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Combinatorial considerations on
the invariant measure of a stochastic matrix

Artur Stephan

Abstract

The invariant measure is a fundamental object in the theory of Markov processes. In finite dimensions
a Markov process is defined by transition rates of the corresponding stochastic matrix. The Markov tree
theorem provides an explicit representation of the invariant measure of a stochastic matrix. In this note, we
given a simple and purely combinatorial proof of the Markov tree theorem. In the symmetric case of detailed
balance, the statement and the proof simplifies even more.

1 A stochastic matrix and its invariant measure

We consider a finite state space Z := {1, . . . , N} where the number of species N ∈ N is fixed. A stochastic
matrix M = (mij)i,j=1,...N (also called Markov operator) on RN is a real matrix with non-negative entries and
which satisfies M11 = 11, where 11 := (1, . . . , 1)T . This condition is equivalent to the fact that its adjoint M∗

maps the set of probability vectors, i.e. non-negative vectors v ∈ RN with
∑N

j=1 vj = 1, to itself. See [4, 8] for
introductive reading on Markov Chains.

It is well-known that there is always a probability vector w such that M∗w = w or equivalently wTM = wT .
The famous Theorem of Frobenius-Perron states that the eigenvector is positive if A is irreducible.

Theorem 1.1 (Perron (1907) - [9], Frobenius (1912) - [3]). Let A ∈ RN×N ≥ 0 be an irreducible matrix
with spectral radius ρ(A). Then ρ(A) is a simple eigenvalue of the matrix A, the corresponding eigenspace is
one-dimensional and there is a positive eigenvector.

The normalized vector w satisfying wTM = wT is called the invariant measure of the stochastic matrix. The
invariant measure is of great importance for stochastic processes. For a given Markov operator M and initial
state p0, the sequence pn = M∗np0 is called Markov chain and p∞ := limn→∞ pn is an invariant measure of
M∗. Moreover, invariant measures are also stationary measures, i.e. for p0 = w the chain is constant.

A Markov process (sometimes also called continuous time Markov chain) is given by a family T (t) = etA of
Markov operators. The Theorem of Kakutani-Markov provides the existence of an invariant measurew such that
wTT (t) = wT for any t ≥ 0. This is equivalent to A∗w = 0 or wTA = 0, where A = T ′(0) is the generator
of the semigroup, a Markov generator. Hence, it is an element of the null space of the generator of A. If M is a
stochastic matrix (or Markov operator) then A = M − I is a Markov generator. Conversely, if A is a bounded
Markov generator then there is a positive number α > 0 such that M = αA + I is a stochastic matrix. That
means both of these problems, finding the null space of a Markov generator and finding the invariant measure
of a Markov operator can be solved equally. But note the set of stochastic matrices is larger than the set of
operators represented by etA with some t and a Markov generator A. For example, there is no t ≥ 0 and

Markov generator A with etA =

(
0 1
1 0

)
.
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A. Stephan 2

The Theorem of Frobenius-Perron is a pure existence result. An explicit formula for w ∈ RN is provided by
the so-called Markov tree theorem (see Section 4 for the exact statement). The Markov Tree Theorem has the
Theorem of Frobenius and Perron as an immediate consequence.

There are many different proofs for the Markov tree theorem: algebraic proofs (like in [6]) which compute deter-
minants and minors and are similar to Kichhoff’s proof of the the Kirchhoff’s Matrix Tree Theorem [5] (see e.g.
[2] for a smooth version of Kirchhoff’s Matrix Tree Theorem), and stochastic proofs [1] which define a Markov
process on the set of trees and investigate its time reversal. The aim of this note is to give an easy proof which
is purely combinatorial. Moreover, a similar reasoning can be used for determining the invariant measure of a
symmetric stochastic process, i.e. where the corresponding stochastic matrix is detailed balanced (see Section
7).

