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Rough nonlocal diffusions

Michele Coghi, Torstein Nilssen

Abstract

We consider a nonlinear Fokker-Planck equation driven by a deterministic rough
path which describes the conditional probability of a McKean-Vlasov diffusion with
“common” noise. To study the equation we build a self-contained framework of non-
linear rough integration theory which we use to study McKean-Vlasov equations per-
turbed by rough paths. We construct an appropriate notion of solution of the corre-
sponding Fokker-Planck equation and prove well-posedness.
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1 Introduction

The term diffusion is sometimes used interchangeably when talking either about the macro-
scopic (Eulerian) description of the density of a substance occupying some space or the
infinitesimal (Lagrangian) description of the particles of the substance. Many physical phe-
nomena are however inherently nonlinear in the sense that the dynamic of the system will
depend not only on space but also on the density of the substance itself. In this paper we
study this type of nonlinear diffusion from both the Eulerian and Lagrangian perspective
when the diffusion is perturbed by a rough path. We are motivated by dynamics that arise
from interacting particle systems with common noise;

N
dXi = ;]Zb(xf X)) dt+ — Zo- (x/. X)) awi + — Z,B (x/.x) o aB..
j=1

Here each particle X' is influenced by 2 independent sources of noise, the Brownian motion
Bis visible for all particles (common noise) and the Brownian motion W' represents a noise
term specific for particle X'. Since B is influencing every particle, taking the limit N — oo
will only average out the individual noise terms, giving, at least formally, the mean-field
dynamics

{ dx; = ‘ﬁQd b(w, x¢)dp,(w)dt + f]Rd o (w, x;)dus (w)dW; + f]Rd:B(‘U» Xr)dp (w) o dB; (1)
Mt = L(xtw:tB)-

'Since we will in this paper only consider geometric rough paths, we shall consider Stratonovich integration
for this term.
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Rough nonlocal diffusions 3

We note that the conditional law L(x,lﬁB) heuristically satisfies the non-local Fokker-Plank
equation

1
dpy = 5 Te V(o (s -)ior () po)dt = div (b(p, ) par)dt = div (B )r) 0 By, (2)

where we have used the notation o-(u, x); = [, o(w, x)du;(w) etc. and Tr V2 (a) = Zl‘.szl 8,0 ja™
for a matrix valued function a. In fact, we can also address the case when o is a certain
type of Lipschitz nonlinearity on P(IR?) x R?, where P(IR?) denotes the set of probability
measures on R¢, see Assumption We will only address the case when 8 and b are

linear in their second argument.

In practice, (2) is difficult to solve since it needs to be formulated on a very large state space,
namely [C([0,T]; P(R9))]? where () is the underlying probability space. Even when () is
finite, this space is too large to do analysis since it is difficult to find compact subsets that is
used for proving well-posedness of (1) and (2). For a long time, well-posedness for equation
was known only for densities, see [20]. A proper well-posedness result in the space of
measures was obtain just very recently in [8].

In this paper we take a different approach, namely we study equation (1) for a fixed sample
path of the Brownian motion. Our method relies on the theory of rough paths and as such,
allows the study of (1) where B is replaced by any path that can be lifted to a rough path. In
particular, no markovianity or martingale structure is needed for the common noise.

From now on we replace B by a (deterministic) rough path Z = (Z,Z), and equation
becomes

G = 5 TV )or () ) = div (b, ) = div (B, ) @)

The main contribution of this paper is the following.

Theorem (see Theorems [7.2] and [7.4). Given a probability measure po on R¢ with finite
p-th moment, for any p > 2, there exists a unique measure-valued path u : [0,T] — P(]Rd),
which solves (3) with initial condition u.

Moreover we will prove in Theorem [7.2] that the unique solution is given as y, = £(x,),
namely the law of solution x to the McKean-Vlasov equation

dx, = b(.E(.X[), X[)dt + O‘(L(X;), xt)dW[ —|—ﬁ(.£(x,), X[)dZ[. (4)
We will show well-posedness of (4) in Section [6]

The strategy to prove uniqueness to equation (3) relies on showing that every solution must
be the law of the McKean-Vlasov equation. As it will be clear in the proof of Theorem[7.4]
this also necessitates to be able to have well-posedness of the equation

dxl = bt(xt)dl + O[(x,)th +ﬁ[(xt)dZ[, (5)

for given time inhomogeneous functions b,0- and S, where the time dependence is induced
by the law. Moreover, a common approach to proving well-posedness of is to construct
the solution as a fixed point in the space of measures on an appropriate function space.
Towards this end one would e.g. define inductively

A = b(L(), Vi (L), 5 )dW, + BIL(), )z,
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Once again, it is necessary to give a meaning to equation (5). If we consider the case
b = o = 0 and B,(x) = B, the equation reads

dxt = Bl‘dZt-

It is well-known that the above integration does not make sense unless we impose additional
structure on B, namely that there exists a Taylor-type expansion around the irregular path
Z, which is exactly the notion of controlled rough paths as introduced by Gubinelli in [17]. If
one aims to solve a mean-field equation on the form

dx; = B(L(x), x/)dZs,

where L(x;) denotes the law of x, and 3 is an appropriate function on the space of mea-
sures, it is reasonable to expect that ¢ — B(L(x;),x) has such a decomposition and that
one could solve the equation as a fixed-point in an appropriate space of measures.

Following this logic, if we want to consider the equation with added Brownian motion (4) as
a fixed-point, this would necessitate being able to solve equation (5). The usual way, see
[12], [13] and [14], to study this hybrid rough path and It6 equation is to consider the joint
rough path

) (s )

Zy Zi—Zs (2, - z,)aw, Zy

and recast the equation on the form of a rough path equation

dxt:(;tt )(xt)d( ‘Zt )

Again, one would need to make an expansion of (o+,5;)T in terms of the path (W, Z)7.
However, thinking towards the goal of solving mean-field equations, the simplest examples
shows that there is no reason to expect that o is controlled by a fixed Brownian path in any
sense - the law of the solution is an average over all Brownian sample paths.

Instead, if we define W (x) = [' o, (x)dW, as a Wiener-Itd integral and Z5,(x) = [' B,(x)dZ,
as a rough path integral, then on small time scales one would expect

Vv

f oo () AW, — W (x,) f By (x)dZ, - 7°(x,)|

to be small, so that one could use W and Z to define a notion of non-linear [ integration.
At the heart of all stochastic integration is the difficulty that the above is not enough to guar-
antee a canonically defined integration map in the pathwise sense. The most fundamental
understanding of the rough path theory is that one can construct integrals once additional
information about the driving path is given by some off-line argument e.g. stochastic inte-
gration.

2We choose to call the integration non-linear since a mapping x ff,(x,)dr is obviously never linear.
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Existing literature

The stochastic equation, i.e. and has been studied in [20] and [21] but focusing on
the case where the initial condition has a density. The measure-valued case was studied
very recently in [8]. Under more restrictive conditions, either on the class of solutions or on
the coefficients (like strong parabolicity), the well-posedness of solutions to SPDE of the
type (2) had been previously considered by Dawson, Vaillancourt in [10].

McKean-Vlasov equations from a rough path perspective has already been introduced in
[7] and, more recently in [1], focusing on the Lagrangian description. In [1] the equation is
driven by a general random rough path, which gives the additional difficulty of needing to
keep track of the rough path as a L?(Q))-valued path. The latter space is present to consider
a probability measure as the law of a random variable and Lions’ approach to calculus for
the Wasserstein metric. The approach by Gubinelli on controlled rough paths is then used
to solve the equation as a fixed-point in the mixed IR¢ and L?(Q))-space.

We mention also [5] where the authors study mean-field games in the presence of a com-
mon noise as in (T). The authors use tightness arguments along with approximations to
prove existence of a (probabilistically) weak solutions. Then, the authors prove a Yamada-
Watanabe type principle for these equations to prove existence and uniqueness of (proba-
bilistically) strong solutions.

In Section (3| we build a version of the rough path theory that allow for time dependent
coefficients. The results in this section should be compared to [3] where the authors solves
equations on this form. There, the main focus is flows build from a non-linear version of the
sewing lemma. Very recently, right before the completion of the present paper, the authors
of [23]] introduce the very same object, here called a nonlinear rough path. The authors use
a similar set up as in [17] to solve rough equations with time-dependent coefficients.

The papers [3] and [23] does not contain the same precise estimates as the present paper,
which is crucially needed to set up a contraction mapping for the McKean-Vlasov equation

(4).

Main contributions

The main contribution of this paper is the formulation and well-posedness of the nonlinear
Fokker-Planck equation in terms of the appropriate rough path topology. We believe this
is the first paper to study a rough non-local diffusion from both the Lagrangian and Eule-
rian perspective. Furthermore we believe it is the first work to prove well-posedness of an
equation with a nonlinearity in the noise term on this form.

It is plausible that the well-posedness of the McKean-Vlasov equation equation in the
present paper can be seen as a particular case of the equation studied in [1] by doing
a rough path lift of W and Z as in (6), but now as a rough path with values in an L”(Q})-
space. However, our proof of the well-posedness of the nonlinear Fokker-Planck equation
necessitate well-posedness of a rough path equation with time-dependent coefficients. As
already mentioned, it is not reasonable to expect that the coefficients could be controlled
by a single Brownian path thus one could not use [1] for the time dependent case. More-
over, for the same reason, time dependent coefficients are also needed to understand the
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M. Coghi, T. Nilssen 6

McKean-Vlasov equation as a fixed point of linear diffusions in an appropriate space of
measures.

In addition, we prove a result on existence of a solution to a linear, possibly degenerate,
rough PDE which could be of independent interest.

Structure of the paper

The paper is structured as follows. In Section 2] we introduce the necessary concepts from
rough path theory, including controlled rough paths, that will be needed for the paper. In
Section [3] we introduce the corresponding integration theory to handle non-linear integra-
tion and differential equations. In Section [4| we show how to concretely build rough drivers
from Itd integration theory and the theory of controlled paths. These examples will also act
exactly as the rough drivers needed to formulate the McKean-Vlasov equation as a fixed
point. Moreover, this section contains an average, in (), 1té6 formula that allows us to prove
that the law of a diffusion solves the Fokker-Planck equation (linear or nonlinear). In Section
we prove well-posedness for a linear RPDE with time dependent coefficients. In Section
[6] we construct the appropriate space for solving the McKean-Vlasov equation. In Section
[7| we prove uniqueness of our main equation, which hinges on the results of the previous
sections.

2 Notations and preliminary results

2.1 Holder and p-variation spaces

For T > 0 we let Ay denote the simplex Ar = {(s,¢) € [0,T]> : s < t}. For > 0 and a

Banach space E we denote by Cg( [0, T]; E) the space of all continuous mappings g : A7 —
E such that

gl _

[g]§,h;E = Sup Slf

(s.0)ebp:l—si<n T =

It can be checked that the above space is independent of 4, and we will write for simplicity
[gla:E := [gle.r:£- When it is clear from the context, we will also omit the Banach space E,
writing [gla., and [g].. We let C4([0,T]; E) denote the space of all paths f : [0,T] — E
such that the increment 6 f; := f; — fs belongs to Cg([o, T]; E). For simplicity we will write
[flan:e := [6f]ank- Itis well known that local and global Hélder norms are comparable for
paths, in the sense that

[flee < [fleme(1v 20 (7)

for all f € C5([0,T]; E) (see Exercise 4.25 in [15]). It is well known that the Hélder spaces
are not separable. However, the subspace

C3([0.7):E) = {f € C*([0.T}: ) : Jimfloss = 0]

is separable, as proved in Proposition [A.4]
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Rough nonlocal diffusions 7

We let C; ([0, T]; E) be the space of all continuous mappings g : Ay — E such that

1/p
(8] p. 5.0 == [s?rp > ||g,iti+1||1£_] < oo

{tit=r

where the above supremum is taken over all partitions 7 of [s,1]. If we define w,(s,1) :=
[[g]]i (sa):E it can be shown that (s,7) > wg(s,) is a control, namely continuous and super-

additive i.e. wq(s,u) + we(u, 1) < wy(s,1). Moreover, we see that if there exists a control w
such that |lgyllz < w(s,1)!/?, then wq(s,1) < w(s, 1), so that we could equivalently define

lg]l (5.0 = inf {w(s, t)l/p | w is a control such that ||g,, |l < w(u,v)l/p fors<u<v< t}.

