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Self-consistent field theory for a polymer brush
Part I: Asymptotic analysis in the strong-stretching limit

Andreas Münch, Barbara Wagner

Abstract

In this study we consider the self-consistent field theory for a dry, incompressible polymer
brush, densely grafted on a substrate, describing the average segment density φ of a polymer in
terms of an effective chemical potential µ for the interaction between the segments of the polymer
chain. We present a systematic singular perturbation analysis of the self-consistent field theory
in the strong-stretching limit, when the length scale of the ratio of the radius of gyration of the
polymer chain to the extension of the brush from the substrate (ε) vanishes. Our analysis yields,
for the first time, an approximation for the average segment density φ that is correct to leading
order in the outer scaling and resolves the boundary layer singularity at the end of the polymer
brush as ε→ 0. We also show that in this limit our analytical results agree increasingly well with
our numerical solutions to the full model equations comprising the self-consistent field theory.

1 Introduction

The development of mean-field theories for polymeric systems that are able to make quantitative
predictions for its wide-ranging applications requires these models to respect the architecture and type
of monomers that make up the typically large macromolecules. The biggest challenge is how to coarse-
grain the vast number of correlation with the surrounding macromolecules in order to faithfully predict
the characteristic large-scale behaviour of the polymer system. In this respect self-consistent field
theory (SCFT) has been extremely succesful since it was first introduced by Edwards [2] and Helfand
[5] and since then has been extended to many polymeric systems ranging from block copolymer [6],
polyelectrolytes [17] and many more, with applications ranging from cell biology, biomedical materials,
to food science and innumerable soft-matter micro- and nanotechnological applications.

For the derivation of SCFT one uses the fact that the long polymer chains can be shown to obey
a Gaussian distribution (Gaussian chain) and that monomers along the chain occur in repeat units
that can be coarse grained into segments that still show a Gaussian distribution. This is also valid for
Gaussian chains in an external field and eventually leads to expressions for the energy and hence the
partition function in form of a functional integral (path integral) over all polymer configurations. This
allows in principle the evaluation of the segment density distribution. Moreover, in the limit of small
segments compared to the chain length, a leading order approximation for the partition functions,
being functionals of the external field, can then be derived in terms of coupled Fokker-Planck type
partial differential equations that have to be solved self-consistently.

However, even for the seemingly simple system of a polymer brush grafted on a substrate this can only
be done numerically. A better understanding of grafted polymer brushes will be important for problems
relating to surface functionalisation and designing surface properties that impact for example interface
dynamics such as for example autophobic dewetting, or surface adhesion [3, 7, 8, 15].
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A. Münch, B. Wagner 2

In order to obtain analytical insights into the relation of the segment density distribution and the external
field only further simplifications such as the so-called strong-stretching theory for dry polymer brushes
in the limit of densely grafted polymer chains were so far successful.

The strong-stretching theory (SST) is valid when the chains are strongly stretched that is, their length
L is much larger than the radius of gyration Rg = a(N/6)1/2, which is the natural length scale for a
polymer chain (a is the statistical segment length and N the number of segments in polymer chain).
This can be expressed in the terminology of this paper as assuming that

ε ≡ aN1/2

√
6L
� 1.

For SST the functional integral can be approximated using Laplace’s method, when ε � 1, see [4].
For the derivation of the governing equations of self-consistent field theory the functional integrals are
deformed in the complex plane before they are approximated by a saddle point approximation. This
requires a much weaker assumption and in particular the SCFT is assumed to be valid for the range
of ε� 1 on which the SST is based.

The question is therefore if the solutions obtained for the SST and the SCFT agree in the limit as ε→
0, and for this purpose we will focus here on the problem of the tethered incompressible polymer brush.
An important quantity is the energy of such a chain when it is stretched. The basic approximation of the
SST for the effective chemical potential field µ is the parabolic potential, see [13]. For this the average
segment concentration is a constant. It turns out that the SST leads to an asymptotic expansion
in terms of ε for which the leading order and several corrections have been ingeniously obtained.
Numerical comparisons with the energy of solutions to the SCFT are in agreement [12], validating the
result. However, when we compare leading order approximations, this is not true. This is backed up
by our numerical solutions and we find that it cannot be fixed by including only higher corrections in
the potential µ. Obtaining the leading order (in ε) solution to the SCFT equations for φ for prescribed
parabolic potential µ and showing that it differs from the constant is the main result of this paper.
Our analysis reveals a surprisingly subtle asymptotic structure of the problem with several interlacing
asymptotic layers in the segment length as well as the brush thickness.

In section 2 we give a formulation of the SCFT governing equations for a dry polymer brush consisting
of identical polymer chains tethered to a wall or substrate. These consist of coupled Fokker-Planck
type equations with an unknown field µ(x) and appropriate initial and boundary conditions. The La-
grange multiplier field is then determined from the expression for the segment density distribution φ(x)
of the brush and the consistency requirement that the brush is incompressible. We then introduce an
alternative formulation of the SCFT equations deriving Burger’s type equations via a Cole-Hopf trans-
formation.

Based on this formulation we derive the strong-sretching theory for “thick” brushes, where the dense
grafting forces the chains to stretch to a brush thickness L that is large compared to the radius of
gyration Rg. We give an argument why in the strong-streching limit the field µ(x) is approximated to
leading order by a parabola.

This will then subsequently be used in section 3, where we present the complete asymptotic argument
for solving for the partial partition functions. These results are used to construct the segment density
distribution φ. Our analytical results are accompanied by numerical solutions. Our results demonstrate
that φ(x) differs from the constant (in our (scaled) notation that constant is φ(x) = 1) byO(1). In fact
the resulting φ(x) is singular at the boundary corresponding to where the brushes are tethered. We
then determine the corrections to the parabolic µ(x), required in the asymptotic derivation to obtain
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Figure 1: Schematic of a brush consisting of identical polymer chains, each consisting ofN segments,
grafted to a substrate at one end, with the other end being free. The brush extends to a thickness L,
with x = 0 representing the surface of the substrate. The continuous variable 0 < s < 1 labels sN -th
segment of the polymer chain, starting from the free tip.

φ(x) = 1 to leading order in ε. All our analytical results are compared to numerical simulations of
SCFT in the limit ε→ 0.