2 A stochastic matrix and the corresponding reaction graph

The entries mij of a stochastic matrix correspond to transition probabilities from the state i to j. It is convenient
to illustrate the action of a stochastic matrix with a reaction network or graph. So let us recall some graph theory
(see e.g. [2] for further references). A graph γ = (V,E) consists of vertices v ∈ V (γ) and edges e ∈ E(γ).
We have finitely many vertices that are labelled with i ∈ Z = {1, . . . , N}. The edge e going from i to j is often
just denoted by eij . The transition probability mij correspond to the edge eij . If mij = 0, there is no edge in
the graph. Clearly, we deal with directed graphs, i.e. with graphs where edges eij and eji can be distinguished.
In Section 7 we deal also with undirected graphs where the edges eij and eji are not distinguished.

A (directed) path in a graph γ is a subset of vertices i1, . . . , im such that ei1i2 , . . . , eim−1im ∈ E(γ). Two
states i and j communicate if there is a directed path from i to j and a directed path from j to i. Clearly, this
defines an equivalent relation on the state space Z and hence, the state space Z decomposes into disjoint
equivalent classes C1, . . . , Cm of states which communicate.

It can happen that some of the classes are totally disconnected to other classes, i.e. there is no path in any
direction. It can also happen that some classes are connected in the sense that there is a connection only in
one direction, i.e. a connection from one class to another but certainly not back. This is sometimes called weakly
connected. Let Z1 be the union of all classes Ck that are totally disconnected; Z2 the union of all classes Ck
such that there are only paths ending in Ck and not starting out of Ck; ZR the union of all remaining classes.
So Z = Z1 ∪ Z2 ∪ ZR with (maybe after renumbering) Z1 = C1 ∪ · · · ∪ Ck, Z2 = Ck+1 ∪ · · · ∪ Ck+l and
ZR = Ck+l+1 ∪ · · · ∪ Cm.

With this definition we get the following general form of (the adjoint of) a stochastic matrix

M∗ =



M∗1 0 0 0 . . . 0 0 0 0 0

0
. . . 0 0 . . . 0 0 0 0 0

0 0 M∗k 0 . . . 0 0 0 0 0

0 0 0 M∗k+1 . . . 0 X X X X

0 0 0 0
. . . 0 X X X X

0 0 0 0 . . . M∗k+l X X X X

0 0 0 0 0 0 M∗k+l+1 X . . . X

0 0 0 0 0 0 0 M∗k+l+2 . . . X

0 0 0 0 0 0 0 0
. . . X

0 0 0 0 0 0 0 0 . . . M∗m


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Combinatorial considerations on the invariant measure of a stochastic matrix 3

Here the boxed entries stand for matrices and X stand for (maybe different) non-zero matrices which describe
the transitions between communicating classes.

The matrices Mj for j = 1, . . . , k + l are stochastic matrices now acting on the equivalent class Cj . Each
of them has an invariant measure by the Theorem of Frobenius-Perron. By definition, in Cj all states are com-
municating and the stochastic matrix Mj is irreducible. Hence, it has a unique invariant measure µj which is
positive, i.e. M∗

j µj = µj . By µ̃j we denote the trivial continuation of µj in RN with zeros. Obviously, it is also
an invariant measure of M .

Proposition 2.1. Any invariant measure of M is given by a convex combination of µ̃j

µ̃ =
l+k∑
j=1

λjµ̃j, λj ≥ 0,
l+k∑
j=1

λj = 1.

In particular, the entries of µ̃ with index larger than k + l are zero.

Proof. As above, letM be given inm×m blocks. SinceM∗
j µj = µj , it also holdsM∗µ̃ = µ̃. Hence µ̃ defined

by the above representation is indeed an invariant measure of M . Now, let η = (η1, . . . , ηm)T be an arbitrary
invariant measure of M . By the above considerations, the first k + l components of η are uniquely determined
by the irreducible components M∗

j by the Theorem of Frobenius-Perron. Hence, it suffices that the entries with

index larger than k + l are zero. Let us look at ηm and assume that ηm 6= 0. We write M∗ =

