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Lower and upper bounds for the number of limit cycles
on a cylinder

Klaus R. Schneider, Alexander Grin

Abstract

We consider autonomous systems with cylindrical phase space. Lower and upper bounds for
the number of limit cycles surrounding the cylinder can be obtained by means of an appropriate
Dulac-Cherkas function. We present different possibilities to improve these bounds including the
case that the exact number of limit cycles can be determined. These approaches are based on
the use of several Dulac-Cherkas functions or on applying some factorized Dulac function.

1 Introduction

Consider the planar autonomous differential system

dx

dt
= P (x, y),

dy

dt
= Q(x, y),

(1.1)

where the functions P,Q : R2 → R are 2π-periodic in the first variable. Under this assumption we
can identify the phase space of (1.1) with the cylinder Z := §1 × R, where §1 is the unit circle.
The most difficult problem in the qualitative investigation of autonomous differential systems is the
localization and the estimate of the number of limit cycles.

In the case of a cylindrical phase space we have to distinguish two kinds of limit cycles. A limit cycle
of system (1.1) which does not surround Z is called a limit cycle of the first kind, otherwise it is called
a limit cycle of the second kind. Whereas the existence of a limit cycle of the first kind of system (1.1)
requires the existence of an equilibrium point, a limit cycle of the second kind can exist without the
existence of any equilibrium point [1, 2, 3]. For the study of limit cycles of the first kind, the methods
for planar autonomous systems can be applied (see e.g. [3]). In particular, a well-known way to get an
upper bound for the number of limit cycles of the first kind in planar systems is to check whether the
criteria of I. Bendixson and H. Dulac [12] can be applied.
The method of the Dulac function has been extended by L. Cherkas [4]. The type of functions he has
introduced is called Dulac-Cherkas function nowerdays [9]. The existence of a Dulac-Cherkas function
has the following advantages over a Dulac function: it guarantees that all limit cycles are hyperbolic
(there is no multiple limit cycle), it provides some annuli containing a unique limit cycle (approximate
localization of a limit cycle), it yields a simple criterion to determine the stability of limit cycles and
provides lower and upper bounds for their maximum number. These functions have been applied by L.
Cherkas and his coauthors also for the investigation of limit cycles of the second kind [5, 6, 7, 10, 11].
The fundamental importance of a Dulac-Cherkas function consists in the fact that its zero-level set
defines curves which are crossed transversally by the trajectories of the corresponding system. We
denote these curves in what follows as transversal curves. By this way, the cylindrical phase space is
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K. R. Schneider, A. Grin 2

divided into doubly connected regions, where we have to distinguish between interior regions whose
boundaries consist of transversal curves and which contain a unique limit cycle, and two outer regions,
where only one boundary of these regions is a transversal curve and which contain at most one limit
cycle. To be able to determine the exact number of limit cycles we have to investigate the existence of
a limit cycle in the two outer regions. The main contribution of this paper is to show that the existence
of a unique limit cycle in the outer regions can be established either by means of the existence of
additional Dulac-Cherkas functions or by factorized Dulac functions. Thus, we are able to present
results on the exact number of limit cycles, where we restrict ourselves in this paper on limit cycles of
the second kind.

The paper is organized as follows: In Section 2 we introduce basic definitions and properties related
to Dulac and Dulac-Cherkas functions and their applications to derive lower and upper bounds for
the number of limit cycles of the second kind, to estimate their location and to characterize their
hyperbolicity and stability. In Section 3 we present approaches to improve the derived lower and upper
bounds for the number of limit cycles of the second kind by the existence of additional Dulac-Cherkas
functions defined either in different regions (multi-step approach) or in the same region (two-step
approach). In Section 4 we present a new way for the improvement of derived bounds for the number
of limit cycles of the second kind by means of a factorized Dulac function.

2 Preliminaries

The estimate of the number of limit cycles in some given region depends also on the structure of the
region itself. Hence, our first assumption reads

(A0). Let G be an open bounded doubly connected region on Z whose boundary consists of two
simple closed curves ∆u and ∆l surrounding Z. We suppose that ∆u is located above ∆l, that
is, ∆u is the upper boundary and ∆l is the lower boundary of G.

We denote by C1
2π(G,R) the space of continuously differentiable functions mapping G into R and

which are 2π-periodic in the first variable. For the following we assume

(A1). The functions P and Q belong to the space C1
2π(G,R).

(A2). G does not contain an equilibrium point of (1.1).