We will write [g] ;£ := [g],,j0.7]:z @nd when the space E is clear from the context we will
simply write ], 4 and [g], := [gl ».j0.1)-
To see the relationship between Hoélder continuity and p-variation, notice that for any parti-

tion 7 we have
D gl < D (gl pltier = t1? = [g]? ple =
T T

when @ = 1/ p, which gives the bound

we(s,1) < [g]tll;/glt— sl. (8)

Given a control w, we construct the greedy partition, following [15, Chapter 11]; for 8 > 0,
define the partition {r,,}, as

T0 = S, Tpy1 = inf{t | w(tp, 1) 2B, 1 <t < T} AT,
so that w(r,, 7,+1) = B, for all n < N, and w(ty,7n+1) < B. Define now the integer

Ng(w, [s,1]) :=sup{n > 0|1, < t}. (9)

2.2 Rough paths

Assume E is a Banach space and equip E ® E with the projective tensor norm. We call a
pair
Z:=(2.Z) e C*([0,T];E) x C3*([0, T); E® E)

for @ € (1, 1) a rough path provided Chen’s relation,
0Zsor = Zso ® Zuy, (10)

holds where we have defined the second order increment operator dgss := g5t — Sor — &56-
We denote by ¢([0, T]; E) the (non-linear) set of all rough paths which we equip with the
subset metric,

[Z — X]Q,h = [Z - X]a/,h + [Z - X]z(y,h.

For a path of bounded variation, Z : [0,T] — E there is a canonical rough path, Z =
(Z, [ Z®dZ) where the latter is the iterated integral (fZ@dZ) = f;Zsr®er which is well

st
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M. Coghi, T. Nilssen 8

defined when Z is of bounded variation. We denote by ([0, T]; E) the set of geometric
rough paths, which is the closure of the set of bounded variation paths in the rough path
metric.

We notice that if Z is geometric, then Z is also weakly geometric which means sym(Z,) =
1Zy ® Zy, and we denote by s ([0, T]; E) the set of all such rough paths. When E is finite
dimensional it is known that (see e.g. [16, Proposition 8.12]) if Z is weakly geometric, there
exists a sequence of smooth paths Z" such that Z" — Z in €*([0, T|; E) for all @ < a.

Controlled space

Given a path Z taking values in R™ we denote by 2:%([0,T]; E) the (linear) space of all
controlled path, given by pairs (Y, Y’) of mappings

Y:[0,T] » L(R™E), Y :[0,T] » L(R™"™;E)
such that
Y=oy, -Yzey, = ¥ eC¥([0,T]: LIR™E)).

We call Y’ the Gubinelli derivative of Y. The above definition is sometimes better understood
in coordinates Y%’ := s¥i — ¥**Z where we abuse notation and write Y for the matrix
representing the Gubinelli derivative. Above and for the remainder of the paper we shall use
the convention of summation over repeated indices. We equip the space of all controlled
paths with the norm

1Y, Y zase := Yol + [Y]ane + [Y¥]2amE.

Sewing lemma and rough path integration

We recall here the main result used to obtain estimates in the theory of rough paths, namely
the sewing lemma.

Lemma 2.1. Suppose g : At — E is such that

0
6gsole _

[68] JE =
¢ s<o<tli—si<n |t = sI¢

for some ¢ > 1 and h > 0. Then there exists a unique pair I(g) : [0,T] — E and I(g)" :
Ar — E such that

5I(g)st = gst T+ I(g)lit
with [1(g)%¢.e < C[6g]¢n:k for C depending only on ¢.

In fact, we have I(g)y := limy—0 Xx &ni, @nd we think of I(g) as being an integral with
local expansion g.

With this in hand we can define the rough path integral. Given a rough path Z and a con-
trolled path (Y, Y’) € 22%([0,T]; E), define the local expansion

g = YZy + Y Zy = Y ZK + Y 7K.

s st
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Rough nonlocal diffusions 9

Using Chen’s relation it is straightforward to check that [6g]sq.r < oo and we shall write
[Ydz = I(g).
This construction also gives rise to a new rough path, namely

1 !
Xt - f Yrer, Xsl - f Xr ® Yrer - XS ®XSI (1 1)
0 s

where the latter integral is defined by the local expansion

X, @YZE + (Yo Yk + X, 0 Y Z!X,

s st

One can then check that X := (X, X) € ¢*([0,T]; E) and that this operation is continuous
from 227([0, T]; E) to ¢*([0, T]; E). Moreover, at least when E is a separable Hilbert space,
weak geometricity is preserved under rough path integration as spelled out in Lemma|[A.2]

We shall also use the sewing lemma to get a priori estimates by a slight (straightforward)
generalization of the sewing lemma. Assume that g is such that there exists controls w and
w, and a positive function k such that

168sul < w(s, 1) (14ks),  Igsl < wul(s,1)¢ (12)
for some ¢ > 1. Then there exists a universal constant C such that
lgsil < Cw(s,1)(1 + sup k). (13)

re(s.t]

2.3 Taylor’s formula

For a path y : [0,T] — R? and a function g : R? — V (where V is a finite-dimensional
vector space) we use the notation

1
gls = fo (1-60)"g(ys + 06y.)db. (14)
With this notation at hand the first and second order Taylor’s formula reads
1, 1, 2,
5g(y)s = Vel ovs,  [8ly —8(vs) = [Vel§ 6ysr

respectively. We obviously get I[g]f;yl < llglloo-

2.4 \Wasserstein metric

We shall work with the Wasserstein metric on measures on Hélder spaces, but since sep-
arability of the underlying space is required for the Wasserstein metric to give a complete
space, we shall use the subspaces CZ([0,7];IR?). When the dimension is clear from the
context we shall simply write Cj. Given two probability measure p,v € P(Cg) say that
m e P(Cy x Cy) is a coupling of u and v provided its first (respectively second) marginal is
equal to u (respectively v). We define the Wasserstein metric

1/p
Wy (1, v) := inf (f (w - alhdn(w, (D)]
Caxcy

T
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M. Coghi, T. Nilssen 10

where the above infimum ranges over all couplings 7 of the measures u and v. Since Cj is
separable we have that ?p(Cg) is a complete space w.r.t. W,.

We note that the p-th moment of a probability measure p can be written W, (1, 80 )” where
oo is the Dirac-Delta centered in the path constantly equal to 0.

2.5 Spatial function spaces

We fix d € IN. For any multi-index 8 = (81, ...,B4), we set

g, B g B2 P Ba

and |8| = B +---+B4. For p > 1 and an integer k > 0, we let W = WkP(R?) be the
Sobolev space of real-valued functions on R¢ with finite norm

I fllyrr := IDPf(x |Pd] < oo,
weim g fsoa

Let H* := Wk2(RY;IR?), be the Sobolev space of square integrable functions over R,
endowed with the norm || - ||z« := || - [lyx2. For a Hilbert space H, we endow the space of
linear functionals £(IR?; H) with the Hilbert-Schmidt norm

A g(Re- ) (leAe ||H] ,  AeL(R%H). (15)

Moreover, we call M%(H) the space of H-valued, time-continuous, square integrable mar-
tingales endowed with the norm

”M”MZ(H) ‘= Ssup ||Mt||L2
T 1€[0,T]

Letk > %’. We denote by Cz ® H* the space of continuous functions f : R? x R¢ — R? such
that

(i) Forall x € RY, the function y — f(x,y) € H*.
(ii) For all y € RY, the function x - f(x,y) € C;.
(iii) We have

1

||f||C2®Hk = [ sup f |V’ DBf (x,y)l ZdyJ < oo, fe Ci ® H*. (16)

O<z<3 1Bl<k xeR?

We endow the space Ci ® H* with the induced norm ||f||cg®Hk- Above we have used the
Frechet derivative in the first variable and the weak derivative in the second variable.

Contrary to H' ® H*, this space is well suited for the convolution f(x,y) = o(x —y) and we
see that f € C; @ H" if o € H3TX,

DOI 10.20347/WIAS.PREPRINT.2619 Berlin 2019



Rough nonlocal diffusions 11

3 Non linear integration

In this section we build the theory of rough paths to accommodate for time-dependent co-
efficients. We aim to solve the equation

%= fi(x), xo=&eR? (17)

for given function f which is a distribution in time but regular in space. We shall use the
framework akin to the definition by Davie in [9]. To illustrate the set up, assume that x is a
smooth solution of (17). Integrating the equation and using Taylor’s formula we obtain

OXg = f fr Xr d}’ = f fr Xs +Vfr(xs)(5xsr) [szr]sr (5xsr®5xsr)d
fﬁmm+fWﬁMM@MM
fo, (f fulx du-l—fou( )(6xm)du—|-f[V2fu]su (6xm®6xm)a’u)d

N

= Fy(xs) + Fg(xs) + x&t.

Here we have defined the driver F := (F,F) of the equation as follows

X) = f Wdr Fylx) = f V() For()dr, (18)

and the remainder as

f f V(x5 V fo(55) (6x50) 4 [V2 fo 55 (6% 50 ® Sk gy, ) duedr + f (V2 £ 55 (x5, ® 5x5y )dr
With the above notation, we rewrite equation as

dx, th (Xt) (20)

As is usual in rough path theory, we shall now read the definition in the opposite di-
rection - we assume we are given a pair of functions (F,TF) satisfying some compatibility
conditions (in Definition below), and take this as a definition of the non-linearity f. We
will then take x to be implicitly defined and say that x is a solution provided x is of high
time regularity.

We can read in integral form as x; = xo + fot F,(x,) and can be regarded as a rough
version of the semimartingale integration theory by Kunita in [19].

We shall use a similar definition as in [3], with a noticeable difference that we allow our
driver to depend on two spatial points. Moreover, we will not only be dealing with weakly
geometric drivers.

Definition 3.1. For p € [2,3), a pair of functions F = (F,FF) € CP™¥ ([0, T]; C; (RY; R?)) x
C2 ([0, T); C2(RY x RY; RY)) is called a p-rough driver provided Chen’s relation,

O (x,y) = Fou(x) ® VFy(y) 1= Fiu(x)aiFut()’) (21)
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holds. The set of all such pairs is equipped with the metrics

[[F - G]]p,[s,t] = [[F - G]]p,[s,t];Cz + \/[[]F - G]] Llsa:C3e

Most of the time we will work on the diagonal of the spatial points and write simply IF i (x) :=
Fy(x,x), and we shall also write VF,,;(x)Fg,(x) = Fg,(x) ® VFy(x).