(
M̃∗

1 X
0 M∗

m

)
,

where η̃1 is an invariant measure of M̃∗
1 . Hence, we have

Xηm = 0, M∗
mηm = ηm,

whereM∗
m is irreducible and non-negative andX is non-zero and non-negative. Since the sums of the columns

inM∗
m are less or equal to 1, the corresponding matrix norm is less or equal to 1. Hence, also the spectral radius

of ρ(M∗
m) is less or equal to 1. Since ηm is a eigenvector to the eigenvalue 1 (it is 6= 0), we have ρ(M∗

m) = 1.
By the Theorem of Frobnius-Perron, we conclude that ηm > 0. But this contradicts Xηm = 0, since X 6= 0.
That shows, ηm = 0. As above, we can show iteratively that also ηj = 0 for j = k+ l+ 1, . . . ,m. This proves
the claim.

Summarizing, we showed that the invariant measure of a stochastic matrix is totally determined by the invari-
ant measure of its irreducible components. Moreover, in each irreducible component the invariant measure is
unique. The next aim is to get an explicit formula for that unique invariant measure.

3 Rooted trees

In the whole section, we fix an irreducible component Cj , j = 1, . . . , k + l with the stochastic matrix Mj . We
denote it simply with C , the stochastic matrix by M = (mij), the induced graph of the stochastic matrix is
denoted by γ0. Let us say that the number of states in C is n ∈ N.

By definition, a directed loop is a closed directed path, i.e. a subset of edges {ei1i2 , . . . , eimi1} ⊂ E(γ). The
graph is called acyclic if it does not contain any directed loop. In the following we consider a special subsets of
acyclic graphs. We define a tree as a connected acyclic subgraph. A special and important type of trees are the
directed rooted trees.

Definition 3.1. Fix a state j ∈ C . We define Γj as the set of all directed trees rooted at j ∈ C , i.e. all graphs
γ with the following two properties:
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a) γ is a directed acyclic graph with n vertices.

b) Each vertex j̄ ∈ C \ {j} has exactly one outgoing edge and j has no outgoing edge.

The edges in a rooted directed tree are oriented towards the root. Note, each γ ∈ Γj is a subgraph of the
complete directed graph spanned by n vertices, but not necessarily a subgraph of γ0 (which is defined by the
stochastic matrix M ). A graph γ ∈ Γj has n − 1 edges in total but no edge that starts from j. On the other
hand the graph necessarily contains an edge that ends at j. Otherwise, we would have a loop spanned by all
other vertices what is not possible since γ is acyclic.

Example 3.2. Let us fix j = 1 and we want to look at graphs in Γ1. There are many graphs γ ∈ Γ1 but some
of them are similar in the sense that they only differ in the permutation of states j ↔ k for some j 6= 1 and
k 6= 1. We call graphs that are not similar topologically different and do not specify the vertices in the graph.
The number of such different configurations is stated in the box.
n = 3:
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The following lemma is easy but important.

Lemma 3.3. Let γ ∈ Γj for some j ∈ C be a fixed directed rooted tree. For every vertex j̄ 6= j there is a
directed path in γ which starts from j̄ and ends at j.

Proof. Let us assume w.l.o.g that j̄ = 1 and j 6= 1. We prove the claim by contradiction, i.e. let us assume that
there is no directed path from j̄ = 1 to j in γ ∈ Γj . We are going to construct a path to j iteratively using the
fact that every vertex in γ except j has exactly one outgoing edge by definition. So, there is an edge starting
from 1 which does not go to j (by assumption) but goes to another vertex say 2. Then there is an edge starting
from 2 does not go j (again by assumption since otherwise there would be a path from j̄ to j) and not to 1 since
the graph is acyclic. Hence it goes to another vertex say 3. Then there is an edge starting from 3 does not go to
j, to 1 and to 2, hence it goes to say 4. Skipping the vertex j, we conclude till the last vertex n. But then, there
is no suitable edge starting from n, since it can not go to any vertex 1, . . . , n− 1. We get a contradiction.

In fact, the above proof also says that the path in the directed rooted tree unique.