Assumption (A2) implies that any closed orbit of system (1.1) completely located in G must surround
the cylinder Z. That means that any limit cycle of system (1.1) in G is a limit cycle of the second kind
which we denote by ΓII . Our goal is to determine or at least to estimate the number of limit cycles of
the second kind of system (1.1) in G. We denote this number by ]ΓII(G). The vector field defined by
system (1.1) is denoted by X .
A known tool to estimate the number ]ΓII(G) is the Dulac function.

Definition 2.1. A function D ∈ C1
2π(G,R) is called a Dulac function of system (1.1) in G if div(DX)

does not change sign in G.

The following result is well-known [3].

Theorem 2.2. Suppose the assumptions (A0) – (A2) are satisfied. If there is a Dulac function of
system (1.1) in the region G then it holds ]ΓII(G) ≤ 1.
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The concept of the Dulac function has been generalized by L. Cherkas [4]. For this new class of
functions we introduced in [9] the name Dulac-Cherkas function.

Definition 2.3. Suppose the assumptions (A0) and (A1) are satisfied. A function Ψ ∈ C1
2π(G,R) is

called a Dulac-Cherkas function of system (1.1) in G if

(i). The set
W := {(x, y) ∈ G : Ψ(x, y) = 0}

does not contain a curve which is a trajectory of system (1.1).

(ii). There is a real number k 6= 0 such that

Φ(x, y, k) := (gradΨ, X) + kΨdivX ≥ 0 (≤ 0) ∀(x, y) ∈ G, (2.1)

where the set
Vk := {(x, y) ∈ G : Φ(x, y, k) = 0}

has measure zero.

For k = 1 the definition of a Dulac-Cherkas function coincides with the definition of a Dulac function.
If Ψ is a Dulac-Cherkas function of system (1.1) in G, then |Ψ|1/k is a Dulac function of (1.1) in G\W.
For the following results we introduce the assumption

(A3). There is a Dulac-Cherkas function Ψ of system (1.1) in G with k < 0 such that the set W
consists of l ≥ 1 simple closed curves w1, ..., wl surrounding the cylinder Z (we call them ovals) and
which do not meet each other as well as the boundaries ∆u and ∆l of G.

Remark 2.4. If we consider the function Φ on any oval wi of the set W, then we get from (2.1)

Φ(x, y, k)|wi
= (gradΨ, X)|wi

=
dΨ

dt |wi

≥ 0 (≤ 0), (2.2)

where d/dt denotes the differentiation along system (1.1). The condition (i) in Definition 2.3 implies

dΨ

dt |wi

6≡ 0, (2.3)

and we can conclude that any trajectory of (1.1) which meets any oval wi will cross it for increasing or
decreasing t.

Concerning the location of these ovals on the cylinder Z we assume that the oval wi is located over
the oval wi+1. The doubly connected subregion of G bounded by wi and wi+1 is denoted by Zi,
i = 1, ..., l − 1, the region bounded by ∆u and w1 is denoted by Z0, and the region bounded by wl
and ∆l is denoted by Zl which are the outer regions (see Figure 1).

The following result is also known [7].

Theorem 2.5. Suppose that the assumptions (A0)− (A3) are valid. Then it holds

(i). Each region Zi, 1 ≤ i ≤ l − 1, contains a unique limit cycle ΓIIi of the second kind of system
(1.1). ΓIIi is hyperbolic, it is stable (unstable) if Φ(x, y, k)Ψ(x, y) > 0 (< 0) in Zi.

(ii). The regions Z0 and Zl may contain a unique limit cycle of the second kind which is hyperbolic.
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Figure 1: Location of the ovals wi in the region G for l = 2

This theorem implies immediately

Corollary 2.6. Suppose the assumptions (A0)− (A3) to be valid. Then the estimate

l − 1 ≤ ]ΓII(G) ≤ l + 1 (2.4)

holds.

Remark 2.7. Under the assumptions (A0)−(A3) any improvement of the estimate (2.4) is connected
with the existence or absence of a limit cycle of the second kind in the regions Z0 and/or Zl.

In the following sections we present different approaches to improve the estimate (2.4).

3 Improvement of the estimate (2.4) by means of additional Dulac-
Cherkas functions

For what follows we assume that the assumptions (A0) − (A3) are satisfied. We want to establish
conditions for the existence of a limit cycle of the second kind in Z0 and/or in Zl.
By Remark 2.4 we can conclude that any trajectory of system (1.1) that meets an oval wi of the set W
will cross wi for increasing or decreasing t. Therefore, appropriate Dulac-Cherkas functions can be
used to construct doubly-connected regions to which the Poincaré-Bendixson theorem can be applied.