2 Formulation

2.1 Basic model for a polymer brush

Here we formulate the model for an incompressible polymer brush, consisting of polymer chains that
are densely grafted to a planar substrate at x = 0, using self-consistent field-theory. Following [1, 13],
we assume that the chains consist of N segments which each have statistical length a. As an effect
of the dense grafting, the polymer brush is extended to a length x = L. The model describes the
average segment density φ(x) of the polymer segments in terms of an effective chemical potential
µ(x) that describes the interaction between the chain segments, but it is not given explicitly. Rather,
it is determined by the requirement that for an incompressible polymer brush, the density must be a
constant. This is the “self-consistency” idea that underlies SCFT: The interactions are defined implicitly
by a global constraint.

The density φ(x) is constructed for µ via two partition functions q(x, s) and q∗(x, s) that are used for
obtaining the statistcs of the chain part with the free end at the edge of the brush and the other part
that is grafted to the substrate, respectively. Specifically, the partition function q(x, s) describes the
density of end of a length sN , where 0 < s < 1, if s = 0 end is free, and is given by the modified
diffusion equation

∂q

∂s
=
a2N

6

∂2q

∂x2
− µq, (2.1a)

with initial and boundary conditions

q(x, 0) = 1, (2.1b)

∂q

∂x
(0, 0) = 0, (2.1c)

∂q

∂x
(L, 0) = 0. (2.1d)
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A. Münch, B. Wagner 4

The position of a free end is arbitrary, hence q(x, 0) is constant, as in (2.1b). The situation at x = 0
and x = L is more delicate, as incompressibility breaks down close to the boundaries, i.e., φ(x)
deviates from 1 close to x = 0, L. This can be understood quite simply: The incompressibility con-
dition would require φ to be 1 up to the boundary, but outside of the [0, L], it is zero, but the density
profile has to vary smoothly, contradicting incompressibility. This also implies that the potential µ is
not defined within the SCFT theory but has to be found by other means, along with the true density,
taking into account the details of the molecular interactions. The density profile and potential are then
combined with the solution of (2.1) to give a distribution q on the entire domain [0, L]. In practice,
however, the narrow regions at the boundaries are ignored, and the unmodified solution of (2.1) used
instead; further details are given in [13].

Similarly, the complementary partition function q∗(x, s) describes the density of end of a length sN ,
where the s = 0 end is attached to the substrate, and is given by

∂q∗

∂s
=
a2N

6

∂2q∗

∂x2
− µq∗, (2.2a)

q∗(x, 0) = 2aN1/2δ(x), (2.2b)

∂q∗

∂x
(0, 0) = 0, (2.2c)

∂q∗

∂x
(L, 0) = 0. (2.2d)

The only difference to (2.1) is in the initial condition, which requires the distribution q∗ to collapse into
a δ-function, as the position of the segment at s = 0 is fixed at x = 0.

The distribution of the segment s for the full chain is obtained by forming the product q(x, s)q∗(x, 1−
s), noticing that the argument in q has been replaced by 1 − s as it is assume that the s = 1 end is
the grafted end of the polymer, while s = 0 is free. The distribution needs to be normalised, which is
done with the help of the full partition function

Q =
1

L

∫ L

0

q(x, s)q∗(x, 1− s)dx (2.3)

It can be easily shown thatQ is constant in s, and sometimes this can be used to simplify its evaluation
by choosing a convenient s. Now we can obtain the average segment density as

φ =
1

Q

∫ 1

0

q(x, s)q∗(x, 1− s)ds, (2.4)

The system is closed by the incompressibility condition

φ(x) = 1.

Taken together, (2.1)-(2.4) constitute and inverse problem for µ.

Once the effective chemical potential is known, useful quantities can be computed. For polymer
brushes, it is of interest to know their entropic free energy, which is given by

F

nkBT
= − ln

(
QL

aN1/2

)
− 1

L

∫ L

0

µ(x)φ(x)dx. (2.5)

It is the difference of the total free energy, given by the first term on the right hand side, and the
average internal energy for the interaction with the field µ, i.e. the second term.
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Self-consistent field theory for a polymer brush 5

Nondimensionalisation. To nondimensionalise these equations, we introduce

x = Lx̃, µ =
µ̃

ε2
, (2.6)

where we have defined the dimensionless parameter ε as the ratio of the radius of gyration and the
extension of the brush,

ε =
Rg

L
=
aN1/2

√
6L

, (2.7)

The radius of gyration describes the natural size of the coiled up polymer chain, and is defined as the
average density between the segments and the polymers center of mass. For ideal Gaussian chains,
it is given by Rg = a(N/6)1/2.

With these scalings, we obtain (after dropping the tildes) the following equations. For the partition
function q, we have

∂q

∂s
= ε2

∂2q

∂x2
− µ

ε2
q, (2.8a)

q(x, 0) = 1, (2.8b)

∂q

∂x
(0, 0) = 0, (2.8c)

∂q

∂x
(1, 0) = 0, (2.8d)

and for the complementary partition function q∗,

∂q∗

∂s
= ε2

∂2q∗

∂x2
− µ

ε2
q∗, (2.8e)

q∗(x, 0) = 2
√
6 εδ(x), (2.8f)

∂q∗

∂x
(0, 0) = 0, (2.8g)

∂q∗

∂x
(1, 0) = 0. (2.8h)

From this, we get

Q =

∫ 1

0

q(x, s)q∗(x, 1− s)dx (2.8i)

φ =
1

Q

∫ 1

0

q(x, s)q∗(x, 1− s)ds. (2.8j)

The incompressibility condition is unchanged,

φ = 1. (2.8k)

The entropic free energy of the brush is nondimensionalised

F = (nkBT )F̃ , (2.9)

so we obtain (again dropping tildes),

F = − ln

(
Q

ε

)
− 1

ε2

∫ 1

0

µ(x)φ(x)dx. (2.10)
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2.2 Cole-Hopf transformation

In preparation for subsequent steps, we introduce the Cole-Hope transformation, which turns the mod-
ified diffusion equations into nonlinear, Burgers-type PDEs. In combination with the asymptotic analy-
sis, this is equivalent to a WKB-type approach. We let q = exp(σ/ε2), and u = ∂xσ, giving

∂su = ε2∂2xu+ 2u∂xu− µx, (2.11a)

from (2.8a), and from (2.8b), (2.8c) and (2.8d) the initial and boundary conditions

u(x, 0) = 0, (2.11b)

u(0, s) = 0, u(1, s) = 0. (2.11c)

We can reconstruct q via q = exp(σ/ε2), where

σ(x, s) =

∫ x

a

u(r, s)dr +

∫ s

0

ε2∂xu(a, ω) + u2(a, ω)dω − µ(a)s, (2.12)

for any 0 ≤ a ≤ 1. We will use in particular a = 0, for which we have

σ(x, s) =

∫ x

0

u(r, s)dr +

∫ s

0

ε2∂xu(0, ω)dω − µ(0)s. (2.13)

So finding a solution for σ only requires the solution of a Burgers-type problem and a-posteriori inte-
gration of the Burgers solution u and its x-derivative with respect to x and s, respectively.