Fora € (3. 1] apair of functions F = (F,IF) € C*([0, T]; C3 (R% R?)) x C3%([0, T]; C3(R¥ x

RY;R?)) is called an a-rough driver provided holds. The set of all such pairs is
equipped with the metric

[F - G]a,h = ||IF - G”a/,h;Cz + w[”]F - G”Za,h;Cg'

Remark 3.2. The reason for using both p-variation and a-Hélder continuous drivers is that
the construction using Kolmogorov continuity theorem (Lemma below) gives us more
easily bounds in the sense of Hblder continuity. However, to estimate the difference be-
tween two solutions we need exponential bounds, and it is well known that even when W
is a Brownian motion, the random variable [W|, is not exponentially integrable. This prob-
lem is circumvented by using p-variation, more specifically using the local accumulation
N1 (W yar: [’ [0,T]), see Section for the details.

s

From (8) it is clear that if F is an a-rough driver, then it is also a p-rough driver with p = é
When the notion is clear from the context, we shall simply say that F is a rough driver.

Example 3.3. Consider a rough path X € ¢*([0,T]; C; (R%;RY)), where we identify C; (R); R?) ®
C;(R* R?) with a subspace[]| of C3 (RY x R%; R so that Chen’s relation reads
5Xls’it(x’)’) = X;u(x)Xﬁt(y).

Let now Fy(x) = Xu(x) and Fy(x,y) = V% (X(x,y)) where V§ : C;(RY x RY; R™) —
C3(RYx R?; R?) is the multiplication of vector fields, i.e. the linear extension of the mapping
defined by

(V3£ @) (xy) = F(x)0 ().

It is straightforward to check that this gives a rough driver, and we notice that the mapping
X — F is continuous.

With this at hand we can define the notion of a solution.

Definition 3.4. Let F be a rough driver as in Definition and ¢ e R?. Apathx : [0,T] —
R4 is called a solution to provided x" defined by

OXgr = Fst(xs) + IFst(xs) + xip xo = ¢&, (22)

p_
is such that x* € C; " ([0, T]; RY).

3Since we are on the unbounded domain R?, we don’t know if one can identify these spaces, but the
inclusion is enough for our purposes
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Rough nonlocal diffusions 13

Remark 3.5. One drawback with this method compared to linear integration is the lack of
Universalityin the It6-Lyons map; recall that the stochastic equation

dx, = V(x;) o dB[

and its corresponding mapping B — x can be factorized into a discontinuous map, B —
(B, [ BdB) and a continuous one (B, [ BdB) — x. One of the nice features of this decom-

position is the fact that B — (B, f BdB) is universal in the sense that it does not depend on
the vector field V driving the equation, which allows to fix a subset ()y c ) for which one
can do deterministic analysis on the differential equation.

In our case, however, the subset of () will depend on the driving vector fields since we are
building a non-linear integration theory depending on the coefficients.

3.1 A priori estimates

Let F be a p-rough driver and assume x is a solution of equation in the sense of
Definition [3.4] In this section we use and to deduce a priori estimates. We let wg
be the smallest control such that

IFallcs < we(s.0)' P, IBallcs < we(s.0)>7.
Define the controlled quantity,
xgt = Oxg — Fy(xs) = Fg(xg) + xit. (23)
Lemma 3.6. Let g € C2, we have the following chain rule, Vs, t € [0, T],

g(x)f, 1= 0g(x) s~ Vg(xo) Ful(x) = Ig(X)ﬁ,lSIIgllcg(WF(s,t)l/”wx(s,t)‘/p+wxu(s,t)2/”).

(24)
Proof. We have from Taylor’s formula
5g(x) e = Vgl i 0y = [Vl Fua(ixy) + [Ve] ', = Ve () Far(x,) + (2%

where ; ;

1, 1,

g(x)sl = ([Vg]stx - Vg(xs))FSl(xS) + [Vg]slxxsl‘

By the definition of brackets (14), we get

1

|[Vg] i;x - Vg(xs)l = f Vg(xs + 95)(5,) - Vg(xs)de < ”gllcl%ksxsll-
0

The result follows. m|

With this in hand we turn to an a priori estimate for the nonlinear RDE.

Proposition 3.7. Let0 < h < T. There exists constants C and h depending only on p such
that for all s,t such that wg(s, 1) < h we have

lxse| < Cwp (s, t)l/p, |x2t| < Cwr(s, t)z/p, Ixitl < Cwr(s, t)3/p,
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Proof. We start with the easily verifiable identity for a function G and path y

5G()’)sut = 5Gsut()’s) - 5(Gm(y-))su.

Using Chen’s relation we get

sut = 6(Fur(x.) ) su + 6(Fur(x.) ) su — 6 Fur (x5)
FW( )) VFW(XY)FSM( ) +6(]F ( ))su
)

Fuf(x)gu + VlFut(xs Fsu(xs) + ]Fut( )ﬁ

We get from Lemma (3.6}, provided i < 1

|Fut(x)§u| + |Fut(x)§u| < WF(S’ t)l/p(WF(S’ t)l/pwx(s’ t)l/p + Wxﬁ(s’ t)Z/p)

and clearly
IVIF ¢ (x5) Fyu(x5)] < wr(s, t)3/p.

From the sewing lemma there exists a constant C such that
Ixitl < C(WF(S, )2 Py (5, 0) P 4 wr (s, 0)Y Pw 4 (5,0)%'P + w(s, t)3/p)
From equations and we have
x5l < wr(s, t)l/p + wr(s, t)z/p +w (s, t)3/p |x2t| < wr(s, t)z/p + w (s, t)3/p
and consequently
Ixill <wy(s1)3P < C(WF(S, )Y Pw 4 (5,0)3P + we(s, t)3/p).
If now s, 7 is such that Cwg(s,1)!/? < 1 we get
wa(5,0)%P < Cwg(s,1)3/P

which gives
gl < Cwe(s, 1)/, ¥t | < Cwe(s, 1)2/7.

O

The above bound translates now to global estimates on the solution itself in the following
way.

Lemma 3.8. Assume now that F is an a-rough driver with a = %. Then we have, for h > 0
small enough depending on F,
[x]an < CF]an- (25)

Moreover, we have the global estimate
[x]o < C([Fla v [F]3/%) (26)

for a constant C > 0 depending only on a.
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Rough nonlocal diffusions 15

Proof. Since F is Holder continuous we have wr (s, 1) < [F]” |t — s| for all |t — 5| < h. Choose
now / such that 4% [F],,C < 3 where C is as in Proposition . For |t — s| < h we have

Ixsel < Cwr(s,1)* < C[F]aplt — sI%

from which follows.
From (7) we get, choosing now h = [F];'/?, ho=1 = [F]{ =)/
[x]a < [an(1V21%7) < CIFlo(1 v [F]S /)

for some universal constant C depending only on a. O

3.2 A priori contractive estimates

Let p < 3, and assume F, G are two p-rough drivers. We take two solutions x and y of
equation in the sense of Definition (3.4), with initial conditions xo and yo and driven by
F and G respectively.

To illustrate the ideas of this section, we give the following remark.

Remark 3.9. Assume that F := [} f,(x)dr, G := [} g,(x)dr, x andy are smooth in time, so
that we can write

f f f
lxz = yil < Ix0 = yol + ‘f(; fr(xr) _gr(Yr)dr < |xo = yol +L |fr(xr) _fr(yr)ldr"_v[o‘ II.fr _gr”der

t t . !
< |xo0 = yol + f IV fillc, llxr = yrlldr + fo Iy — g llcydr < e W Hlendr (1 — yol 4 fo Ifr — grllc,dr)
0

where we have used Gronwall’s inequality in the last step. The purpose of this subsection
is to replicate these estimates also for the rough case. The steps are similar to the previous
subsection, except we compare two solutions.

We start by writing
8t = 8yst = Fuu(x5) = Gt (ys) + 3k =38, = Fu(xs) = Fu(ys) + Fu(ys) = G (ys) + 25 5%
Letz:=x—yand =t yﬁ so that the above gives the estimate

16251l < wi (5, 0) Y Plzg| + wp_g (s, 0) /P + wy(t, )1/, (27)

We begin with the analogue of Lemma that allows us to estimate nonlinearities of the
remainders.

Lemma 3.10. Let f, g € C;. Then using the notation as in Lemmal3.6lwe have the estimate

() = 80Vl < I1F = glleowr (s.0)*7 + gl sl (w (5.) 7 + we (5.1)7)

- llglle (w2 (5, 0) ' Pwi (s5,0) 7+ we (5.0)' Pwe-g (5.0) /7 +w(s.1)7).
(28)
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Proof. We write

2,
FOf =g, = [V 12 xaFa(x5) = [V26) 56y Ga(vs) + [VFILE, — [Ve] ..
The first two terms above can be written
[sz]i}x‘sxstht(XS) [Vz ]2y5Ystht(ys) ([sz]Z,x - [Vzg]§§x)5xstht(XS)
+ ([V2g)%" = [V2g]2") 6 For(x5) + [V2g]2 (6351 — 6yst) o ()
+ [V24)2 8yt (Fur(x5) = Gr(x4)) + [V28) 2 6y5t (Gor () = Ga ().
Which gives the bound
V2 12 650 F st (x5) = [V28) 2 695Gt (ys)| < IIV2f = V2glic,wi (5. 1)2/ P + Vgl lzslwr (5, 1)2/ P
+ IV2gllew, (5. 0) Y Pwr(s, 1)1/ 7 + IV2gllc,wg (5. 1) Pwp_g (s.1) /P
+1IV2gllc,we (5, 2) 1 Pwg (5, 1)/ Pz

Now write
VA4 = [VelivE, = (VA - [Vl ), + ([Vely = Vel i)k, + Vel (o, = o).
We see that
(VAL = Vel Xl < IV - Velle,we(s, 227, and  [([Ve] (o, =2 < IVglle,was (s, 1) P
which gives (28). O

Proposition 3.11. Assume thatF and G are a-rough drivers with @« = I%. Then there exists
universal constants C such that

sup [x, =y, < C(Ix0 = yol + [F = G],)eCN 0w 07]) (29)
re[O T]
Moreover,
[x = ¥] p (5. <CeNOROTD (150 — yol + [F - G ) (30)

) [([[F]]p,[s,t} + [[G]]p,[s,l})(l + [[F]]P + [[G]]P)z]

[ = 3] g g5,y <CeNOOT (150 — yol + [F - G ) (31)
(D 5. + 16T ) (1 + [FT, + [G] )7

for all s, t such that C([F], (s, + [Gll,sq) < 1. In particular, we have uniqueness for equa-
tion and the solution is continuous w.r.t. the initial condition.

Proof. Using Chen’s relation we get
8(x =) = Fur (0 = Gua (9 + VFur (%) Fru(%y) = VGt (%) G (35) + Fa () = Gua ()’
Replacing f = F,; and g = G in (28) we get

Pt ()5 = G (0) bl < wi—g (5,0)"/Pwie(5,0)2/7 + we (s, 8) VPl (wi (5, 8)/7 + we (5,1)2/P)
+we (5, 0) P (wo (5, 8)Pwr(s, )P+ wa (5,0) ' Pwp_c (5,0) 7 + w4 (s,1)2/P).
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Replacing f = F,, and g = G, in we get
Fur () = Gua (0)sul < Wi (,6)> Pwi(5,0)277 4w (5,0)2/ 71zl (w (5,17 4w (5,1)'7)

+ wg (s, t)z/p(wz(s, t)l/pr(s, t)l/p + wg (s, t)l/pr_G(s, t)l/p + szj(s, t)z/p).
Use also the estimate

1281 < lelwr (5.0)27 + wr_g (5.0)% + wa(s,1)3/7.

