probability at least 1− 2 exp(−u2)

sup
ct

∣∣P {An(t) < ct} − P[
{
A[n(t) < ct

}∣∣ ≤ 2RA +RC ,

where RA and RC come from Lemma B.4 and Lemma C.1 respectively. Now observe

|J | =
∑
n∈N

|Tn| ≤ |N|N

and using (3.5) conclude RA = o(1). Clearly, the ratio entering the definition of RC is bounded√
n/s = O(1) (in the same way as in the proof of Lemma B.4). Next we use Lemma F.1 and obtain

on a set of probability at least 1−
∣∣I[∣∣−10

‖E [y]− ŷ‖∞ ≤ O(∆f ),

where

∆f :=

(
log
∣∣I[∣∣
|I[|

)κ

.

Now observe that the following holds for ∆µ and ∆Σ involved in Lemma C.1 by construction of Z and
Z̃ (coming from the gaussian approximation and defined by (B.3))

∆µ ≤ (∆f + ‖f ∗‖∞) ∆f ,

∆Σ ≤ 4
∣∣Var [ε1]− Var

[
ε[1
]∣∣ ‖f ∗‖2

∞ +
∣∣Var [ε1]− Var

[
ε[1
]∣∣2 .

Further, Lemma C.3 yields the bound
∣∣Var [ε1]− Var

[
ε[1
]∣∣ = O(∆2

f ). Assumption (3.5) implies
γ < 1/6. Then (3.6) it turn implies (

log
∣∣I[∣∣
|I[|

)κ

n
δ/2+γ
+ = o(1).

Finally, choose ∆ = n−δ/2 (involved in the definition of RC , see Lemma C.1), recall assumption (3.6)
and conclude RC = o(1).

B Gaussian Approximation

Consider a random vector x ∈ RN of independent components centered at µ = E [x]. Introduce
xn(j) for even n = 2m ∈ N and j ∈ J := {m,m + 1, .., N −m} denoting a vector composed
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of {xi}j+mi=j−m+1. Also, assume |J | symmetric matrices B(j) ∈ Rn×n are given and define a map

S : RN → R|J | s. t. S(x)j := 1√
n
〈xn(j), B(j)xn(j)〉.

Two ingredients of paramount importance are soft-max function Fβ : R|J | → R

Fβ(w) := log

(∑
j∈J

exp (βwj)

)
for β ∈ R

and a smooth indicator function g∆ with three bounded derivatives s.t. |x| ≥ ∆ ⇒ g∆(x) = 1[x >
0]. Also let g := g1 and g(x/∆) = g∆(x). An example of such function along with bounds for its
derivatives is provided in [43].

Consider the following decomposition of matrices B(j) into diagonal matrices and matrices with ze-
roes down their diagonals

B(j) = E(j) + diag(D(j)), where E(j)kk = 0 ∀k. (B.1)

Further, consider a vector X ∈ RN s.t. x2
i = Xi for all i = 1..N . And introduce notation Xn(j)

similar to xn(j). Now consider a vector Z denoting vectors x and X stacked. Clearly, there is a map
Q : R2N → R|J | s.t.:

S(x)j = Q(Z)j := Q(x,X)j :=
1√
n
〈xn(j), E(j)xn(j)〉+

1√
n
〈D(j), Xn(j)〉 (B.2)

for all j = 1.. |J |. Also define an independent vector

Z̃ ∼ N (E [Z] ,Var [Z]) (B.3)

and denote the first half of the vector as x̃ and the second as X̃ .

Our proof employs a novel version of the Lindeberg principle [33, 38, 11, 12] tuned for the problem at
hand. Typically, Lindeberg principle suggests to ”replace”random variables with their Gaussian coun-
terparts one by one. Here we have to ”replaceëach n-th component of x along with the component of
X being its square starting with the 1-st one, repeat starting with the 2-nd one and so on repeating
the procedure n times. Namely, in the first step we ”replace”components with indexes 1, n+1, 2n+1
and so on. On the second step we ”replace”components with indexes 2, n+2, 2n+2 and so on. And
further in the same manner. Or more formally, consider a sequence of vectors xi ∈ RN for i = 0..n
s. t. x0 = x and ∀i > 0 : xikn+i = x̃kn+i for all k ∈ {0, 1, 2, .., dN/ne − 1} and xij = xi−1

j for
j s.t. @k ∈ {0, 1, 2, .., dN/ne − 1} : kn + i = j. Denote the indexes of components which were
replaced at step i as Ii. Also define a vector x̊i s.t. x̊ij = 0 for j ∈ Ii and x̊ij = xij for the rest of j.