For the complementary variables, we analogously let q∗ = exp(σ∗/ε2), and u∗ = ∂xσ
∗, and obtain

from equivalent system to (2.8e), (2.8g) and (2.8h), which is

∂su
∗ = ε2∂2xu

∗ + 2u∗∂xu
∗ − µx, (2.14a)

u∗(0, s) = 0, u∗(1, s) = 0, (2.14b)

lim
s→0+

∂xu
∗(x, s) = −∞ for x > 0. (2.14c)

For the inverse transform, we can obtain σ∗ via

σ∗(x, s) =

∫ x

a

u∗(r, s)dr +

∫ s

0

ε2∂xu
∗(a, ω) + (u∗)2(a, ω)dω − µ(a)s+ c1(a), (2.15)

and specifically for a = 0,

σ∗(x, s) =

∫ x

0

u∗(r, s)dr +

∫ s

0

ε2∂xu
∗(0, ω)dω − µ(0)s+ c1(0). (2.16a)

The constant c1(0) is determined by the requirement that the initial condition for σ∗ has to satisfy the
integral constraint implied by the appearance of the δ function in (2.8f), that is,

lim
s→0

∫ 1

0

exp
(
ε−2σ∗

)
dx =

√
6ε.

Introducing (2.16) and using that∫ x

0

u∗(r, s)dr =
1

2
∂xu

∗(0, s)x2 +O(x3).

allows the integral to be evaluated in the usual manner for Laplace type integrals, provided that
∂xu(0, s) < 0 giving

c1(0) =
1

2
ln

(
−12

π
lim
s→0

∂xu
∗(0, s)

)
ε2. (2.16b)
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2.3 The parabolic approximation of the potential

For densely grafted polymer brushes, the chains are stretched well beyond their natural length, so
that L is much larger than the gyration radius Rg, hence ε � 1. In this limit, an approximate strong
stretching theory has been developed in place of the self-consistent theory presented above [13]. The
leading order approximation for the potential is found to be, dimensionally,

µdim,0 = −
3π2

8a2N
x2dim

and in our scalings (2.9)

µ = −π
2

16
x2. (2.17)

The strong-stretching theory has been refined by various authors [9–12, 14, 16] to obtain, for example,
more accurate approximations of the entropic free energy. The expression given in [13] for example
was obtained by a combination of calculating the contributions of various physical effects neglected in
the basic strong-stretching theory and fitting. It becomes in our scalings

F =
π2

48ε2
− ln

(
1

2
√
2 ε

)
+ 0.1544− 1.2ε2/3 − 0.30ε4/3. (2.18)

In the following we will develop an asymptotic theory for the strong-stretching limit ε� 1 that directly
recurs to the SCFT model (2.8) (and (2.10))) to compare with the results obtained by the authors
above. We will do so in two steps. First, we will set µ equal to the parabolic approximation (2.17) and
then use asymptotic expansions in ε to obtain approximations in particular for φ, as well as numerical
solutions, and see that and by how much it violates the incompressibility condition (2.8k). Second, we
will seek corrections to (2.17) via a similar route.

It turns out that the asymptotic structure in particular of u (and hence σ and q) is rather complicated;
Fig. 2 gives and overview. There are three layers in s, 0 ≤ s ≤ 1: A layer (labeled 1) close to the
initial conditions, s� 1, an outer solution, labelled 2, where s ∼ 1 and a layer labelled 3, where s is
close to the end of the interval s = 1 + O(ε2). The spatial structure in each of these regions is as
follows:

� For s in region 1, the solution consists of an outer region 1A in x which where x preserves
the scalings of (2.11a) and the asymptotic solution for u is linear in x, but does not satisfy the
boundary condition, so that a boundary layer 1B is needed.

� As s increases, the latter splits into three regions, so that for s in region 2, there are five regions
in x: The outer part 2A which is the continuation of 1A; another outer region 2C and a corner
layer 2B joining the two, and finally a boundary layer 2D to fix a higher order discontinuity at
x = 1.

� As s→ 1, the left outer region and the corner layer are replaced by a boundary layer 3A, while
the right outer region 3B and the boundary layer 3C at x = 1 preserve their structure.

We will discuss these regions and the asymptotic approximations there in section 3.1, starting with s
in region 2 and the matching to region 1 and 3.

In contrast, u∗, and hence σ∗ and q∗, only have two s-regions.

� An outer region in s, region 1, which consists of an outer region 1A in x which has the original
scalings of (2.11a) but does not satisfy the boundary condition at x = 1, thus requiring a
boundary layer 1A that is thinner than the boundary layer there for u.
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s~ ε
2/3

2D

3C

s~ 1

1B1

2

3

ε
4/3O(     )

ε
4/3O(     )

ε
4/3O(     )

s

1

0 1 x

1A

2A 2C

3B

ε

3A 2εO(   )ε
2s−1~

O( )ε

2B

O(1) O(1)

O(1)

O(1)

Figure 2: Map of the asymptotic regimes for u (and hence for q). There are three regimes in s, labelled
1-3 to the right of the vertical axes, where the corresponding scalings for s are also shown. For each
s-regime, the x-regimes are counted by capital letters. The regimes are delineated by dashed lines.
Each s and x regime is labelled by a combination of a number and a letter for s and x, respectively.
The O(·) symbol indicates the scaling for x. Notice that for some of the layers, x is shifted as well as
rescaled. The dotted line in the middle represents the centre of a corner layer that joins the two outer
solutions in 2A and 2C. Details are given in subsequent sections.

s~ 11 ε
2O(   )

1B

ε4/3

s

1

0 1 x

εs−1~2

1A

2B2A O(     )
2/3

O(1)

O(1)

Figure 3: Map of the asymptotic regimes for u∗ (and hence for q∗). Notation and conventions carry over
from fig. 2. The regime 2B has an x-scaling that formally isO(ε2), but the width of solution increases,
so a tilted line was drawn to suggest this.
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Self-consistent field theory for a polymer brush 9

� As s approaches, the outer scaling of x is preserved in 2A but the boundary layer widens (in
fact, like cot(πs/2) until the approximation is no longer valid and a new scaling has to be used.
This defines the overall scaling of s in region 2, and the scaling of x in 2B.