Let now s, ¢ be such that we (s, )7, wr(s,)!/? < § which gives

1622 1 < wr_g (5.0)"/Pwe(5.0)¥? + wp_g (5.0 Pwp(s. 1) /P
+ wg (5,0) Plzg| (wr (s, 0)*'P 4+ wg (s, 1)%/P)
+ wa (s, t)l/p(wz(s, )Y Pwp(s, )P +wg (s, 0) Pwp_g(s,1)"/P
+ lzglwe (5. 0)¥'P + wp_g (s, 1)*'P + w (s, 1)3/7.
From and we get that there exists a universal constant C such that
w (s, 1)3/p SC(WF_G(S, )Y Pwp(s, )P +we_g (s, 0)* Pwp(s,1)1/P

+ sup |z l(we (s, 0)" Pwr(s,1)*'? + we(s,1)3/P)
re[s.]

+ wg (s, t)l/p(wz(s, )Y Pwe(s,0)VP +wg (s, ) Pwp_g(s,1)"/?

+ wr—g (5, 6)%/7 + w(s, t)3/p).
Choose now s, ¢ such that wg (s, )!/? < § A 1, so that

wa (s, t)3/p SZC(WF_G(S, t)l/pr(s, t)Z/p + wr-g (s, t)z/pr(s, t)l/p

+ sup |z /(wg(s, t)l/pr(s, t)z/p+w(;(s, t)3/p)
re[s,]

+we (5,0 P(wo (5,0 Pwe(s.1)/7 + we(s.0) Pwp_g (5.0)'? + wp_g(s,1)*'7).

Choosing s, such that wg_g(s,1)'/? < % A 1 if necessary, we have the following estimate
for the difference of two solutions

16z5:] < wr (s, t)l/plzsl + wr (s, t)z/plzsl + wr-g (s, t)l/p + wr—g (s, t)z/” +w(s, t)3/"

< C(WF(S, l‘)l/p sup |z,| + wr_g (s, l‘)l/p + WF_G(S, l‘)l/pWF(s, l‘)z/p
re[s,t]

+wr_g(5.0)> Pwe (s, )7 + we (s.)" Pwe (s, 1) P (5,1)'/7). (32)

Let now (s, ) be such that wg (s, 1)/ 7, wg (s, 1)/, wr_g(s,1)'/? < § we get

162 < w, (s, t)l/p < C(WF(S, t)l/p sup z,| + (s, t))

re[s,t]

where ¢(s,1) := wp_g(s,1)!/P. The simplex function ¢(s,) is not a control (not super-
additive), but it is increasing in t and decreasing is s, which is enough to apply the rough
Gronwall lemma, Lemmal[A.5] We get, for a constant C > 0 possibly different than before,

sup |z, < CexplCwr (s, 1)} (lzs| + ¢(s, 1)),

re(s,t]
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and we notice that this holds for all subintervals [s, ], i.e. no smallness assumption. Now,
choose the finest partition 7 of [s, 7] such that wg (¢, 7x+1) = 1. We have

sup |z,] < C(lzgl + ¢(s,71))eS,

re[s,ri]

On the next interval |71, 72|, we use the previous estimate and the monotonicity of ¢(s,7) in
its two arguments s, ¢ to get

sup |z < Clze, | + ¢ (71,72))eC < C(Cllzsl + ¢(5,71))eC + d(t1,12))eC

re[Tl,Tz]

< C*(Jzg + 2¢(s5.72) )¢
provided C > 1. An easy induction shows that

sup  Iz] < C"(lzsl + np(5,7r1))€"C < (Izgl + (s, Tag1) )",
r€[tn,Tn+1]

By definition of the greedy partition (9) we get, by possibly changing C again,

sup [2] < C(J25| + ¢(s,1))e N1, (33)
re(s,t

Letting s = 0 and using ¢(0,T) = wg_g(0,T)'/? = [F - G], this shows (29).

To see we plug the above into to get

16z5:] <wr (s, t)l/Plzsl + wr-g (s, t)l/p +wy(s, t)3/p
<wr(s, t)l/plzsl + wr_g (s, t)l/p + ZC(WF_G(S, t)l/pr(s, t)z/p + wr_g (s, t)z/pr(s, t)l/p

+ sup |z |(wg(s, t)l/pr(s, t)Z/p+wG(s, t)3/p)

re[s.f]
+ wg (s, t)l/p(wz(s, t)l/pr(s, t)l/p + we (s, t)l/”wF_G(s, t)l/p + wp_g(s, t)z/p)

<(wg (5,7 +wg(s,1)'/P) s?p] 2]+ wr_g (5, 0)P +wg (5,0 Pwg (s, ) Pw.(s,1)/P
re|s,t

<(wr(s,0)"7 + wg(s.1)"/7) SI[lp] el + wr- (5.1)"/7,
rels,t

using wr(s,1)'/7, wg(s,1)'/P < 1/2 in the last step. Using (33) gives

16261l < (W (5, )7 + wg (5,0)/P)C(0,1)eNELON) e (s,0)/P
< (120l + wr-6 (0. 7)"/Pwg (0, T)*? + wp_g (0. T)* Pwe (0. T)/7) (we (5.)"/? + wg (5.1)'/?)

+ wi_g (s, t)l/p]CeCN(WF»[O,T])_ (34)
This gives (30). The bound is proved in a similar way. o

Corollary 3.12. Assume thatF and G are a-rough drivers with @ = %. Then there exists a
universal constant C such that,

[x = Y] <CeENORIOTD (15 — 3ol + [F = Glo) (1 + [Flo + [Ga)?
(([Fla + [Gla) V ([Fla + [Gla) 7).

DOI 10.20347/WIAS.PREPRINT.2619 Berlin 2019
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Proof. Use bounds on the form wg(s, ) < [F]Z,h|t_ s| for all |t = s| < & in inequality (34).
This gives the Holder estimate
[2an < CeNOHOTV([F = Go[FIZ + [F = GI3 [Fla)([Flas + [Glas) + [F~ Glas)|
< CeNOPIOTD (2] + [F = G| ([Flas + [Gla) (1 + [Flo + [Gl)?]
which holds when £ is such that |z — s| < i we have wg(s,1)'/?, wg(s,1)'/? < 1, in particular
when 2% ([Flon + [Glen) S 1.

Let C be the constant given by Proposition and seth = Cu ([Fy + [Go) s It follows
by (7) and Proposition that (the value of C changes in the following lines, but it only
depends on a)

[x = Vo <[x=ylan(l v 20"
<Ce NI (1 — yol + [F = Glo) (1 + [Fla + [Gla)* ([Fla + [Gla)
(1V ([Flg + [Gla) 1 3).

This concludes the proof. O

3.3 Well-posedness of nonlinear RDEs

Since uniqueness of equation follows from Proposition [3.11}, it is only left to prove
existence of a solution. We do so by using a Picard iteration.

Theorem 3.13. Let F be a p-variation rough driver. There exists a unique solution x of
equation (20), in the sense of Definition|[3.4, with initial condition ¢ € R?.

Proof. Uniqueness is given by Proposition We study now existence. Define x) = &,
x} = Fo,(¢) and 1 . 0 1
a, .= Fst(xs) +1Fst(xsaxs)’

st

which gives

(5a§m = —5Fu,(x1)su — 51Fm(x1, xo)su + (5]Fsu,(x(s), x})
= _[VFut]it’fI‘sxiu - 5]Fm(x1’ xo)su + Fsu(x(s)) ® VFm(xi)
= ~[V2Fuli (68, ® Fou(2)) = 6F (x5
= — [V Pl (Fau(2) ® Fuu(x))) = 6Fus (', x°)
< wr(s,0)*? +|IVElic,wr (s, 1) /P < 2wg(s,1)*/P.

Consequently, there exists a pair (x%, x>%) such that

2.4
st

6x§t = Fst(xi) + ]Fs,(xi,x(s)) +x

and we have |xf;h| < Cwr(s, t)3/P for some universal constant C.
We prove inductively that there exists universal constants C and & such that for wg(s,7) < h

we have |xZ;h| < Cwg(s,1)3/P and [6x7] < 2wg(s,1)/P + Cwr(s,1)3/7.

DOI 10.20347/WIAS.PREPRINT.2619 Berlin 2019



M. Coghi, T. Nilssen 20

Given ¥~ ! and x"* we let
dyy = F(x}) + Fo (4, 271,

We then get
6", = —6F 1 (x") sy — 6F 1 (X", X" V) i 4+ Fs (X1 @ VF (&)
= —[VFu| 57 62, = 6 (X, X g + VF (X)) Fyy (x71)
_[VFm];ltxn (FSM(XJ;_ ) - [VFut]slt ]Fsu (5™ ,x’; 2) - [VFut]luxnxn h]Fsu(x};_laxrsl_z)
— 6F e (X", X" ) g + VF o (X" Fo (X771
—[VEuJ5E (6x5" @ Fou (7)) = [VFul i Fou (2, 6072)
— [V B (071, X172) = 6F (4, )
which gives
l6d,,| < wr (s, t)z/p(ZwF(s, t)l/p + Cwr (s, t)3/p) + Cwr (s, t)s/p + wr (s, t)3/p + Cwr (s, t)S/p
+ 2wr (s, 1)/ P (2wg (5, 1)'/P + Cwg(s,1)*/P)
= Twr(s, t)3/p + 5Cwr (s, t)s/p < 8wr (s, t)3/p
provided % is such that 5Cwg (s, 7)?/? < 1. This gives that there exists x"*!, ¥+ 14 such that
S = Foy(xh) 4+ Fy (X &1 + 25 0 < €, 8w (s,1)3/7 (35)
so0 C > C,8 will do. Provided 7 is such that wg(s,1)!/? < 1 we also get
161 < wr (s, )P +wr(s,0)2P + Cwr(s,1)*P < 2wp(s,0)V/P 4+ Cwg (s, 1)>/P
which proves the induction hypothesis.

From Arzela-Ascoli we get that there exists a subsequence x* converging in C([0, T]; R9)
to some element x. Clearly we get

sup (lFst(ka) - Fst(xs)l \ ”Fst(xzk) - ]Fst(xs)l) — 0.
St

Since all the terms of (or rather, the one with n replaced by nj) converges, we get that
also x; "R must converge to a limit denoted xit. Then x and x" satisfies and from the
unlform bounds on x"% we see that x indeed is a solution. m]

4 Rough non-linearities

In this section we show how to construct the rough drivers that are used for solving the
McKean-Vlasov equation (4). We start by constructing rough drivers corresponding to 1t6
theory, i.e. given a vector field o and a Brownian motion W, we want to define

t
W (x) = f or(x)dW,, (x,y) f x)Vo,(y)dw,,
S
where the latter integration is in the sense of It6. As the following example demonstrates, it

is not possible to simply integrate a function o~ € C([0, T]; C; (R?;1RY)) to produce a rough
driver.
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Example 4.1. Letd = 1 and o,(x) = sin(rx), then the mapping x — WY (x) is P-a.s. un-
bounded as x — . Indeed, lets = 0 andt = 1 and x = 2zn forn € IN, then {W{, (27n)},eN
is an i.i.d. Gaussian sequence, which P-a.s. diverges.