4 The Markov tree theorem

Let a stochastic matrix M = (mij)i,j=1,...,n be given, where #C = n ∈ N. We define w ∈ Rn by

wj =
∑
γ∈Γj

∏
eik∈E(γ)

mik. (1)

Note that w is not normalized. The normalizing factor is Z =
∑n

j=1

∑
γ∈Γj

∏
eik∈E(γ)mik which contains all

directed rooted trees.

Example 4.1. For n = 3, we get w =

m21m31 +m23m31 +m21m32

m12m32 +m12m31 +m13m32

m13m23 +m13m21 +m12m23

 .

We want to show that wTM = wT , or equivalently that

∀k ∈ C : wk =
∑
j∈C

mjkwj

Since for any k ∈ C it holds
∑

j∈Zmkj = 1, the above condition is equivalent to

∀k ∈ C :
∑
j∈C

mkjwk =
∑
j∈C

mjkwj.
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Theorem 4.2 (Markov tree theorem). It holds wTM = wT for w defined by wj =
∑

γ∈Γj

∏
eik∈E(γ) mik.

In the proof, we compute both sides and compare. To do so, we focus on k = 1, but the other cases can be
treated exactly the same way. We want to show∑

j≥2

m1jw1 =
∑
j≥2

mj1wj. (2)

Example 4.3. Let us compute the left- and right-hand side for n = 3. Using Example 4.1, we have

LHS = m12w1 +m13w1 =

= m12m21m31 +m12m23m31 +m12m21m32 +m13m21m31 +m13m23m31 +m13m21m32

RHS = m21w2 +m31w3 =

= m21m12m32 +m21m12m31 +m21m13m32 +m31m13m23 +m31m13m21 +m31m12m23.

Hence, (2) holds.

Observe that in the formula (1) only edges that do not start in j are taken into account. In the identity (2), the
matrix entries that correspond to edges starting form j are multiplied towj . That means, we have to treat graphs
which emerge from rooted directed graphs through adding one additional edge. If ejk is not an edge in a graph
γ, let denote γ ∪ ejk the graph that results from adding the edge ejk to γ.

Lemma 4.4. Let γ ∈ Γj and k ∈ C be arbitrary. Then the graph γ ∪ ejk contains exactly one loop. Moreover,
this loop goes through j ∈ C .

Proof. We know by Lemma 3.3 that from every vertex in γ there is a directed path back to j. Hence by adding
one more edge ejk, there will be definitively a loop. More than one loop is not possible, since there are no loops
in γ and there is only one edge starting from each vertex. So exactly one loop is in γ ∪ ejk. The loop goes
obviously through j.

We define two sets:

S1 := {γ ∪ e1j : γ ∈ Γ1, j ∈ {2, . . . , n}}
S2 := {γk ∪ ek1 : γk ∈ Γk, for k ∈ {2, . . . , n}}

Firstly, observe that any two elements in S1 are different. The same holds for the elements of S2. The key step
is to show that both sets S1 and S2 are equal.

Proposition 4.5. It holds S1 = S2.

Proof. The proof is done in two steps.
1. Step: S1 ⊂ S2. Let γ ∪ e1j ∈ S1 for γ ∈ Γ1 and j ∈ {2, . . . , N} be arbitrary and fixed. That means, that
one edge starting from 1 with arbitrary end is added to some graph γ ∈ Γ1. By Lemma 4.4, there is exactly one
loop in γ ∪ e1j . In particular there is one unique edge in the loop which ends at 1 and starts at say j̄.

Let us consider the graph γ ∪ e1j without the edge ej̄1. We call it γ̄ and want to show that γ̄ ∈ Γj̄ . Firstly, we
observe that for each vertex k apart from j̄ there is in γ̄ exactly one edge which starts at k. Hence, it remains
to show that there is no loop in γ̄. Look at γ ∪ e1j . It has exactly one loop, but removing one edge ej̄1 the loop
is destroyed. That shows that γ̄ ∈ Γj̄ and hence we have shown that γ ∪ e1j = γ̄ ∪ ej̄1 for some γ̄ ∈ Γj̄ . This
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proves the first claim.