Define sequence of X i and X̊ i in a similar way. Finally, let Zi denote the vectors xi and X i stacked
together and Z̊i denote stacked vectors x̊i and X̊ i. Note, Zn = Z̃ .

Lemma B.1. Choose i = 1..n. Consider a function φ : RN × RN → R defined as

φ(a, b) := Fβ

(
Q
(
x̊i + a, X̊ i + b

))
,

where j /∈ Ii ⇒ aj = 0, bj = 0 and Q(·) is defined by (B.2). Further, using decomposition (B.1)
assume for some positive L:

max
j

∥∥E(j)(̊xin(j) + an(j))
∥∥
∞ < L (B.4)
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and denote

L := max

{
2L,max

j∈J
‖D(j)‖∞

}
. (B.5)

Then ∣∣∣∣∣∑
j∈Ii

(
∂aj + ∂bj

)
φ(a, b)

∣∣∣∣∣ ≤ ϕ′ :=
2L√
n
,∣∣∣∣∣ ∑

j,j′∈Ii

(
∂2
ajaj′

+ ∂2
bjbj′

)
φ(a, b)

∣∣∣∣∣ ≤ ϕ′′ :=
4βL2

n∣∣∣∣∣ ∑
j,j′,j′′∈Ii

(
∂3
ajaj′aj′′

+ ∂3
bjbj′bj′′

)
φ(a, b)

∣∣∣∣∣ ≤ ϕ′′′ :=
12β2L3

n3/2
.

Proof. Proof of this result consists in direct differentiation followed by application of Lemma A.2 from
[13] providing bounds for the first three derivatives of soft-max function.

Lemma B.2. Let assumptions of Lemma B.1 hold. Then for an independent Gaussian vector Z̃ (de-
fined by (B.3)) ∣∣∣E [g∆ ◦ Fβ ◦ S(x)]− E

[
g∆ ◦ Fβ ◦Q(Z̃)

]∣∣∣ ≤ n

6
Zm3,

where m3 is the sum of the maximal third centered absolute moments of x and Z̃ , while Z is defined
in Lemma B.5 and Q(·) is defined by (B.2).

Proof. Clearly, for f := g∆ ◦ Fβ ◦Q,

f(Z)− f(Z̃) =
n∑
i=1

f
(
Zi−1

)
− f

(
Zi
)

and hence ∣∣∣E [f(Z)− E
[
f(Z̃)

]]∣∣∣ ≤ n∑
i=1

∣∣E [f (Zi−1
)]
− E

[
f
(
Zi
)]∣∣ . (B.6)

The rest of the proof consists in bounding an arbitrary summand on the right hand side. In order to do
so we use Taylor expansion of second degree for f (Zi−1) and f (Zi) around E [Z] with Lagrange
remainder. Given equality of the first two moments of Z and Z̃ , we conclude, the first two terms cancel
out. Hence, using Lemma B.5 we immediately obtain∣∣E [f (Zi−1

)]
− E

[
f
(
Zi
)]∣∣ ≤ 1

6
Zm3. (B.7)

Combination of (B.6) and (B.7) establishes the claim.

Lemma B.3. Let assumptions of Lemma B.1 hold. Then

sup
c

∣∣∣P {S(x) ≤ c} − P
{
Q(Z̃) ≤ c

}∣∣∣ ≤ RA

:= 84 log3/2 |J |
(

1 +

√
n

s

)
L3/4

n1/8
,

where s comes from Lemma E.1 and Q(·) is defined by (B.2).
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Proof. Choose ∆ = log |J | /β. Then for an arbitrary constant vector c ∈ R|J |

P {S(x) ≤ c} ≤ E [g∆(Fβ(S(x)− c+ ∆))]

≤ E
[
g∆(Fβ(Q(Z̃)− c+ ∆))

]
+
n

6
Zm3

≤ P
{
Q(Z̃) ≤ c− 2∆

}
+
n

6
Zm3

≤ P
{
Q(Z̃) ≤ c

}
+ 12∆

√
n

s

(√
4 log |J |+ 2

)
+
n

6
Zm3

≤ P
{
Q(Z̃) ≤ c

}
+ 24∆

√
n

s

√
4 log |J |+ 768L3 log2 |J |

∆3
√
n

.