Theorem 3.1. Suppose that the assumptions (A0) − (A3) to be valid. Additionally, we assume the
existence of a second Dulac-Cherkas function Ψ0 of system (1.1) in some doubly connected subregion
Z̃0 of Z0 whose boundaries surround Z such that the corresponding set W0 := {(x, y) ∈ Z̃0 :
Ψ0(x, y) = 0} consists of exactly one oval v0 and where the ovals v0 and w1 form the boundaries
of the doubly connected region Z00 to which the Poincaré-Bendixson theorem can be applied. Then it
holds

l ≤ ]ΓII(G) ≤ l + 1. (3.1)
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Lower and upper bounds for the number of limit cycles on a cylinder 5

Proof. Under the assumptions (A0) − (A3), the estimate (2.4) holds and the region Z0 contains at
most one limit cycle of the second kind. By the Poincaré-Bendixson theorem, there exists at least one
limit cycle of the second kind in Z00. Thus, the estimate (3.1) is valid.

We consider the following simple example to illustrate Theorem 3.1

dx

dt
= f(y),

dy

dt
= 3 + 8y − 3y2 − 2y3 ≡ g(y)

(3.2)

in the region G := {(x, y) ∈ Z : |y| < M}, where M is any positive number satisfying M ≥ 4 and
f ∈ C1([−M,M ],R) is positive. Hence, the assumptions (A0)− (A2) are fulfilled.
The polynomial g has three roots y2 < y1 < y0, where y2 ≈ −2.75448, y1 ≈ −0.341263,
y0 ≈ 1.59574. Thus, system (3.2) has three limit cycles ΓIIi of the second kind

ΓIIi := {(x, y) ∈ Z : y = yi}, i = 1, 2, 3.

We define the function Ψ ∈ C1(G,R) by

Ψ(x, y) := y2 − 1

which satisfies for k = −1 according to (2.1) the relation

Φ(x, y, k) ≡ kΨ(x, y)g′(y) +
∂Ψ

∂y
g(y) = 2(y4 + y2 + 4) > 0. (3.3)

Thus, Ψ is a Dulac-Cherkas function of system (3.2) in G, the corresponding set W consists of the
ovals

w1 := {(x, y) ∈ G : y = 1}, w2 := {(x, y) ∈ G : y = −1}.

Hence, (A3) is satisfied. Using the sets

Z0 := {(x, y) ∈ G : 1 < y < 4}, Z1 := {(x, y) ∈ G : −1 < y < 1}, Z2 := {(x, y) ∈ G : −4 < y < −1}

and the property Ψ(x, y) < 0 for (x, y) ∈ Z1 we get from Theorem 2.5 and Corollary 1.6

1 ≤ ]ΓII(G) ≤ 3,

where Z1 contains a unique limit cycle of the second kind which is hyperbolic and unstable, Z0 and
Z2 contain each at most one limit cycle of the second kind which is hyperbolic and unstable.

To prove the existence of an unique limit cycle in the region Z0 we construct a function Ψ0 satisfying
the conditions of the Theorem 3.1. For this purpose we put

Ψ0(x, y) := y − 3.

Under the condition k0 = −1/3 we get from (2.1) the relation

Φ0(x, y, k0) ≡ k0Ψ0(x, y)g′(y) +
∂Ψ0

∂y
g(y) = 11− 2

3
y − 7y2 (3.4)

DOI 10.20347/WIAS.PREPRINT.2638 Berlin 2019



K. R. Schneider, A. Grin 6

which has two roots y = ȳ2 ≈ −1.30209 and y = ȳ1 ≈ 1.20685. Thus, Ψ0 is a Dulac-Cherkas
function of system (3.2) in Z̃0 ⊂ Z0, where

Z̃0 := {(x, y) ∈ G : ȳ1 < y < 4},

and the corresponding set W0 consists of the unique oval

v0 := {(x, y) ∈ Z : y = 3}.

From (3.3) we obtain the relation
dΨ

dt |w1

= Φ|w1 > 0.

Since Ψ is increasing with y on w1 we can conclude that the trajectories of system (3.2) intersecting
the oval w1 enter for increasing t the region

Z00 := {(x, y) ∈ Z : 1 < y < 3} ⊂ Z0,

see Figure 2, where Z0 is shaded, Z00 is grey colored.

Figure 2: Location of the ovals w1 and v0 in the region Z0

From (3.4) we get the relation
dΨ0

dt |v0
= Φ0|v0 < 0.