2. Step: S2 ⊂ S1. Let γk ∪ ek1 ∈ S2 for γk ∈ Γk and k ∈ {2, . . . , N} be arbitrary and fixed. That means,
that one edge starting from k with the end 1 is added to γk ∈ Γk. As above by Lemma 4.4, it follows that there
is one loop in γk ∪ ek1 ∈ S2 which goes through k and hence also through 1. Moreover, the loops defines a
unique edge that starts in 1 and goes to another vertex say j. Let us consider the graph γk ∪ ek1 without the
edge e1j . As above one can show that this graph is in Γ1, i.e. there is γ ∈ Γ1 such that γk ∪ ek1 = γ ∪ e1j .
This proves S2 ⊂ S1.

We are now able to prove Theorem 4.2.

Proof. As above mentioned, we prove only (wTM)1 = w1, i.e. the identity (2). Using Proposition 4.5, we
compute ∑

j≥2

m1jw1 =
∑
j≥2

m1j

∑
γ∈Γ1

∏
eik∈E(γ)

mik =
∑
j≥2

∑
γ∈Γ1

m1j

∏
eik∈E(γ)

mik =

=
∑
j≥2

∑
γ∈Γ1

∏
eik∈E(γ∪e1j)

mik =
∑
γ∈S1

∏
eik∈E(γ)

mik =

S1=S2=
∑
γ∈S2

∏
eik∈E(γ)

mik =
∑
j≥2

∑
γ∈Γj

∏
eik∈E(γ∪ej1)

mik =

=
∑
j≥2

∑
γ∈Γj

mj1

∏
eik∈E(γ)

mik =
∑
j≥2

mj1

∑
γ∈Γj

∏
eik∈E(γ)

mik =
∑
j≥2

mj1wj.

Example 4.6. Let us consider n = 5 states with the following reaction graph and the associated stochastic
matrix.

t t
t

t t
�
�
�
���
@
@
@
@@R

�
�
�
����A

A
A
AAK

1 3

2

5 4

m12

m23

m34

m45

m51

←→


1−m12 m12 0 0 0

0 1−m23 m23 0 0
0 0 1−m34 m34 0
0 0 0 1−m45 m45

m51 0 0 0 1−m51

 .

Formula (1) yields

w = (m23m34m45m51,m12m34m45m51,m12m23m45m51,m12m23m34m51,m12m23m34m45)T

∼ (1/m12, 1/m23, 1/m34, 1/m45, 1/m51)

as its invariant measure (despite normalization).

Remark 4.7. We want to stress that formula (1) always defines a vector w such that wTM = wT regardless
whether M is reducible or not. But it can happen that formula (1) defines a vector that is identically zero. This
case is treated in Section 5.

Remark 4.8. Proving Theorem 4.2, we do not usemij ≥ 0, i.e. also negative matrix elements are possible. The
only property of the matrix M that we used is that the elements in any row sum to one. Consider for example
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the matrix

M =

 1 −1 1
1 1 −1
−1 1 1

 .

We have M = I + A, where A is an incidence matrix, often used to model electric circuits or mechanical
systems of springs and masses.M has eigenvalues 1 and 1±i

√
3. Formula (1) yields (1, 1, 1) as the invariant

measure of M .

5 Positivity and Uniqueness

The aim of this section is to show whenever formula (1) provides a reasonable (i.e. a non-zero) vector the
invariant measure is unique; or vice versa if the invariant measure is unique then formula (1) defines a non-zero
vector. Let γ0 be the graph defined by a given stochastic matrix M = (mjk), i.e. γ0 consists of all edges ejk
such that mjk > 0.

Zk = {j ∈ Z : there is a directed path from j to k in γ0}.

Obviously, M is irreducible if and only if
⋂
k∈Z Zk = Z . The next proposition is helpful.

Proposition 5.1. Let w be defined as (1). Then Zk = Z if and only if wk > 0.

Proof. We focus again on the case k = 1.
1. Step: Let Z1 = Z . We want to show that w1 > 0.
The problem reduces to the following question. Let a graph γ̃ with Z1 = Z be given, i.e. from any vertex j 6= 1
there is a directed path to 1. Is it possible to obtain a subgraph which is a directed tree rooted at 1, i.e. γ ∈ Γ1

by removing edges from γ̃? It is not hard to see that this is indeed possible and actually there are many ways
to construct a suitable γ ∈ Γ1. In the following we present one possible way of construction.