The above example shows that we need some decay on our vector fields as |x| — co. We
choose to assume that o belongs to a Sobolev space H*(IR?;IR¢) where & is large enough
to use Sobolev embedding to show that W is a rough driver. The reason for this choice is
the relatively simple and well established theory of 1té integration that is available for Hilbert
spaces. We conjecture that this regularity can be significantly lowered (e.g. with decay as
in [3, Corollary 9]) and leave this for future investigation.

Let d,m € N be fixed and let Z € 62 ([0, T],R™), for @ € (1, }). In this section we assume
the following

Assumptions 4.2. Letk e NU{0}, and e € (3, @),
(i) Let (8.8') € 22%([0.T]; H*), as in Section|3
(i) Leto : [0,T] — L(R? H*) be a continuous function, such that

||0'||L°°1; Re;Hk) = SUP ||O't||£ RY;HK) < ©.
1€[0,T)

(i) Let p = a~!, then
[[O-]]p;.ﬂ(]Rd;Hk) < o0,

To simplify the following discussion, we introduce the convenient notation

L= L(0.B,2) := (1 +llolle oy + 1088 )l pe) (14 [Z]a v [Z]é). (36)

4.1 Construction of the rough driver
4.1.1 It6 theory

Let (OO0 F, (F1)sefo,r]> P) be afiltered probability space and let W be a d-dimensional Wiener

process on it. We assume that o satisfies Assumption 4.2 (ii)| for k > 3 + £. We define, for
0<s<t<T,

t
W = f o dW, € ME(HY), W% := W7 - W°, (37)
0

where the integral is defined in the sense of It6 on Hilbert spaces, see [22, Section 2].
Thanks to Burkholder-Davis-Gundy (BDG) inequality for Hilbert spaces, [22, Theorem 2.4.7],
we haveforallp>1and0<s<tr<T,

p
E sup WS, < C; ( f [k r) < Gl o =51 (38)
rels,t

We consider now the time-continuous stochastic process,

(WT@V)o. : [0,T] xQ - L(RY; H* @ H!),
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with Hilbert-Schmidt norm bounded as || (W ®V) Till g(re: o1y < NIWE grllodl £ ra.mt)
forallz € [0, T]. Using again It theory on Hilbert spaces, we have that fot (WIQV)o,dW, €
M2 (H*® H* ') and we set, for 0 < s <1 < T,

!
W¢ :=f (WI V) opdW, — (WS @ V)WY : O — H @ H* !, (39)
N

Applying again BDG inequality and inequality (38), we have forallp > 1and0 < s <t < T,

73
E sup ||W ”Hk@Hk 1= <C (f (E”W ” ) ”0-}’” ]Rd'Hk)dr) < Cp||0-||Loo_£ R?; HF) |l_s|p-
re[s.t] s ’
(40)

Lemma 4.3. Let W be a d-dimensional Wiener process on the filtered probability space
(Q,F, (Fi)efor) P) and let o satisfy Assumption|4.2 (i), with k > 3 + 4. Let W™ and W*

be defined as in and (39), respectively. Then, for every « € (3, %), for P-a.e. w

W7 := (W7, W) € C*([0,T): C;(R%: RY)) x C3%([0, T): C (R x R RY)),

is a rough driver in the sense of Defmmon and for all p > 5 22 , we have

o o 2
”[W ]Q;Cglljfa’) < ”(THL;XJL(]Rd;Hk), ”[W ]ZQ?Ci(]Rdx]Rd)”LZ < HO-HL}X’L(IRd;Hk)' (41)

Moreover, on small time-intervals |t — s| < h < T we have, for @ € (a, %),

[Wo-]a,h,ci = h@_a[Wa]@,cg’ [WO—]Za,h,C}%(]RdX]Rd) < hTe [Wg]za,cg(mdxmd)’ P-a.s.

Proof. We first study the space regularity of W. From the choice of k, Sobolev’s embedding
Theorem [4], Corollary 9.13] and inequalities and (40), we have that

L
E sup [WEIE < E sup WS, < Colloll e 515
re(s,] G re[s,] ’
E sup IV 0 < E sup IWGI s < Al = o
re[s.] re[s,t] ?

By the Kolmogorov continuity theorem we obtain (41).
We check now that Chen'’s relation holds P-a.s.. Indeed, we have the following,

t
ST, — f (We @ V)ordW, = (W V) W2, P-as.

u
To justify the last equality we call A := £(R¢ H* ® H*"!) and we note that (W, ® V) :
Q — L(H* H) is an F,-measurable random variable taking values in the space of linear
operators between two Hilbert spaces. Thanks to the fact that the operator (W9, ® V) is
measurable with respect to the left-most point of the integral, one can easily adapt [22,
Lemma 2.4.1] to show that it commutes with the stochastic integral.

We shall also need contractive estimates w.r.t. the vector field.
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Lemma 4.4. Let o and 6 satisfy Assumption with k > 3+ 4. Let W™ and WY be
rough drivers as constructed in Lemma [4.3 w.r.t. the vector fields o and 6. Then, for all
@€ [a, %) and all p > 15, there exists K,, € LP(Q)), such that for all h < T,

[W? —VVG]OZ’h;C?7 < hd’_aKp(l + ||O'||L;>o£(Rd;Hk) + ||9||L;>o£(]Rd;Hk))|IO'—9||L;>o£(]Rd;Hk), P-a.s.
(42)

Proof. The proof follows as an application of Kolmogorov continuity theorem as in Lemma
4.3 o

4.1.2 Gubinelli integration

Let@ € (5.3), Z € €7([0,T],R™) and let 8 satisfy Assumption 4.2/ (i), for k € N U {0} and
( @). Using Gubinelli’s integration theory (see [15, Chapter 4]) we define, for each
O <s<t<T,

_ f 'pd1, < H- (43)
5
which satisfies (see [15, Theorem 4.10])
125 = BZl = B Z g < C([Z)allB g pronstrt) + [Z)20llB Nl pmomnspay) Ve = 51
and we have,
1Z e < Cll(B. B Iz, a1 [Z] o1t = 517, ”(Zﬁ)gtHHk < CNB.B Mz s Zlalt = sP* - (44)

For € [0,T], we define Z’ := Z, and we consider (Zf@V),Bt € L(R™; H*® H*1), with
Gubinelli derivative

(Z° @ VB, + (B ® V)B, € LIR™™; H* @ H* ).

Consequently we can define the integral f;(Zf ®V)B,dZ, € H* ® H*! via the local expan-
sion

! ..
| f (2 ©V)B,dZ, — (2 ®V)BiZ), - (2 @ VB + (B! © V)B) Z || ey
<C ([Z]a[((zﬁ ® V)B) )0 (R prtemt1) + Z)2a[(Z @ V)B; + (B ® V)IBI]Q;L(R’"XW;H"@H"—l)) = s,
Defining

(45)

st

t
7° = f (Z° @ V)B.dZ, — (28 o V) 2"
we get
1Z5 gt < CNB.BON g (2o + [ZI3)1E = 5.
We have the following lemmas of which we omit the proofs as they follow quite easily from

the discussion above, standard computations on rough integrals, and Sobolev embedding
Theorem [4, Corollary 9.13].
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Lemma 4.5. Leta € (3,3)andZ € €7([0,T],R™). Assume that 3 satisfies Assumptlon.

[0} withk >4+ ¢ anda € (,&). Let 28 and ZF be defined as in (@3) and (@5), respectively.
Then,

7P = (2,7P) € c*([0,T); C}(R%:RY)) x €3%([0, T]; Co(RY x R% RY)),
is a rough driver in the sense of Definition|[3.1] and we have for time intervals of size h < T,

Za)zancs < ONBBNizami Zlon [ Zi)sascioc: < CNBBNG (1 + [Zlas) [Zlan:

Lemma 4 6. Leta € (3.3) andZ € %4 ([0,T],R™). Assume that 8 and y satisfy Assump-

tion withk > 4+ 4 and a € (1, @). Let ZP and Z” be rough drivers constructed as in
Lemma- 4.5, Then, on tlme intervals of sizeh<T,

28 =27, e < COFNBB Nz + 117y )Ilz,a;Hk)II(,B,ﬂ’)—(%7’)Ilz,a;Hk([Z]a,hV[Z]i,h)-
(46)

Let us show that the above definition coincides with the usual definition of solutions of rough
path equations.

Lemma 4.7. Suppose x : [0,T] — R? is a solution of dx, = th(xt) in the sense of Defini-

tion[3.4, Then x also solves the classical rough path equation driven by Z with coefficient j3,
i.e. (x,B(x)) € 22* satisfies the following equation in the sense of Davie [9],

3
Xt = é: + f Br(xr)dzr’
0

where the 3(x) is also controlled by Z with Gubinelli derivative ' (x) + VB(x)B(x).

Proof. Assume x is a solution to the non-linear equation and let us show that it also satisfies
Ox = Bl(xs)Zh + (B (xs) + VBI(xs)BL(x0) 2] + %,
for some remainder 9. By definition of Z# we have
|Z€z(x3) _ﬁi(XS)th _,Bé"i(XS)Zi’,J.| < It — s
Moreover
1223 (x5) VB (x) B (x) Zi) <125 (x) VB (5) 24y + 24 (s VY () 2] = V23, ()25 ()

fl Z’rB(XS)VIB(XS)er - Zf(xs)VB?(xs) (Zﬁ(xs) ﬁ] Z(XS) + Vﬁ] (XS)Bs(xs)) lj

N

_|_

<lt- s|3a'

~

by definition of Z# andf VB(xs5)Z (xs)dZ This shows that Ix )‘citl < |t s]?* which proves
that the solutions coincide. Notice that the above bounds depend on [[(8,8 )lq.z.zx only. O
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4.1.3 Mixed It6 and rough path integration

Let W be a d-dimensional Wiener process on the filtered probability space (€2, ¥, (7'7):6 017> P)-
Leta € (3,3), Z € €7([0,T],R™). Assume that o~ and § satisfy Assumption and
respectively, for k € IN U {0} and « € ( @). Let W7 be defined as in (37) and Zﬁ be
defined as in (43). We define

Fy: =Wl +75. (47)

We remark that the first term on the right hand side of the above equation is random,
whereas the second is deterministic. Define heuristically

! !
Fy := WY +Z° + f (Z8. @ V)or,dW, + f (W2 @ V)B,dZ,. (48)
N

N

The first two terms in the right hand side are defined as in and respectively, we
need to make the last two rigorous. For the third term, using the 1té theory in Hilbert spaces
as we did is Section [4.1.7] we see that the integral

t
f (728 @ V)o,dW, € M2(H" ® H),

N

is well-defined. Indeed, we have (7 ® V)0, € £L(RY; H* @ H*!) for all 0 < r < T. Hence,
we can define

! !

f (Z8. V)0 dW, := f (Z2@V)odW, — (ZX @ V)WT : Q) - H' @ H* !,
s N

Similarly, we have (0, ®V)Zf € L(RY; H*® H*') and /(0 ® V)Z{dW, € M2(H* @ H*").

We define

! t
f(W;’r@)V)ﬁrer = (W;’,®V)Z'f—f(ar®V)ZEdW,:Q—>Hk®Hk‘1.
N

N

Lemma 4.8. Let W be a d-dimensional Wiener process on the filtered probability space
(U F. (Fi)icjor]- P)- Let @ € (3.3) and Z € €7 ([0, T, IR’") Assume that o and j3 satisfy

Assumption (4.2 (i) and (4.2 (i) respectively, with k > 4+ % and a € (%, &). Let F and FF be
defined as in (47)) and (48), respectively. Then, for P-a.e. w

F:= (F,F) e C?([0,T); C;(R%;RY)) x C3*([0, T]; C;(RY x R, RY)),

is a rough driver in the sense of Definition[3.1] Moreover, on time intervals of size h < T we

have that, for all p > 2=, there exists K,, € LF(Q0), such that, P-a.s.,

[Fl, e < (0 V12 Ky L(0, B, Z), (49)
where L is defined in (36).

