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Uniformly positive correlations in the dimer model and phase
transition in lattice permutations in Zd, d > 2,

via reflection positivity
Lorenzo Taggi

Abstract

Our first main result is that correlations between monomers in the dimer model in Zd do not
decay to zero when d > 2. This is the first rigorous result about correlations in the dimer model in
dimensions greater than two and shows that the model behaves drastically differently than in two
dimensions, in which case it is integrable and correlations are known to decay to zero polynomially.
Such a result is implied by our more general, second main result, which states the occurrence
of a phase transition in the model of lattice permutations, which is related to the quantum Bose
gas. More precisely, we consider a self-avoiding walk interacting with lattice permutations and we
prove that, in the regime of fully-packed loops, such a walk is ‘long’ and the distance between its
end-points grows linearly with the diameter of the box. These results follow from the derivation of
a version of the infrared bound from a new general probabilistic settings, with coloured loops and
walks interacting at sites and walks entering into the system from some ‘virtual’ vertices.

1 Introduction

This paper considers two models related to each other, the dimer model and lattice permutations.

The dimer model is a classical statistical mechanics model whose configurations are perfect matchings
of a graph, namely subsets of edges which cover every vertex precisely once. The model attracts
interest from a wide range of perspectives, which include combinatorics, statistical mechanics, and
algorithm complexity studies. Its rigorous mathematical study achieved a breakthrough with the works
of Kasteleyn, Temperley and Fisher, [24, 37, 48] in 1961, who showed that on planar graphs the
dimer problem is exactly solvable. By then, various aspects of the dimer model have been explored:
For example its close relation to the critical Ising model [2, 37], a characterisation of the model’s
correlations [25], the arctic circle phenomenon [15], their continuous limits and the emergence of
conformal symmetry [33, 39, 40].

Despite so much progress on planar graphs, the rigorous mathematical understanding of the dimer
model in higher dimensional graphs is still very poor. Indeed, as it was formalised by Hammersley
et al. [38], the method of Kasteleyn, Temperley and Fisher, which consists of reducing the problem
of enumerating the number of dimer covers to the problem of computing the Pfaffian of the so-called
Kasteleyn matrix, cannot be naturally extended to Zd, d > 2, in which case it was shown [36] that the
dimer model is computationally intractable.

This paper presents the first result about correlations in the dimer model in Zd, when d > 2. More
precisely, we consider the monomer-monomer correlation, i.e, the ratio between the number of dimer
covers with two monomers and the number of dimer covers with no monomers, which is a central
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quantity in the study of this model. In dimensions d = 2, it was shown that it decays to zero polynomi-
ally with the distance between the two monomers [16, 25]. Our first main result, Theorem 2.1 below,
states that such a function does not decay to zero with the distance when d > 2. This is in agreement
with physicists predictions [35] based on heuristic arguments. As a by-product of our technique we
also deduce that, in the infinite volume limit, the correlation between monomers along the cartesian
axis equals 1

2d
up to non-positive corrections term of order O( 1

d2
), which are uniform with respect to

the distance between such monomers.

Our first main result is implied by our more general main result about the model of lattice permutations,
which, in the form as we define it, can be viewed as a generalisation of the double dimer model
[17, 41]. The configuration space of the model can be viewed as the set of directed multi-graphs
whose vertex set are the vertices of a box in Zd and such that any connected component is either
a ‘monomer’ (a single vertex with no edges which are incident to it), a ‘double edge’ (a connected
component consisting of two vertices and two parallel edges pointing opposite directions), or a directed
self-avoiding loop. A measure which assigns to each such graph a weight which depends on two
parameters, ρ ∈ [0,∞), the monomer activity, andN ∈ [0,∞), the number of colours, is introduced.
The parameter ρ rewards the number of monomers, while the parameter N rewards the number of
loops and double edges.

The study of lattice permutations has been proposed in [12, 4, 31, 34] in view of their connections
to Bose-Einstein condensation [23], which is an important unsolved statistical mechanics problem.
Contrary to these papers, where jumps of arbitrary length are allowed and penalised according to a
Gaussian weight (and no multiplicity factor for the number of loops and double edges is considered),
here we only allow jumps of length one or zero; this feature gives the model a combinatorial flavour
and allows the connection with the dimer model. The relevance of lattice permutations for the study of
Bose-Einstein condensation is that, contrary to other spatial random permutation models which were
studied before (for example [5, 7, 9, 10, 8, 21, 1]) and similarly to the interacting quantum Bose gas,
a spatial interaction which depends on the mutual distance of the loops takes place (loops interact
by mutual exclusion). This feature makes the techniques which have been employed in such previous
works ineffective for the rigorous analysis of lattice permutations and the model interesting and chal-
lenging. The central question for the quantum Bose gas is whether Bose-Einstein condensation takes
place. In [50] it is shown that, in a random loop model which is related to lattice permutations, the
two-point function, namely the ratio of the partition functions of a system with a forced ‘open’ cycle and
one without, can be used to detect Bose-Einstein condensation: If this ratio stays positive uniformly in
the volume and in the spatial separation of the two endpoints of the forced cycle, this is equivalent to
the presence of off-diagonal long range order [44], which itself is equivalent to Bose-Einstein conden-
sation. This paper (our Theorem 2.3 below) provides a rigorous proof of this fact in the model of lattice
permutations.

The relevance of lattice permutations goes even beyond their connection to the dimer model and Bose-
Einstein condensation, which holds when N = 2. Indeed, they are an intriguing mathematical object
for any value of N ∈ [0,∞) and can be viewed as a version of the loop O(N) model, which is in turn
related to spin systems with continuous symmetry for integer values of N (see [45] for an overview).
The difference between our setting and the model considered in [45] is that we also allow double
edges and that the loop containing the origin is ‘open’, namely it is a self-avoiding walk which starts
from the origin and ends at an arbitrary vertex of the box. One of the most important questions for this
class of models is the identification of regions of the phase diagram where the loop length does not
admit exponential decay. This was recently accomplished for the loop O(N) model on the hexagonal
lattice using various techniques, for example parafermionic observables, planar spin representations,
and Russo-Welsh estimates [20, 32], see also further references in [45]. Although very powerful, these
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Figure 1: A realisation π ∈ Ω on the torus.

techniques are specific for planar graphs and cannot be naturally extended to Zd, d > 2, in which
case only results stating exponential decay have been derived [14, 47] and techniques are missing.
Our Theorem 2.2 below states that, in any dimension d > 2, in the regime of fully-packed loops, the
length of the self-avoiding walk in lattice permutations grows unboundedly with the size of the box and
the distance between its two end-points is of the same order of magnitude as the diameter of the box.
Hence, not only we rule out exponential decay in any dimension d > 2, but we also identify the correct
scaling of the distance between the end-points of the self-avoiding walk.

Our proof method is of independent interest and can be viewed as reformulation of the famous ap-
proach of Fröhlich, Simon and Spencer in [28] in the space of paths. In [28], the property of reflection
positivity of a system of spins with continuous symmetry, known as spin O(N) model, was employed
for the derivation of the so-called infrared bound, which implies that correlations do not decay in such
a spin system. Such an approach was further developed in [29, 30] and implemented in several other
research works in the framework of quantum and classical spin systems. Here we implement such
an approach in a completely different setting which does not involve spins, but a general probabilistic
model of interacting coloured loops and walks. Our framework includes the (loop representation of) the
spin O(N) model as a special case, and other random loop models for which no spin representation
exists or is easy to derive, for example lattice permutations (see also Remark 3.2 below). Hence, our
method can be viewed as an extension of [28, 29, 30].

2 Definitions and main results

We now provide a precise definition of the dimer model and of lattice permutations and we state our
main results formally. This section is divided into three paragraphs with each paragraph stating a main
theorem. Our third theorem, Theorem 2.3 below, involves lattice permutations and it can be viewed as
a reformulation of our Theorem 2.2 and as a generalisation of Theorem 2.1, which involves the dimer
model.
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Figure 2: Left: A dimer cover inD(∅). Centre: A dimer cover inD({o, z}). Right: superposition of the
dimer cover on the left and the dimer cover in the centre.

The Dimer model. A dimer cover of the graph G = (V , E) is a spanning sub-graph1 of G such that
every vertex has degree one. Let (TL,EL) be a graph with vertex set TL :=

{
(x1, . . . , xd) ∈ Zd

: xi ∈ (−L
2
, L

2
]
}

and edges connecting nearest-neighbour vertices and boundary vertices so that
(TL,EL) can be identified with the torus Zd/LZd, where L ∈ N>0. For any set of sites M ⊂ TL,
let D(M) be the (possibly empty) set of dimer covers of the graph which is obtained from (TL,EL)
by removing all the sites which are in M and from EL all the edges which are incident to at least
one vertex in M . The monomer-monomer correlation is a fundamental quantity for the analysis of the
dimer model and it corresponds to the ratio between the number of dimer covers with two monomers
and the number of dimer comers with no monomer,

∀x ∈ TL ΞL(x) :=
|D({o, x})|
|D(∅)|

, (1)

where o is used to denote the origin, o = (0, . . . , 0) ∈ TL. See also Figure 2. This function equals
zero if L ∈ 2N and x belongs to the even sub-lattice of TeL ⊂ TL, which is now defined together with
the odd sub-lattice,

TeL := {x ∈ TL : d(o, x) ∈ 2N}, ToL := {x ∈ TL : d(o, x) ∈ 2N + 1}, (2)

where d(o, x) is the graph distance in (TL,EL). Let N+ =
∑

n>0 1{Sn = o} be the number of
returns to the origin of a simple random walk, Sn, in Zd, whose probability measure and expectation
are denoted by P d and Ed respectively, define rd := Ed(N+), the expected number of returns to the
origin. We use ei ∈ Rd to denote the cartesian vectors, where i ∈ {1, . . . , d}.

Theorem 2.1. Suppose that d > 2. Then,

lim inf
L→∞
L even

1

|ToL|
∑
x∈ToL

ΞL(x) ≥ 1

2d
(1− rd

2
). (3)

Moreover, for any ϕ ∈
(

0, 1
2d

(1 − rd
2

)
)
, there exists an (explicit) constant c1 = c1(ϕ, d) ∈ (0, 1

2
)

such that for any large enough L ∈ 2N and any odd integer n ∈ (0, c1 L),

ΞL(n e1) ≥ ϕ. (4)

An exact computation made by Watson [52] shows that 0.51 < rd < 0.52 when d = 3 and from
the Rayleigh monotonicity principle [46] we deduce that rd is non-increasing with d. Thus, the Cesáro

1A spanning sub-graph of a graph G = (V, E) is a sub-graph of G whose vertex set is V .
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sum in (3) is bounded away from zero uniformly for large L for any d > 2. Contrary to this, when
d = 2 such a sum converges to zero with the system size L [16]. From the general site-monotonicity
properties which were derived in [43, Remark 2.5] we deduce that,

∀L ∈ 2N, ∀x ∈ TL, ΞL(x) ≤ 1

2d
. (5)

Since rd = O(1
d
), our lower bound in (3) gets closer to the point-wise upper bound (5) as the di-

mension increases. Hence, the larger is the dimension, the more uniform is the correlation between
monomers across the odd sites of the torus. For x ∈ Zd, define now Ξ(x) := lim infL→∞ Ξ2L(x).
Our bound (4) and the point-wise upper bound (5) imply that, when d > 2, for any integer n ∈ 2Z+1,

1

2d
(1− rd

2
) ≤ Ξ(n ei) ≤

1

2d
, (6)

where ei is any cartesian vector. Contrary to (6), Ξ(nei) was shown by Fisher and Stephenson [25] to
decay like n−

1
2 when d = 2. From (6) we deduce the asymptotic behaviour of the monomer-monomer

correlation in the limit of large dimension, i.e, for any odd integer n,

Ξ(n ei) =
1

2d
+O(

1

d2
),

where the error term in the right-hand side is uniform in n.

Lattice permutations. We now introduce the model of lattice permutations. Recall that (TL,EL)
denotes the torus, with edges connecting nearest neighbour vertices. To begin, for any pair of sites
x, y ∈ TL such that x 6= y, let Ωx,y be the set of directed multi-graphs π = (TL, Eπ) such that:
(i) the edges of Eπ connect nearest-neighbour vertices in the torus, (ii) the in- and the out-degree of
every vertex in TL \{x, y} are equal and their value is either zero or to one, (iii) the out-degree of x is
one and its in-degree is zero, the out-degree of y is zero and its in-degree is one. This implies that the
connected component of the graph (TL, Eπ) which contains x is a walk which starts at x and ends
at y and that any other connected component is either a monomer, a double edge or a loop, which we
now define: a walk is a sub-graph which is isomorphic to a simple open curve in Rd and it is directed
(and self-avoiding), a monomer is a connected component consisting of a single vertex with no edges
incident to it, a double edge is a connected component corresponding to a pair of nearest neighbour
vertices, z, w ∈ TL, with an edge directed from z to w and an edge directed from w to z; a loop is
a sub-graph which is isomorphic to a simple closed curve in Rd and it is directed (and self-avoiding).
See also Figure 1 for an example. When x = y, we define Ωx,y as the set of directed multi-graphs
π = (TL, Eπ) such that: (i) the edges of Eπ connect nearest-neighbour vertices in the torus, (ii) the
in- and the out-degree of every vertex in TL \ {x} are equal and their value is either zero or one, (iii)
the vertex x = y is a monomer (i.e, the walk is ‘degenerate’, namely it consists of just one vertex and
no edges). We define the configuration space Ω := ∪x∈TLΩo,x. Each such π ∈ Ω can be viewed
as a system of monomers, loops and double edges with a walk which starts from the origin and ends
at one unspecified vertex of the torus and all these objects are mutually disjoint. For any π ∈ Ω,
letM(π) be the number of monomers of π. Furthermore, for any π ∈ Ω, let L(π) be the number
of loops and double edges in π. We introduce the probability measure PL,N,ρ in Ω, which depends
on two parameters ρ ∈ [0,∞), the monomer activity, and N ∈ [0,∞), the number of colours, as
follows:

∀π ∈ Ω PL,N,ρ
(
π
)

:=
ρM(π) (N

2
)L(π)

ZL,N,ρ
, (7)
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where ZL,N,ρ is a normalisation constant. Let X : Ω → TL be the end-point of the walk, which we
call target point. More precisely, for any π ∈ Ω, we define X(π) ∈ TL as the unique vertex such
that π ∈ Ωo,X(π). It is known that, if the monomer activity is is large enough, the length of the walk
admits uniformly bounded exponential moments [6, 47]. This implies that the distance between the
target point and the origin does not grow unboundedly with the size of the system. Our Theorem 2.2
below states that, contrary to the case of high monomer activity, when the monomer activity is zero, the
distance between the target point and the origin grows with the size of the system and scales linearly
with the diameter of the box. In other words, a phase transition takes place at a finite, possibly zero
value of the monomer activity. Recall that rd is the expected number of returns of a simple random
walk in Zd and recall also the properties of rd which were stated above.