In section 3.2, we give details and develop the asymptotic solutions, discussing the s-regions in their
natural order.

3 Asymptotic analysis for a parabolic potential

3.1 Partition function

3.1.1 Outer region in s (region 2)

We first consider the situation where s and 1− s areO(1), which is the s-region 2 in Fig. 2.

Outer regions in x (regions 2A and 2C). We expand

u = u0 + ε2u1 + . . . . (3.1)

To leading order, we obtain

∂su0 − 2u0∂xu0 =
π2

8
x. (3.2)

For the initial and boundary conditions, we retain (2.11b) and (2.11c), respectively, to leading order.
Characteristics satisfy the ODE system

∂ts = 1, ∂tx = −2u0, ∂tu0 = (π2/8)x. (3.3)

The characteristics enter the domain 0 < x < 1, 0 < s < 1 either from the bottom, through s = 0,
or from the right boundary, i.e. through x = 1. In the former, the initial curve is

s(0, ξ) = 0, x(0, ξ) = ξ, u0(0, ξ) = 0, 0 < ξ < t, (3.4)

giving the characteristics

s = t, x = ξ cos(πt/2), u0 =
π

4
ξ sin(πt/2). (3.5)

Notice that the characteristics all meet at s = 1, x = 0, and only cover the part of the domain for
which x ≤ cos(πs/2). In terms of the original variables, we obtain for u0

u0 =
π

4
x tan(πs/2) for x ≤ cos(πs/2). (3.6)

Notice that because of the constraint of x, the solution remains bounded even as s approaches 1.

For the characteristics entering from the right boundary, the initial condition is

s(0, ξ) = ξ, x(0, ξ) = 1, u0(0, ξ) = 0, (3.7)

giving

s = t+ ξ, x = cos(πt/2), u0 =
π

4
sin(πt/2), (3.8)

hence x = cos(π(s− ξ)/2), and

u0 =
π

4

√
1− x2 for x > cos(πs/2). (3.9)
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Corner layer (region 2B). The two parts of the outer solution have a corner along the characteristic
x = cos(πs/2, and hence require the introduction of a corner layer. We introduce new variables

u = α(ε)v +
π

4
sin(πs/2), x = β(ε)z + cos(πs/2). (3.10)

Matching to the two parts of u0, which are linear as x→ cos(πs/2)±, requires α = β, and then the
equation in the new variables becomes

∂sv =
ε2

α2
∂2zv + 2v∂zv +

π2

8
z. (3.11)

For the second derivative of v to enter the dominant balance requires α = ε, thus giving the full
equation, that is remaining terms gives α = β = ε, thus

∂sv0 = ∂2zv0 + 2v0∂zv0 +
π2

8
z, (3.12a)

as is typical for these types of problems. Matching to the outer solution on the left and right gives the
far-field conditions

v0 ∼ z
π

4
tan(πs/2) as z → −∞, (3.12b)

v0 ∼ −z
π

4
cot(πs/2) as z → +∞. (3.12c)

which come from matching to the two parts of the outer leading order solution. Initial values come from
(2.11b),

v0(z, 0) = 0, −∞ < z < +∞. (3.12d)

Boundary layer at x = 1 (region 2D). For the boundary layer at x = 1, we use

u = α(ε)w, x = 1− β(ε)z. (3.13)

At x → 1−, we have u0 ∼ (π/4)
√

2(1− x), which in the new variables is αw0 ∼ (π/4)
√
2βz.

Balancing this requires β = α2, so that (2.11a) becomes

α∂sw =
ε2

α3
∂2zw − 2w∂zw +

π2

8
(1− α2z). (3.14)

The only possible balance is between the second derivative of w and the O(1) terms on the right
hand side, resulting in α = ε2/3. Thus, the leading order problem is

∂2zw0 − 2w0∂zw0 +
π2

8
= 0, (3.15a)

w0(0) = 0, (3.15b)

w0 ∼
π

2
√
2

√
z as z → +∞. (3.15c)

where the second and third equation come from the second boundary condition in (2.11c) and from
matching with the outer problem, respectively.

Integrating (3.15a) once gives the ODE

∂zw0 − w2
0 +

π2

8
z =

π2

8
z1. (3.16)
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The integration constant z1 represents a shift of w0, hence we first consider the case z1 = 0. Then
the general solution is

w0(z) = −
π2/3

(
c2Ai

′ ( π2/3z/2
)
+ Bi′

(
π2/3z/2

))
2 (c2Ai (π2/3z/2) + Bi (π2/3z/2))

, (3.17)

where Ai and Bi denote the Airy functions. Indeed, if we vary c2 over all real numbers including the
limiting cases c2 = ±∞, the value of w0(0) achieves each real number exactly once. It turns out
that the only solution that has the right far-field behaviour as required by (3.15c) is in fact the one for
c2 →∞. Upon reinstating the shift z1, this gives

w0(z) = −
π2/3Ai′

(
π2/3(z + z1)/2

)
2Ai (π2/3(z + z1)/2)

. (3.18a)

Since the zeros of Ai and Ai′ alternate, and none of the former is allowed to correspond to a value of
z in the range z > z1 to avoid singularities, there is only one value of z1 for which w1 also satisfies
(3.15b), which expressed in terms of the largest zero ζ1 = −1.018792972 of Ai′ is

z1 =
2

π2/3
ζ1 = −0.9499104982. (3.18b)

For future reference, we also record the first terms in the far-field expansion of w0,

w0(z) ∼
π

2
√
2
z1/2 +

π1/3ζ1

2
√
2
z−1/2 +

1

4
z−1 +O(z−3/2) z →∞. (3.19)

3.1.2 Region 1: s = O(ε2/3).

The solution structure above is not valid for s close to 0, since it requires the corner layer and the
boundary layer to be well separated by the outer layer. The corner layer is the wider of the first two
and has width O(ε), so validity requires that s � ε1/2. To capture the behaviour near 0, we rescale
s = δs̃, u = δũ, with δ � 1, and obtain from (2.11a)-(2.11c) the equation

∂s̃ũ = δε2∂2xũ+ 2δ2ũ∂xũ+
π2

8
x (3.20a)

and the initial and boundary conditions are

ũ(x, 0) = 0, (3.20b)