Since Ψ0 is always increasing with y we can conclude that the trajectories of system (3.2) intersecting
v0 enter for increasing t the region Z00, see Figure 2. Therefore, the Poincaré-Bendixson theorem can
be applied to the region Z00. Hence, Z00 contains at least one limit cycle of the second kind. From
our conclusion above we obtain that Z0 contains an unique limit cycle of the second kind which is
hyperbolic and stable. Thus, we have

2 ≤ ]ΓII(G) ≤ 3.

The following theorems can be proved in the same way.
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Lower and upper bounds for the number of limit cycles on a cylinder 7

Theorem 3.2. Suppose that the assumptions (A0) − (A3) are valid. Additionally, we assume the
existence of a second Dulac-Cherkas function Ψl of system (1.1) in some doubly connected subregion
Z̃l of Zl whose boundaries surround Z such that the corresponding set Wl := {(x, y) ∈ Z̃l :
Ψl(x, y) = 0} consists of exactly one oval vl and where the ovals vl and wl form the boundaries of
the doubly connected region Zll to which the Poincaré-Bendixson theorem can be applied. Then the
estimate (3.1) is valid.

Theorem 3.3. If the assumptions of the Theorem 3.1 and of Theorem 3.2 are fulfilled simultaneously,
then it holds

]ΓII(G) = l + 1. (3.5)

Now we illustrate Theorem 3.2 by means of system (3.2) in the same way as it has been done above
for Theorem 3.1. We construct the function Ψ2 ∈ C1(G,R) by putting

Ψ2(x, y) := y + 3.

Using k2 = −1/3 we get from (2.1) the relation

Φ2(x, y, k2) ≡ k2Ψ2(x, y)g′(y) +
∂Ψ2

∂y
g(y) = −5 +

34

3
y + 5y2 (3.6)

which has two roots y = y
2
≈ −2.64477 and y = y

1
≈ 0.378105. Thus, Ψ2 is a Dulac-Cherkas

function of system (3.2) in Z̃2 ⊂ Z2, where

Z̃2 := {(x, y) ∈ Z : −4 < y < y
2
},

and the corresponding set W2 consists of the unique oval

v2 := {(x, y) ∈ Z̃2 : y = −3}.

From (3.3) we obtain the relation
dΨ

dt |w2

= Φ|w2 > 0.

Since Ψ is increasing with y on w2 we can conclude that the trajectories of system (3.2) intersecting
w2 enter for increasing t the region

Z22 := {(x, y) ∈ Z : −3 < y < −1} ⊂ Z2.

From (3.6) we get the relation
dΨ2

dt |v2
= Φ2|v2 > 0.

Since Ψ2 is always increasing with y we can conclude that the trajectories of system (3.2) intersecting
v2 enter for increasing t the region Z22. Therefore, the Poincaré-Bendixson theorem can be applied
to the region Z22, and Z22 contains at least one limit cycle of the second kind.

From our conclusion above we obtain that Z2 contains an unique limit cycle of the second kind which
is hyperbolic and stable. Finally, according to Theorem 3.3 it holds

]ΓII(G) = 3.
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From our investigations it follows that the estimate (2.4) can be improved by means of the existence
of two Dulac-Cherkas functions defined in different regions. The exact number can be determined
by means of three Dulac-Cherkas functions defined in different regions. In the paper [8] the authors
determine the exact number of limit cycles of the second kind in G by means of an additional Dulac-
Cherkas function defined in the same region G. Their result can be formulated as follows.

Theorem 3.4. Suppose the assumptions (A0) − (A3) to be valid. Additionally, we assume the ex-
istence of a second Dulac-Cherkas function Ψ1 of system (1.1) in G with k1 < 0 such that the
corresponding set W1 consists of l + 2 ovals. Then it holds

]ΓII(G) = l + 1.

In what follows we present a theorem which contains Theorem 3.4 as a special case. We note that our
proof differs essentially from the proof of Theorem 3.4 in [8].

Theorem 3.5. Suppose that the assumptions (A0) − (A3) are valid. Additionally, we assume the
existence of a second Dulac-Cherkas function Ψ1 of system (1.1) in G with k1 < 0 such that the
corresponding set W1 consists of l +m ≥ 0 ovals, m = ±1,±2. Then it holds

(i.) in case m = −2 we have ]ΓII(G) = l − 1, that is, in both regions Z0 and Zl there is no limit
cycle of the second kind,

(ii.) in case m = −1 we have l − 1 ≤ ]ΓII(G) ≤ l, that is, in at most one of the regions Z0 and
Zl there is a unique limit cycle of the second kind,

(iii.) in case m = 1 we have l ≤ ]ΓII(G) ≤ l + 1, that is, in at least one of the regions Z0 and Zl
there is a unique limit cycle of the second kind,

(iv.) in case m = 2 we have ]ΓII(G) = l + 1, that is, in both regions Z0 and Zl there is a unique
limit cycle of the second kind.