Theorem 2.2. Suppose that d > 2 and that N is an integer in (0, 4
rd

). There exists an (explicit)
constant c2 = c2(N, d) ∈ (0,∞) such that for any large enough L ∈ 2N,

∀A ⊂ TL, PL,N,0
(
X ∈ A

)
≤ c2

|A|
Ld

. (8)

For example, by choosing A = TbεLc for a small enough ε, we see that with uniformly positive prob-
ability the target point is at a distance at least εL from the origin. The restriction of our result to
not-too-large values of N is not a limitation of our technique: It was shown by Chayes et al. [14] that,
in any dimension d ≥ 2, if N is a large enough integer, the loop length admits uniformly bounded
exponential moments for any value ρ ∈ [0,∞) (in [14] a different setting than ours is considered, with
only loops, which are allowed to overlap a bounded number of times, and no walk; the proof of [14] can
be adapted to our setting implying that length of the self-avoiding walk does not grow unboundedly with
the size of the system and admits uniformly bounded exponential moments). Hence, not only we prove
the occurrence of a phase transition with respect to the variation of ρ for integer values N ∈ (0, 4

rd
),

but we also prove the occurrence of a phase transition with respect to the variation of N when we fix
ρ = 0.

Uniform positivity. Our third main theorem, Theorem 2.3 below, can be viewed as a generalisation
of Theorem 2.1 and states that the two point function of lattice permutations is bounded away from
zero point-wise when the points lie along the same cartesian axis and ‘on average’ across all points,
uniformly with respect to the system size. To define the two-point function we need to introduce the
set of multi-graphs Ω`, whose connected components are loops, double edges or monomers and no
walk is present. Thus, let Ω` be the set of directed multi-graphs π = (TL, Eπ) such that: (i) the
edges connect nearest-neighbour vertices in the torus and, (ii) the in- and the out-degree of every
vertex in TL are equal and their value is either zero or one.2 It follows from this definition that every
connected component of the graph π ∈ Ω` is either a monomer, a loop or a double edge, which we
defined before. We extend the definition of the number of monomers,M(π), and of the number or
loops and double edges, L(π), which were provided before, to the graphs π ∈ Ω`. For any L ∈ N,
ρ,N ∈ [0,∞), we define the loop partition function,

Z`L,N,ρ :=
∑
π∈Ω`

ρM(π)(
N

2
)L(π), (9)

2Alternatively, Ω` could be defined as the set of permutations of the elements of TL such that every vertex is mapped
either to itself or to a nearest neighbour, the same as in [6]. Here we keep the name ‘permutations’, but we define the
realisations as multi-graphs.
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and, for any x, y ∈ TL, we define the directed partition function,

ZL,N,ρ(x, y) :=
∑
π∈Ωx,y

ρM(π)(
N

2
)L(π), (10)

Finally, we define the two point function,

GL,N,ρ(x, y) :=
ZL,N,ρ(x, y)

Z`L,N,ρ
, (11)

and we define GL,N,ρ(x) := GL,N,ρ(o, x). In the special case of N = 2 and ρ = 0, the two-
point function of lattice permutations corresponds to the monomer-monomer correlation function of
the dimer model,

∀x ∈ TL GL,2,0(x) = ΞL(x). (12)

Indeed, as we prove in (26) below, the set of configurations which are obtained by superimposing two
independent dimer covers, like in Figure 2, are in a one-to-one correspondence with the set of fully-
packed lattice permutations and this leads to (12). In light of (12), our Theorem 2.3 below, which holds
for arbitrary (not necessarily equal to 2) integers N , can be viewed as a generalisation of Theorem
2.1.

Theorem 2.3. Suppose that d > 2 and that N is an integer in (0, 4
rd

). Then,

lim inf
L→∞
L even

1

|ToL|
∑
x∈ToL

GL,N,0(x) ≥ 1

2d
(

2

N
− rd

2
). (13)

Moreover, for anyϕ ∈
(

0, 1
2d

( 2
N
− rd

2
)
)
, there exists an (explicit) constant c3 = c3(ϕ, d,N) ∈ (0, 1

2
)

such that for any large enough L ∈ 2N and any odd integer n ∈ ( 0, c3 L ),

GL,N,0(n e1 ) ≥ ϕ. (14)

Similarly to the case of the dimer model, from the site-monotonicity properties which were derived in
[43] we deduce that, for any integer N ∈ N>0 and any ρ ∈ [0,∞),

∀x ∈ TL GL,N,ρ(x) ≤ 1

dN
. (15)

Since rd = O(1
d
), our uniform lower bound on the average (13) and the uniform point-wise upper

bound (15) on the two-point function get closer to each other as d is larger. From this we deduce that,
the larger is the dimension, the more uniform is the distribution of the target point across the sites of
the torus.

3 Proof description

Most of the paper is devoted to the proof of (13), from which all our main results follow. The proof of
(13) is divided into two main parts. The first part is devoted to the derivation of the Key Inequality, The-
orem 3.1 below, from the analysis of a general soup of loops and walks, to which we refer as random
path model. The random path model was introduced in [43] and it is a generalisation of the random
wire model [3], which, in turn, can be viewed as a reformulation of the random walk representation
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of the spin O(N) model [13]. In [43] it was shown that the random path model satisfies the impor-
tant property of reflection positivity (which will be stated later). The property of reflection positivity for
random loop models was used also in [14, 42, 51]. However, in such works the additional structures
which allow the derivation of the Key Inequality directly from the space of loops and walks (i.e, without
employing any spin representation) have not been introduced. The most important technical novelty of
this paper is the introduction of such structures. This allows the extension of the method of [28, 30, 30]
to random loop models for which no spin representation exists or is easy to derive, for example lattice
permutations (and, consequently, the dimer model). More precisely, our analysis involves the study of
the random path model with appropriate weights in an ‘extended’ graph, which is obtained from the
original torus by adding ‘virtual’ vertices on the ‘top’ of each vertex of the ‘original’ torus; such virtual
vertices serve as a source for the walks, and the walks get a different weight depending on where they
start from; the whole setting is designed in such a way that the reflection positivity property, which was
proved to hold true in the torus [43], is preserved.

The second part is devoted to the derivation of a version of the so-called infrared bound from such a
Key Inequality. Here we use Fourier transforms similarly to the case of spin systems with continuous
symmetry [28, 29, 30], in which case the two point function corresponds to the correlation between two
spins. Our analysis differs from such a classical case for some non-trivial aspects. The most important
difference is that, in our case, the two-point function vanishes at any even site as ρ → 0. In other
words, the model exhibits a sort of anti-ferromagnetic ordering, similarly to [22]. This introduces some
difficulties which are overcome by exploiting the different symmetry properties of the Fourier odd and
even two point functions (which will be introduced later) with respect to appropriate translations in the
(Fourier) dual torus.

We now describe the two parts of the proof in greater detail and state Theorem 3.1 and Lemma 3.3.
In the third and last subsection, we present the (short) proof of Theorem 2.1 given Theorem 2.3.

3.1 Description of part I: Derivation of the Key Inequality

The first part of the proof, which is presented in Section 4, is devoted to the derivation of Theorem
3.1, which is stated below. For an arbitrary vector of real numbers, v = (vz)z∈TL , define the discrete
Laplacian of v,

∀x ∈ TL (4v)x :=
∑
y∈TL:
x∼y

(vy − vx). (16)

Theorem 3.1 (Key Inequality). For any N ∈ N>0, ρ ∈ R≥0, L ∈ 2N>0, any real-valued vector
v = (vx)x∈TL , we have that,∑

x,y∈TL

GL,N,ρ(x, y)(4v)x (4v)y ≤
∑

{x,y}∈EL

(
vy − vx

)2
. (17)

The proof of Theorem 3.1 uses several ingredients which we now describe informally. We deal with the
random path model, namely a probabilistic model of coloured closed and open paths, which interact at
sites through a weight function, which will be denoted byU . The model depends on an edge parameter
λ ∈ [0,∞) which, informally, has the effect of increasing the typical length of the paths as λ is larger.

We introduce a new setting which is reminiscent of the random current representation of the Ising
model [18]. Such a setting involves the random path model on a graph (TL, EL), which is obtained
from the torus (TL,EL) by adding a new vertex (which will be referred to as virtual) on the top of
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Dimer model and lattice permutations 9

each vertex in TL and by connecting such a new vertex to the one which is below it by an edge, like
in Figure 3. We refer to such a new graph (TL, EL) as extended torus and to the graph (TL,EL) ⊂
(TL, EL), which was defined previously, as original torus. Virtual vertices play the role of sources for
open paths and closed paths are not allowed to ‘touch’ any virtual vertex. Such a setting is designed
in such a way that the measure associated to the random path model on such a graph satisfies
two fundamental properties at the same time. The first fundamental property is reflection positivity.
The second fundamental property involves a central quantity, ZL,N,λ,U(v), where v = (vz)z∈TL is
an array of real numbers, with each number being associated to a vertex of the original torus. The
quantity ZL,N,λ,H(v) is defined as the average of a function which assigns a multiplicative weight vz
every time that a walk starts (or ends) at a vertex of the original torus z ∈ TL and a multiplicative
weight −2dvz every time that a walk starts (or ends) at the virtual vertex which is ‘on the top’ of
z ∈ TL. Such a fundamental property is stated in (18) below and involves the infinitesimal variation
of the function ZL,N,λ,U(v) around the point v = 0 when a specific choice of the weight function,
U = H , is made. More precisely, for an arbitrary choice of v ∈ RTL and ϕ ∈ R, in the limit as
ϕ→ 0

ZL,N,λ,H(ϕv) = λ|TL| Z`
L,N, 1

λ
− ϕ2 λN

2
λ|TL| Z`

L,N, 1
λ

∑
{x,y}∈EL

(
vy − vx

)2

+ ϕ2 λN

2
λ|TL|

∑
x,y∈TL

ZL,N, 1
λ
(x, y)(4v)x (4v)y + o(ϕ2). (18)

To derive (18) we introduce a map which maps configurations of the random path model to configura-
tions of lattice permutations and compare their weights. Here we use in an essential way the structure
of the extended torus: the walks which enter into the original torus from a virtual vertex are weighted
differently than the walks which start from a vertex of the original torus and the weights are chosen
appropriately so that we get the discrete Laplacians and the sum involving factors (vy − vx)2 in (18).
Also the properties of the random path model and of the weight function H , which allows the walk to
be vertex-self-avoiding at every vertex except for its end-points, are used in an essential way. We refer
to this central step of the proof as Polynomial expansion. The reason why the expansion (18) is so im-
portant is that it is possible to deduce the Key Inequality by showing that, for any vector v ∈ RTL , the
term of order O(ϕ2) in (18) is non-positive. Indeed, the reader can verify that, from the non-positivity
of the term of order O(ϕ2) and from the definition of two-point function, (11), Theorem 3.1 follows
immediately after dividing the whole expression by λN

2
λ|TL|Z`L,N,1/λ.

It is for the proof of such a concavity property of the function ZL,N,λ,H(v) that we use reflection
positivity. More precisely, such a concavity property follows from an iterative use of reflections, which
leads by reflection positivity to the Chessboard estimate,

ZL,N,λ,U(v) ≤
( ∏
x∈TL

ZL,N,λ,U(vx)
) 1
|TL| , (19)

where vx = (vxz )z∈TL is a vector which is obtained from v := (vz)z∈TL by copying the value vx at
each original vertex. Since for each x ∈ TL, the term of order O(ϕ2) is zero when we look at the
vectors vx, i.e,

ZL,N,λ,H(ϕvx) = λ|TL| Z`
L,N, 1

λ
+ o(ϕ2), (20)

we deduce from (18), (19), and (20) and from a Taylor expansion of the root in (19) that the term of
order O(ϕ2) in (18) is non-positive. This is the desired concavity property.
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R

x
Θ
(x)

Figure 3: An extended torus when d = 1 and L = 6. The left-most and the right-most horizontal
edges are identified. The leftmost vertical dashed line represents a reflection plane, R, which, for
example, maps the vertex x to Θ(x). In the figure x is a virtual vertex, while the one which is ‘below
it’ is original.

Remark 3.2. The random path model, which depends on an arbitrary weight function U , is related by
the expansion (18) to lattice permutations when a specific choice for U is made. Our method can be
adapted to any weight function U satisfying the general assumptions in Definitions 4.1 and 4.2 below.
For example, there exists a special choice of the weight function U which satisfies such assumptions
such that the random path model is a representation of the spin O(N) model [3, 43] and our method
can be used to derive the famous result of Fröhlich, Simon and Spencer [28], which involves the spin
O(N) model, directly from its representation as a random loop model. Our method can also be adapted
to random path models with weight function U for which no spin representation is known, for example
lattice permutations and the dimer model, and it can thus be viewed as an extension of [28].

3.2 Description of part II: Derivation of a version of the Infrared bound

We now give a brief overview to the second part of the proof, which is presented in Section 5 and uses
Fourier transforms. To begin, we define the dual torus,

T∗L :=
{2π

L
(n1, . . . , nd) ∈ Rd : ni ∈ (−L

2
,
L

2
] ∩ Z

}
.

We denote the elements of T∗L by k = (k1, . . . , kd) and we keep using the notation o for (0, . . . 0) ∈
TL or (0, . . . , 0) ∈ T∗L. Given a function f ∈ `2(TL), we define its Fourier transform,

∀k ∈ T∗L, f̂(k) :=
∑
x∈TL

e−ik·xf(x). (21)

It follows from this definition that,

∀x ∈ TL, f(x) =
1

|TL|
∑
k∈T∗L

eik·xf̂(k). (22)

The next lemma, which will be proved in the appendix of this paper and which is a immediate conse-
quence of (21) and of (22), allows us to explain the strategy of the proof.

Lemma 3.3. Define the Fourier mode p := (π, π, . . . , π) ∈ T∗L. We have that, for any L ∈ N>0,
ρ,N ∈ [0,∞),

2

|TL|
∑
x∈ToL

GL,N,ρ(x) = GL,N,ρ(e1) − 1

|TL|
∑

k∈T∗L\{o,p}

eik·e1 ĜL,N,ρ(k). (23)
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The goal is to bound away from zero uniformly in L the quantity in the left-hand side of (23), obtaining
(13). This quantity corresponds to the difference between the (0, . . . , 0) and the (π, . . . , π) Fourier
mode of the two point function (note that the sum involves only odd vertices). When ρ = 0, the first
term in the right-hand side of (23) satisfies

GL,N,0(e1) =
1

dN
(24)

for any even L, as we prove in Section 6 (and it is easy to show). Section 5 is devoted to showing that,
uniformly in L,

lim sup
L→∞

1

|TL|
∑

k∈T∗L\{o,p}

eik·e1 ĜL,N,0(k) ≤ rd
4d
. (25)

This is the point where we use the Key Inequality under specific choices of the vector v, and the
symmetry properties of the Fourier even and odd two-point functions (which will be defined below)
and we make use of the assumption ρ = 0 in a crucial way. By replacing (24) and (25) in (23) we
obtain the desired uniform lower bound for the Cesàro sum, (13). Fortunately for us the numerical
value of the quantity rd, which was computed exactly and rigorously by Watson [52] when d = 3, is
small enough to imply by monotonicity non-trivial results for any d ≥ 3. Indeed, contrary to the spin
systems case, where a factor 1

β
in the right-hand side of ‘the analogous of’ (25) makes the bound

better and better as one takes the inverse temperature parameter β (which appears in the definition
of such spin systems) larger, in our case the bound does not improve arbitrarily by taking ρ arbitrarily
close to zero (and there is no reason to expect it should be the case), hence there is no way to ensure
a priori that the method will lead to non-trivial results until one derives the optimal constant rd

4d
and

proves that such a constant is strictly less than (24) for a non-empty range of strictly positive integers
N in any dimension d ≥ 3. We refer to Remark 5.2 for further general comments on this part of the
proof and for a comparison with the classical case of spin systems with continuous symmetry.