ũ(0, s̃) = 0, ũ(1, s̃) = 0. (3.20c)

We then expand ũ = ũ0 + ε2ũ1 + · · · , and obtain the leading order solution

ũ0 =
π2

8
xs̃. (3.21)

This solution does not satisfy the boundary condition at x = 1. We therefore let x = 1− αz, giving

∂s̃ũ =
δ

α2
ε2∂2z ũ+ 2

δ2

α
ũ∂zũ+

π2

8
(1− αz) (3.22)

We expect the second derivatives to enter in this layer, as they are most likely to provide a smooth
transition. Hence we must have α = εδ1/2. For consistency, the first derivative term must not be
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dominant. Sub-dominance requires δ2/α � 1, and using the previous relation gives δ � ε2/3. The
first derivative term enters the balance if δ = ε2/3. Using this gives

∂s̃ũ = ∂2z ũ+ 2ũ∂zũ+
π2

8
(1− ε4/3z). (3.23)

Thus, to leading order

∂s̃ũ = ∂2z ũ+ 2ũ∂zũ+
π2

8
, (3.24a)

with boundary and far-field conditions

ũ(0, s̃) = 0, (3.24b)

ũ ∼ π2

8
s̃ as z → −∞. (3.24c)

We need to join this with the s = O(1) region (s-region 2) that we analysed in the previous subsection.
For this purpose, we need to understand the large ŝ asymptotics of (3.24a). We rescale s̃ = ŝ/δ1 with
δ1 � 1. Introducing this into (3.24a) gives

δ1∂ŝũ = ∂2z ũ+ 2ũ∂zũ+
π2

8
, (3.25)

so that to leading order, we recover the problem (3.15).

This boundary solution has to be matched to a wider region to the left, so we scale û = αũ, ẑ = βz
with β � 1 Since it satisfies the same problem (3.15), its far-field behaviour for z → ∞ is the same
as in (3.15c) and hence matching requires β = α2. Introducing this into (3.25) gives

δ1
α
∂ŝû = α3∂2ẑ û+ 2û∂ẑû+

π2

8

(
1− ε4/3

α2
ẑ

)
. (3.26)

Since α� 1, the second derivative drops out. The next two terms on the right hand side are already
contained in (3.24), hence to get anything new, we need to include at least either the last term on
the right hand side or the term on the left hand side. It seems plausible to include the former, to get
additional spatial information, which means α = ε2/3. But then we are back to scaling the spatial
variable as in 2D. This suggests that the s-region 1 with scaling s = Oε2/3 matches directly into the
s-region 2, where s = O(1).

3.1.3 Region 3: s− 1 = O(ε2)

As s→ 1, the corner layer approaches the point x = 0. We therefore expect the asymptotic structure
we have found for s = O(1) to break down when cos(πs/2)−1 = O(ε), that is, when s−1 = O(ε).

On the other hand, if we for the moment allow s to go beyond s = 1 and let s → ∞, we see that it
tends to a stationary solution satisfying

ε2∂2xu+ 2u∂xu+
π2

8
x = 0, (3.27a)

u = 0 at x = 0, 1. (3.27b)
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This boundary value problem has a triple layer solution, with the leading order outer solution given by
(3.9), the layer at x = 1 of widthO(ε2/3) with the solution as in (3.18), and finally a layer at x = 0 of
widthO(ε2) where the solution satisfies (letting x = ε2y)

∂2yu+ 2u∂yu = 0, (3.28a)

u = 0 at y = 0, (3.28b)

u→ π

4
as y →∞. (3.28c)

This has the solution

u(y) =
π

4
tanh

(πy
4

)
. (3.29)

We investigate the solution near s→ 1 by letting s− 1 = δτ and x = αy, with δ � 1 and α � 1.
We anticipate that we have to match to a constant inner limit of u0 in (3.9), so we do not rescale u.
Introducing these scalings into (3.9) gives

1

δ
∂τu =

ε2

α2
∂2yu+ 2

1

α
u∂yu+

π2

8
αy. (3.30)

The last term in the differential equation is sub-dominant. The first term on the right hand side is sub-
dominant, too, unless α has at most the same order as ε2. But then nothing new is gained compare
to the right outer problem, and we would [likely] end up with the solution structure of the s = O(1)
problem. Hence we insist on retaining the second order derivative term and let α = ε2, giving to
leading order

ε2

δ
∂τu = ∂2yu+ 2u∂yu+

π2

8
ε4y, (3.31)

with boundary condition

u(0, 0) = 0. (3.32)

From matching to (3.9), we obtain

u→ π

4
as y →∞, (3.33)

Therefore, dropping the ∂τu term, we obtain the stationary solution (3.29) to leading order.

3.1.4 Corrections in the outer regions 2A and 2C.

Keeping in mind that the goal is to obtain a result for φ that is correct to O(1), and that this implies
dividing σ by ε2 and before taking the exponential, we expect to need next order corrections at least
in some cases. We first investigate the corrections to the left outer layer, that is, for x < cos(πs/2).
Expanding to next order gives

∂su1 −
π

2
x tan(πs/2)∂xu1 =

π

2
tan(πs/2)u1, x ≤ cos(πs/2), (3.34a)

with initial and left boundary condition

u1(x, 0) = 0, u1(0, s) = 0. (3.34b)
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Notice that u0 is an exact solution of the full PDE (2.11), no correction terms appear in (3.34a).
Since the initial and boundary condition are also zero, we expect u1 to vanish. Indeed, if we introduce
characteristic variables, we recover the first two equations in (3.5) and

∂su1 =
π

2
tan(πs/2)u1. (3.35)

Together with the initial condition this gives

u1 = 0 for x < cos(πs/2). (3.36)

For x > cos(πs/2), we expect to get a correction in the outer of O(ε−2), but in fact, to match with
the second term in the expansion (3.19) of w0 we first need a correction ofO(ε4/3), that is, we let

u = u0 + ε4/3u1 + . . . x > cos(πs/2).

The leading order solutions in 2C and 2D are constant in time and hence we can expect u1 to be
time-independent as well and to satisfy the ODE

π

2

√
1− x2∂xu1 −

πxu1

2
√
1− x2

= 0, x > cos(πs/2). (3.37)

Integrating once gives
π

2

√
1− x2 u1 =

π

2
c, (3.38)

with an integration constant c. This gives

u1 =
c√

1− x2
. (3.39)

Finally, we match with the second term in (3.19) to get

u1 =
π1/3ζ1

2
√
1− x2

, x > cos(πs/2). (3.40)

We also record the composite solution uc of u1 and w0 that is correct up toO(ε4/3):

uc = u0(x)−
π

2
√
2

√
1− x+ ε2/3w0

(
(1− x)ε−4/3

)
, x > cos(πs/2), (3.41)

where u0 and w0 are given by (3.9) and (3.18), respectively.