Proof. It is immediate to verify that the couple (F, F) satisfies Chen’s relation (21). We give
now estimates on the first order term (47). As a consequence of the definition of F and
Lemmal4.5] we have, on an interval of size h < T,

UF o pecallie, < WWT g peallie, + CUCB. Bz, p it [Z] -
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We use now Lemma[4.3|to control the first term in the right hand side.

Now we study the regularity of IF. Using BDG inequality [22, Theorem 2.4.7] and inequality
(44), we have forallp > 1and0 < s<t<T,t—s<h,

!
f (Z8. @ Vo dW,
N

t 2
SCp (f ”(Zlfr®v)0-r||2£(]Rd;Hk®Hkl)dr)
N

a—&—%

L, (H*@H1)
<Collllye p(ra 1ty [ 2] spaelt = s

1

<Cpllrllye e syl (Bo B )z gt [Z vt = 51772

By Kolmogorov continuity theorem we obtain that for every p > 13- there exists K, €
LP(Q)), such that

o .
f (Zfr ® V)O-rdWr " - S KpHO-”L;X?L(]Rd’Hk)||(ﬁ,ﬁl)||Z’Q’Hk [Z]a, P —da.s.
KV Ra;H*QH*~

Similar considerations lead to
. -
f (Wg;@V)ﬁrer — < KPHO-llL;x’.E(]Rd,Hk)||(ﬁ’ﬁ/)”2,a;H"[Z]a/’ P—-a.s.
LV s Ra;H @H"

Putting together the last inequalities, Lemma[4.3]and Lemma4.5]yields

(Filn peeri-t < Koll (BB )z gt (Ll (18,8 Mz spar (1 + [Zlavn) + ol pra )+ (W g ikt

Inequality follows immediately from the Sobolev embedding theorem [4, Corollary 9.13]
. m|

Lemma 4.9. Let W be a d-dimensional Wiener process on the filtered probability space
(U F. (F)icjor]. P)- Let @ € (3.3) and Z € €2([0,T],R™). Assume that o, 6 satisfy As-

sumption (4.2 (ii) and that B, y satisfy Assumption|4.2 (i), with k > 4+ ¢ and « € (1, @). Let

F and G be nonlinear rough drivers constructed from Fy := W¢, + th and Gy := W4 + 77,
as in Lemma

Then, for all p > 13-, there exists K, € Lf(Q)), such that for any time interval of size h < T,

l\a / /
[F - G]a,h;c; < (hv D) KoM (llo = Ol +1108.8") = (s ¥ Mz st ) P-a.s.
(50)

where we set M := L(o,3,Z) + L(6,v,Z) and L is defined as in (36).

Proof. We already have contractive estimates from Lemmas and for the 1t6 and
Gubinelli terms. We look now at the mixed integrals. For every p > 1, we have, for |t — s| <
h<T,

f f
||f (Z€r®V)0'rdWr - f (Z;lr@)V)HrdWrHLsz@HkA
S S

1 !
S” f (Zfr_y ® V)O_rdWr”LZHk®Hk—l + ” f (Zsyr ® V) (O-r - Hr)dWr”Lg)Hk@Hk—]
N N

<Cp [llollge pre )l BoB') = (s ¥ Mz guporat + o = Ollzeo s iyl (7Y Mz |
[Z]plt = 51772

The same estimates is true for the other mixed term. We can conclude by applying Kol-
mogorov continuity theorem. O
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4.2 Integrability of the random rough driver

In this section we are concerned with the study of exponential moments of the random
rough driver. We will use the approach introduced by [6] and described in [15] Chapter 11].

Lemma 4.10. Let () := C([0,T];R™),B(Q)), P) be the canonical Wiener space with
Cameron-Martin space H c (). We define on this space the canonical Wiener process
as Wy(w) = w(t). Leta € (,3) and Z € €&([0,T],R™). Assume that o and B satisfy
Assumption withk > 4 + %’ and a € (%,c—x), and let F be defined as in Lemma Let
p:=a'€(23)andq > 1, suchthat ; + L > 1. Then, there exists C := C(p,q) > 0 and
anull set N c Q, such that, Yw € N¢, ¥[s,t] c [0, T] and Yh € CI7,

[[F]]p,[s,t] (('U) < C[[O-]]p;[s,t] (gsl(w - h) + [[h]] q;[s,t}) )

where, g5 : Q) — R is defined as

8s.t 3:[[F]]p,[s,t] + [[(WU@V)O']]p;[s,t} + [[(O"X’V)WU]]P;[SJ] (51)
+ [[(Zﬁ ® V)o']]p;[s,t} +[(ce V)ZBHP:[M}

Proof. The proof of this result follows very closely the proof of [15, Theorem 11.5]. We
repeat here the important pieces, where the dependence of the stochastic integrals on the
space parameter x has to be taken into account. We look at the first order term of F. By
definition, we have

Fo(w) = Wi () + 25,

For every s,t € [0,T], the term WY is constructed as an L2 H limit, hence there exists a
sequence of partitions (I1,,),en and a null set Ny, such that

Wo(w) = lim | odWy(w) = lim 3 oWy, (0) - Wy(w),  (52)
Hm tienm

for every w € N¢,. We call N; the intersection of N over all dyadic times and we note that it
is still a null set. Similarly, we can construct a null set N, such that the function W7 (w) is of
bounded p-variation for every w € N3. Let w € N{ N N3, we have,

lim ordW,(w+ h) = lim or(x)dW,(w) + lim or(x)dh,. (53)

m—0o0 m-—0oo m-—0o0
Hm Hm 1_[l‘)‘l

The first limit on the right hand side exists because of the choice of the null set that we made
in (52). The last limit is well defined as a Young integral, since o~ and & are of complementary
variation, see [15, Section 4.1]. Hence, also the left hand side of 53| converges and is, by
definition, W9 (w + h).

Hence, we obtain, Yw € N{ N N5, h € C?7**, and for all dyadic times [s, 7] c [0, T,

Fy(w) = Fgy(w—h)+ ft o,dh,. (54)

To generalize to any subset [s,¢] c [0,T], we can use a continuity argument, see [15]
Theorem 11.5].
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We compute now the p-variation in equation and we obtain
[[F]]p,[s,t] (w) <Cp [[O-]]p,[s,z} ([[F]]p,[s,t] (w - h) + [[h]]q,[s,t})'

Proceeding similarly for the second order term IF, we have that there exists a null set N c ()
such that Yw € N¢, Yh € C47"%" and for all times [s,¢] c [0, 7],

!
Fyy() =Fy(w—h) + f (W (1) & V), dh,
1
—{—f(au@V)W‘T w—h)dh, +ff o, ® V) o dhl dh,
N
+((z§.®V) f o-,dhr) - f (Z8. @ Vo rdh, + f (o ®V)ZE.dh,.
0 st 5 s

to obtain the third term on the right hand side, we used stochastic Fubini Theorem as follows

! r 72
f f (040 @ V) dudW, (@ — h) = f (0 ® V)WY (0 — ).

We compute the p-variation for the second order term. Using inequalities of the type Vab <
Va+ Vb, for a,b € R, we obtain, for all w € N,

1
[[]F]];[st] (w) <Cp [[O-]]p,[s,t] (g(w - h) + [[h]]q,[s,t]) )
where g, is defined in (57). This concludes the proof O

For every s,t € [0, T], we define the control wg(s, 1) = [[F]]IIZ (5] and we construct the greedy
partition, following the construction in Section Let N be defined as in (9), for any 8 > 0.
We call N the integer-valued random variable given by

N(w) := Ni(wr, [0, T])(w), (55)

() 1 fy 2
y) = — e Zdx
V27T —00

be the cumulative distribution function of a standard Gaussian random variable and ® =
1 — ®. We include a straightforward Lemma needed to estimate N.

forw e O). Fory >0, let

Lemma 4.11. LetC > 0 and a € R. If Y is a positive random variable such that P(Y > t) <
d(a-+1t/c), forevery t > a, then

EeSY < % + e—csa+czs2/2 Vs> 0.
Proof. We use elementary considerations and Fubini theorem, to obtain
00 esa 00
Ee’Y :f P(e*Y > 1)dr = f P(Y > logt/s)dt —i—f P(Y > logt/s)dt
0 0 esd

Ses“+f ®(a+logt/cs dt:es“+f —f
0 ( ) 0 \/ﬁ a+logt/cs

oc5(x-a)
1 2 1 - 2
—e% +f f % /Zdtdx — % _|_f ecs(x—a)e—x /de
R Jo \2r R V27

AL 22
— % +e csa-+c*s /2'

/2 dxds
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Theorem 4.12. Under the same assumptions of Lemma the random variable N de-
fined in has a Gaussian tail. Moreover, there exists C = C(T, p) > 0, such that C is
bounded when T is small and for all s > 1,

Ee'N < eC(HO']]Z-I-l)L(o',,B,Z)psz
where L is defined in (36).

Proof. The main ingredient, which is still to prove, is that, for P-a.e. w,

Ny (v, [0 7)) () < Clol2 (g0 (@ = 1) + [, jor).

where g is defined as in and C := C(p,q). The proof of this inequality follows from
Lemma in the same way as the proof of [15, Lemma 11.12]. It follows from [15, Propo-
sition 11.2], that we can take ¢ = 1, to obtain

Ni(we, [0.7])(w) < Clol;(gor(w =h) + [A]3).

withe C := C(T, p). By assumption, o, 8 and Z are of finite p-variation. This implies that g
is almost surely finite and we can apply the generalized Fernique Theorem [15, Theorem
11.7] as follows. We set f = N and g = C[[o]}g” defined as in (57). We must now find
a > 0 such that the following set has positive measure,

Ay ={weQ|Clo]hg?(w) < al.

We know from Lemmathat E[gl’]% < CL(0,B,Z). From Chebychev inequality, we have
(where C may change from a term to the next)

[[]]”

P(g" > a(C[o]})™) < ——Eg" < C[[UHPL(UB z)".

Using the previous estimates, we obtain that,
- _ 1
P(A,) =1-P(g’ > a(Cla]h)™) 2 1-P(g” 2 a(Co]h)™") > 1 - ;C[[O']]ﬁL(O',ﬁ,Z)p.
where C = C(T, p) is again allowed to increase in the last inequality. Moreover,

C(T,p) -0, asT — 0. (56)

If we now fix a = (C + 1)[o]pL(c.B,Z)?, we have that P(A,) > 1 -5 > 0. From
Fernique Theorem [15, Theorem 11.7], we have, for r > a,

P(N>r)<®(a+ I”(C[[O']]z)_l),

where a = a—a(C[o]h)~" and & = ®~'(P(A,)). By our choice of a and the monotonicity
of @1, we have that a > ®~!(1 - CLH), which is a universal constant depending only on
(p,T), but can be negative. It follows from thata — o0 as T — 0. We apply Lemma
4.11|that, with s > 1 (chosen so that s < 5?), a and a as before and ¢ = C[[o'[}.