3.3 From lattice permutations to dimers: proof of Theorem 2.1 given Theorem
2.3

We now prove (12) formally. This will be the last time the dimer model appears in this paper, since our
main result on the dimer model follows from its representation as a ‘fully-packed’ lattice permutation
model in the special case N = 2, and the next sections are devoted to the study of lattice permu-
tations. In such a special case, lattice permutations can be viewed as a different formulation of the
double dimer model [17, 41]). Here, by ‘fully-packed’ π we mean that π is such thatM(π) = 0.

Proof of (12). We claim that there exist two bijections,

Π1 : D(∅)×D({o, z}) 7→ {π ∈ Ωo,z : M(π) = 0}
Π2 : D(∅)×D(∅) 7→ {π ∈ Ω` : M(π) = 0}.

Indeed, note the following: If we superimpose two dimer covers, η1 ∈ D(∅), η2 ∈ D({o, z}), which
we call blue and red respectively, we obtain a system of mutually-disjoint self-avoiding loops, double
dimers and a self-avoiding walk from o to z, like in Figure 2, where the double dimer corresponds to
the superposition of a blue and a red dimer on the same edge, while the loops and walk consist of an
alternation of blue and red dimers. Note also that any loop might appear with two different alternations
of blue and red dimers. Indeed, given a pair (η1, η2) and some arbitrary loops of such a pair, one
might obtain a new pair (η′1, η

′
2) which is identical to (η1, η2), except for the fact that the selected
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loops appear with the opposite alternation of blue and red dimers. Thus, we can associate to (η1, η2)
an element π ∈ Ωo,z which is such that π has a double edge at {x, y} if both η1 and η2 have dimer at
{x, y} and every loop of π corresponds to a loop of (η1, η2) and fix a convention for which alternation
of red and blue dimers of the loops in (η1, η2) corresponds to which of the two possible orientations
of the loops in π. This defines the bijection Π1. The bijection Π2 is defined analogously (the only
difference is that we have no walk starting at o and ending at z). Since we have two bijections, we
deduce that

∀z ∈ TL GL,2,0(o, z) =
|{π ∈ Ωo,z : M(π) = 0}|
|{π ∈ Ω` : M(π) = 0}|

=
|D({o, z})| |D(∅)|

|D(∅)|2
= ΞL(z), (26)

This leads to our claim.

Proof of Theorem 2.1 given Theorem 2.3. Apply Theorem 2.3 whenN = 2. By (12), we deduce The-
orem 2.1.

Notation

ei cartesian vector, with i ∈ {1, . . . d} or i ∈ {1, . . . d+ 1}
G = (V , E) an undirected, simple, finite graph
e ∈ E or {x, y} ∈ E undirected edges
(x, y) ∈ E edge directed from x to y
(TL,EL) graph corresponding to the torus Zd/LZd
(TL, EL) extended torus, with original and virtual vertices

T(2)
L ⊂ TL set of virtual vertices

T∗L Fourier dual torus
o ∈ TL, o ∈ TL or o ∈ T∗L origin
x ∼ y pair of vertices in TL which are connected by an edge in EL
N ∈ N>0, λ, ρ ∈ R≥0 respectively number of colours, edge-parameter, and monomer activity
U = (Ux)x∈V weight function
m = (me)e∈E link cardinalities, with me corresponding number of links on the edge e
c = (ce)e∈E link colourings, with ce : {1, . . . ,me} 7→ {1, . . . , N}
γ = (γx)x∈V pairings, with γx pairing the links touching the vertex x
WG the set of configurations in G, with w = (m, c, γ) ∈ WG

nx number of pairings at x
ux number of links touching x which are unpaired at x
Z`L,N,ρ loop partition function
Y`
L,N,λ loop partition function times an appropriate constant

ZL,N,ρ(x, y) directed partition function
YL,N,λ(x, y) directed partition function times an appropriate constant
GL,N,ρ(x, y) two-point function
GL,N,ρ(x) equivalent to GL,N,ρ(o, x)

ĜL,N,ρ(k) Fourier transform of GL,N,ρ(x)
v = (vx)x∈TL real-valued vector, with coordinates associated to TL
h = (hx)x∈TL vector of real numbers, with coordinates associated to TL
ZL,N,λ,U(h) partition function with links unpaired at x receiving a multiplicative weight hx
Z(2)
L,N,λ,U(h) second term of the polynomial expansion
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4 Derivation of the Key Inequality

This section is devoted to the proof of Theorem 3.1. Before starting, it will be convenient introducing a
different parametrisation of the partition functions. More precisely, let x, y ∈ TL be arbitrary vertices,
for any π ∈ Ω` or π ∈ Ωx,y, define H(π) :=

∣∣Eπ|, the number of directed edges in the graph
π = (TL, Eπ). Define the edge-parameter λ ≥ 0 and define the partition functions parametrised by
λ,

Y`
L,N,λ :=

∑
π∈Ω`

λH(π)(
N

2
)L(π), YL,N,λ(x, y) :=

∑
π∈Ωx,y

λH(π)(
N

2
)L(π), (27)

which for any λ ∈ (0,∞) and L ∈ 2N are related to the partition functions (9) and (10) by

Y`
L,N,λ = λ|TL| Z`

L,N, 1
λ
, YL,N,λ(x, y) = λ|TL|−1 ZL,N, 1

λ
(x, y),

(for this, we use thatH(π) +M(π) = |TL| if π ∈ Ω` and thatH(π) +M(π) = |TL|− 1 if π ∈ Ω)
and thus satisfy for any λ ∈ (0,∞),

GL,N, 1
λ
(x, y) =

λYL,N,λ(x, y)

Y`
L,N,λ

. (28)

The edge parameter λ will play a similar role to the inverse temperature in spin systems.

4.1 The random path model

In this section we introduce the random path model in an arbitrary graph (this section is similar to
Section 2.1 in [43]). Let G = (V , E) be an undirected, simple, finite graph, and assume thatN ∈ N>0.
We refer to N as the number of colours. A realisation of the random path model can be viewed as a
collection of undirected paths (which might be closed or open).

Links, colourings, pairings. To define a realisation we need to introduce links, colourings and pair-
ings. We represent a link configuration by m ∈MG := NE . More specifically

m =
(
me

)
e∈E ,

where me ∈ N represents the number of links on the edge e. Intuitively, a link represents a ‘visit’ at
the edge from a path. The links are ordered and receive a label between 1 and me. See also Figure
4. No constraint concerning the parity of me is introduced. If a link is on the edge e = {x, y}, then we
say that it touches x and y.

Given a link configuration m ∈ MG , a colouring c ∈ CG(m) := {1, . . . , N}m is a realisation which
assigns an integer in {1, . . . , N} to each link, which will be called its colour. More precisely,

c = (ce)e∈E ,

is such that ce ∈ {1, . . . , N}me , where ce(p) ∈ {1, . . . , N} is the colour of the p-th link which on
the edge e ∈ E , with p ∈ {1, . . . ,me}. See Figure 4 for an example, where N = 2 and the colors
are represented by a label in {r, b}.
Given a link configuration, m ∈ MG , and a colouring c ∈ CG(m), a pairing γ = (γx)x∈V for m and
c pairs links touching x in such a way that, if two links are paired, then they have the same colour. A
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1b

1b

1b 1b

1r

2b

3r

1b

2b

1r

1r1b

1r

2r 3r

Figure 4: A configuration w = (m, c, γ) ∈ WG , where G corresponds to the graph {1, 2, 3} ×
{1, 2, 3} with edges connecting nearest neighbours and the lowest leftmost vertex corresponds to
(1, 1). On every edge e, the links are ordered and receive a label from 1 to me. In the figure, the
numbers 1, 2, ... are used for the identification of the links and the letters b and r are used for the
colours which are asigned to the links by c (we assume that N = 2 and that each link might be
either blue or red). Paired links are connected by a dotted line. For example, the first link on the edge
connecting the vertices (1, 1), (2, 1) is coloured by red and it is paired at (1, 1) with the third link
on the same edge and it is unpaired at (2, 1). Moreover, both links touching the vertex (3, 3) are red
and they are unpaired at (3, 3). Finally, no link is on the edge which connects the vertices (1, 2) and
(2, 2).

link touching x can be paired to at most another link touching x, and it is not necessarily the case that
all links touching x are paired to another link at x. If a link touching x is paired at x to no other link
touching x, then we say that the link is unpaired at x. Given two links, if there exists a vertex x such
that such links are paired at x, then we say that such links are paired. It follows from these definitions
that a link can be paired to at most two other links. We remark that, by definition, a link cannot be
paired to itself. We denote by PG(m, c) the set of all such pairings for m ∈MG , c ∈ CG(m).

A configuration of the random path model is an element w = (m, c, γ) such that m ∈ MG , c ∈
CG(m), γ ∈ PG(m, c). We letWG be the set of such configurations. It follows from these definitions
that any w ∈ WG can be viewed as a collection of closed and open paths. These will be defined in
Section 4.4 formally, and will be divided into four classes: `-loops, double links, `-walks, and segments.

For any w = (m, c, γ) ∈ WG , we use the notation me(w) for the random variable corresponding to
the number of links on the edge e, i.e, the element of the vector m = (mẽ)ẽ∈E such that ẽ = e. For
any x ∈ V , let ux : WG 7→ N be the number of links touching x which are unpaired at x. Moreover,
let nx :WG 7→ N be the number of pairings at x, namely

nx(w) :=
1

2

∑
(y,z)∈E:
y=x

m{y,z}(w) − ux(w)

2
. (29)

which corresponds to the number of pairings at x (i.e, the number of links touching x and paired at x
to another link divided by two).
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Domains, restrictions, measure. We now introduce the notion of domain and restriction and, after
that, we introduce reflections. Intuitively, a function with domain D ⊂ V is a function which depends
only on how w ∈ WG looks in D or in a subset of D. More precisely, the function might only depend
on how many links are emanated from the vertices of D, on the direction in which they are emanated,
on which colour they have and on the pairings on vertices in D. A function f :WG 7→ R has domain
D ⊂ V if, for any pair of configurations w = (m, c, γ), w′ = (m′, c′, γ′) ∈ WG such that

∀e ∈ E : e ∩D 6= ∅, ∀z ∈ D, me = m′e ce = c′e γz = γ′z

one has that f(w) = f(w′). Moreover, for any w = (m, c, γ) ∈ WG define the restriction of w to
D ⊂ V , wD = (mD, cD, γD) with cD ∈ CG(mD), γD ∈ PG(mD, cD), by

i) (mD)ie = mi
e for any edge e ∈ E which has at least one end-point in D and (mD)ie = 0

otherwise,

ii) (cD)e = ce for any edge e which has at least one end-point in D and (cD)e = ∅ otherwise,

iii) (γD)x = γx for any x ∈ D, and for x ∈ V \D we set (γD)x as the pairing which leaves all links
touching x unpaired (if any).

We now introduce a measure onWG .

Definition 4.1. LetN ∈ N>0, let U =
(
Ux
)
x∈V be a sequence of real-valued functions such that, for

any x ∈ TL,Ux has domain {x}. We refer toU as weight function. We introduce the (non-normalised,
possibly signed) measure of the random path model onWG , which depends on the parameter λ ∈
[0,∞) and on the weight function U ,

∀w = (m, c, γ) ∈ WG µG,N,λ,U(w) :=
∏
e∈E

(λme
me!

)∏
x∈V

(
Ux(w)

)
(30)

Given a function f :WG → R, we represent its average by µG,N,λ,U
(
f
)

=
∑

w∈WG
µG,N,λ,U(w)f(w).

We always assume that the choice of the weight function U is such that the measure µN,λ,U has finite
mass. The role played by the normalisation factor 1

me!
in (30) will be explained at the beginning of

Section 4.4.1.

4.2 Reflection positivity and virtual vertices

In this section we introduce the extended torus, a graph which is embedded in Rd+1 and contains the
torus (TL,EL), which is embedded in Rd, and the important notion of reflection positivity. From now
on we consider the random path model on such a graph.

Extended torus, virtual and original vertices. Recall that (TL,EL) was defined as the graph
corresponding to a d-dimensional torus with edges connecting nearest neighbour vertices. We will
now view (TL,EL) as the sub-graph of a larger graph embedded in Rd+1, which will be denoted
by (TL, EL) and will be referred to as extended torus. The extended torus is obtained from the d-
dimensional torus by duplicating the vertex-set and by adding an edge between every vertex in TL
and its copy. More precisely, we define the vertex set of the extended torus as,

TL :=
{

(x1, . . . , xd+1) ∈ Zd+1 : xi ∈ (−L
2
,
L

2
] for every i ∈ {1, . . . , d}, and xd+1 ∈ {1, 2}

}
,
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where TL = {(x1, . . . , xd+1) ∈ TL : xd+1 = 1} ⊂ TL, and T(2)
L := TL \ TL. Recall that EL is

defined as the set of edges connecting pairs of nearest neighbour vertices and boundary vertices in
TL so that the (TL,EL) can be identified with the d-dimensional torus and define the edge-set,

EL := EL ∪
{
{x, y} ⊂ Zd+1 : x ∈ TL, y = x+ (0, . . . , 0, 1)

}
.

This defines the extended torus (TL, EL). We will refer to the vertices in TL ⊂ TL as original and to

the vertices in T(2)
L ⊂ TL as virtual. From now on, we take G = (TL, EL), for L ∈ N>0, and we omit

the sub-script G in all the quantities which were defined above or replace it by L when appropriate. In
this setting we will keep referring to o, corresponding to the vertex (0, . . . , 0) ∈ TL ⊂ TL ⊂ Zd+1, as
the origin. From now on the current section is an adaptation of [43][Section 3] to the extended torus.

Reflection through edges. Recall that the graph (TL, EL) is embedded in Rd+1. We say that the
plane R is through the edges of (TL, EL) if it is orthogonal to one of the cartesian vectors ei for
i ∈ {1, . . . , d} (and not i = d+1) and it intersects the midpoint ofLd−1 edges of the graph (TL, EL),
i.e.R = {z ∈ Rd+1 : z·ei = u}, for some u such that u−1/2 ∈ Z∩(−L

2
, L

2
] and i ∈ {1, . . . , d}.

See Figure 3 for an example. Given such a plane R, we denote by Θ : TL → TL the reflection
operator which reflects the vertices of TL with respect toR, i.e. for any x = (x1, x2, . . . , xd+1) ∈ TL,

Θ(x)k :=

{
xk if k 6= i,

2m− xk mod L if k = i.
(31)

Let T +
L , T

−
L ⊂ TL be the corresponding partition of the extended torus into two disjoint halves such

that Θ(T ±L ) = T ∓L , as in Figure 3. Let E+
L , E

−
L ⊂ EL, be the set of edges {x, y} with at least one of

x, y in T +
L respectively T −L . Moreover, let ERL := E+

L ∩ E
−
L . Note that this set contains 2Ld−1 edges,

half of them intersecting the plane R, and all of them belonging to EL. Further, let Θ : W → W
denote the reflection operator reflecting the configurationw = (m, c, γ) with respect toR (we commit
an abuse of notation by using the same letter). More precisely we define Θw = (Θm,Θc,Θγ) where
(Θm){x,y} = m{Θx,Θy}, (Θc){x,y} = c{Θx,Θy}, (Θγ)x = γΘx. Given a function f : W → R, we
also use the letter Θ to denote the reflection operator Θ which acts on f as Θf(w) := f(Θw).
We denote by A± the set of functions with domain T ±L and denote byW± the set of configurations
w ∈ W that are obtained as a restriction of some w′ ∈ W to T ±L .