3.1.5 Reconstruction of the partition function q

We now have all information on u we need to reverse the Cole-Hopf transform and obtain approxi-
mations for σ and then for q. Using (2.12) (with µ(0) = 0 for the parabolic potential) gives for fixed
0 ≤ x < cos(πs/2),

σ(x, s) =

∫ x

0

u0(r, s)dr +

∫ s

0

ε2∂xu(0, ω)dω + o(ε2)

=
π

8
x2 tan(πs/2)− 1

2
ln cos(πs/2)ε2 + o(ε2). (3.42)
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The error o(ε2) may appear too pessimistic, since know from our previous derivations that u0 is the
full outer expansion to at leastO(ε4) (and we can in fact speculate it is correct to all orders). However,
we have not included the corner layer contribution which contributes an error that grows to O(ε2) as
we approach cos(πs/2), but is smaller than that as long as cos(πs/2)− x� ε.

For cos(πs/2) < x < 1 fixed, we obtain

σ(x, s) = σ(cos(πs/2), s) +

∫ x

cos(πs/2)

u0(r, s)dr +O(ε2), (3.43)

where the error term comes from the integrating across the corner layer, from dropping u1. In fact, if
we continue towards x→ 1, this does not change, as integrating across the boundary layer provides
an O(ε2) contribution as well. Evaluating the first term on the right hand side using (3.42) (noting the
ε2-term this introduces is absorbed into the overall error of the same order), we get

σ(x, s) =
π2

16
s+

π

8

[
x
√
1− x2 − arccosx

]
+O(ε2) if cos(πs/2) ≤ x ≤ 1. (3.44)

Using these results to obtain an approximation for q gives (0 ≤ x ≤ 1),

q(x, s) =


1√

cos(πs/2)
exp

(
π

8

x2

ε2
tan(πs/2)

)(
1 +O(ε2)

)
if x < cos(πs/2),

exp

(
π2s

16ε2
+

π

8ε2

[
x
√
1− x2 − arccosx

])
gε if cos(πs/2) ≤ x.

(3.45)

The term gε = gε(x, s) collects all the error terms for x ≥ cos(πs/2) and we cannot say more than
that it is not worse than O(1). This seems very little, but due to the exponential pre-factor with an
O(ε−2)-term in the exponent, it is still a correction that moreover will turn out not to matter for the
quantities we need.

3.1.6 Comparison with numerical results

Numerical solutions for u are shown in Fig. 4 for ε = 0.1 for moderate values of s, that is, values that
are not close to 0 or 1. The solution structure corresponding to regions 2A-2C are clearly visible, with
the two outer solutions a straight line on the left and a sector of an ellipse to the right corresponding to
regions 2A and 2C, joined by a corner layer predicted for region 2B, with a maximum at x = 0.67 for
example for s = 0.5 (red line). This corner moves to the left i.e. to smaller values of x as s increases.
The leading order analytic approximations (3.6) for region 2A (dashed lines of corresponding colour)
are on top of the numerical solution for x below cos(πs/2), i.e. to the left of the corner layer.

In contrast, there is a noticeable difference to the leading order outer solution (3.9) for region 2C,
shown by a dotted line for all 0 < x < 1. Notice that only the part with x > cos(πs/2), in other
words, to the right of the corner layer, is relevant for each s. The difference is typically in the range of
about 0.04 for moderate x and decreases by a factor of 2.5 as ε is doubled. This is consistent with an
O(ε4/3) error predicted in section 3.1.4. Indeed, if we compare with the partial composite solution uc
in (3.41) which incorporates the O(ε4/3) correction, the fit is much better (dashed line with bullets).
Varying ε, we found that the remaining difference at x = 0.5 for example decreases quadratically with
ε, suggesting that the next order correction isO(ε2).
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0 0.5 1
x

0

0.8

u

Figure 4: Comparison of the numerical solution of (2.11) (for the parabolic potential (2.17)), repre-
sented by solid lines, with the asymptotic approximations u0 as in (3.60) and (3.9), shown by dashed
and dotted lines, respectively. Notice that latter has been continued to x = 0. The partial composite
solution (3.41) for ε = 0.1 is shown for 0 < x < 1 by a dashed line emphasized by bullets. Numerical
solutions for the same ε are shown for s = 0.25, 0.5 and 0.75 using black, red and green lines. The
arrow points in the direction of increasing s.

3.2 Complementary partition function

3.2.1 Outer region in s (region 1)

For u∗, we first assume s and 1− s areO(1). it turns out that we will only need two regions in s, one
where 1 − s = O(1) and a layer for s → 1, but s � 1 does not require a special treatment as it
was required for u. The full problem for u∗ is given by (2.14) with µ set to parabolic chemical potential
(2.17), that is

∂su
∗ = ε2∂2xu

∗ + 2u∗∂xu
∗ +

π2

8
x, (3.46a)

u∗(0, s) = 0, u∗(1, s) = 0. (3.46b)

lim
s→0+

u∗(x, s) = −∞, x > 0, (3.46c)

Outer region in x (region 1A). We expand

u∗ = u∗0 + ε2u∗1 + . . . , (3.47)

giving, to leading order, the same PDE as for u0,

∂su
∗
0 = 2u∗0∂xu

∗
0 +

π2

8
x, (3.48)

and the same boundary but different initial conditions, (3.46b) and (3.46c), respectively. The scale
invariance of the problem without the boundary conditions is, however, the same, so we expect an
expansion-type wave centred at x = 0 as before, however, in the case here it is concentrated at
x = 0. Therefore, while the ODE system for the characteristics is again

∂ts = 1, ∂tx = −2u∗0, ∂tu
∗
0 = (π2/8)x. (3.49a)
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we parametrise the initial data via u0 rather than parametrising x at t = 0,

s(0, η) = 0, x(0, η) = 0, u∗0(0, η) = −
π

4
η, (3.49b)

where the last expression needs to ensure that u∗0(0, η) spans the full range from 0 (to connect with
the boundary condition x = 0) and−∞, imposed by (3.46c). A linear function in η with the factor π/4
was chosen for convenience. The solution along characteristics is

s = t, x = η sin(πt/2), u∗0 = −
π

4
η cos(πt/2), (3.50)

thus
u∗0 = −

π

4
x cot(πs/2). (3.51)