Here he have consequently used Lemma B.6, Lemma B.2, Lemma B.6 again and Lemma E.1 (which
also defines s). The last step uses that log 3 > 1. Now we choose

∆ = 8

(
144 log3/2 |J |L√

n

)1/4

and obtain

P {S(x) ≤ c} ≤ P
{
Q(Z̃) ≤ c

}
+

(
84 log3/2 |J |

√
n

s
+ 13 log7/8 |J |

)
L3/4

n1/8

≤ P
{
Q(Z̃) ≤ c

}
+ 84 log3/2 |J |

(
1 +

√
n

s

)
L3/4

n1/8
.

Similar reasoning yields a chain of ”larger-or-equalı̈nequalities which, combined with the one above,
finalizes the proof.

Lemma B.4. Let x−E [x] be sub-Gaussian and matricesB(j) have bounded spectrum. Also assume
for some positive γ

max
j∈J
‖B(j)µn(j)‖∞ = O(nγ).

Then for any positive u on a set of probability at least 1− exp (−u2) for N and n going to infinity

sup
c

∣∣∣P {S(x) ≤ c} − P
{
Q(Z̃) ≤ c

}∣∣∣ = O

(
log3/2 |J | u

3/4 + log3/8 |J |+ n3γ/4

n1/8

)
,

where Q(·) is defined by (B.2).

Proof. Application of Lemma B.7 to matrices E(j) yields the bound on L defined by (B.5)

L = O(t + nγ)

on a set of probability at least 1− |J | e−t2 .

Investigation of s defined in Lemma E.1 yields
√
n/s = O(1). Really, ‖B(j)‖F is a sum of squared

eigenvalues (which are bounded) and ‖E [x]‖2 ≤ n ‖E [x]‖2
∞. Now we apply Lemma B.3

sup
c

∣∣∣P {S(x) ≤ c} − P
{
Q(Z̃) ≤ c

}∣∣∣ ≤ RA = O

(
log3/2 |J | t

3/4 + n3γ/4

n1/8

)
.
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Now change the variable u2 := t2 − log |J |

RA = O

(
log3/2 |J | u

3/4 + log3/8 |J |+ n3γ/4

n1/8

)
.

Lemma B.5. In terms of Lemma B.1 for function

ζ := g∆ ◦ φ

it holds that ∑
j∈Ii

(
∂aj + ∂bj

)
ζ(a, b) ≤ 2∆−1ϕ′,

∣∣∣∣∣ ∑
j,j′∈Ii

(
∂2
ajaj′

+ ∂2
bjbj′

)
ζ(a, b)

∣∣∣∣∣ ≤ 8∆−2ϕ′2 + 2∆−1ϕ′′,

and ∣∣∣∣∣ ∑
j,j′,j′′∈Ii

(
∂3
ajaj′aj′′

+ ∂3
bjbj′bj′′

)
ζ(a, b)

∣∣∣∣∣ ≤ Z
:= 32∆−3ϕ′3 + 24∆−2ϕ′′ϕ′ + 2∆−1ϕ′′′.

Proof. The proof consists in direct differentiation and bounding using Lemma B.1 and equation (53)
from [43]. Intermediate differentiation steps can be found in the proof of Lemma A.14 [43].

The following lemma justifies the smoothing relying on smooth indicator g∆ and soft-max Fβ . Its proof
can be found in [13].

Lemma B.6. Let ∆ = log |J | /β, then for arbitrary vector x :

g∆(Fβ(x−∆)) ≤ 1 {‖x‖∞ ≥ 0} ≤ g∆(Fβ(x+ ∆)).

The next lemma establishes prerequisites for inequality (B.8).