We remark that, although the graph (TL, EL) is embedded in Rd+1, we will only consider reflections
with respect to reflection planes which are orthogonal to one of the cartesian vectors ei for i ∈
{1, . . . , d} (and not i = d+ 1).

Definition 4.2. The weight function U = (Ux)x∈TL , which was defined in Definition 4.1, is invari-
ant under reflections if for any reflection plane R through edges (which is orthogonal to one of the
cartesian vectors ei for i ∈ {1, . . . d}), it holds that,

∀x ∈ TL Θ(Ux) = UΘ(x),

where Θ is the reflection operator associated to the reflection plane R.

The next proposition introduces an important tool. The proposition states that the random path model
with weight function U satisfying the assumptions in Definition 4.1 and which is invariant under reflec-
tions, as defined in Definition 4.2, is reflection positive.
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Theorem 4.3 (Reflection positivity). Consider the torus (TL, EL) for L ∈ 2N. Let R be a reflection
plane through edges, which is orthogonal to one of the cartesian vectors ei, i ∈ {1, . . . , d}, let Θ
be the corresponding reflection operator. Consider the random path model with N ∈ N>0, λ ∈ R>0,
and weight function U invariant under reflections. For any pair of functions f, g ∈ A+, we have that,

(1) µL,N,λ,U(fΘg) = µL,N,λ,U(gΘf),

(2) µL,N,λ,U(fΘf) ≥ 0.

From this we obtain that,

µL,N,λ,U
(
f Θg

)
≤ µL,N,λ,U

(
f Θf

) 1
2 µL,N,λ,U

(
gΘg

) 1
2 . (32)

Proof of Theorem 4.3. This proof is similar to the proof of Proposition 3.2 in [43], the difference is
that here we deal with an extended torus in place of the graph (TL,EL). To begin we introduce the
notion of projection. We denote byWR the set of configurations w = (m, c, γ) such that me = 0
whenever e /∈ ERL and, for all x ∈ TL, γx leaves all links touching x unpaired. We also denote by
PR : W → WR the projection such that, for any w = (m, c, γ) ∈ W , PR(w) = (mR, cR, γR)
is defined as the configuration such that mR

e = 1{e∈ERL }
me and cRe = ce if e ∈ ERL and cRe = ∅

otherwise, and all links are unpaired at every vertex. The following remark will be useful.

Remark 4.4. Recall the definition of restriction which was provided in Section 4.1. Given a triplet of
configurations w′ ∈ WR, w1 ∈ W+, w2 ∈ W− such that PR(w1) = PR(w2) = w′, there exists a
unique configuration w ∈ W such that

wT +
L

= w1, wT −L
= w2, PR(w) = w′.

This configuration is formed by concatenating w1 and w2 (concatenation includes the pairing struc-
tures of each wj).

Through the proof we write µ = µL,N,λ,U . To begin, we note that (32) follows in the standard way as
properties (1) and (2) show that we have a positive semi-definite, symmetric bilinear form. To prove (1)
we note that, by Definition 4.1 and due to the symmetries of the torus and the fact that U is invariant
under reflections, µ(w) = µ(Θw) for any w ∈ W . Hence

µ(fΘg) =
∑
w∈W

f(w)Θg(w)µ(w) =
∑

Θw∈W

f(Θw)Θg(Θw)µ(w)

=
∑

Θw∈W

g(w)Θf(w)µ(w) =
∑
w∈W

g(w)Θf(w)µ(w) = µ(gΘf).
(33)

For (2) we condition on the number of links in w crossing the reflection plane and on their colours. We
write

µ(fΘf) =
∑
w∈WR

µ(f ; w), (34)
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where, for any w′ ∈ WR,

µ(f ; w′) :=
∑
w∈W

PR(w)=w′

f(w)Θf(w)µ(w)

=
( ∏
e∈ERL

me(w
′)!

λme(w′)

) ∑
w∈W

PR(w)=w′

f(w)
( ∏
e∈E+L

λme(w)

me(w)!

) ( ∏
x∈T +

L

Ux(w)
)

Θf(w)
( ∏
e∈E−L

λme(w)

me(w)!

) ( ∏
x∈T −L

Ux(w)
)
.

(35)

Now, any w ∈ W such that PR(w) = w′ uniquely defines wT ±L , the restriction of w to T ±L . Thus,

from Remark 4.4 we deduce that we can split the sum over w ∈ W with PR(w) = w′ as the product
of two independent sums and continue:

µ(f ; w′) =
( ∏
e∈ERL

me(w
′)!

λme(w′)

)( ∑
w1∈W+

PR(w1)=w′

f(w1)
( ∏
e∈E+L

λme(w1)

me(w1)!

) ( ∏
x∈T +

L

Ux(w1)
))

( ∑
w2∈W−

PR(w2)=w′

Θf(w2)
( ∏
e∈E−L

λme(w2)

me(w2)!

) ( ∏
x∈T +

L

Ux(w2)
))

=
( ∏
e∈ERL

me(w
′)!

λme(w′)

)( ∑
w1∈W+

PR(w1)=w′

f(w1)
( ∏
e∈E+L

λme(w1)

me(w1)!

) ( ∏
x∈T +

L

Ux(w1)
))2

.

(36)
The last equality holds true by the symmetry of the extended torus. Since the last expression is non-
negative, from (34) we conclude the proof of (2) and, thus, the proof of the proposition.

4.3 Chessboard estimate

We now introduce the notion of support. Contrary to the notion of domain, which was introduced in
Section 4.2, the notion of support is defined only for subsets of the original torus. We say that the
function f :W 7→ R has support in D ⊂ TL if it has domain in D ∪D(2), where D(2) is defined as
the set of sites which are ‘on top’ of those in D,

D(2) := {z ∈ Zd+1 : z − ed+1 ∈ D}.

Fix an arbitrary site t ∈ TL and let t0 = o, t1, . . ., tk = t be a self-avoiding nearest-neighbour path
from o to t, and for any i ∈ {1, . . . , k}, let Θi be the reflection with respect to the plane going through
the edge {ti−1, ti}. Let f be a function having support in {o} and define

f [t] := Θk ◦Θk−1 . . . ◦Θ1 (f).

Observe that the function f [t] does not depend on the chosen path (a glance at Figure 5 might be
useful).

DOI 10.20347/WIAS.PREPRINT.2647 Berlin 2019



Dimer model and lattice permutations 19

f f

f

f f

f

f

f f

ff

ff

f f f f f f

f ff f ff

f f f ff f f f

f f ff

ff

ff

f f

ff

ff

f

Figure 5: The function f [t] := Θk ◦Θk−1 . . . ◦Θ1 (f) does not depend on the chosen path.

Proposition 4.5 (Chessboard estimate). Let f = (ft)t∈TL be a sequence of real-valued functions
with support {o} each and which are either all bounded or all non-negative. Under the same assump-
tions as in Theorem 4.3, we have that,

µL,N,λ,U

( ∏
t∈TL

f
[t]
t

)
≤
( ∏

t∈TL

µL,N,λ,U

( ∏
s∈TL

f
[s]
t

) ) 1
|TL|

The proof of Proposition 4.5 for a measure µ satisfying (32) is classical and was first presented in [27].
Since we only use reflections with respect to reflection planes which are orthogonal to the cartesian
vectors ei, i ∈ {1, . . . , d} (not i = d + 1), virtual vertices play no role in the proof and thus the
same proof of [27] applies to our case directly. For the proof of Proposition 4.5 we refer to the original
paper [27] or to the overviews [11, Theorem 5.8] or [26, Theorem 10.11]. We now introduce a central
quantity. Recall that, for any vertex x ∈ TL and any configurationw ∈ W , ux(w) denotes the number
of links touching x ∈ TL which are unpaired at x.

Definition 4.6 (Central quantity). For any L ∈ N, λ ∈ R≥0, N ∈ N>0, any U as in Definition 4.1,
any vector of real numbers h = (hx)x∈TL , we define

ZL,N,λ,U(h) := µL,N,λ,U

( ∏
x∈TL

huxx

)
(37)

In other words, the function huxx in Definition 4.6 assigns a multiplicative factor hx to each link touching
x which is unpaired at x. We assume that the weight function U is such that the quantity (37) is finite
for any vector h as in Definition 4.6 and for any L ∈ 2N. The next proposition is an immediate
consequence of Proposition 4.5.

Proposition 4.7. Fix arbitrary L ∈ 2N, λ ≥ 0, N ∈ N>0. Suppose that the weight function U is
invariant under reflections. Let h = (hz)z∈TL be a real-valued vector such that |hz| ≤ 1 for every
z ∈ TL. For any x ∈ TL define the new real-valued vector hx = (hxz)z∈TL which is obtained from h
by copying the value hx at each original vertex and the value hx+ed+1

at each virtual vertex, namely

∀z ∈ TL hxz :=

{
hx if z ∈ TL
hx+ed+1

if z ∈ T(2)
L .

We have that,

ZL,N,λ,U(h) ≤
( ∏

x∈TL

ZL,N,λ,U
(
hx
) ) 1

|TL| .
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Proof. The proof follows from an immediate application of Proposition 4.5. Define,

∀x ∈ TL fh,x :=
(
hx
) uo (

hx+ed+1

) uo+ed+1 ,

note that this function has support {o} and which is bounded. Moreover, note that for any x ∈ TL,

f
[x]
h,x =

(
hx
) ux (

hx+ed+1

) ux+ed+1 , (38)

which has support {x}. From this we deduce that,

ZL,N,λ,U(h) = µL,N,λ,U

( ∏
x∈TL

f
[x]
h,x

)
and that, for any x ∈ TL,

ZL,N,λ,U(hx) = µL,N,λ,U

( ∏
z∈TL

f
[z]
h,x

)
The claim now follows from a direct application of Proposition 4.5.

4.4 Polynomial expansion

This sub-section presents an important step of the proof of the Key Inequality, namely Proposition 4.9
below, which states a relation between the values of any vector h, the partition function Z(ϕh) in
the limit ϕ → 0, where ϕ ∈ R, and the partition functions which were defined in (27). To make this
connection we choose an appropriate weight function, which is denoted by H and is introduced in the
next definition, and expandZL,N,λ,H(ϕh) as a polynomial in ϕ. Recall that nx denotes the number of
pairings at x (i.e. one half the number of links touching x which are paired at x to another link touching
x).

Definition 4.8. We define the weight functions, H = (Hx)x∈TL , as follows:

∀x ∈ TL Hx :=


1 if nx ≤ 1, ux ≤ 2, and no link on {x, x+ ed+1} is unpaired at x,
1
2

if nx ≤ 1, ux ≤ 2, and precisely one link on {x, x+ ed+1} is unpaired at x,

0 otherwise.

(39)

∀x ∈ T(2)
L Hx := 1{nx=0} (40)

Moreover, we defineW1, the set of configurations w ∈ W such that
∏

x∈TL Hx(w) > 0.

Each configuration w 6∈ W1 has weight zero under µL,N,λ,H and thus ignoring it costs nothing. See
Figure 6 for an example of two realisations w which are not in W1. The upper bound ux ≤ 2 in
Definition 4.8 is only necessary to guarantee that |W1| < ∞ and 2 might be replaced by any other
integer greater than two with no effect on the next pages. From the boundedness of |W1| we deduce
that ZL,N,λ,H(h) <∞ for any L ∈ N, N, λ ∈ [0,∞), and h ∈ RTL . Note also that Hx has domain
{x} and that H = (Hx)x∈TL is invariant under reflections, thus all the results stated in Sections 4.2
and 4.3 apply to µL,N,λ,U under the choice of U = H . As we will explain in Section 4.4.1, the choice
of H is such that any closed path in w lies entirely in the original torus and is vertex-self-avoiding,
moreover closed paths are mutually vertex-disjoint (paths will be defined later, but the reader might
already try to have an intuition of what they are). Contrary to closed paths, open paths are not entirely
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1,r
2,r
3,r

1,r
2,r

1,b
2,b

1,r

1,r 2,r 1,r

Figure 6: Two examples of realisations w ∈ W \ W1 on the extended torus (TL, EL) in dimension
d = 1, where L = 6, with the upper row representing the virtual vertices. The realisation on the left
is not inW1 since there exists a vertex x with nx = 2, the realisation on the right is not inW1 since
there exists a virtual vertex y with ny = 1.

vertex-self-avoiding, since they are allowed to touch themselves or other paths at their end-points.
The open paths might start (or end) at virtual vertices or at original vertices and they are allowed
to touch the virtual vertices only at their end-points. These details and further technical aspects are
fundamental for the validity of the next proposition and will be discussed in Section 4.4.1. For the
statement of the next proposition recall the definition of the partition functions (27).

Proposition 4.9 (Polynomial expansion). For any fixed L ∈ 2N, N ∈ N>0, λ ∈ R>0, any vector
of real numbers h = (hx)x∈TL , and ϕ ∈ R, we have that,

ZL,N,λ,H(ϕh) = Y`
L,N,λ + ϕ2Z(2)

L,N,λ,H(h) + o(ϕ2), (41)

in the limit as ϕ→ 0, where

Z(2)
L,N,λ,H(h) := N λY`

L,N,λ

(( ∑
{x,y}∈EL

hxhy
)

+
1

2

∑
x∈TL

hxhx+e1

)
+ N

λ2

2

∑
x,y∈TL

YL,N,λ(x, y)
( ∑

q∈TL:
{x,q}∈EL

hu
) ( ∑

r∈TL:
{y,r}∈EL

hr
)

The Key Inequality will follow from a concavity property of the central quantity at h = 0, namely the
term of order O(ϕ2) in the polynomial expansion is non-positive for a large class of choices of h.
Such a concavity property will follow from reflection positivity. Note that the terms in the expansion
are slightly different than in (18), since here we use the partition functions parametrised by λ, which
were defined in (27), and the entries of the vector h are associated to the vertices of the extended
torus (later we will relate the vector h to a vector v, whose entries are associated to the vertices
of the original torus, obtaining an expression which is similar to (18)). The remainder of the current
subsection is devoted to the proof of Proposition 4.9. Before presenting the proof, we will provide
some definitions and state a preparatory lemma. All the definitions below are functional to the proof
of Proposition 4.9. Section 4.5, which contains the proof of Theorem 3.1, can be read independently
from what follows below in the current subsection.