Proof. By Theorem 2.5, the assumptions (A0)− (A3) imply

l − 1 ≤ ]ΓII(G) ≤ l + 1. (3.7)

If we replace l by l +m we get from (3.7)

l +m− 1 ≤ ]ΓII(G) ≤ l +m+ 1. (3.8)

Setting m = ±1,±2 in (3.8) and taking into account that both inequalities (3.7) and (3.8) have to be
valid, the proof is complete.

From this theorem we get the corollary.

Corollary 3.6. Suppose that the assumptions (A0) − (A3) are valid. Furthermore, we assume the
existence of two additional Dulac-Cherkas functions Ψ1 and Ψ2 of system (1.1) in G with negative k1
and k2 such that the corresponding sets W1 and W2 consist of l + 1 and l − 1 ovals, respectively.
Then it holds

]ΓII(G) = l.
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We illustrate Corollary 3.6 by means of system (3.2). As the first Dulac-Cherkas function we use

Ψ1(x, y) := y2 − 1,

where W1 consists of two ovals. We define Ψ2 as the product

Ψ2(x, y) := Ψ1(x, y)(y2 − 9) = (y2 − 1)(y2 − 9)

such that W2 consists of four ovals. The corresponding expression Φ2 reads

Φ2(x, y, k̃) = 216k̃ − (240 + 216k̃)y − (480 + 456k̃)y2+

(288 + 240k̃)y3 + (256 + 264k̃)y4 − (48 + 24k̃)y5 − (32 + 24k̃)y6.
(3.9)

Putting k̃ = −1 the function Φ2 can be rewritten as

Φ2(x, y, k̃) = −216− 24y − 24y2 + 48y3 − 8y4 − 24y5 − 8y6.

It can be shown that this polynomial is always negative. Then from item (iv) of Theorem 3.5 it follows

]ΓII(G) = 3.

All improvements of the estimate (2.4) in this section are based on applying appropriate Dulac-Cherkas
functions. In the next section we present another approach based on factorized Dulac functions.

4 Improvement of the estimate (2.4) by means of factorized Dulac
functions

Let χ1 and χ2 be functions of the space C1
2π(G,R). For the following we introduce the sets

Ui := {(x, y) ∈ G : χi(x, y) = 0}, i = 1, 2.

We denote by U the set U := U1 ∪ U2 and define the function D : G \ U→ R+ by

D(x, y, k1, k2) := |χ1(x, y)|k1|χ2(x, y)|k2 , (4.1)

where k1 and k2 are real numbers. Thus, D belongs to the class C1
2π(G \ U,R+), and system (1.1)

and the system

dx

dt
= D(x, y, k1, k2)P (x, y),

dy

dt
= D(x, y, k1, k2)Q(x, y) (4.2)

have in G \U the same topological structure of their trajectories. Our goal is to derive conditions such
that D is a Dulac function in some region of G\U. For the divergence of the vector field defined by the
system (4.2) we get from (4.1) in the region G \ U

div(DX) = |χ1|k1−1|χ2|k2−1 sgnχ1 sgnχ2

(
χ1χ2divX + k1χ2(gradχ1, X) + k2χ1(gradχ2, X)

)
.

(4.3)
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For the following we introduce the function Θ : G× R2 → R defined by

Θ(x, y, k1, k2) :=χ1χ2divX + k1χ2(gradχ1, X) + k2χ1(gradχ2, X)

≡χ1χ2divX + k1χ2
dχ1(x, y)

dt
+ k2χ1

dχ2(x, y)

dt
.

(4.4)

Using this function we can rewrite (4.3) as

div(DX) = |χ1|k1−1|χ2|k2−1 sgnχ1 sgnχ2 Θ. (4.5)

This relation implies that a change of the sign of div(DX) in any connected subregion of G \ U is
determined by a change of the sign of Θ(x, y, , k1, k2). Thus, we have the result

Lemma 4.1. Suppose the assumptions (A0) and (A1) are valid. Additionally we suppose

(C1). There are functions χ1, χ2 ∈ C1
2π(G,R) and real numbers k1, k2 such that the function Θ

satisfies

Θ(x, y, k1, k2) < 0 (> 0) for (x, y) ∈ G. (4.6)

Then it holds in any connected subregion of G \ U

div(D(x, y, k1, k2)X(x, y)) 6= 0.

Now we are able to prove the following theorem.