Lemma B.7. Consider a symmetric matrix A with the largest eigenvalue Λ. Let ε be a vector of
independent sub-Gaussian with g2 elements. Then on a set of probability at least 1− exp(−t2)

‖Aε‖∞ ≤ Λt. (B.8)

Proof. For a given unit vector a, as far as the components of ε are independent and sub-Gaussian,
aT ε is sub-Gaussian with g2 as well. Hence,

P
{∣∣aT ε∣∣ > t

}
≤ p := 2 exp(−t2/g2)

and therefore,
‖Aε‖∞ ≤ ‖Aε‖ ≤ Λt.
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C Gaussian comparison

Notation of this section follows the notation of Section B. Proof of the following result was inspired by
the proof of Theorem 1 in [45].

Lemma C.1. Consider two 2N -dimensional normal vectors Z ∼ N (µ,Σ) and Z̃ ∼ N
(
µ̃, Σ̃

)
. De-

note ∆µ := ‖µ− µ̃‖∞ and ∆Σ :=
∥∥∥Σ− Σ̃

∥∥∥
∞

. Use notation of Lemma B.1. Then for any constant

vector c and positive ∆ holds

∣∣∣P {Q(Z) < c} − P
{
Q(Z̃) < c

}∣∣∣ ≤ ∆µ

(
L
√
n

∆

)
+ 16∆Σ

(
L + log |J |L2

∆2

)
+

8
√
n

s
∆
√

4 log |J |,

where s comes from Lemma E.1.

Proof. The proof consists in a multiple use of Slepian smart interpolant. Denote the first and the
second halves of vector Z as x and X and similarly introduce x̃ and X̃ being halves of Z̃ . Further,
consider n real values ϕ1, ϕ2, .., ϕn and compose a vector of length N iterating over these values:

ψ(ϕ) := ψ ({ϕi}ni=1) := (ϕ1, ϕ2, .., ϕn, ϕ1, ϕ2...) .

Denote f := g∆ ◦ Fβ ◦Q and consider a function

Ψ(ψ) := E

f(x⊗
√
ψ + x̃⊗

√
1− ψ︸ ︷︷ ︸

x(ψ)

, X ⊗
√
ψ + X̃ ⊗

√
1− ψ︸ ︷︷ ︸

X(ψ)

)

 ,
where we use ⊗ to denote element-wise product and radicals are applied to vectors in an element-
wise manner. Clearly,

Ψ(1) = E [f(x,X)] and Ψ (0) = E
[
f(x̃, X̃)

]
and hence

|E [f(x,X)] − E
[
f(x̃, X̃)

]∣∣∣ =

∣∣∣∣∣∣
1∫

0

...

1∫
0

(
n∏
i=1

∂ϕi

)
Ψ(ψ(ϕ))

n∏
i=1

dϕi

∣∣∣∣∣∣ . (C.1)

For the derivative we have(
n∏
i=1

∂ϕi

)
Ψ(ψ(ϕ)) =

1

2
E

[
n∑
i=1

∑
j=Ii

∂xjf(x(ψ), X(ψ))
(
xjψ

−1/2
i − x̃j(1− ψi)−1/2

)
+ ∂Xj

f(x(ψ), X(ψ))
(
Xjψ

−1/2
i − X̃j(1− ψi)−1/2

)]
.
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Next we apply Lemma C.2 (which applies only to centered vectors, thus the second term)∣∣∣∣∣
(

n∏
i=1

∂ϕi

)
Ψ(ψ(ϕ))

∣∣∣∣∣ ≤ 1

2
∆Σ

∣∣∣∣∣E
[

n∑
i=1

∑
j=Ii

∑
k=Ii

(
∂2
j + ∂2

k

)
f(x(ψ), X(ψ))

]∣∣∣∣∣
+

1

2
∆µ

∣∣∣∣∣
n∑
i=1

∑
j=Ii

∂xjf(x(ψ), X(ψ))

∣∣∣∣∣
=:

1

2
(T1 + T2) .

Now we make use of Lemma B.5 and Lemma B.1 and choose β = log |J | /∆

T1 ≤ 32∆Σ

(
L + log |J |L2

∆2

)
,

T2 ≤ ∆µ

(
2L
√
n

∆

)
.