Paths. Given w ∈ W , we use ({x, y}, p) to denote the p-th link of w which is on the edge {x, y},
with p ∈ {1, . . . ,m{x,y}(w)}. We say that a set of links S in w,

S =
{

({x1, y1}, p1), ({x2, y2}, p2), . . . ((x`, y`), p`)
}
,

is pairing-connected in w if, for any pair of links, ({x, y}, p), ({x′, y′}, p′) ∈ S, there exists an
ordered sequence of links in S,

(
({x′1, y′1}, p′1), ({x′2, y′2}, p′2), . . . ({x′k, y′k}, p′k)

)
⊂ S such that

the following two conditions hold at the same time:
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(i) ({x, y}, p) = ({x′1, y′1}, p′1), and ({x′, y′}, p′) = ({x′k, y′k}, p′k),

(ii) for any i ∈ {1, . . . , k − 1}, y′i = x′i+1 and ({x′i, y′i}, p′i) is paired to ({x′i+1, y
′
i+1}, p′i+1) at

y′i = x′i+1.

Paths are maximal pairing-connected sets. More precisely, a set of links S of w is a path in w if it
is pairing-connected and there exists no pairing-connected set of links in w, S ′, which is such that
S ′ ⊃ S and S ′ 6= S. It is necessarily the case that all links belonging to the same path have the same
colour. For example, the configuration represented in Figure 4 contains seven paths, two of them are
coloured by blue and five by red.

`-loops, double links, `-walks, segments, extremal links. We will now distinguish between different
types of paths. A path S ofw is called loop of links, or just `-loop, if it is such that any link ({x, y}, p) ∈
S is paired to another link at both its end-points and |S| > 2. A path S of w is called double link, if
it is such that any link ({x, y}, p) ∈ S is paired at both its end-points and |S| = 2. It is necessarily
the case that both links belonging to the double link are on the same edge. A path S of w is called
walk of links, or just `-walk, if |S| > 1 and there exist precisely two distinct links in S such that each
of them is unpaired at one end-point and paired at the other end-point. Such two links will be called
extremal links for the `-walk or extremal links for w. A path S of w is called segment if |S| = 1. If S
is a segment, then the unique link which belongs to S is unpaired at both its end points. From these
definitions it follows that any path is either a `-loop, a double link, a `-walk, or a segment. There are no
other possibilities. For example, the configuration w in Figure 4 is composed of one `-loop, two double
links, three segments, and one `-walk which is composed of two links. The two links belonging to such
`-walk are the only two extremal links of the configuration in Figure 4.

Subsets of W1. We now define several subsets of W1 ⊂ W , where the set W1 was defined in
Definition 4.8.

� Let A` be the set of realisations w ∈ W1 such that no path of w is a `-walk or a segment. In
other words, each link of w is paired at both its end-points. This also means that each path of
w ∈ A` is either a `-loop or a double link and, by definition of H , that no link of w ∈ A` is
allowed to touch a virtual vertex.

� For any {x, y} ∈ EL, let As({x, y}) be the set of realisations w ∈ W1 such that one (and
not more than one) path of w is a segment, such a segment is composed of a link which is on
the edge {x, y}, and no connected component of w is `-walk. In other words, each link of w
except for the one which belongs to the segment is paired at both its end-points. A realisation
w ∈ As({x, y}) is represented in Figure 7-left.

� For any pair of (directed, not necessarily distinct) edges (x, q), (y, r) ∈ EL, letAw((x, q), (y, r))
be the set of realisationsw ∈ W1 such that the following three conditions hold true at the same
time: (1) there exists a unique `-walk in w (2) the two extremal links of such a walk are on the
edges {x, q}, {y, r} respectively, one of them is unpaired at q and the other one is unpaired at
r, (3) no path of w is a segment. These three conditions and the definition of H imply that the
following properties hold for any w ∈ Aw((x, q), (y, r)):

(i) The unique `-walk in w has end-points q and r, where q and r might coincide (see some
examples in Figure 7-right, Figure 8, Figure 9, where x is taken to be the origin and
d = 1),
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(ii) There are precisely two extremal links, which are on the edges {x, q} and {y, r} respec-
tively (it is possible that {x, q} = {y, r}), and all the remaining links are paired at both
their end-points.

(iii) Any link of w which is not extremal is on edges in EL.

(iv) Both x and y belong to the original torus, q and r might be original or virtual.

In the statement of the next lemma, recall that (x, y) represents an edge directed from x to y, while
{x, y} represents a undirected edge.

Lemma 4.10. Under the same assumptions as in Proposition 4.9, for any (x, q), (y, r), {u, b} ∈ EL,
we have that,

µL,N,λ,H

(
A`
)

= Y`
L,N,λ, (42)

µL,N,λ,H
(
As({u, b})

)
=

{
λN Y`

L,N,λ if {u, b} ∈ EL,
λ
2
N Y`

L,N,λ if {u, b} ∈ EL \ EL,
(43)

µL,N,λ,H

(
Aw
(
(x, q), (y, r)

) )
=


λ2N YL,N,λ(x, y) if x, y ∈ TL and (x, q) 6= (y, r),
λ2

2
N YL,N,λ(x, x) if x, y ∈ TL and (x, q) = (y, r),

0 if {x, y} ∩ T(2)
L 6= ∅.

(44)

The proof of the lemma is postponed to Section 4.4.1 and is crucial. We will now present the proof of
Proposition 4.9 given Lemma 4.10 .

Proof of Proposition 4.9 given Lemma 4.10. Fix L ∈ 2N, N ∈ N>0, λ > 0 and a vector of real
numbers h = (hx)x∈TL . We have that,

ZL,N,λ,H(ϕh) =
∞∑
i=0

ϕi C(i)
L,N,λ,H(h), (45)

where
C(i)
L,N,λ,H(h) := µL,N,λ,H

(
1{M=i}

( ∏
z∈TL

huzz
) )

andM :=
∑

z∈TL uz is the number of end-points of links which are unpaired in the whole graph. First
of all, note that

∀i ∈ 2N + 1 C(i)
L,N,λ,H(h) = 0. (46)

since any path has either no link with unpaired end-points, or two links with precisely one unpaired
end-point each, or one link with two unpaired end-points. Thus, M(w) is even for any w ∈ W1.
Moreover, note that,

C(0)
L,N,λ,H(h) = µL,N,λ,H

(
A`
)

= Y`
L,N,λ, (47)

where the first identity holds true since w ∈ {M = 0} if and only if each path of w is a `-loop or
a double link and the second identity follows from Lemma 4.10. Furthermore, note that w ∈ {M =
2}∩W1 if and only if precisely one path ofw is a a segment or a `-walk and all the remaining paths of
w are `-loops or double links. In the next expression, the first term in the right-hand side corresponds
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to a sum over all possible edges on which the segment might be located, the second term in the right-
hand side corresponds to a sum over all (directed) edges on which the extremal links might be located
(recall the definitions provided before the statement of Lemma 4.10),

C(2)
L,N,λ,H(h) =∑
{x,y}∈EL

µL,N,λ,H

(
As({x, y})

)
hx hy +

∑
{(x,q),(y,r)}⊂EL

µL,N,λ,H

(
Aw
(
(x, q), (y, r)

) )
hq hr.

(48)

Note that the second sum in the right-hand side is over all unordered pairs of (not necessarily distinct)
directed edges. Now we apply Lemma 4.10 and we re-write the second term in the right-hand side of
the previous expression as follows,

1

2

∑
x,y∈TL:
x 6=y

∑
q,r∈TL:

{x,q},{y,r}∈EL

hq hr µL,N,λ,H

(
Aw
(
(x, q), (y, r)

))
+

1

2

∑
x∈TL

∑
q,r∈TL:

{x,q},{x,r}∈EL,q 6=r

hq hr µL,N,λ,H

(
Aw
(
(x, q), (x, r)

) )

+
∑
x∈TL

∑
q∈TL:
{x,q}∈EL

h2
q µL,N,λ,H

(
Aw
(
(x, q), (x, q)

) )

=
1

2
N λ2

∑
x,y∈TL

YL,N,λ(x, y)
( ∑

q∈TL:
{x,q}∈EL

hq
)( ∑

r∈TL:
{y,r}∈EL

hr
)

(49)

where the factor one-half in the first two terms is a multiplicity factor due to the fact that we sum over
ordered pairs of sites. By replacing (49) with the second term in right-hand side of (48), applying
Lemma 4.10 for the first term in the right-hand side of (48), using (46) and (47), we conclude the proof
of the proposition.

4.4.1 Proof of Lemma 4.10

In this section we prove Lemma 4.10, which is a fundamental step in the proof of the Polynomial ex-
pansion. The proof of (42) is the easiest. Indeed, our choice of the weight function H imposes that
any configuration in the set A` consists of mutually-vertex-disjoint `-loops and double links which lie
entirely in the original torus and these can be identified with loops and double edges of the config-
urations in Ω` taking the same positions. The proofs of (43) and (44) are more elaborate. The proof
requires defining a map which maps sets of configurations in As({x, y}) to sets of configurations
in Ω` and sets of configurations in Aw({(x, q), (y, r)}) to sets of configurations in Ωx,y and con-
sists of a comparison of the weights taken by such sets. Informally the map works as follows: For the
proof of (43), we take any configuration inAs({x, y}) and ‘remove’ the link which is unpaired at both
its end-points. Such a removal has a cost λ (whose corresponding factor appears in the right-hand
side of (43)) and leads to a configuration in A`. After that, we compare the sets of configurations A`
obtained after such a ‘removal’ with sets of configurations in Ω` similarly to the previous case. For
the proof of (44) we ‘remove’ from any configuration in Aw({(x, q), (y, r)}) the two extremal links
(which, by definition, are on {x, q} and on {y, r} respectively and are unpaired at q and r respec-
tively) paying a cost λ2 (which appears in the right-hand side of (44)) and obtain a configuration with
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a `-walk having end-points x and y and possibly double links and `-loops, with all such objects being
vertex-self-avoiding, mutually-vertex-self-avoiding and lying entirely in the original torus by our choice
U = H . Such objects (`-walk, double links and `-loops) can be identified with corresponding objects
of the configurations in Ωx,y (walk, double edges and loops respectively) taking the same positions.
Such an identification allows the comparison of the weights of the set Aw({(x, q), (y, r)}) under µ
and the weights taken by the configurations in Ωx,y in partition function YL,N,λ(x, y). It is important
for such a comparison to ensure that the ‘removal’ of the links does not leave a ‘hole’: For this rea-
son the definition of the weight function H which we provided implies that the `-walk is not entirely
vertex-self-avoiding, namely at the vertices where its two extremal links are unpaired, q and r, it might
‘touch’ itself or other paths. Here by ‘no hole’ we mean that, when the two extremal links are ‘removed’,
one obtains configurations whose paths are ‘free’ to use the vertices which are touched by the links
which get removed. A further technical aspect in the proofs of (43) and (43) is that such a ‘removal’
is a many-to-one map, since the links which gets ‘removed’ might occupy different positions on the
same edge and the ‘removal’ maps several input configurations with different positions of such links to
the same output. For this reason we need to compute the factor corresponding to the number of such
possible positions, which also depends on the pairing of the other links on that edge. Fortunately for
us, the factor 1

me!
in the definition of the measure µL,N,λ,U assigns a higher weight to the configuration

obtained after the ‘removal’ and such a energy gain matches the corresponding entropy loss perfectly,
giving a total factor which equals precisely one.

Proof of Lemma 4.10. For the formal proof it will be convenient dealing with undirected sub-graphs of
the torus and for this reason we introduce the set Σ, which can be viewed as an ‘intermediate object’
between the setsW1 and Ω ∪ Ω`, whose respective subsets must be compared.

Definition of the set Σ. Let Σ be the set of spanning sub-graphs of (TL,EL) such that every vertex
has degree zero, one or two. Any connected component of σ ∈ Σ is called monomer if it consists of
a single vertex, isolated edge if it consists of two vertices connected by one edge, loop if the set of
its edges is isomorphic to a simple closed curve in Rd, walk if the set of its edges is isomorphic to an
open simple curve in Rd. Thus, an isolated edge is also a walk. For x 6= y, let Σx,y be defined as the
set of graphs σ ∈ Σ such that there exists a walk with end-points x and y and any other connected
component is a monomer, a isolated edge or a loop, let Σ` be defined as the set of graphs σ ∈ Σ such
that any connected component is a monomer, a isolated edge or a loop, let Σx,x be the set of graphs
σ ∈ Σ` such that x is monomer. For any σ ∈ Σ, let L(σ) be the number of connected components in
σ which are not monomers (by a slight abuse of notation, since we already defined the related quantity
L(π) in the introduction) let D(σ) be the number of isolated edges in σ let D′(σ) be the number of
isolated edges in σ which do not contain the origin, let |σ| be the number of edges in σ. Recall the
definitions of the partition functions (27) parametrised by λ. We have that, for any y ∈ TL \ {o},

Y`
L,N,λ =

∑
σ∈Σ`

λ|σ| NL(σ) (
λ

2
)D(σ), (50)

N YL,N,λ(o, y) =
∑
σ∈Σo,y

λ|σ| NL(σ) (
λ

2
)D
′(σ) (51)

YL,N,λ(o, o) =
∑
σ∈Σo,y

λ|σ| NL(σ) (
λ

2
)D
′(σ). (52)

To see why the previous relations hold true, note that there is an obvious correspondence between the
elements π ∈ Ω` and the elements σ ∈ Σ` and between the elements π ∈ Ωo,x and the elements
σ ∈ Σo,x. Indeed, for each π, we obtain a unique element σ which is associated to π by replacing

DOI 10.20347/WIAS.PREPRINT.2647 Berlin 2019



L. Taggi 26

any double edge, directed loop or directed walk by a isolated edge, undirected loop or undirected
walk respectively which is composed of the same edges and sites. We deduce (50) and (51) from the
definitions (27) considering that directed loops have two possible orientations and that double edges
in π consist of two (directed) edges while the isolated edges in σ just of one edge. Note that the factor
N in the left-hand side of (50) is due to the fact that L(π), which was defined in Section 2, does not
count the walk, while L(σ) counts the number of connected components which are not monomers
and thus also the walk. Finally, note that in (52) and (52) we have D′ in place of D since, if the walk
consists of just one edge, we don’t want assign to it a factor λ

2
. Now that the partition functions have

been defined in terms of sums over elements of Σ, we can proceed with the comparison between the
elements ofW1 and the elements of Σ. This comparison will require introducing a map between such
sets and studying its multiplicity properties.

Below we will keep adopting the following terminology: double links, `-loops, `-walks, and segments for
the paths of the realisations w ∈ W1; isolated edges, loops, walks and monomers for the connected
components of the realisation σ ∈ Σ. Moreover, we write that {x, y} ∈ σ if {x, y} belongs to the
edge set of σ ∈ Σ.