For a given graph γ̃ with Z1 = Z , let us define V0 = {1} and let V1 be the set of all vertices from which an
edge to the vertex 1 starts. Collect all these edges (we call it E1) and remove any other edge that starts from
a vertex in V1. Obviously, the graph spanned by V0, V1 and E1 is a subgraph of a spanning tree rooted in 1.
Now, let V2 be the set of all vertices from which an edge to some vertex in V1 starts. Collect for any vertex in
V2 exactly one edge that goes to some vertex in V1. If there are many choices take an arbitrary one. Remove
any other edge that starts from some vertex in V2. We call the set of edges E2. Again, it is clear that the graph
spanned by V0, V1, E1, V2 and E2 is a subgraph of a spanning tree rooted in 1. Now proceed as above and
we get sets of vertices Vk and edges Ek. Observe that Vk contains vertices which have the distance k to the
vertex 1 and hence the construction necessarily stops after at most N − 1 steps. Define γ as the union of V0

and all Vk and EK . Since by assumption Z1 = Z in the end any vertex is contained γ and by construction it is
clear that γ ∈ Γ1. Hence, w1 > 0.

2. Step: Let w1 > 0. So, there is at least one graph γ ∈ Γ1 such that for any edge eki ∈ E(γ) it holds
mki > 0. Hence, there is a path starting from any j 6= 1 and ending at 1 and we get Z1 = Z .

Corollary 5.2. Let n ≥ 3. We have w = 0 defined by (1) if and only if the invariant measure is not unique.

Proof. If the invariant measure is not unique, we have at least two equivalence classes C1, C2 such that there
is no path from C1 to C2 and no path from C2 to C1 (see Section 2). By Proposition (5.1), we conclude wj = 0
for any j ∈ Z . Hence w = 0.
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Combinatorial considerations on the invariant measure of a stochastic matrix 9

Let w = 0. If the graph is totally disconnected, then following the ideas in Section 2 the invariant measure is
surely not unique. So let us assume that the graph is (weakly) connected, i.e. there is at least a path in one
direction connecting the different equivalence classes. We want to show that there are at least two communi-
cating classes such that there is no path starting from them, i.e. using notation in Section (2) they belong to Z+.
Surely, there is one communicating class, say C1. Since w|C1 = 0, there is a state (say 2) without any path to
C1. Let us denote the communicating class of 2 by C2 and consider the graph γ̃ defined by all communicating
classes that can be reached from C2. There is definitively a communicating class in γ̃ without starting paths to
other communicating classes. And this communicating class is not C1 since we assumed no path from 2 to C1.
Hence, we found two communicating classes without starting paths, i.e. the invariant measure is not unique.

6 Cardinality of the sets of graphs

Now we compute the number of addends in (1). To do this, we introduce the following subsets of directed acyclic
graphs. For k ∈ {1, . . . , n} mark k vertices among all n vertices, say {j1, . . . , jk}. We define Γ{j1,...,jk} as a
subset of directed graphs γ with the following properties:

a) γ is a directed acyclic graph with n vertices.

b) From each vertex j ∈ {j1, . . . , jk} starts exactly one directed edge that ends at some other vertex
j̄ ∈ C \ {j}.

Remembering the notation in Section 3, we see that Γ{1,...,n}\{j} = Γj .

Let us compute the cardinality of Γ{j1,...,jk}.