Next, recalling (C.1) obtain∣∣∣E [f(x,X)]− E
[
f(x̃, X̃)

]∣∣∣ ≤ ∆µ

(
L
√
n

∆

)
+ 16∆Σ

(
L + log |J |L2

∆2

)
.

Finally, in order to move from smooth functions to indicators we employ reasoning identical to the one
in Lemma B.3.

P {Q(Z) < c} ≤ E [g∆ ◦ Fβ (Q(x,X)− c−∆)]

≤ E
[
g∆ ◦ Fβ

(
Q(x̃, X̃)− c−∆

)]
+

1

2
(T1 + T2)

≤ P
{
Q(Z̃) < c− 2∆

}
+

1

2
(T1 + T2)

≤ P
{
Q(Z̃) < c

}
+

1

2
(T1 + T2) +

8
√
n

s
∆
√

4 log |J |.

Combination with a similar chain of larger-or-equal finalizes the proof.

We use the same version of Stein’s identity as the authors of [45] have.

Lemma C.2 (Stein’s identity). Let X ∈ Rp be a normal centered vector and function f : Rp → R be
a C1 function with finite first derivatives. Then for all j = 1..p

E [Xjf(X)] =

p∑
k=1

E [XjXk]E [∂kf(X)] .

Proof. See Section A.6 of [44].

Lemma C.3. Consider y, ŷ, ε, ε[ defined in Section 2. Let

∆f := ‖E [y]− ŷ‖∞ = O
(
(log

∣∣I[∣∣ / ∣∣I[∣∣)κ)
for some positive κ ≤ 1/2. Let εi be sub-Gaussian with g2. Then on a set of probability at least

1−
∣∣I[∣∣10 ∣∣∣Var [ε1]− Var[

[
ε[1
]∣∣∣ = O

(
∆2
f

)
.
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Proof. By construction

Var[
[
ε[1
]

=
1

|I[|
∑
i∈I[

ε̂i − 1

|I[|
∑
i∈I[

ε̂i︸ ︷︷ ︸
ε̄


2

=
1

|I[|
∑
i∈I[

(E [yi]− ŷi + εi − ε̄)2

=
1

|I[|
∑
i∈I[

(E [yi]− ŷi)2 + ε2
i + ε̄2

+ 2εi (E [yi]− ŷi)− 2ε̄ (E [yi]− ŷi)− 2ε̄εi.

Now due to sub-Gaussianity for a positive e

∀i : P {|εi| > e} ≤ 2 exp(−e2/g2)

and hence

P

∃i : |εi| > e︸ ︷︷ ︸
E

 ≤ p′ := 2
∣∣I[∣∣ exp(−e2/g2).

On set E Hoeffding inequality applies to εi and their squares:

P


∣∣∣∣∣∣ 1

|I[|
∑
i∈I[

εi

∣∣∣∣∣∣ > E

 ≤ p′′ := 2 exp
(
−2
∣∣I[∣∣E2/e

)
,

P


∣∣∣∣∣∣ 1

|I[|
∑
i∈I[

ε2
i − Var [εi]

∣∣∣∣∣∣ > E ′

 ≤ p′′′ := 2 exp
(
−2
∣∣I[∣∣E ′2/e2

)
.

Therefore, with probability at least 1− p′ − p′′ − p′′′

|ε̄| ≤ ∆f + E

and hence∣∣∣Var [εi]− Var[
[
ε[i
]∣∣∣ ≤ ∆2

f + E ′ + 2E∆f + 2 (∆f + E) (∆f + 2E + E2).

Clearly, the choice

e =
√

log 2 |I[|,

E =
√

log(2 |I[|)/ |I[|,

E ′ = log
(
2
∣∣I[∣∣)/√|I[|.

makes p′, p′′, p′′′ polynomially decreasing. Substitution yields the claim.
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D Proof of sensitivity result

Proof of Theorem 3.2. Denoting the probability density functions in the world of the Gaussian Process
Regression model as p(·) by construction we have

An(t) = log
p(yln(t))p(yrn(t))

p(yn(t))

= log
p(yrn(t))

p(yrn(t)|yln(t))
.