Definition and properties of the map Q : W1 7→ Σ. For any w ∈ W1, let Q(w) be the set of
edges {x, y} ∈ EL such that there exists a link on {x, y} in w which is paired both at x and y. We
define a map Q which associates to each realisation w ∈ W1 the realisation Q(w) := (TL,Q(w)).
To begin note that,

∀w ∈ W1, Q(w) ∈ Σ. (53)

This holds true since, by definition of W1, for each realisation w ∈ W1, each vertex of Q(w) has
degree zero, one or two. For any σ ∈ Σ, define the set Q−1(σ) := {w ∈ W1 : Q(w) = σ}. From
the definition of the map Q we deduce that, for any pair of graphs σ1, σ2 ∈ Σ,

σ1 6= σ2 =⇒ Q−1(σ1) ∩Q−1(σ2) = ∅. (54)

Note that for any w ∈ W1, a loop is present in Q(w) if and only if a `-loop with precisely one link
located on each edge of the loop is present in w. Moreover, note that a isolated edge is present in
Q(w) if and only if a double link whose two links are on that edge is present in w. Moreover, suppose
that x 6= y. Note that for any w ∈ W1, a walk with end-points x and y is present in Q(w) if and only
if a `-walk with extremal links (x, q), (y, r) for some q, r ∈ TL and with precisely a non-extremal link
on each edge of that walk is present in w. Finally, suppose that x = y. Note that, by definition of H ,
for any w ∈ W1, a `-walk with extremal links (x, q), (x, r) can only consist of two links which are
paired to each other at x and which are both extremal in w. Thus, Q(w) has a monomer at x = y if
and only if either a `-walk composed of just two links paired at x and on the edges {x, q}, {x, r} for
some q, r ∈ TL (with possibly q = r) is present in w or if no link of w is paired at x = y. See also
Figures 7, 8, 9 for examples. From all these considerations we deduce that,

∀w ∈ A`, Q(w) ∈ Σ`, (55)

∀{x, y} ∈ EL ∀w ∈ As({x, y}), Q(w) ∈ Σ`, (56)

∀(x, q), (y, r) ∈ EL : x, y ∈ TL, ∀w ∈ Aw( (x, q), (y, r)
)
, Q(w) ∈ Σx,y. (57)

Moreover, by definition ofW1 we also have that,

∀(x, q), (y, r) ∈ EL : {x, y} ∩ T(2)
L 6= ∅, A

w( (x, q), (y, r)
)

= ∅. (58)
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We will now prove all the claims in the statement of Lemma 4.10 one by one using such properties.

Proof of (42). From (55) and from the considerations made in the paragraph before (55) we deduce
that,

∀σ ∈ Σ`, µL,N,λ,H

(
A` ∩ {Q(w) = σ}

)
=
(1

2

)D(σ)

λ|σ|+D(σ) NL(σ). (59)

The factor NL(σ) above takes into account for the fact that if w′ is obtained from w by changing
the colour of all the links belonging to the same path, then Q(w) = Q(w′), the term |σ| + D(σ)
corresponds to the number of links in each configuration w ∈ A` such that Q(w) = σ, and the factor
(1/2)D(σ) comes from the term 1

me!
in the definition (30). Now note that,

µL,N,λ,H
(
A`
)

=
∑
σ∈Σ`

µL,N,λ,H

(
A` ∩ {Q(w) = σ}

)
=
∑
σ∈Σ`

(λ
2

)D(σ)

λ|σ| NL(σ) = Y`
L,N,λ.

For the first identity we used (54) and (55), for the second identity we used (50). This concludes the
proof of (42).

Proof of (43). Recall that, if {x, y} belongs to the edge set of σ ∈ Σ, we write {x, y} ∈ σ. In the
whole proof we fix an arbitrary undirected edge {x, y} ∈ EL. To begin, we claim that for any σ ∈ Σ`,

∣∣∣{w ∈ As({x, y}) : Q(w) = σ
} ∣∣∣ =


3 NL(σ)+1 if σ has a isolated edge at {x, y} and {x, y} ∈ EL
2 NL(σ)+1 if {x, y} belongs to a loop of σ and {x, y} ∈ EL
1 NL(σ)+1 if {x, y} /∈ σ.

0 otherwise.
(60)

We now explain prove (60), starting from the fourth case of (60) (‘otherwise’), which is when {x, y} ∈
EL \ EL and {x, y} belongs to a loop or a isolated edge of σ. In this case Aw({x, y}) ∩ {Q(w) =
σ} = ∅, since for any w ∈ W1, no double link or `-loop is allowed to touch a virtual vertex. This
explains why we get zero in the fourth case of (60).

We now consider the first three cases. To begin, note that the factor NL(σ)+1 in the first three cases
takes into account for the fact that if w′ is obtained from w by changing the colour of all the links
belonging to the same path, then Q(w) = Q(w′). The factors 3, 2 or 1 in the first three cases above
take into account for the number of possible labels of the link belonging to the segment and which
is on {x, y}. We explain this starting from the first case. In the first case, when σ has a isolated
edge at {x, y}, each configuration w ∈ Q−1(σ) ∩ As({x, y}) has three links on {x, y}, where
two of such three links are paired to each other and compose a double link, while the third link is
unpaired at both its end-points. Such an unpaired link might be the first, the second or the third link on
{x, y}. This situation is represented for example on the left of Figure 7. Thus, the factor 3 takes into
account for the fact that the unpaired link might have three distinct possible labels (in other words, it
might occupy three distinct possible positions on {x, y}), with each label corresponding to a distinct
configuration w such that Q(w) = σ. In the second case, when {x, y} belongs to a loop of σ, each
w ∈ Q−1(σ) ∩As({x, y}) has two links on {x, y}, with one link belonging to the segment and thus
being unpaired at both its end-points and the other link being paired both at x and y. Thus, the factor
two takes into account for the fact that there are two choices for which link on {x, y} belongs to the
segment and which link on {x, y} is paired at both its end-points. Finally, in the third case we have no
entropy factor. From these considerations and from the definition of µ, which is given in Definition 4.1,
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1,r
ox y q

y

r

2,r
3,r

1,r
2,r 2,b

1,b 1,r
1,r
2,r

1,r

Figure 7: Two copies of the vertex set of the graph (TL, EL) when d = 1, with TL = {−2, . . . , 3} ×
{1, 2}. On each copy a realisation w ∈ W1 is represented, each link has two possible colours, red
or blue, and a dotted line connects end-points of paired links. Left: A realisation in w ∈ As

(
{x, y}

)
,

such that Q(w) ∈ Σ consists of three isolated edges and six monomers. Right: A realisation w ∈
Aw
(
(o, q), (y, r)

)
such that Q(w) ∈ Σ consists of one walk composed of two edges and eight

monomers.

and the definition of H , which is given in Definition 4.8, we also deduce that, for any σ ∈ Σ`, for any
w ∈ As({x, y}) such that Q(w) = σ,

µL,N,λ,H(w) =


1
3!

1
2D(σ)−1 λ

|σ|+D(σ)+1 if σ has a isolated edge at {x, y} and {x, y} ∈ EL,
1
2

1
2D(σ) λ

|σ|+D(σ)+1 if {x, y} belongs to a loop of σ and {x, y} ∈ EL,
1
2

1
2D(σ) λ

|σ|+D(σ)+1 if {x, y} 6∈ σ and {x, y} ∈ EL \ EL,
1

2D(σ) λ
|σ|+D(σ)+1 if {x, y} 6∈ σ and {x, y} ∈ EL.

(61)

In all the cases above, the last factor corresponds to the weight of the links, whose number is |σ| +
D(σ) + 1. The first two factors in the first two cases, the second factor in the third case and the first
factor in the last case follows from the term 1

me!
in the definition of µ, the first factor 1

2
in the third case

comes from the fact that the weight functionHx, x ∈ TL assigns a factor 1
2

whenever it ‘sees’ a link on
{x, x+ ed+1} which is unpaired at x and this can only happen when such a link is unpaired at x and
at {x, x+ed+1}, thus being a segment. From (60) and (61) we deduce that, for anyw ∈ As({x, y}),
for any σ ∈ Σ`,

µL,N,λ,H

(
As({x, y})∩{Q(w) = σ}

)
=

{
λN λ|σ|+D(σ) (1

2
)D(σ) NL(σ) if {x, y} ∈ EL

λ
2
N λ|σ|+D(σ) (1

2
)D(σ) NL(σ) if {x, y} ∈ EL \ EL.

(62)
From (54), (56), (61), and (62) we deduce that, when {x, y} ∈ EL,

µL,N,λ,H

(
As({x, y})

)
=
∑
σ∈Σ`

µL,N,λ,H

(
As({x, y}) ∩ {Q(w) = σ}

)
= λN

∑
σ∈Σ`

(λ
2

)D(σ)

λ|σ| NL(σ) = λN Y`
L,N,λ,

and that the same holds true with a factor one-half in front of the two last terms when {x, y} ∈ EL\EL.

Proof of (44) when {x, y} ∩ T(2)
L 6= ∅. In this case, the proof follows immediately from (58).

Proof of (44) when {x, y} ⊂ TL. Suppose that {x, y} ⊂ TL (possibly x = y). Without loss of
generality (by translation invariance) fix x = o. From (57) and from the properties of the map Q we
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1,r

oq o q
1,r
2,r

1,r 1,r 1,r 1,r 1,b
2,b

1,r
2,r
3,r

1,r
2,r

Figure 8: Same setting as in Figure 7. Right: A realisation w ∈ Aw((o, q), (q, o)) such that {o, q} 6∈
Q(w) and Q(w) consists of one walk composed of five edges and six monomers. Left: A realisation
w ∈ Aw((o, q), (q, o)) such that {o, q} ∈ Q(w) and such that Q(w) ∈ Σo,q consists of three
isolated edges.

claim that, under these assumptions, for any y ∈ TL and σ ∈ Σo,y, we have that,∣∣∣{w ∈ Aw((o, q), (y, r)) : Q(w) = σ
} ∣∣∣ =

21{{o,q}∈σ} 21{{y,r}∈σ} NL(σ) if y 6= o and (y, r) 6= (q, o)

6NL(σ) if y 6= o, (y, r) = (q, o) and {o, y} ∈ σ
2NL(σ) if y 6= o, (y, r) = (q, o) and {o, y} 6∈ σ,

NL(σ)+1 if y = o.

(63)

We now explain (63). The factors NL(σ) and NL(σ)+1 in all the cases above take into account for the
fact that if w′ is obtained from w by changing the colour of all the links belonging to the same path,
then Q(w) = Q(w′). We now explain the remaining factors considering case by case.

� Let us explain the first case: y 6= o, and (y, r) 6= (q, o). Note that, from the properties of the
map Q, it follows that for any w ∈ Aw((o, q), (y, r)) such that Q(w) = σ, {o, q} ∈ σ if and
only if two links of the unique `-walk in w are on {o, q}, one of which is extremal. Note also
that the same claim holds true if we replace {o, q} by {y, r}. Thus, the factors 21{{o,q}∈σ} and
21{{y,r}∈σ} account for the fact that there are two possibilities for choosing which of the two link
is the extremal one (the other link belongs to the `-walk, but it is not extremal). For example,
if w1 is the configuration in the right of Figure 7, σ is such that Q(w1) = σ, and w2 is the
configuration which is obtained from w1 by exchanging the pairing at the vertex q in such a way
that the link ({q, o}, 1) is paired at q to the link ({q − e1, q}, 1) and ({q, o}, 2) is unpaired
at q, then also Q(w2) = σ. From these considerations we also deduce that, if y 6= o, and
(y, r) 6= (q, o), for any σ ∈ Σo,y and w ∈ A((o, q), (y, r)) such that Q(w) = σ,

µL,N,λ,H(w) =
1

21{{o,q}∈σ}+1{{y,r}∈σ}
1

2D′(σ)
λ2 λ|σ|+D

′(σ) (64)

where the first and the second factor follows from the term 1
me!

in the definition of µ, the factor
λ2 corresponds to the weight of the two extremal links, and the last factor corresponds to the
weight of all the remaining links.

� Let us explain the second case: y 6= o, (y, r) = (q, o) and {o, q} ∈ σ. In this case, any
w ∈ Aw((o, q), (q, o)) is such that the `-walk consists of three links which are on {o, q} and
there are precisely three links on {o, q}. Thus, one link of the `-walk must be paired at both its
end-points to the two other links of the `-walk, while the two remaining links are paired at one
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o q

r

o

q

2,r
1,r 1,r

1,r

1,b
2,b

1,b
2,b

1,b
2,b

1,r 2,r

Figure 9: Same setting as in Figure 7. Left: A realisation w ∈ Aw({(o, q), (o, r)}), r 6= q,
such that Q(w) consists of two isolated edges and eight monomers. Right: A realisation w ∈
Aw({(o, q), (o, q)}) such that Q(w) ∈ Σo,o consists of two isolated edges and eight monomers.

end-point and unpaired at the other end-point. An example of such configuration is represented
in Figure 8 - right. The factor six in the right-hand side of (63) accounts for the fact that there are
three distinct possibilities for choosing which of such three links is paired at both end-points and,
once this has been chosen, there are two possibilities for choosing which of the two remaining
links is paired at o and unpaired at q. From these considerations we also deduce that, for any
σ ∈ Σo,q, such that {o, q} ∈ EL and {o, q} ∈ σ, for any w ∈ Aw((o, q), (q, o)) such that
Q(w) = σ,

µL,N,λ,H(w) =
1

3!

1

2D′(σ)
λ2 λ|σ|+D

′(σ) (65)

where the first and the second factor follows from the term 1
me!

in the definition of µ, the factor λ2

corresponds to the weight of the two extremal links of the `-walk, and the last factor corresponds
to the weight of all the remaining links.

� Let us explain the third case: y 6= o, (y, r) = (q, o) and {o, q} /∈ σ. In this case, any
w ∈ Aw((o, q), (q, o)) is such that two links are on {o, q}, where one of them is unpaired at
o and is paired to another link of the walk at q, while the second one is unpaired at q and it
is paired to another link of the walk at o. An example of such configuration is represented in
Figure 8 - left. The factor 2 in the right-hand side of (63) accounts for the fact that there are
two possibilities for choosing which of the two links is paired at o and which at q. From these
considerations we also deduce that, for any σ ∈ Σo,q, such that {o, q} ∈ EL and {o, q} ∈ σ,
for any w ∈ Aw((o, q), (q, o)) such that Q(w) = σ,

µL,N,λ,H(w) =
1

2!

1

2D′(σ)
λ2 λ|σ|+D

′(σ) (66)

where the first and the second factor follows from the term 1
me!

in the definition of µ, the factor λ2

corresponds to the weight of the two extremal links of the `-walk, and the last factor corresponds
to the weight of all the remaining links.

� Let us explain the last case: y = o. An example of configuration w ∈ Aw((o, q), (o, r)) is
represented in the left of Figure 9 when q 6= r and in the right of Figure 9 when q = r. In this
case, for any w ∈ Aw((o, q), (o, r)) the unique `-walk in w consists of just two links which are
paired to each other at o. When q = r, these links are the only two links on {o, q} = {o, r},
while when q 6= r, each link of the two is the unique link on {o, q} and {o, r}. Since all the
other paths are double links or `-loops, we deduce (63). From these considerations we also
deduce that, for any σ ∈ Σo,o, for any w ∈ A((o, q), (o, r)), we have that,

µL,N,λ,H(w) =

{
1

2D′(σ)
λ2 λ|σ|+D

′(σ) if q 6= r,
1
2!

1
2D′(σ)

λ2 λ|σ|+D
′(σ) if q = r .

(67)
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where the first factor in the first case and the first two factors in the second case follows from the
term 1

me!
in the definition of µ, the factor λ2 corresponds to the weight of the two unique links

the `-walk is composed of, and the last factor corresponds to the weight of all the remaining
links.