Boundary layer at x = 1 (region 1B). We need to introduce a boundary layer at x = 1. We need
to match with

u∗0(1, s) = −
π

4
cot(πs/2), (3.52)

which for moderate s is an O(1) constant, hence we only rescale x. Inner scaling of x increases
the first and second derivatives in (3.46a), while keeping the other terms unchanged. So the natural
balance is between the first two terms on the right hand side, giving

x = 1− ε2z, (3.53)

Introducing this and U∗(z, s) = u∗(x, s) leads to the rescaled equation

ε2∂sU
∗ = ∂2zU

∗ − 2U∗∂zU
∗ +

π2

8
ε2(1− ε2z). (3.54)

The leading order equation is
∂2zU

∗ − 2U∗∂zU
∗ = 0. (3.55)

The solution that satisfies the boundary condition U0(0, s) = 0 and matches to (3.52) is

U∗0 = −π
4
cot(πs/2) tanh

(π
4
cot(πs/2)z

)
. (3.56)
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3.2.2 Region 2: s− 1 = O(ε2/3)

Region 2B (inner region at x = 1). The inner solution in region 1B will not last until s = 1, since it
decreases and widens until it has the same order as the other terms in (3.54). We can see from (3.56)
that U∗0 ∼ cot(πs/2) and z ∼ 1/ cot(πs), so that the two terms in the inner dominant balance
scale like cot3(πs/2). They balance with the two other terms, if cot(πs/2) = ε2/3. This suggests the
following rescaling for region 2B:

z = ε−2/3y, U∗ = ε2/3V ∗, s = 1 + ε2/3S. (3.57)

Introducing this into (3.54) gives the equation

∂SV
∗ = ∂2yV

∗ − 2V ∗∂yV
∗ +

π2

8
(1− ε4/3y), (3.58)

so to leading order

∂SV
∗
0 = ∂2yV

∗
0 − 2V ∗0 ∂yV

∗
0 +

π2

8
, (3.59)

and boundary condition
V ∗(0, s) = 0. (3.60)

We also need to match with (3.56). Taking the s→ 1 limit there, gives

U∗0 ∼
π2

8
(s− 1) tanh

(
−π

2

8
(s− 1)z

)
+O((1− s)2). (3.61)

Inserting (3.57) gives

V ∗0 ∼ −
π2

8
S tanh

(
π2

8
Sy

)
as S → −∞. (3.62)

Region 2A (outer region). To complete the discussion of region 2 and provide a matching condition
for V ∗, we now look at the outer spatial scaling for x, which in fact carries over from region 2A, since
it still has width O(1). On the other hand, the magnitude of u∗ needs to match with 2B so we take
the scaling from the dependent variable from there. Combining the two, gives the following rescaling
In terms of the new variables in 2B, we therefore have

x = 1− ε4/3y, ũ∗ = V ∗. (3.63)

Using this in (3.58), we get

∂Sũ
∗ = ε8/3∂2xũ

∗ + 2ε4/3ũ∗∂xũ
∗ +

π2

8
x, (3.64)

so to leading order

∂Sũ
∗
0 =

π2

8
x, (3.65)

which has the solution

ũ∗0 =
π2

8
Sx, (3.66)

where the integration constant has been fixed by matching back with (3.51). Notice this equation
satisfies the boundary condition ũ∗0(0, S) = 0 at x = 0. Rewriting (3.66) in terms of y and V ∗ gives
the matching condition for V ∗0 ,

V ∗0 ∼
π2

8
S as y →∞. (3.67)

Notice that, because S < 0, the limit of (3.62) as y →∞ agrees with (3.67).

DOI 10.20347/WIAS.PREPRINT.2648 Berlin 2019



Self-consistent field theory for a polymer brush 19

3.2.3 Corrections in the outer region 1A

The next order correction to the outer problem is very similar to the problem for u1,

∂su
∗
1 +

π

2
x cot(πs/2)∂xu

∗
1 = −

π

2
cot(πs/2)u∗1. (3.68a)

with initial and left boundary condition

u∗1(x, 0) = 0, u∗1(0, s) = 0. (3.68b)

Introducing characteristic variables, we get

∂su
∗
1 = −

π

2
cot(πs/2)u∗1, (3.69)

which has the general solution

u∗1 =
A(ξ)

sin(πs/2)
. (3.70)

However, the initial condition enforces A(ξ) = 0, hence

u∗1 = 0. (3.71)

3.2.4 Reconstruction of the complementary partition function q∗

We can now obtain an approximation for q∗ (via σ∗) from the information we have gathered on u∗.
From (2.16), we get

σ∗(x, s) =

∫ x

0

u∗(r, s)dr + ε2
∫ s

0

∂xu
∗(0, ω)dω +

1

2
ln

(
−12

π
∂xu

∗(0, 0+)

)
ε2. (3.72)

Introducing (3.51) gives, for fixed 0 ≤ x < 1 and 0 < s < 1,

σ∗(x, s) = −π
8
x2 cot(πs/2)− 1

2
ln sin(πs/2) + ln

(√
3
)
ε2 + o(ε2) (3.73)

This solution needs to be changed or corrected in the initial and final s-layers and in the boundary
layer near x = 1. The error estimate uses that u1 is zero, so that there is no O(ε2) contribution to
the first term in (3.72), but in fact, we need a stronger assumption to ensure that the logarithmic term
does not introduce andO(ε2 ln ε) term, namely that u0 is correct to all orders at least at x = 0. From
this we obtain

q∗(x, s) =

√
3√

sin(πs/2)
exp

(
− π

8ε2
x2 cot(πs/2)

)
+ o(1) (3.74)

in the outer (s and x) region.

3.2.5 Comparison with numerical results

For the numerical solution, we regularise the δ-function in the initial condition for q∗ by replacing it by
a smooth approximation, that is, a suitable scaled Gaussian,

q∗(x, 0) =
2
√
6√

πωε
exp

(
− x2

ω2ε4

)
. (3.75)
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Figure 5: (a,left): Comparison of the numerical solution for u∗ of (3.46) (and the regularised initial
condition (3.77)), shown by solid lines, with the leading order asymptotic solution in region 1A (eqn.
(3.77), dashed lines) and in region 1B (eqn. (3.56), dotted lines). The profiles are shown for s =
0.25, 0.5, and 0.75 using black, red and green lines, respectively. The arrow points in the direction
of increasing s. (b, right): Numerical solution for u∗ at s = 1 for ε = 0.1, 0.05, 0.025, 0.0125, and
ωε = 0.025. The arrow points in the direction of decreasing ε.