EeN Se(C—H)[[O'HZL(O',,B,Z)I’S + e—C[[o-}]Zs(&—a(C[[O'ﬂp)fl)—l—(C[[a'ﬂp)zsz/Z
< CHDILeBL) s | Clolps’ (-7 (1-c57)+ FH L(e8.2)7) +CloT} /2]
eC([[O'MJrI)L((J',,B,Z)ps2

The constant C is allowed to change again in the last line, but one can easily see that it
remains bounded, when T is small enough. O
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4.3 The average It6 formula

In this section we prove a version of the Ité formula which we need to make the connection
between (3) and (4). We note that at the present level of knowledge, we don’t know how to
make an P-a.s. It6 formula, but we only have the chain rule when we average over Q).

Proposition 4.13. Let (O, 7, (%) e(o,7]> P) @ complete filtered probability space and W be
a d-dimensional Wiener process on it. Let & € (3, 3), Z € €%,([0,T],R™). Assume that o
and j satisfy Assumption for k > % +3anda € (% @). Let F be defined as in Lemma

4.8
Let x(£) be the solution to equation driven by F with initial condition & € IR?, in the
sense of Definition[3.4, given by Proposition[3.13,

Let Z : QO — RY be an Fy-measurable random variable. Then the process x,(E) is (F7):0
adapted. Moreover, x is a random variable with values in C*([0, T]; R?).

Proof. Let t € [0,T] and call F|,, the restriction of F on the interval [0,7]. We know from
Proposition [3.77] that

RYx (C*([0,4]; C3(RGRY)) x C37([0, 1) C5 (R X REGRY))) = RY, (6,F ) = x,
is a continuous mapping. Moreover the random variable (E,F”M) is ¥,-measurable. Hence,
e (B.F),,) () - x(E)w).

is F-measurable.

In a similar way we see that x is a random variable in C%([0, T|;R?), since w — F(w) is
measurable and x is continuous w.r.t. the rough driver. O

Proposition 4.14. Under the same assumptions as Proposition let x, = x,(Z). If
¢ € C; ® H*, endowed with the norm defined in (T6), then

Elo(x)) = E6(E)] + | LBV (0 (30 )or (30) -+ | (V1608 ()12, € B,
where E[V1¢(x,)8,(x,)] € L(R™; H*) is controlled by Z with Gubinelli derivative E[V1¢(x,)(8.(x,) +
V1B (x)Br (%)) + V3 (x,)Br (xr) ® By (%))

Before we proceed with the proof of Proposition [4.14}, we prove two technical lemmas.

Lemma 4.15. Under the same assumptions as Proposition|4.13, let x* be defined in (23).
Foranype N and|t—s| <h < T, we have

E[h ] < C(W v h2)¥ — sPorLr,
where L := L(o,3,Z) is defined in (36).

Proof. Define the random variable Y := C||F||, ;.c3 as in Proposition which gives that
for |t — s|* < Y~! we have |x§l| < Y|t - s]?. Writing Q) = {Jr — s|°Y > 1} U {|t — s|*Y < 1} gives

E[ ] = E[Lypysi b ] + E[mgor<ild P < It = sSPOE[YPIE P + E[Y7)l - s
< |t = sPOE[Y*]V2E[1x! 2]/ 4 E[YP))r - s
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Now trivially by the definition of x*, we have
i < (o + IFllae) It = sI* < CIIFll, ucslt = s, P—a.s.
and the result follows from Lemma |

Lemma 4.16. Under the same assumptions as Proposition[4.13, we have
(E[p(x)]. E[Vi¢(x)B(x)]) € Z;°([0.T]: H"),
with bounds, on a time interval of size h < T,
IE$(x)], EIVi@(B DIzt < LAV h2)* Il cagpge (1 + xaall2),

where L := L(o, B, Z) is defined in (36).

Proof. We do a first order Taylor expansion to obtain

56 (x)sr = [Vi¢] ;"6 = [V1¢]IXWU( D)+ V19120 (x,) + [Vigl ™,
:V1¢(x3)ﬁé(XS) +o(x )st’ P-as.

We have defined

$(x)f, = [(ViglWo (x,) + [Vig) o, + [V16]5° 20 () — Vi (x,)BL(x5)Z],

We first make some deterministic bounds (i.e. uniformly in w)

I[V18]5"Z (x) = V16 (x)BL(x5) ZL, e
<([Vigl s = Vi () ZE, (x5 gk + IV10(x5) ) (ZE (x5) = BL(x5)) ZL,
< NIl g [X]an[ZP) e, It = sI** + ||¢||CZ®Hk[(Zﬁ) Joanlt = s>

< 932Nl s (1 + (o)l = .
Using that x is adapted we get E[V¢(x;) W7 (xs)] = 0 so that

IE([V16]3; W (o)l = NEL[V36)%" 0 W (66) e < Wl KLl z Nl oyl = 5172

<h%—a e
< ||¢||CZ®HI<”[x]a,h”Lg)”(THL;"’L(]Rm;Hk)|t S|

Write now
IE(V1 13 55 i < 1l E 15,
and the result follows from Lemma with p = 1. O
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Proof of Proposition[4.174. We do a third order Taylor expansion to obtain, P-a.s.,

1
69 (x) s =V19(xe)6xs + S ViB(x5) (6x0)” + [Vi]5)" (6x5)°
=V1¢(xs)Wg (x5) + Vig(xs) WG (x5) + VI‘P(XS)Z/;(XS) + V1¢(XS)Z€t(XS)

! /A
F100x) [ 2 (0) oy ()W, 4+ i) [ W) (1),
1 1
3 Vi) (W () + ZV70(x) (¢) % + V30 (xs) (WY (x5) © )
1
+ V36 () (25 (x) @37,) + 5V10(x) (24, () © 24, (xs)

Vi (xs), + (V3] (6x4) 2
1

:E ‘f: V%‘p(xr) (o’r(xr)o-r(x,)T)dr + V1¢(Xs)ﬁ£(xs)zit

+ (V190 (xe) (B2 (x5) + Vil (x)BL(xy)) + Vig(xs) (87 (x5) @ B'(x,))) Z5 + 9(x)5

Where we have defined

!

¢(x)lit =Vig(xs) Wi (x5) + Vig(xs )W (x5) + Vig(x,) f Zfr(XS)VU'r(XS)dWr

N

+V1(x,) f WS (x3) VB, (x5)dZ + 5736(x,) f o (x0)e () T - 3 V0 (W ()
+ % L\I(V%‘l’(xr) - V%‘l’(xs)) (o7 (x5) o (x5) T )dr

+ % ft V%(p(xr)(a'r(xr)o-r(xr)T - O'r(xs)O'r(xs)T)dV

+ V1o (x,) 28 () = Vigp(x,)B () Z],
+ Vl‘?(x‘v)zlsgt(’%) - V1¢(XS) (ﬂfi’i(xs) + Vﬂ{(xs)ﬁi(%))z?zj

19205 (Z(x) 78 (x,)) - V20(x,) (B () ®B (1)) Z

2
1
3 Vi0(6) (x3)% + Vio(x) (W (x) @17
1
+V20(xs) (25 (x5) @ 2,) + = V30 (xs) (25 (%) ® Z5 ()

2
Vi (x) 2, + [V (65,

As in Lemma 4.7l we note that
qub(xS)Z/j,(xs) - V1¢(xs)ﬁ£(xs)Z£, + Vl¢(x5)zft(xs) ~ Vig(xs) (ﬁ{v‘vi(%) + Vﬁi(xs)ﬁg(xs))Zi’Z

is uniformly in w bounded by | — s]** depending only on 3. Moreover, since Z is geometric
and V2¢ is a symmetric bilinear mapping we get

SV0(0) (2 () @76 (1)) ~ V30 (2 )Bxs) @B(x) Z

- %V%d’(%) ((Zlft)ﬁ(xS) ® (Zlft)ﬁ(xS))) + V%d’(XS)(Z'fz)ﬁ(XS) &Bs(xs)Zst)
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where & denotes the symmetric tensor product. This is clearly bounded by |r — s>¢.

Using Lemma4.15/with p = 1 and p = 2 and taking the expectation of ¢(x)§t we obtain the
result. O

To create the contraction mapping in the appropriate space of measures we shall need to
control the difference of two measures induced by two rough SDEs.

Proposition 4.17. Let (O, 7, (%) e(o,7]> P) @ complete filtered probability space and W be

a d-dimensional Wiener process on it. Leta € (3.3), Z € €%,([0,T],R™). Assume that

(0.8) and (6,y) satisfy Assumption[4.3, fork > 4 +3, a € (}.a@) and p = L. LetF and

G be nonlinear rough drivers constructed from Fy := W¢, + th and Gy := W? + 77 asin
Lemma Moreover, let = be an ¥y-measurable random variable.

Let x and y solutions to equation driven by F and G respectively, with the same initial
condition E.

If ¢ € C} ® H¥, endowed with the norm defined in (T6), we have
(E[¢(x) =60 E[V14(x)B(x) = Vio(y)y(y)]) € Z7*([0. T]; HY).

Moreover, there exists p > 1 and C(T) such that limy_,o C(T) = 0, and

I(E[P(x) = o). E[Vi¢(x)B(x)]) = (E[$ ()], E[V1# )y () Dllzacrat
< C(T)e™ Igllcrgpn (10 = Blls imesy + 1B B) = (127 izaar) -

where M := K([[a]]'; s T 1)(L(o,B,Z)+ L(6,y,Z)), L is defined in andK = K(a,p) >
0 is a universal constant.

Before proceeding with the proof, we need the next two technical lemmas.

Lemma 4.18. Under the same assumptions of Proposition[4.17, for any p > 1, there exists
p=p,CandC(T) > 0, such that limy_,o C(T) = 0 and

1lx = Yalle < C(T)e™” (1l =Bl piragay +1B-B) = (7Y Mzt -

Proof. By applying Corollary [3.12] and (49), we see that there exists p > 1 and K €
LP(Q) such that P-a.s.,

Q=

[x=V]a SceCN(WF’[O’TD[F ~Glo(1 + [Flo + [G]a)z(([F]a + [Gla) V ([Fla + [Gla)
SCeCN(WF’[O’T])T&_aKpM’D(”U' - 9”L;’°H’< + ”(ﬁ’ﬁ,) - (’)’, 7’,)||Z,a;Hk)'

)

Taking the LY, norm on both sides we conclude the proof, thanks to Theorem 4.12] which
gives
EeCNwE.[0.T]) < eC([[O'ﬂZ+1)L(0',ﬁ,Z)p’

where C > 0 is a universal constant. O

Lemma 4.19. Under the same assumptions of Proposition[4.17, for any p > 1, there exists
p>pandC(T) >0, such thatlimy_oC(T) = 0 and, for all s,t € [0,T],

e, = il < C(T)eM (10 = Oll o rqm ey + 1B.8") = (727 Vigerat It = 512
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Proof. Let Y := C([F]a + [G]o) (1 + [Fls + [G]a)? where C is the constant given in Propo-
sition Then, |t — s|*Y < 1 implies,

|x§t — yﬁtl <l|t— slz‘yYeCN(WF’[O’TD [F -G,

and we notice that E[Y*] < MP(T? v T'7)® for some p > p > 1 which follows from Lemma
and the Gaussian integrability of N(wg, [0, T]), Theorem [4.12]

We split up Q) = {|t —s|?Y < 1} U {|t — s|*Y > 1} which gives
E[lxf, —yh ) < 1t = sPPE[YPI, — 8 P + 1t - P E[yre N 0T R - G ).
For the first term above we use the crude (in time) bound

i V)< = Yanlt = S + [Flasls — ysllt = sI* + [F = Glault — s°
< C(T)yeNeDIDF - G,

The result follows from Corollary [3.12] and Theorem4.12 o

Proof of Proposition[4.17, We write
B(0)} = 60)5 = (Tl W () = V19l Wa (o) + (V1937 - [(Valinh, (87)
+ (V191525 (x5) = Vid(x)BI(x) 2, = (V19,23 (vs) + V19 (75 ¥i(35) Z3,

We start from the first term on the right hand side of (57),
L,
[V1¢]l§stoz-(XS) - [V1¢]styWs0t()’S)
:[V%QS]?;xéxs,Wg(xs) - [V%‘ﬁ]?;y‘syStht()’s) + Vi (x5) Wi (x5) — V1¢()’S)Wft()’S)
:([V%‘p]ix - [V%gb]?}y)éxs,wg(xs) + [V%‘/’]?;y (6t = ysr) Wy (x5)
2, 2,
+ [VI0L vsr (Wi () = Wi () + (V3015 60 (WE () = W (vs)).