Further, denote f rn(t) := E [yrn(t)] and εrn(t) := yrn(t)− f rn(t). Define shorthand notation Kr
n(t) :=

K(Xr
n(t)) and K l

n(t) := K(X l
n(t)). Also let f̂ rn(t) and V̂n(t) denote predictive mean and variance

of the Gaussian Process Regression for Xr
n(t) given X l

n(t) and yln(t). Now recall the posterior is
Gaussian:

p(yrn(t)|yln(t)) = N
(
yrn(t)|f̂ rn(t), V̂n(t)

)
.

Define a norm ‖x‖A :=
∥∥A1/2x

∥∥ for an arbitrary positive-definite symmetric matrix A. Clearly,

‖x‖2
A = 〈x,Ax〉. Now trivial algebra yields

An(t) ∼=
∥∥∥f rn(t)− f̂ rn(t)

∥∥∥2

V̂n(t)−1︸ ︷︷ ︸
T1

+ ‖εrn(t)‖2
V̂n(t)−1−Kr

n(t)−1︸ ︷︷ ︸
T2

+ 2〈
(
f rn(t)− f̂ rn(t)

)
V̂n(t)−1 − f rn(t)Kr

n(t)−1, εrn(t)〉︸ ︷︷ ︸
T3

,

where we use ∼= to denote “equality up to an additive deterministic constant”. Consider a matrix
K(Xn(t)) being a block 2× 2 matrix with blocks of equal size:

K(Xn(t)) =

(
K l
n(t) K
KT Kr

n(t)

)
.

Notice that V̂n(t) is its Schur complement, thus λmax(V̂n(t)) ≤ λmax(K(Xn(t))) ≤ C (the second
inequality is due to Assumption 3.4). Using σ2 > 0 we have λmin(V̂n(t)) > 1/c and λmin(Kr

n(t)) >
1/c for some c independent of n. To sum these observations up:

∃c > 0 : λmin(V̂n(t)), λmax(V̂n(t)), λmax(Kr
n(t)−1) ∈ (1/c, c).

Having established control over these eigenvalues, we are ready to bound the terms T2 and T3 from
above under both H0 and H1, while T1 should be bounded from above under H0 and from below

under H1. Now we bound the test statistic An(t) under H0. Denote ∆f :=
∥∥∥f rn(t)− f̂ rn(t)

∥∥∥
∞

. Then

T1 ≤ cn∆2
f .

In order to bound the second term on a set of high probability we employ Lemma D.1 and obtain for a
positive t

P
{
|T2 − E [T2]| ≥ 4g2c

√
nt
}
≤ exp(−t). (D.1)
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The third term will be controlled using sub-Gaussianity of εrn(t). For any unit vector u and positive e

P
{
|〈u, εrn(t)〉| ≥ g

√
e
}
≤ 2 exp(−e)

and clearly, ∥∥∥(f rn(t)− f̂ rn(t)
)
V̂n(t)−1 − f rn(t)Kr

n(t)−1
∥∥∥ ≤ 4

√
nc(F + ∆f ),

where F := max{‖f‖∞ , ‖f ∗1‖∞ , ‖f ∗2‖∞}. Hence, on a set of probability at least 1− 2 exp(−e)

|T3| ≤ 8
√
ngec(F + ∆f ). (D.2)

Finally, we choose t := 10 log n and e := 10 log n. Now under H0 bound ∆f by Lemma F.1, recall
κ < 1/2 and obtain

|An(t)− E [T2]| = O
(
n1−2κ log2κ n+

√
n log n

)
= O

(
n1−2κ log2κ n

)
on a set of probability at least 1− 3/n10 → 1 as n→ +∞. Now we use Theorem 3.1 along with the
fact that for n large enough α > RA + 3/n10 and obtain on a set of probability approaching 1∣∣x[n,α(t)− E [T2]

∣∣ = O
(
n1−2κ log2κ n

)
.

On the other hand, under H1 the bounds (D.1) and (D.2) still hold and

T1 ≥ λmin(V̂n(t))
∥∥∥f rn(t)− f̂ rn(t)

∥∥∥2

≥ 1

c
n
(
B2
n −∆2

f

)
.