Theorem 4.2. Suppose the assumptions (A0) − (A2) and (C1) are satisfied. Let G2 ⊂ G \ U be
an open doubly connected region whose boundaries surround Z and where χ1 and χ2 do not change
their sign. Then it holds

(i). The function D(x, y, k1, k2) defined in (4.1) is a positive Dulac function of system (1.1) in G2.

(ii). G2 contains at most one limit cycle of the second kind of system (1.1).

(iii). If G2 contains a limit cycle ΓII of the second kind, then ΓII is hyperbolic. Additionally, ΓII is
orbitally stable (unstable) if

Θ(x, y, k1, k2)

χ1(x, y)χ2(x, y)
< 0 (> 0) for (x, y) ∈ G2. (4.7)

Proof. The assertion (i) follows from Lemma 4.1. Assertion (ii) is a consequence of assertion (i).
To prove assertion (iii) we assume that ΓII has the representation x = xp(t), y = yp(t), where
xp(t) and yp(t) are periodic functions with period T . It is well-known that the relation∫ T

0

divX(xp(t), yp(t))dt < 0 (> 0)

implies that ΓII is hyperbolic and orbitally stable (unstable). From (4.4) we get∫ T

0

divX(xp(t), yp(t))dt =

∫ T

0

Θ(xp(t), yp(t), k1, k2)

χ1((xp(t), yp(t))χ2((xp(t), yp(t))
dt
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Lower and upper bounds for the number of limit cycles on a cylinder 11

−k1
∫ T

0

d

dt
lnχ1(xp(t), yp(t)dt− k2

∫ T

0

d

dt
lnχ2(xp(t), yp(t))dt

=

∫ T

0

Θ(xp(t), yp(t), k1, k2)

χ1((xp(t), yp(t))χ2((xp(t), yp(t))
dt.

Using the condition (4.7), we get that ΓII is hyperbolic, additionally, ΓII is orbitally stable (unstable).

Assumption (C1) has also consequences about the structure of the sets U1 and U2 which in general
describe curves in G.

The following lemma says that the sets U1 and U2 do not intersect.

Lemma 4.3. Suppose the assumptions (A0), (A1) and (C1) are valid. Then it holds

U1 ∩ U2 = ∅.

Proof. Suppose there is a point (x0, y0) ∈ G such that χ1(x0, y0) = χ2(x0, y0) = 0. Then by (4.4)
it holds Θ(x0, y0, k1, k2) = 0, which contradicts assumption (C1).

The next lemma describes an important property of the curves U1 and U2 .

Lemma 4.4. Suppose the assumptions (A0), (A1) and (C1) to be valid. Then the branches of the
curves U1 and U2 are transversal curves with respect to the vector field X .

Proof. If we consider the inequality (4.4) on the curve χ1(x, y) = 0 then we get

Θ(x, y, k1, k2)|χ1(x,y)=0 = k1

(
χ2(x, y)

dχ1(x, y)

dt

)
|χ1(x,y)=0

< 0 (> 0).

Taking into account Lemma 4.3 we get dχ1(x,y)
dt |χ1(x,y)=0

6= 0, that is, the curve χ1(x, y) = 0 is
crossed transversally by the trajectories of system (1.1). The same conclusion is valid for the curve
χ2(x, y) = 0.

Lemma 4.5. Suppose the assumptions (A0), (A1) and (C1) are valid. Then different branches of the
curve U1 as well as different branches of the curve U2 do not meet.

Proof. If we assume that there are two branches of the curve defined by χ1(x, y) = 0 which meet at
the point (x1, y1), then according to the implicit function theorem it holds

∂χ1

∂x
(x1, y1) =

∂χ1

∂y
(x1, y1) = 0.

Using these relations we have by (4.4)

Θ(x1, y1, k1, k2) = k2χ2(x1, y1)
dχ1(x1, y1)

dt
=

k2χ2(x1, y1)
(∂χ1

∂x
(x1, y1)P (x1.y1) +

∂χ1

∂y
(x1, y1)Q(x1, y1)

)
= 0,

(4.8)

which contradicts the inequality (4.6). An analogous conclusion holds for the curve defined byχ2(x, y) =
0.
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Lemma 4.6. Suppose the assumptions (A0), (A1), (A2) and (C1) are valid. Then the sets U1 and
U2 do not contain simple closed curves not surrounding the cylinder Z.

Proof. Suppose the set U1 contains a simple closed curve K not surrounding Z. By Lemma 4.5
and Lemma 4.4, K is a simple closed curve crossed transversally by the trajectories of system (1.1).
Thus, the region bounded by K must contain an equilibrium point of system (1.1) which contradicts
assumption (A2).