Now that the multiplicity properties of the map and that the weights assigned by µ to the configurations
w in each of the four cases above have been considered, we can put all the cases together to conclude
the proof of (44). Below, we use the general properties of the mapQ, (54) and (58), for the first identity,
(63), (64), (65), (66), (67), for the three cases of the second identity, (51) and (52) for the three cases
of the third and last identity, obtaining that, for any pair of directed edges (o, q), (y, r) ∈ EL,

µL,N,λ,H

(
Aw
(
(o, q), (y, r)

))
=
∑
σ∈Σo,y

µL,N,λ,H

(
Aw
(
(o, q), (y, r)

)
∩ {Q(w) = σ}

)

=



λ2
∑

σ∈Σo,y

(
λ
2

)D′(σ)

λ|σ| NL(σ) = λ2N YL,N,λ(o, y) if y 6= o,

Nλ2
∑

σ∈Σo,y

(
λ
2

)D′(σ)

λ|σ| NL(σ) = λ2N YL,N,λ(o, y) if y = o, (o, q) 6= (y, r),

N
2
λ2

∑
σ∈Σo,y

(
λ
2

)D′(σ)

λ|σ| NL(σ) = λ2

2
N YL,N,λ(o, y) if y = o, (o, q) = (y, r).

This concludes the proof of Lemma 4.10.

4.5 Proof of Theorem 3.1

All the ingredients for the proof of Theorem 3.1 have been introduced and we can now combine them
to present the proof of Theorem 3.1.

Proof of Theorem 3.1. Fix arbitrary finite integers L ∈ 2N>0, N ∈ N>0, fix an edge-parameter
λ ∈ (0,∞). Recall that x ∼ y denotes that x and y are nearest neighbours in (TL,EL), and recall
that

∑
(x,y)∈EL is the sum over directed edges while

∑
{x,y}∈EL is the sum over undirected edges.

Recall also that (TL,EL) corresponds to the torus Zd/LZd while (TL, EL) is the extended torus. For
any real-valued vector v = (vx)x∈TL , let hv = (hvx)x∈TL be obtained from v as follows:

∀x ∈ TL hvx :=

{
vx if x ∈ TL,

−2 d vx−ed+1
if x ∈ T(2)

L .
(68)

Using the fact that for any real-valued vector v = (vx)x∈TL ,

2 d
∑
x∈TL

v2
x =

∑
{x,y}∈EL

(v2
x + v2

y) (69)

we deduce that,∑
{x,y}∈EL

hvxh
v
y +

1

2

∑
x∈TL

hvxh
v
x+ed+1

=

∑
{x,y}∈EL

vxvy − d
∑
x∈TL

v2
x =

1

2

∑
{x,y}∈EL

(2vxvy − v2
x − v2

y) = −1

2

∑
{x,y}∈EL

(
vx − vy

)2
. (70)
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Moreover, ∑
q∈TL:(x,q)∈EL

hvq = (4v)x. (71)

From (70), (71) and from the definition in Proposition 4.9 we deduce that, for any v = (vx)x∈TL ,

Z(2)
L,N,λ,H(hv) = −λN

2
Y`
L,N,λ

∑
{x,y}∈EL

(vy − vx)2 +
λ2N

2

∑
x,y∈TL

YL,N,λ(x, y)(4v)x (4v)y.

(72)
Moreover, recall that, as defined in Section 4.3, for any original vertex x ∈ TL, (hv)x is defined as the
vector which is obtained from hv by copying the value hvx = vx at any original vertex and the value
hvx+ed+1

= −2dvx at any virtual vertex and deduce from this and from (72) that,

∀v = (vz)z∈TL ∀x ∈ TL, Z(2)
L,N,λ,H

(
(hv)x

)
= 0. (73)

We have that, in the limit as ϕ→ 0,

ZL,N,λ,H(ϕhv) = Y`
L,N,λ + ϕ2Z(2)

L,N,λ,H(hv) + o(ϕ2)

≤
( ∏
x∈TL

ZL,N,λ,H
(
(ϕhv)x

)) 1
|TL|

=
( ∏
x∈TL

(
Y`
L,N,λ + o(ϕ2)

)) 1
|TL|

= Y`
L,N,λ + o(ϕ2),

For the first step above we used Proposition 4.9, for the second step above we used Proposition 4.7,
for the third step above we used Proposition 4.9 and (73), for the last step we perform the Taylor
expansion around x = 0 of the function: (1 + x)1/|TL| = 1 + x/|TL| + O(x2), where in our case
x = o(ϕ2). Thus we proved that, for any v ∈ RTL , in the limit as ϕ→ 0,

Y`
L,N,λ + ϕ2Z(2)

L,N,λ,H(hv) + o(ϕ2) ≤ Y`
L,N,λ + o(ϕ2),

where hv was defined in (68) as a function of v, and this can only hold true if

Z(2)
L,N,λ,H(hv) ≤ 0. (74)

By replacing (72) in the left hand-side of (74), dividing the whole expression by λN
2
Y`
L,N,λ and plugging

in (28), we deduce that, for any finite strictly positive λ,∑
x,y∈TL

GL,N, 1
λ
(x, y)(4v)x (4v)y ≤

∑
{x,y}∈EL

(
vy − vx

)2
.

Since the previous relation holds for any strictly positive λ and since for any finiteL, limλ→∞GL,N,1/λ(x, y)
= GL,N,0(x, y), we deduce that the same inequality holds true also with 1

λ
replaced by 0 and thus

the proof is concluded.

5 A version of the Infrared bound

The main goal of this section is to state and prove Theorem 5.1 below, which provides a uniform
lower bound for the Cesàro sum of the two-point function. Recall the definition of the odd and even
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sub-lattices, (2) and define the odd and even two-point functions,

Go
L,N,ρ(x, y) := GL,N,ρ(x, y) 1{x∈ToL}, (75)

Ge
L,N,ρ(x, y) := GL,N,ρ(x, y) 1{x∈TeL}. (76)

We will use the notation

GL,N,ρ(x) := GL,N,ρ(o, x) Go
L,N,ρ(x) := Go

L,N,ρ(o, x) Ge
L,N,ρ(x) := Ge

L,N,ρ(o, x),

for any x ∈ TL, and we will omit the sub-scripts when appropriate. Recall that rd is the expected
number of returns of a simple random walk in Zd.

Theorem 5.1 (Infrared-ultraviolet bound). For any d,N ∈ N>0, L ∈ 2N>0, ρ ∈ [0,∞), we have
that,∑
x∈ToL

Go
L,N,ρ(x)

|ToL|
≥ GL,N,ρ( e1 ) − IL(d) −

∑
x∈TL

Ge
L,N,ρ(x)

|TeL|
+

∑
x∈TL :

x2=...=xd=0

ΥL(x)Ge
L,N,ρ(x) (77)

where
(
IL(d)

)
L∈N is a sequence of real numbers, which is defined in (83) below, whose limitL→∞

exists and satisfies
lim
L→∞

IL(d) =
rd
4d
, (78)

and (ΥL)L∈N is a sequence of real-valued functions, which are defined in (86) below, and converges
point-wise with L to a finite function Υ.

Such a theorem will be applied under the assumption that ρ = 0, in which case the last two terms in
the right-hand side of (77) equal zero, as we will prove in Lemma 5.4 below. Although we will apply
the theorem under the assumption ρ = 0, in this section we will allow ρ to take positive values for the
sake of generality.

Remark 5.2. A similar lower bound for the Cesàro sum of two-point functions to ours (77) was obtained
in the framework of spin systems with continuous symmetry [28, 29, 30]. Our analysis differs from
the spin systems case for some important aspects. In the spin systems case one obtains the Key
Inequality with GL,N,ρ(x, y) replaced by the correlation between the spins, which is typically denoted
by < So · Sx >L,N,β , where N there represents the number of components of the spins and β is the
inverse temperature. There, the Key Inequality leads to a uniformly positive lower bound for the Cesàro
sum of two-point functions, similarly to our case. This bound is usually referred to as infrared bound,
since the quantity which one bounds from below uniformly corresponds to the zero (i.e, low frequency)
Fourier mode of the two-point function. The same approach as in the classical case of spin systems
with continuous symmetry would work in our case if the term GL,N,ρ(o) was strictly positive (and large
enough) uniformly in L and in the limit of small ρ. Unfortunately this is not the case, since it is shown
in Lemma 5.4 below that GL,N,0( o ) = 0 (more precisely, when ρ = 0, the two-point function equals
zero at any even site). For this reason, we proceed differently than in [28, 29, 30]: The term GL,N,ρ(o)
is replaced by the term GL,N,ρ(e1) and we use the symmetry properties of the Fourier odd two point
function to deal with the presence of the factor eik·e1 in the right-hand side of (23), which is not present
in [28, 29, 30]. We refer to the resulting bound as Infrared-ultraviolet bound, since the quantity which
we bound from below, which is in the left-hand side of (23), involves not only the lowest, but also the
highest frequency Fourier mode (more precisely, it equals the difference of the two).
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We now start to introduce the arguments which lead to the proof of Theorem 5.1. To begin, we define
the central quantity,

∀k ∈ T∗L, ε(k) := 2
d∑
j=1

(
1− cos(kj)

)
. (79)

Recall also the definition of Fourier transform and inverse Fourier transform which were provided in
Section 3.2.

Proposition 5.3 (High frequency upper bound). Under the same assumptions as in Theorem 5.1,
for any L ∈ 2N>0,

∀k ∈ T∗L \ {o} ĜL,N,ρ(k) = Ĝo
L,N,ρ(k) + Ĝe

L,N,ρ(k) ≤ 1

ε(k)
. (80)

Proof. To begin, we fix an arbitrary k ∈ T∗L \ {o} and choose the vector v = (vx)x∈TL such that, for
any x ∈ TL, vx := cos(k · x). We note that under this choice the following facts hold true,

(i) For any x ∈ TL, (4v)x = −ε(k) vx,

(ii)
∑
{x,y}∈EL(vy − vx)2 = ε(k)

∑
x∈TL v

2
x,

(iii)
∑

x,y∈TL vx vyG(x, y) = Ĝ(k)
∑

x∈TL v
2
x.

These computations are classical and we present their proof in the appendix of this paper. The proof
of Proposition 5.3 follows from Theorem 3.1 and from such computations. We first apply (i) to the
left-hand side of (17), then we apply (ii) to the right-hand side of (17), thus obtaining that

ε2(k)
∑
x,y∈TL

vx vyG(x, y) ≤ ε(k)
∑
x∈TL

v2
x.

Now we apply (iii) to the left-hand side of the previous expression and we divide everything by
ε2(k)

∑
x∈TL v

2
x. This concludes the proof.

The next lemma states some properties of the two-point functions and of their Fourier transforms.

Lemma 5.4. Let U be the set of vectors u := (u1, . . . , ud) ∈ Zd such that |ui| = 1 for any
coordinate i. The following properties hold for any u ∈ U,

(i) For any k ∈ T∗L, ĜL,N,ρ(k), Ĝe
L,N,ρ(k), Ĝo

L,N,ρ(k) ∈ R.

(ii) If k, k + πu ∈ T∗L, then Ĝo
L,N,ρ(k + πu) = −Ĝo

L,N,ρ(k),

(iii) If k, k + πu ∈ T∗L, then Ĝe
L,N,ρ(k + πu) = Ĝe

L,N,ρ(k).

(iv) For any L ∈ 2N and x ∈ TL, we have that Ge
L,N,0(o, x) = 0.

Proof. The first property follows from the definition of Fourier transform and the symmetries ofZd/LZd.
The properties (i) and (ii) follow from the definition of Fourier transform and the fact that, if x ∈ ToL,
then

∑d
i=1 xi = 2Z + 1 and if x ∈ TeL, then

∑d
i=1 xi = 2Z. The fourth property holds true since,

if the walk in π ∈ Ω ends at an even site, then it contains an odd number of sites and, since the
total number of sites in TL is even and since each loop or double edge contains an even number of
sites, this implies that at least one monomer is present in π and thus that the weight of π is zero since
ρ = 0.
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H-π/2 0-π π/2 π

1
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2 34

43

Figure 10: A representation of the dual torus T∗L and the 2d+1 regions Hb, b ∈ B, which are delimited
by the torus boundary or by the dotted lines, where d = 2. The bijection Ψ maps the sites where the
dotted arrows start to the sites where the dotted arrows end and, for each i ∈ {1, . . . , 4}, it maps the
darker region with label i to the lighter region with the same label.

We now have all the ingredients we need for proving Theorem 5.1.

Proof of Theorem 5.1. Note that, since ĜL,N,0(k) is real, then it follows from (23) that the term in
the left-hand side of the next expression is real, hence we deduce that,∑
k∈T∗L\{o,p}

eik·e1 ĜL,N,ρ(k) =
∑

k∈T∗L\{o,p}

Re
(
eik·e1 ĜL,N,ρ(k)

)
=

∑
k∈T∗L\{o,p}

cos(k · e1)ĜL,N,ρ(k).

(81)

Our goal is to provide an upper bound for the previous expression, which by Lemma 5.4 gives a lower
bound to the Cesáro sum of the odd-two point function. For this we use the symmetry properties of the
odd and even Fourier two-point functions to transform the previous sum into a sum over sites where
the cosine in (81) takes non-negative values. This makes possible the application of Proposition 5.3 to
upper bound ĜL,N,ρ(k). More precisely, we define the subset of T∗L,

H :=
{
k ∈ T∗L : k1 ∈ (−π

2
,
π

2
]
}
,

and we note that there exists a bijection Ψ : H \ {o} 7→ T∗L \ (H ∪ {p}) which is such that, for any
k ∈ H, the following properties hold true,

cos(k · e1) = − cos(Ψ(k) · e1), Ĝo
L,N,ρ(k) = −Ĝo

L,N,ρ

(
Ψ(k)

)
, Ĝe

L,N,ρ(k) = Ĝe
L,N,ρ

(
Ψ(k)

)
(82)

The bijection Ψ consists of a translation of any vertex x ∈ H by an appropriate vector πu, where
u is an element of U which depends on x. See also Figure 10 for a representation of Ψ in the
(simpler) case of d = 2. Thus, (82) follows from Lemma 3.3. More precisely, the bijection Ψ is defined
as follows. To begin, we split T∗L into 2d+1 disjoint sub-regions, by first defining the set of indices
B := {−1,−1

2
, 1

2
, 1} × {0, 1} × . . .× {0, 1} ⊂ 1

2
Zd, and then, for any b = (b1, . . . , bd) ∈ B, we

define

Hb :=
{
k ∈ T∗L : k1 ∈

(
π(b1 −

1

2
), πb1

]
, ki ∈

(
π(bi − 1), πbi

]
, for i = 2, . . . , d

}
.
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Note that Hb ⊂ H only if b1 ∈ {−1
2
, 1

2
}. For any x ∈ H \ {o}, let b the unique element of B such

that x ∈ Hb. Then,
Ψ(x) := x+ πu,

where u ∈ U depends on b and it is defined as follows: If b1 = ±1
2
, then u1 := ∓1. This guarantees

that Ψ(x) ∈ TL \H. Moreover, for any i ∈ {2, . . . , d}, if bi = 0, then ui := 1, while if bi = 1, then
ui := −1. This defines the bijection Ψ. Note that it follows from this definition that p 6∈ Ψ(H \ {o})
as required. We continue using the properties (82) and we apply Proposition 5.3, using the fact that
cos(k · e1) is non-negative for k ∈ H, obtaining∑

k∈T∗L\{o,p}

cos(k · e1) ĜL,N,ρ(k) =
∑

k∈H\{o}

(
cos(k · e1) ĜL,N,ρ(k) + cos(Ψ(k) · e1) ĜL,N,ρ

(
Ψ(k)

)
=2

∑
k∈H\{o}

cos(k · e1) Ĝo
L,N,ρ(k) ≤ 1

2d

∑
k∈H\{o}

2 cos(k · e1)

1− 1
d

∑d
i=1 cos(k · e1)

− 2
∑

k∈H\{o}

cos(k · e1) Ĝe
L,N,ρ(k).