Finally, choose n = n∗, t = τ , and recall assumption (3.8) to conclude An(τ) > x[n,α(τ) for large n
with probability approaching 1.

The following result bounds a quadratic form of a sub-Gaussian vector with high probability. It is a
direct corollary of Theorem 1.1 (Hanson-Wright inequality) stated in [39].

Lemma D.1. Consider a vector x ∈ Rn sub-Gaussian with g2 and a positive-definite matrix A of size
n × n. Let there be a constant Λ independent of n s.t. λmax(A) ≤ Λ. Then for a positive t, large
enough n and some absolute positive c

P
{
|〈x, xA〉 − E [〈x, xA〉]| ≥ cg2Λ

√
nt
}
≤ exp(−t).

E Anti-concentration inequality

This section uses notation introduced in Section B.

Lemma E.1. Consider a 2p-dimensional Gaussian vector z = (x,X), where x and X are p-
dimensional. Further, let Var [x] = σ2Ip and Cov(xj, Xj) = Cov(η, η2) for arbitrary 1 ≤ j ≤ p
and η ∼ N (0, σ2). Finally, let Var [X] = Var [η2] Ip. Then for an arbitrary vector C and δ ∈ R

P {Q(z) < C + δ} − P {Q(z) < C} ≤ 3

√
n

s2
δ
(√

4 log p+ 2
)
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where

s2 :=

(
min
j∈J
‖B(j)‖2

F + ‖E [x]‖2

)
σ2

and the map Q(·) is defined by (B.2).

Proof. Introduce an isotropic Gaussian vector z̃ = Var [z]−1/2 zVar [z]−1/2 and notice, σ2/3 ≤
Var [z̃j] ≤ 3σ2 for all j. Applying Lemma E.2 to z̃ yields the claim.

The rest of the proofs of this section mostly follow the Nazarov’s inequality proof presented in [14].

Define a map u : R2p → U , where U := R(p+5)p/2:

u
(
(x1, x2, .., xp)

T , (X1, X2, .., Xp)
T
)

=(x1, x2, .., xp, X1, X2, .., Xp, x
2
1, x

2
2, .., x

2
p,
√

2x1x2,
√

2x1x3, ..,
√

2xp−1xp)
T .

With a slight abuse of notation we will use u to denote both the map and an element of its image.

Lemma E.2. Consider x ∼ N (0, I2p) and a1, a2, ..ap(p+5)/2 ∈ {u ∈ U : ‖u‖ = 1} along with
b1, b2, .., bp(p+5)/2 ∈ R. Then for all positive δ:

P
{
∀j : aTj u(x) ≤ bj + δ

}
− P

{
∀j : aTj u(x) ≤ bj

}
≤ δ

(√
4 log p+ 2

)
.

Proof. Define a setK(t) :=
{
u ∈ U : ∀j aTj u ≤ bj + t

}
, and a functionG(t) := P {u(x) ∈ K(t)}.

G is absolutely continuous distribution function and hence

G(δ)−G(0) =

∫ δ

0

G′+(t)dt,

where G′+ denotes the right derivative of G. Essentially, the proof boils down to the following lemma.

Lemma E.3.

lim
δ↓0

P {u(x) ∈ K(δ)\K(0)}
δ

≤ δ
(√

4 log p+ 2
)
.

Proof. Denote K := K(0) and note it is a convex polyhedron. Denote a projector onto K as PK :
‖x− PKx‖ = miny∈K ‖x− y‖. Now for a (proper) face F of K define

NF = {u ∈ U\K : PKu ∈ relint(F )} ,

NF (δ) = NF

⋂
K(δ).

Clearly, K(δ)\K =
⋃
F :face of K NF (δ). Clearly,

∃C > 0 : NF ⊂ {u ∈ U : dist(u, F ) ≤ Cδ} ,

hence for any face F of dimensionality less than dimU−1 for δ ↓ 0 : γp(NF ) := P {u(x) ∈ NF} =
o(δ). Hence,

γp(K(δ)\K) = γp

( ⋃
F :facet of K

NF (δ)

)
+ o(δ) as δ ↓ 0.
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Now it is left to prove that

∑
F :facet of K

lim
δ↓0

γp(NF (δ))

δ
≤
√

4 log p+ 2.