From the lemmata above we get the corollary.

Corollary 4.7. Under the assumptions (A0), (A1), (A2) and (C1), we can distinguish two different
types of the curves of the sets U1 and U2 in G:

(i). simple ovals surrounding Z and which do not meet each other.

(ii). curves meeting the boundary of G.

Since we are interested in estimating the number of limit cycles of the second kind in G, we assume

(C2). The set U := U1 ∪ U2 consists in G of n ovals surrounding Z.

We denote by v1, ..., vm the ovals of U, where vi is located above vi+1. We denote by Zi, 1 ≤ i ≤
n − 1, the open doubly connected region bounded by vi and vi+1, Z0 is the open doubly connected
region bounded by ∆u and v1, Zn is the open doubly connected region bounded by vn and ∆l.

Theorem 4.8. Suppose the assumptions (A0), (A1), (A2) and (C1) with k1 < 0, k2 < 0, and (C2)
are valid. Then it holds

(i). Each region Zi, 1 ≤ i ≤ n− 1, contains a unique limit cycle ΓIIi of the second kind of system
(1.1). ΓIIi is hyperbolic and stable (unstable) if the inequality (4.7) is valid in Zi.

(ii). In each of the regions Z0 and Zn a unique hyperbolic limit cycle of the second kind could be
located.

Proof. From the assumptions (C2) and (A2) we obtain that the regions Zi, 0 ≤ i ≤ n, are doubly
connected regions in G \ U whose boundaries surround Z and which do not contain an equilibrium
point of (1.1). Hence, under our assumptions above, the assertion (ii) of Theorem 4.2 can be applied
to these regions, and we get that in each region Zi, 0 ≤ i ≤ n, at most one limit cycle of the second
kind is located.
In what follows we prove that any trajectory of system (1.1) which meets the upper or the lower bound-
ary of the region Zi, 1 ≤ i ≤ n − 1, either enters or leaves this region for increasing t. Hence,
by using the Poincaré-Bendixson theorem, we can conclude that Zi for 1 ≤ i ≤ n − 1 contains
at least one limit cycle of the second kind. Using the conclusion before, we get that in the regions
Zi, 1 ≤ i ≤ n− 1, a unique limit cycle of the second kind is located.

Without loss of generality we can suppose that in assumption (C2) the inequality

Θ(x, y, k1, k2) > 0 for (x, y) ∈ G (4.9)
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is valid.
First we assume that the upper and the lower boundary of the region Zi, also the ovals vi and vi+1,
belong to the set U1. Since between the ovals vi and vi+1 there is no other oval of the set U, we can
conclude that the function χ2(x, y) takes the same sign on the ovals vi and vi+1. From (4.4) and (4.9)
we obtain

k1
(
χ2(x, y)

dχ1(x, y)

dt

)
|vi
> 0, k1

(
χ2(x, y)

dχ1(x, y)

dt

)
|vi+1

> 0. (4.10)

Since χ2(x, y) has on vi and vi+1 the same sign, also dχ1

dt
has the same sign on vi and vi+1. Thus,

the Poincaré-Bendixson theorem can be applied to the region Zi and we obtain the existence of at
least one limit cycle of the second kind in Zi. The same procedure can be applied to a region Zi
whose boundaries belong to the set U2.

Next we assume vi ∈ U1 and vi+1 ∈ U2. From (4.4) and (4.9) we get

k2
(
χ1(x, y)

dχ2(x, y)

dt

)
|vi+1

> 0, k2
(
χ1(x, y)

dχ1(x, y)

dt

)
|vi
> 0. (4.11)

First we consider the case that χ1(x, y) and χ2(x, y) take negative values in the interior of Zi. Since
k1 and k2 are negative, we get from (4.11) the relations

dχ2(x, y)

dt |vi+1

> 0,
dχ1(x, y)

dt |vi
> 0.

Thus, the trajectories of (1.1) leave the region Zi for increasing t, and we can conclude that in Zi at
least one limit cycle of the second kind is located.
The case that χ1(x, y) and χ2(x, y) take positive values in the interior of Zi can be treated analo-
gously.
Now we consider the case χ1(x, y) < 0 and χ2(x, y) > 0 in Zi. From (4.11) we get

dχ2(x, y)

dt |vi+1

> 0,
dχ1(x, y)

dt |vi
< 0.

Thus, the trajectories of (1.1) enter the region Zi for increasing t, and we can conclude that Zi contains
at least one limit cycle of the second kind. The case χ1(x, y) > 0 and χ2(x, y) < 0 in Zi can be
treated analogously.