The width of the Gaussian is chosen to be O(ε2) to ensure that it fits into the thinnest boundary layer
near x = 0 anywhere in the problem, which is the one in section 3.1.3. From this, we obtain.

u∗(x, 0) = − 2x

ω2ε2
. (3.76)

Unfortunately, this initial data does not satisfy the boundary condition u = 0 at x = 1. Hence we
introduce a cut-off at x = 1− xcut, with xcut � 1, and use the piecewise linear function

u∗(x, 0) =


− 2x

ω2ε2
if 0 ≤ x ≤ xcut

− 2xcut(1− x)
ω2ε2(1− xcut)

if xcut < x ≤ 1,
(3.77)

with xcut = 1− ω2ε4. This choice is consistent with the boundary layer near x = 1 described by the
scaling (3.53).

The numerical solutions in fig. 5(a) clearly shows the predicted structure. For small and moderate s
not too close to 1, the outer approximation in region 1A (3.51) is a linear function in x that is on top of
the numerical solution for x < 1. The outer approximation matches with the leading order boundary
layer approximation (3.56), which in turn approximates the numerical solution very well in region 1B
near x = 1. For s → 1, the outer approximation remains valid but the boundary layer approximation
does not. In particular for s = 1, both (3.51) and (3.56). While the numerical solutions shown in
fig. 5(b) rapidly decay to zero away from x = 1, the are markedly non-zero near the end point. The
figure shows the numerical results for several ε from 0.1 down to 0.0125. The value of the maximum
decreases over this range by a factor of 4 and the position of the maximum by a factor of 16, which
is consistent with the scaling predicted for region 2B (second equation in (3.57) and first equation in
(3.63)).
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3.3 Full partition function and density

3.3.1 Analytic approximations and error analysis

To calculate Q and φ, we need to obtain q(x, s)q∗(x, 1− s). We first note that for fixed cos(πs/2) <
x < 1, this expression becomes exponentially small, while for fixed 0 < x < cos(πs/2), it is order
one, so we can truncate the integrals to the latter region. Thus,

Q =

∫ cos(πs/2)

0

q(x, s)q∗(x, 1− s) dx,

φ(x) =
1

Q

∫ (2/π) arccosx

0

q(x, s)q∗(x, 1− s) ds.

Using (3.45) in the expression for Q gives

Q =

∫ cos(πs/2)

0

√
3

cos(πs/2)
dx+O(ε)

=
√
3 +O(ε). (3.78)

The error contribution from the outer layer is clear and is O(ε2). However, we also integrate across
boundary layers for which we have not included corrections. The largest boundary layer is the corner
layer in u. Dropping the corner layer solution introduced an error O(ε) to u, but we need to integrate
with respect to x to obtain σ, so we have an error ofO(ε2). Dividing by ε2 and exponentiating to gives
and O(1) error to q and the product in the integrand of Q, but this only applies to the boundary layer
so integration gives andO(ε) error as claimed.

Similarly,

φ(x) =
1

Q

∫ (2/π) arccosx

0

√
3

cos(πs/2)
ds+O(ε),

=
2

π
ln

(
1 +
√
1− x2
x

)
+O(ε). (3.79)

The error estimates follows from the same considerations as forQ and of course from the error present
in Q itself.

3.3.2 Numerical comparisons

In this section, we are particularly interested in comparing the asymptotic and the numerical results
for φ. As our base parameters, we choose

ε = 0.1, ω = 0.5. (3.80)

In Fig. 6, we compare the analytic approximation for φ with the numerical results for the pair of values
given in (3.80) and for the case where ω = 0.25. The two numerical solutions and the analytical
asymptotic approximation agree well except near the left and right end of the interval 0 < x < 1.
Changing ω hardly changes the numerical result near x = 1, but there is a noticeable difference near
x = 0. However, this difference is not very large and in fact we found that the result converged to a
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Figure 6: Comparison of analytical approximation for φ in (3.79) with two numerical solutions for two
different ω, with ε = 0.1. Panel (a,left) shows the full view for 0 < x < 1, while (b,middle) shows a
zoom of the left end of the interval and (c,right) of the right end.
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Figure 7: Comparison of analytical approximation for φ in (3.79) with two numerical solutions for two
different ε, with ωε = 0.05 fixed. Panel (a,left) shows the full view for 0 < x < 1, while (b,middle)
shows a zoom of the left end of the interval and (c,right) of the right end.

finite curve as ω → 0, for fixed ε > 0. This is the limit in which the Gaussian approximation of the
initial data for q∗ becomes an exact δ-function. Thus we conjecture that for finite ε > 0, the solution
for φ is finite and the logarithmic singularity in (3.79) is only recovered in the limit ε→ 0.

In Fig. 7, we keep ωε fixed but decrease ε. Consistent with our previous remark, the value of the
numerical solution for φ at x = 0 increases dramatically as ε is reduced, i.e. the graph of the nu-
merical solution approaches the singularity of the analytical approximation (3.79) closer. At x = 1,
the reduction of ε with fixed ωε induces a change in the boundary layer, which becomes thinner. The
zoom shows the situation, where the solution for the smaller ε has a deeper minimum that is closer
to 1. The distance to 1 decreases from 0.026 to 0.011, that is, by a factor of 0.42; the prediction from
the boundary layer analysis is 2−4/3 ≈ 0.40, so this is in reasonable agreement. The depth of the
minimum changes from 0.26 to 0.17, or by 0.64, compared to 2−2/3 ≈ 0.63, again in reasonable
agreement with the theoretical prediction from the boundary layer analysis.

4 Conclusion and Outlook

In this study we have used systematic singular perturbation analysis to establish analytically the
strong-stretching limit of the self-consistent field theory for a dry polymer brush. The analysis lays
the foundation to investigate the analytic expression for the polymer segment density as a function of
the chemical potential (the external field) that is so far only known in the strong-stretching limit ε→ 0.

The asymptotic theory presented here is not restricted to the problem of a grafted brush but can be
applied to other fundamental polymers systems such as homopolymer blends or diblock-copolymers
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and will be addressed in our future work.
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