By Lemma E.4

lim
δ↓0

γp(K(δ)\K)

δ
=

∑
F :facet of K

∫
u(x)∈F

f2p(x)dσ(u(x))),

where f2p(·) denotes the density of N (0, I2p). Consider facets F such that dist(0, F ) > 4 log p.
Choose h̄ = dist(0, F )v (or flip the sign if h̄ /∈ F ) and denote x̄ = u−1(h̄). Further, since ‖x̄‖ ≥√

4 log p,

f2p(x) = f1(‖x̄‖)f2p−1(k) ≤ f2p−1(k)

p2

and given the number of facets is less than p2,∑
F :facet of K

dist(0,F )>4 log p

∫
u(x)∈F

f2p(x)dσ(u(x))) ≤ 1. (E.1)

Now turn to the facets F s.t. dist(0, F ) ≤ 4 log p. By Lemma E.4,∫
u(x)∈F

f2p(x)dσ(u(x))) ≤
(√

4 log p+ 1
)
γp(NF ).

The final observation is based on the fact that NF are disjoint and γp(U) = 1

∑
F :facet of K

dist(0,F )≤4 log p

∫
u(x)∈F

f2p(x)dσ(u(x))) ≤
√

4 log p+ 1

and its combination with (E.1) completes the proof.

Lemma E.4.

lim
δ↓0

γp(NF (δ))

δ
=

∫
u(x)∈F

f2p(x)dσ(u(x))) ≤
(√

dist(0, F ) + 1
)
γp(NF ),

where dσ is the standard surface measure on F .

Proof. Parametrize every h ∈ F as

h = h(h̄, z) = h̄+ z1q1 + z2q2 + ...+ zp(p+5)/2−1qp(p+5)/2−1,

where h̄ is an arbitrary element of F , while qj form an orthonormal basis on F − h̄. Further, choose
a unit outward normal vector v to ∂K at F . Then we can parametrize NF

y = y(h̄, z, t) = h(h̄, z) + tv for t > 0.
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Now

γp(NF ) =

∫
y=y(h̄,z,t)∈NF

f2p

(
u−1(y)

)
dzdt

=

∫
h=h(h̄,z)∈F

(∫ +∞

0

f2p

(
u−1(y)

)
dt

)
dz

(E.2)

and in the same way

γp(NF (δ)) =

∫ δ

0

(∫
h=h(h̄,z)∈F

f2p

(
u−1(y)

)
dz

)
dt.

Thus

lim
δ↓0

γp(NF (δ))

δ
=

∫
h=h(h̄,z)∈F

f2p

(
u−1(y)

)
dz,

which proves the equality in the claim.

Now for any h ∈ F and v exist vectors x and n such that u−1(h+ tv) = x+ t′n for t′ =
√
t. Then∫ +∞

0

f2p

(
u−1(h+ tv)

)
dt =

∫ +∞

0

f2p (x+ t′n) dt′

≥ f2p(x)

∫ +∞

0

e−t|x
Tn|e−t

2/2dt ≥ f2p(x)

|xTn|+ 1
.

(E.3)

Combination of (E.2) and (E.3) yields

γp(NF ) ≥
∫
h∈F

1

|xTn|+ 1
f2p(x)dz, where x = u−1(h).

Now choose h = dist(0, F ), note |xTn| =
√

dist(0, F ) and establish the claim.

F Consistency of Gaussian Process Regression by [49]

In this section we quote a consistency result for predictions of Gaussian Process Regression.

Lemma F.1 (Corollary 2.1 in [49]). Assume, εi are sub-Gaussian. Let f ∗ be ℵ-smooth Sobolev and
κ := (ℵ − 1/2) /(2ℵ) or ℵ-smooth Hölder and κ := ℵ/(2ℵ+ 1). Further let k(·, ·) satisfy Assump-
tion 3.1 and Assumption 3.2. Then, for the training sample size n going to infinity with probability at
least 1− n−10 we have ∥∥∥f ∗ − f̂∥∥∥

∞
= O

((
log n

n

)κ)
,

where f̂ denotes the predictive function.
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