Proposition 6.1. It holds # Γ{j1,...,jk} = (n− k)nk−1

Proof. Let bnk := # Γ{j1,...,jk}. The proof is done in two steps. Firstly, we derive a recursive formula for bnk .
Secondly, we show inductively the claimed expression.
1.Step: We define bn0 = 1. We are going to prove that bnk = (n − k)nk−1. To compute bn1 , fix one vertex, say
j1 = 1. Hence, there are n − 1 possible edges from j1. So bn1 = n − 1. Let us compute bn2 . Fix again two
vertices say 1 and 2. To define an edge from 1, we have two choices: we can go to some of the n − 2 not
marked vertices or to 2. Choosing an edge to one of the vertices that are not marked, we get for an edge from
2 then bn1 possibilities. Hence in this case (n − 2)bn1 . Choosing the edge to 2, we have n − 2 options for an
edge from 2. So, bn2 = (n− 2)(bn1 + bn0 ) in total. Let us compute bn3 . Fix again three vertices say 1, 2 and 3. To
define an edge from 1, we have two choices: we to some of the n−3 not marked vertices or to a marked vertex
(1 or 2). Choosing an edge to one not marked vertex, we get (n− 3) times bn2 (for the two remaining vertices)
possibilities. Hence in this case (n − 2)bn2 . Choosing the edge to a marked vertex, we have 2 times options
since we have freedom to go to 2 or to 3. Let us go to say 2. The edge from 2 can not return to 1. It can go to
a marked vertex, which leads to (n − 3)bn1 options for an edge starting from 3. Or, it can go to a not marked
vertex, which leads to (n− 3)bn0 options for an edge starting from 3. Hence, bn3 = (n− 3)(bn2 + 2(bn1 + bn0 ))
in total. Stepping further, we conclude the following recursion formula for bnk :

bnk = (n− k)
[
bnk−1 + (k − 1)

(
bnk−2 + (k − 2)

(
bnk−3 + · · ·+ 2 (bn1 + bn0 )

)
. . .
)]

=

= (n− k)
k∑
j=1

bnk−j
(k − 1)!

(k − j)!
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2. Step: We prove inductively that bnk = (n − k)nk−1. For k = 0, we get by definition bn0 = 1. We already
computed bn1 = n − 1 and bn2 = (n − 2)n. Let us assume that bnk−j = (n − k + j)nk−j−1 holds for any
j = 1, . . . , k. We want to prove the claim for j = 0. In particular it suffices to show that

k∑
j=1

(n− k + j)nk−j−1 (k − 1)!

(k − j)!
= nk−1.

The left-hand side is

1

n

k∑
j=1

(n− k + j)nk−j
(k − 1)!

(k − j)!
=

1

n

k−1∑
l=0

(n− l)nl (k − 1)!

l!
=

=
(k − 1)!

n

(
n+

k−1∑
l=1

nl+1

l!
−

k−1∑
l=1

nl

(l − 1)!

)
=

(k − 1)!

n

nk

(k − 1)!
= nk−1.

This proves the claim.

Corollary 6.2. It holds # Γj = nn−2 and hence every entry of w consists of nn−2 addends with n− 1 factors
each.

7 Symmetric case of detailed balance

A special situation occurs if the Markov process satisfies a symmetry condition. We may assume that the reac-
tion network is connected, otherwise each separated region can be treated independently. A Markov process is
detailed balanced with respect to its invariant measure w, if by definition it is weakly reversible, i.e. whenever
mij 6= 0 then alsomji 6= 0, and, moreover, it holdsmijwj = mjiwi. This means that the stochastic matrixM
is symmetric in L2(w), the L2 over the invariant measure w > 0. The first property of weak reversibility implies
that the invariant measure is unique. The second property, as we will see, simplifies the formula for the invariant
measure hugely.

Firstly, we have the following.

Lemma 7.1. Let the stochastic matrix M be detailed balanced w.r.t. the invariant measure w > 0. Let j1 7→
j2 7→ · · · 7→ jk 7→ j1 be a loop in the graph of M . Then

mj1j2mj2j3 · · ·mjkj1 = mj1jkmjkjk−1
· · ·mj2j1 . (3)

Proof. It holds for any i = 1, . . . , k thatmjiji+1
wji+1

= mji+1jiwji , where we use the notation that jk+1 = j1.

Taking the product of this equation for any i = 1, . . . , k and dividing by
∏k

i=1wji > 0 yields the claim.

Remark 7.2. The above relation (3) is indeed equivalent to M being detailed balanced.