Since the previous quantity corresponds to the right-hand side of (95), Theorem 5.1 now follows from
(95) and from the fact that,

IL(d) :=
1

2d

1

|TL|
∑

k∈H\{o}

2 cos(k · e1)

1− 1
d

∑d
i=1 cos(k · ei)

(83)

satisfies
lim
L→∞

IL(d) =
rd
4d

(84)

and that,

2

|TL|
∑

k∈H\{o}

cos(k · e1) Ĝe
L,N,ρ(k) =

2

|TL|
∑
x∈TL

Ge
L,N,ρ(x) −

∑
x∈TL

ΥL(x) Ge
L,N,ρ(x), (85)

where

∀x ∈ Zd ΥL(x) :=
2

|TL|
∑
k∈H

e−ik·(x−e1) (86)

Thus, to conclude the proof of Theorem 5.1, it remains to prove (84) and (85).

Proof of (84). To begin, we define the set of vectors,N := {±e1
2
,±e2, . . . ,±ed}, and the function,

J(k) :=
1

d

(
cos(

k1

2
) +

d∑
i=2

cos(ki)
)

=
1

2d

∑
e∈N

eie·k.

Below, we first use the fact that the sum is Riemann and after that we perform the change of variable
k′1 = 2k1 (and call again k1 the new variable),

lim
L→∞

1

|T∗L|
∑

k∈H\{o}

2 cos(k1)

1− 1
d

∑d
i=1 cos(ki)

=
1

2

1

(2π)d

∫ π
2

−π
2

dk1

∫ π

−π
dk2 . . .

∫ π

−π
dkd

2 cos(k1)

1− 1
d

∑d
i=1 cos(ki)

=
1

4

1

(2π)d

∫ π

−π
dk′1

∫ π

−π
dk2 . . .

∫ π

−π
dkd

2 cos(k1
2

)

1− 1
d

cos(k1
2

)− 1
d

∑d
i=2 cos(ki)

=
1

2

1

(2π)d

∫
[−π,π]d

dk
cos(k1

2
)

1− J(k)
.
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We will now relate the previous quantity to the Green’s function of the simple random walk. For this,
let S̃n be a random walk with i.i.d. increments on 1

2
Zd with jump distribution P̃ satisfying,

∀x ∈ 1

2
Zd P̃ (S̃1 = x) =

1

2d
1{x∈N},

and denote by Ẽ its expectation. In other words, the simple random walk S̃n performs half-unit jumps
in the±e1 directions and unit jumps in all the other directions. By independence of the simple random
walk increments we deduce that,

Ẽ
(
eik·S̃n

)
= Ẽ

(
eik·S̃1

)n
= J(k)n. (87)

Using the fact that,

1

(2π)d

∫
[−π,π]d

d k eik·x = 1{x=o},

and using (87) we deduce that,

P̃
(
S̃n = −e1

2

)
=

1

(2π)d

∫
[−π,π]d

d k Ẽ
[
eik·(S̃n+

e1
2

)
]

=
1

(2π)d

∫
[−π,π]d

d k eik·
e1
2 J(k)n.

Recalling that P is the distribution of a simple random walk Sn on Zd, we deduce by an obvious
coupling of the random walks Sn and S̃n that,

∀n ∈ N P
(
Sn = e1

)
= P̃

(
S̃n = ±e1

2

)
.

From the previous two expressions we deduce that, for any arbitrary finite m ∈ N,

m∑
n=0

P (Sn = e1) =
1

(2π)d

∫
[−π,π]d

d k
cos(k1

2
)(1− J(k)m+1)

1− J(k)
(88)

Define for any x ∈ Zd, Nx :=
∑∞

n=0 1{Sn = x} and recall that N+ =
∑

n>0 1{Sn = o}. We have
that the following limit exists and satisfies,

lim
m→∞

m∑
n=0

P (Sn = e1

)
= E[Ne1 ] = E[N+]. (89)

For the second identity we used the fact that, every time the simple random walk jumps from a nearest
neighbour of the origin, it has a chance 1

2d
to hit the origin at the next step. Thus we deduce that

1
2d
E[
∑

y∼oNy] = E[N+] and the claim thus follows from rotational symmetry. To conclude the proof,
we need to show that we can exchange the limit m → ∞ with the integral in the right-hand side of
(88). For this, note first that for any 0 < δ < π/2, we have that the integrand is positive for anym ∈ N
and any k ∈ [−δ, δ]d and thus by monotone convergence theorem the limit can be taken inside the
integral. To deal with the integral in [−π, π]d \ [−δ, δ]d, note that the integrand is uniformly bounded
and converges point-wise asm→∞ in [−π, π]d\[−δ, δ]d, thus by dominated convergence theorem
the limit can be taken inside the integral. This concludes the proof.
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Proof of (85). For the first identity we use the fact that the term in the left-hand side is real, the fact
that the function Ĝe(k) is real and the definition of Fourier transform, (22),

− 2
∑

k∈H\{o}

cos(k · e1) Ĝe
L,N,ρ(k) = −2Re

[ ∑
x∈TL

Ge
L,N,ρ(x)

∑
k∈H\{o}

e−ik·(x−e1)
]

=− 2Re
[ ∑
x∈TL

Ge
L,N,ρ(x)

(
− 1 +

∑
k∈H

e−ik·(x−e1)
) ]

= 2
∑
x∈TL

Ge
L,N,ρ(x) − 2 |TL|

∑
x∈TL

Ge
L,N,ρ(x)ΥL(x).

An exact and standard computation shows that the function ΥL(x), which was defined in (86), takes
non-zero (negative or positive) values only at even sites along the e1 axis and that it converges point-
wise to a function Υ(x) which decays like |Υ(x)| ∼ 1

|x1| . This concludes the proof of Theorem
5.1.

6 Proof of Theorems 2.2 and 2.3

In this section we present the proofs of Theorems 2.2 and 2.3.

Proof of (13) in Theorem 2.3. To begin, we claim that, for any L ∈ 2N,

GL,N,0(o, e1) =
1

dN
. (90)

To see why this is true, define the map Π : Ωo,e1 7→ {π ∈ Ω` : (o, e1) ∈ Eπ} which associates to
any π ∈ Ωo,e1 an element Π(π) which is obtained from π by adding to π an edge directed from e1 to
o. Note that, by definition of Ωo,e1 , such a directed edge cannot be already present in π ∈ Ωo,e1 (but
an edge directed from o to e1 might be present!), and that this map is one-to-one. Thus, we deduce
that,

ZL,N,ρ(o, e1) =
∑

π∈Ωo,e1

ρM(π) (
N

2
)L(π) =

2

N

∑
π∈Ω`:

(o,e1)∈Eπ

ρM(π) (
N

2
)L(π)

=
2

N

1

2d

∑
π∈Ω`:

∃i∈[1,d] : (o,ei)∈Eπ

ρM(π) (
N

2
)L(π) (91)

where L(Π(π)) = L(π) + 1, and the last step follows from reflection and rotational symmetry. From
this and (28) we deduce that,

GL,N,ρ

(
o, e1

)
=

1

dN

∑
π∈Ω`:

∃i∈[1,d] : (o,ei)∈Eπ

ρM(π) (N
2

)L(π)

∑
π∈Ω`

ρM(π) (N
2

)L(π)

Since for any finite L ∈ 2N, the second factor equals one when ρ = 0 (the origin is not a monomer
almost surely), the proof of (90) is concluded. From a direct application of our Infrared-ultraviolet
bound, Theorem 5.1 above, from the point (iv) of Lemma 5.4, and from (90), we deduce that

1

|ToL|
∑
x∈ToL

GL,N,0(x) ≥ GL,N,0(e1) − IL(d) =
1

dN
− IL(d)
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Since by Theorem 5.1 we have that limL→∞ IL(d) = 1
2d
rd
2

, from the previous expression we obtain
(13) and conclude.

Proof of (14) in Theorem 2.3. To begin, note that the monotonicity properties in [43, Theorem 2.4]
imply that, for any L ∈ 2N, for any N ∈ N>0, for any cartesian vector ei, for any z ∈ TL such that
ei · z ∈ (2N + 1) ∩ (0, L

2
), for any odd integer n ∈ (3, z · ei),

Go
L,N,0(o, z) ≤ Go

L,N,0(o, nei) ≤ Go
L,N,0(o, (n− 2)ei) ≤ Go

L,N,0(o, ei) =
1

dN
, (92)

where the identity follows from (90). By the torus symmetry and by the fact that for any z ∈ ToL there
exists ei such that z · ei ∈ 2Z + 1, this implies that

∀z ∈ TL Go
L,N,0(o, z) ≤ 1

dN
. (93)

We now deduce the point-wise lower bound (14) from (13) and (93). To begin, for any k ∈ N, we
define the set

Sk,L :=
{
z ∈ ToL : ∃i ∈ {1, . . . , d} s.t. | z · ei | < k

}
.

Note that, for any L ∈ 2N, and k ∈ (0, L/2) ∩ N,

|ToL \ Sok,L| =
1

2
(L− 2k)d.

We now choose an arbitrary ϕ ∈
(
0, 1

2d
( 2
N
− rd

2
)
)
. We claim that

∃ c = c(d, ϕ,N) ∈ (0,
1

2
) : ∀L ∈ 2N large enough ∃zL ∈ ToL \ ScL, L s.t. GL,N,0(zL) ≥ ϕ.

(94)
We first conclude the proof using (94) and then prove (94). Choose c as in (94) and deduce that,
for any large enough L ∈ 2N, since zL ∈ ToL, there exists a cartesian vector ei such that mL :=
zL · ei ∈ 2Z + 1. Moreover, since zL ∈ ToL \ ScL,L, we deduce that |mL| ≥ c L. Thus, from the
monotonicity properties (93) and symmetry, we deduce that, for any odd integer n ∈ (−|mL|, |mL|)
and any cartesian vector ei,

GL,N,0(o, ein) ≥ GL,N,0(o, eimL) > ϕ.

This concludes the proof of (4) given (94).

Now we prove (94) by contradiction. Assume that (94) is false, namely that for any c ∈ (0, 1
2
) there

exists a infinite sequence of even integers (Ln)n∈N such that GLn,N,0(z) < ϕ for any z ∈ ToLn \
ScLn,Ln . From this, (3) and (93) we deduce that, for any c ∈ (0, 1

2
) (define q := (1 − 2c)d), there

exists an infinite sequence (Ln)n∈N such that,∑
z∈ToL

Go
Ln,N,0(z) < ϕ

∣∣ToL \ ScLn,Ln∣∣ +
1

dN

(
|ToLn| −

∣∣ToL \ ScLn,Ln|)
=

1

2
Ldn

[ 1

dN
− (1− 2c)d(

1

dN
− ϕ)

]
=

1

2
Ldn

[ 1

dN
(1− q) + q ϕ

]
= |ToLn|

[ 1

dN
(1− q) + q ϕ

]

DOI 10.20347/WIAS.PREPRINT.2647 Berlin 2019



L. Taggi 40

Since we chose ϕ ∈
(
0, 1

2d
( 2
N
− rd

2
)
)
, we see that the previous inequality cannot hold for any constant

c and for an infinite sequence (Ln)n∈N unless violating (13) (by choosing c small enough, namely q
close enough to one, we bound the quantity inside the square bracket away from 1

2d
( 2
N
− rd

2
), uniformly

in Ln), which was proved to hold true. Thus, we obtained the desired contradiction and conclude the
proof.

Proof of Theorem 2.2. Theorem 2.2 is an immediate consequence of Theorem 2.3. For any A ⊂
TL, we have that,

PL,N,0(X ∈ A) =
∑
x∈A

PL,N,0(X = x) =

∑
x∈A

ZL,N,0(o, x)∑
x∈TL

ZL,N,0(o, x)
=

∑
x∈A

GL,N,0(o, x)∑
x∈TL

GL,N,0(o, x)
,

where the last identity follows after dividing the numerator and the denominator by Z`L,N,0. Now the
claim follows from (13), which provides a lower bound for the denominator in the right-most term, and
from (90), which provides an upper bound for the numerator in the right-most term. Using both bounds
we obtain (13).
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7 Appendix

Proof of Lemma 3.3. We omit the subscripts for convenience. To begin, note that it follows from (22)
that,

G(e1) =
1

|TL|
Ĝ(o) − 1

|TL|
Ĝ(p) +

1

|TL|
∑

k∈T∗L\{o,p}

eik·e1 Ĝ(k) (95)

and it follows from (21) that 1
|TL|

Ĝ(o) = 1
|TL|

∑
x∈TL G(x), and that

1

|TL|
Ĝ(p) = − 1

|TL|
∑
x∈TL

Go(x) +
1

|TL|
∑
x∈TL

Ge(x)

Combining the equations above, we conclude the proof.

Proof of (i), (ii) and (iii) in the proof of Proposition 5.3. These computations are classical and they can
be extracted for example from the computations in [49]. We present them for the reader’s convenience.

DOI 10.20347/WIAS.PREPRINT.2647 Berlin 2019



Dimer model and lattice permutations 41

The proof of (i) consists of the following computation,

(4v)x =
∑
y∼o

(
cos
(
(x+ y) · k

)
− vx

)
=
∑
y∼o

(
cos
(
x · k

)
cos
(
y · k

)
− sin

(
x · k

)
sin
(
y · k

)
− vx

)
=
∑
y∼o

(
vx cos

(
y · k

)
− vx

)
= −ε(k) vx.

The proof of (ii) follows from the first Green identity, which states that, for any pair of real-valued
vectors, a = (ax)x∈TL , b = (bx)x∈TL , when (TL,EL) is the torus,∑

{x,y}∈EL

(by − bx) (ay − ax) = −
∑
x∈TL

ax (4b)x.

The proof of such an identity can be found for example in [26][Lemma 8.7]. Applying such an identity
with a = b = v and using (i), we obtain (ii). It remains to prove (iii). For this, we use the fact that, by
lattice symmetries, Ĝ(k) is real and we obtain:∑

x,y∈TL

cos(k · x) cos(k · y)G(x, y) =
∑
x∈TL

(
cos(k · x)Re

[ ∑
y∈TL

cos(k · y)G(y − x)
])

=
∑
x∈TL

(
cos(k · x)Re

[
eik·x

∑
y∈TL

eik·(y−x)G(y − x)
])

=
∑
x∈TL

(
cos(k · x)Re[eik·xĜk]

)
=
∑
x∈TL

cos2(k · x) Ĝ(k).

This concludes the proof.
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(1980).

[31] Gandolfo D., Ruiz J., Ueltschi D.: On a model of random cycles. J. Stat. Phys., 129, 663âĂŞ676
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