By applying assertion (iii) of Theorem 4.2 we can establish the assertion on the hyperbolicity and
stability of the unique limit cycle in the regions Zi, 1 ≤ i ≤ n− 1.

From Theorem 4.8 we get immediately

Corollary 4.9. Under the assumptions of Theorem 4.8 it holds

n− 1 ≤ ]ΓII(G) ≤ n+ 1. (4.12)

The proof of Theorem 4.8 is based on a decomposition of the region G into doubly connected subre-
gions by means of the ovals defined by χ1(x, y) = 0 and χ2(x, y) = 0. Analogously to Theorem
3.5, the estimate (4.12) can be improved by means of another decomposition of G based on some
functions χ̃1, χ̃2 ∈ C1

2π(G,R). For this reason we introduce the assumptions
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(C̃1) There are functions χ̃1, χ̃2 ∈ C1
2π(G,R) and real numbers k̃1, k̃2 with k̃1 < 0, k̃2 < 0 such

that the function

Θ̃ := χ̃1χ̃2divX + k̃1χ̃2(gradχ̃1, X) + k̃2χ̃1(gradχ̃2, X)

satisfies

Θ̃(x, y, k̃1, k̃2) < 0 (> 0) ∀(x, y) ∈ G. (4.13)

In analogy to the sets U1,U2 we introduce the sets

Ũi := {(x, y) ∈ G : χ̃i(x, y) = 0}, i = 1, 2.

(C̃2). The set Ũ := Ũ1 ∪ Ũ2 consists in G of n+m ≥ 2 ovals surrounding Z, m = ±1,±2.

Theorem 4.10. Suppose the assumptions of Theorem 4.8 are valid. Additionally we assume the hy-
potheses (C̃1) and (C̃2) to be valid. Then it holds

(i.) in case m = −2 we have ]ΓII(G) = n− 1, that is, in both regions Z0 and Zn there is no limit
cycle of the second kind,

(ii.) in case m = −1 we have n− 1 ≤ ]ΓII(G) ≤ n, that is, in at most one of the regions Z0 and
Zn there is a unique limit cycle of the second kind,

(iii.) in case m = 1 we have n ≤ ]ΓII(G) ≤ n + 1, that is, in at least one of the regions Z0 and
Zn there is a unique limit cycle of the second kind,

(iv.) in case m = 2 we have ]ΓII(G) = n+ 1, that is, in both regions Z0 and Zn there is a unique
limit cycle of the second kind.

The proof of this theorem follows the same line as the proof of Theorem 3.5.

Now we illustrate Theorem 4.10 by means of system (3.2). First, we have to verify the assumptions of
Theorem 4.10. The assumptions (A0) − (A2) have been verified above. To satisfy the assumptions
(C1) and (C2) we introduce

χ1(x, y) := y2 − 1, k1 = −1, χ2(x, y) := 1, k2 ∈ R−.

The corresponding function Θ(x, y) defined in (4.4) reads

Θ(x, y) = 2(y4 + 6)

and is always positive. Thus, the assumptions (C1) is fulfilled. Since, the set U consists of two ovals
we have n = 2 in the assumptions (C2).
Now we introduce the functions

χ̃1(x, y) := y2 − 1, χ̃2(x, y) := y2 − 9,

The corresponding expression Θ̃(x, y, k̃1, k̃2) reads
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Θ̃(x, y, k̃1, k̃2) = 72 + (−54− 54k̃1 − 6k̃2)y + (−134− 144k̃1 − 16k̃2)y
2+

(60 + 60k̃1 + 12k̃2)y
3 + (68 + 52k̃1 + 20k̃2)y

4 + (−6− 6k̃1 − 6k̃2)y
5 + (−6− 4k̃1 − 4k̃2)y

6.
(4.14)

Putting k̃1 = −3
2

and k̃2 = −1
2

the expression (4.14) takes the form

Θ̃(x, y, k̃1, k̃2) = 72 + 30y + 90y2 − 36y3 − 20y4 + 6y5 + 2y6.

It can be shown that this polynomial is always positive. Hence, assumptions (C̃2) is valid. Since, the
set Ũ consists of four ovals we have m = 2 in assumptions (C̃2). Thus, according to item (iv) in
Theorem 4.10 it follows

]ΓII(G) = 3,

and we can conclude that each of the regions Z0 and Z2 contains an unique limit cycle of the second
kind.
Summarizing our investigations we can state that the use of Dulac-Cherkas functions is a powerful
tool for constructing transversal curves to get lower and upper bounds for the number of limit cycles of
the second kind.
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