To simplify the formula for the invariant measure of a stochastic matrix, we need the definition of a undirected
tree.

An undirected graph γ = (V,E) consists of vertices V and edges E where the edges e ∈ E do not have any
orientation, i.e. there is no difference between the edge going from i to j or from j to i. Paths and loops can be
defined as in the case of directed case before.

Definition 7.3. Let γ = (V,E) be a undirected graph. A (undirected) tree in γ is a subgraph t = (V,E ′),
E ′ ⊂ E containing all vertices V connected by edges e ∈ E ′ such that there are no loops in t.
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Now observe the following. Pick any tree t and any vertex k. Then the tree t defines canonically a unique span-
ning tree rooted at k by orienting each edge in t into the direction of k. The spanning tree is easily constructed
inductively by looking at the vertices on the tree which have the distance 1, 2 and so on to the vertex k. Let us
denote this spanning tree by tk. Now, we define wt = (wtk)k by

wtk =
∏
eij∈tk

mij. (4)

Observe that the only difference between the spanning trees defined by i and j is the orientation of the path
between i and j:

t
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t
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���
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The next aim is to show that wt is indeed the (unique) invariant measure of the M , and moreover, that wtk and
also wt do not depend on the undirected tree t chosen before, i.e. any fixed tree t defines the same invariant
measure up to a scaling factor.

Theorem 7.4. Let the stochastic matrix M be detailed balanced w.r.t. the invariant measure w > 0. Take any
tree t, then wt, defined by (4) is (up to normalization) the invariant measure of M . In fact, different trees just
correspond to different normalization factors.

Proof. 1. Step: We show that formula (4) defines an invariant measure. Let us fix one tree t. We want to show
that for any k = 1, . . . , n it holds ∑

j 6=k

mkjw
t
k =

∑
j 6=k

mjkw
t
j.

To be more precise, we show that even mkjw
t
k = mjkw

t
j holds for any j 6= k. Similarly to the unsymmetric

case before (Lemma 4.4), the product mkjw
t
k defines a subgraph with exactly one cycle, which passes the

vertices k and j. The graph defined by mjkw
t
j has exactly the same structure apart from the orientation of the

cycle. But Lemma 7.1 provides that these two products are equal, which proves the claim.

2. Step: Now, we show that formula (4) is infact independent of the chosen tree t, in the sense that for any
two tree t1 and t2 the two invariant measure are proportional. Let us take two arbitrary trees t1 and t2 and the

associated invariant measures w1 and w2. Take i 6= j. Then the claim is equivalent to w1
i

w1
j

=
w2

i

w2
j
.

Let us look at w1
i and w1

j . Their only difference is the orientation of a path in t1 connecting i and j, i.e. w
1
i

w1
j

=

Path in t1:j 7→i
Path in t1:i 7→j . The same relation holds for w2

i and w2
j with respect to tree t2, i.e. w

2
i

w2
j

= Path in t2:j 7→i
Path in t2:i 7→j . So the

claim is equivalent to

Path in t1 : j 7→ i

Path in t1 : i 7→ j
=

Path in t2 : j 7→ i

Path in t2 : i 7→ j
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or, in other words, equivalent to

(Path in t1 : j 7→ i) · (Path in t2 : i 7→ j) = (Path in t2 : j 7→ i) · (Path in t1 : i 7→ j).

Both sides define a cycle consisting of the same edges but with different orientation. Lemma 7.1 provides again
that both terms are indeed equal.

Example 7.5. The scaling factor for different trees is not 1 in general. Consider a stochastic matrix between
three states with detailed balance, i.e. abc = def .

t
t t�
�
�
���
�
�
�
��� A

A
A
AAK
A
A
A
AAU

� -1 2

3

a d f b

c
e

t
t t

A
A
A
A
A1 2

3 t
t t�
�
�
�
�A
A
A
A
A1 2

3

Let us fix two trees: 1 7→ 2 7→ 3 and 1 7→ 3 7→ 2. Then formula (4) yields w1 = (bc, be, ef)T and
w2 = (df, ab, af) and the proportionality factor is e/a.
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