We have, as an application of Hélder inequality, for0 < s <t < T,
IE([VI6T5" = [Vl )oxaWe () e < Wl EDx = Yl 16xal IWS; ()]

< ”¢”C2®Hk”x - y”Lg)L;x’||6xst||Li”Wgt-(xs)”L§)

2
< C(T)llcgpelh = Mz N XJals e sy I = 52

where, in the last inequality we used Lemma [4.3] Similarly, using Lemma [4.3]and [4.4] we
can bound the remaining terms,

IE[[V315 (55 = Gyt Wep (x5) ]l <C (Tl cglllx = Ylallgz ol pimaszatlr = 5P,
IE[[V3g]5 0y Wy (x5) = Wit ()]l <C (T¢llcaopellYellz (1 + ol pora;my + W61l pwa;mam))
o = Olles pma gyt = s
VELV30]3 67 (W (x5) = W ()i <C(T) el = Mz ol ¥l ol e ey = 5P
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Summing up the previous inequalities, we get

”E[[V1¢]1 xWa—( ) [Vl‘ﬁ]lz’ngt())s)]”[{k SMC(T)”¢”CZ®HI<|I - S|2[l(1 + ”[x]a'”Li + ”[)’]allLﬁ))
(ke =¥l oo A+ 10 = Yall2 + llor = Oll = p(raszaey) -
The second term in is bounded as follows using Lemmas and 4.15,

VELV 10155, = 910155 e < Wllcganm Iz e = vl o+ b, =l |
<C(T)Bllcagpe™ (I =ll2 1 + o= Bl gty + 18, 8) = (7 M) 1 = 52

The third term in is

(V1614 Z0(x5) = Vi(,)BL(x,) 22, = [V10] 37 20 (v5) + Vi (vs) Vi (v) 23,

= (V3015 xaZy(x5) = V3015 0902 () + Vi (x:) (Z5)F (x5) = Vios(vs) (Z)H(vs)

= ([V3g]%" = V3915 )oxaZe (x,) + [V%qﬁ]?;y (6x5r = 8y51)Zy(x5) + [VI6] 5 6y0(Z5 (x5) = Z2(s))

+ (V315 0y (20 (vs) = Z(35)) + Vig(x:) (Z0) () = Vig(vs) (Z1) (). (58)

We estimate the first term in the right hand side using Lemma[4.5],
IE[([Vi0)5" = V761578028 () e < Mllesgpaelle = Mg s 16l 125 (el
< C(T)llc3gpellx = Mz g lllxall 4 1108 8lz st (2] ale = s>
Similarly, using Lemma and
IE([V36157 (635 = 651)Zy (x5) Mg <C(DMtlcagpnllx = Va2 18,8z a2k = o1

IEIVI815 0vsr (26 (x5) = Za ()l <C(D) Il gl Dl lx = Iz 1188z qerat [ 2]l = 5,

IE[VT6]5 0v5t(Z () = Z5 ) e <MC(T) il gl Dy (108.8) = (7Y iz ezt ) 2]l = 5P

We estimate the last term in using equation and Lemma4.6]

IEV 16 (xs) (Z3)* (x5) = V16 (5) (Z1)F (v5) gk < CMIl 3 € (T) 2]
(ke =Vllz2 o0 +10B.B) = (¥ Wiz qopae ) 1t = I

Thus, there exists p > 1 (which may increase from a line to the next) such that the remainder
satisfies, for all 5,7 € [0, T,

||E[¢(x>gz_¢(y)§t]”Hk < MpC(T)||¢||C2®Hk|t_ Slza(l + “[x](l”Lf) + ||[y]a||Li)
(ke =Yl oo+ 1x = ¥lallz + o = Ol prasery +18:8) = (77 Mz asmt)
<MPC (Tl c3gpaelt = 5P (Ix = Yallgz, + llor = Bl pigaseny +1B.B) = (.Y )iz aerat) -

In the last inequality we used Lemma combined with Lemma and also ||xll > <
T%[x]q + |xol. We check now the Gubinelli derivative, for each j we have

S(Vig(x)B/ (x))s =6 (V1¢(y))7_j(y))sr = [Vig)sioxaBl (x;) — [Vl 8vsry) (1)
+ V16 (xs)BL (x) = Vid ()L (vs) + Vi (x5)8 (8L (x.)) s = Vid () (v (3.) ) -
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Similarly as for the remainder, we obtain the following,

IE[6(V1¢(x)B (x)) 5t = 5((T16 (1) () st
< MPC(T) Bl gzl = 51 (I1x = Yallz + 1l =l siwesty + 1BB) = (7Y M) -

We conclude by using Lemma4.18|to estimate |||x — y|qll,2 . O
2

5 Linear Rough PDE

Let d,m € N be fixed and let Z € €2([0,T],R™), for @ € (3.3). Let o and g satisfy
Assumptions for k large enough. In this section we prove well-posedness of measure-
valued solutions to linear rough partial differential equations, which are formally given as

1 .
Oyv; = ETrVZ(O'tO',Tvt) —div(B,Zv,), vy € P(RY). (59)

To rigorously define the meaning of a solution to equation (59), we take a slightly more
general approach, as described below.

Assumptions 5.1. Letn € N and @ € (3, @).
(i) Leta: [0,T] —» C""3(R%; R¥) be a measurable path such that '’ (x)&&/ > 0 for all
x,é e R andte0,T].

(i) LetX € £2([0,T]; C; P> (IR?; R?)) be a geometric rough path, as described in Section
2

The examples we have in mind are a = %me and X = fﬁ,er, as described in Propo-
sition In order to describe the main ideas, we argue now on a formal level assuming
smoothness in time of X; rigorous definitions in the rough path case will be given later in
the section. We study uniqueness of solutions to the following linear equation

atvt = Ter(atVt) + diV(X[V[), Vo € P(Rd) (60)

The proof is based on a backward duality trick; suppose we can show existence of a suffi-
ciently regular solution to the backward PDE

aﬂ/tt + Tr(a,Vzut) — XtVu;, (61)
for a given final condition ur, then at least formally we have
8[V[(1/l[) = (Ter(a,V,)(ut) - V[(Tr(atvzut)) + diV(XtVt)(l/l[) + VI(X[VM[) = O, (62)

which shows that vz (ur) = vo(uo). Now, if ur is chosen in a class of functions large enough
to fully determine vy, we see that it will be fully determined by vo and ug, thus showing
uniqueness.

For simplicity only, we write equation on divergence form and as a forward equation as
follows
0;u; = diV(atVu;) —+ X[VU[, uo giVen, (63)
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which can be seen to be equivalent to by replacing X; by (fot Va,dr,X;) in and then
reversing time, i.e. u; — ur_;.

The strategy to prove existence of a smooth solution to is as follows. We first show
how to give an intrinsic notion of solution of and in the context of the so-called
unbounded rough drivers, see [2]. We then replace X by smooth vector fields, in which
case it is well know that there exists a unique solution of which is smooth provided the
coefficients are. We then consider the vector of derivatives f = (u, Vu, ..., V"u) and show
that f satisfies a vector valued equation, for which we can find bounds independent of X.
The equation for f will be solved in the space L?(IR%;R"), thus giving bounds on « in the
Sobolev-space H"(IRY).

Second, we approximate X by a sequence of smooth vector fields and show that the cor-
responding sequence of solutions converge to a meaningful solution of (63). Since the so-
lution is in H"(IRY) we can use Sobolev embedding [4, Corollary 9.13] to show the needed
spatial regularity to justify the computations in (62).

The techniques used to prove the first step are motivated by [2] and [11], and the main
technical tool is the a priori estimate found in [11].

5.1 Unbounded rough drivers

We start by rephrasing in terms of so called unbounded rough drivers. The main moti-
vation for doing so is the a priori estimate from [11].

Assume that X is a smooth path, then equation is well defined as a PDE. Integrating
from s to ¢ we obtain

3 1
Sug = f div(a,Vu,)dr + f X, Vu,dr.
N N
Iterating the equation into itself we obtain
!
Sy = f div(a,Vu,)dr + B;tus + B%,us + uil (64)

where at least formally,

) r ro
By = X)0;6.  Byg= f X/, f X} 0pdudr (65)
N )

r roo T
uit:fXﬁajf X’T@-f Xé@lugdedm’r
N N N
r r ro ro., T
+in8jf diV(aTVuT)dTa’r—i—fXﬁ(?jf X;Gif div(agVug)dodzdr.
s N N N N

By the usual power counting the remainder term 1% should be regular in time, but we notice
that in general it is a distribution in space. Following [2] we call a scale of spaces a quadruple
(E")f’l:0 of Banach spaces such that E"™! is continuously embedded into E". Let E™ be
the topological dual of E” (in general, E-% # EO).

and
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Definition 5.2. An unbounded a-rough driver on the scale (E"),, is a pair B = (B', B?) of
mappings on E™ such that

IBg Il pn o1y S M= | for =2 <n <3, |Byllpgn g2y S lt—sP* for 0<n<2, (66)
and Chen'’s relation is satisfied,

B!

\)

., =0, 6B, =B!B! Vs<r<t (67)

srt T sre

We shall write ||B||, for the smallest constant dominating the bounds in (66).

We show how to construct an unbounded rough driver given a rough path.

Proposition 5.3. Let N € N and X satisfy Assumption Define for ¢ € C*(RY; RV)
Byp(x) = X},(x)0;0(x),  Byg(x) = (ViXe) (x,%)9;0(x) + X5/ (x, x)9:00(x)

where V§ : C;(R?Y x R; RP) — CHR? xR R?) is the linear extension of the map
defined on the algebraic tensor as

VE(f®g)(x,y) = &' (»)dif!(x). (68)

Then B := (B!, B?) is an unbounded rough driver on both scales E, := W™ (R%;RN),
p>1,andE, := CZ(]Rd; RY). Moreover, the mapping X +— B is continuous in the operator
norm.

Proof. Let 0 < s < 6 < t. By Chen’s relation for rough paths (10), and

S| (VEX)! (x,x)0;0(x)| = V5 (X5 ® Xar) (x. x)3;00(x) = X}, (x)0:Xy(x)06b(x)

s0r

which gives
5B (x) = X5, (x)0:X1,(x)8 6 (x) + Xy (x)X] ()80 (x) = X, ()X, (%) 68(x)].

Continuity of the mapping follows immediately from the continuity of V¥. O

We notice that there is no zero order term in the above unbounded rough driver. We include
such a term by considering a rough path X € #*([0,7]; C; (R4 R'*9)), i.e. with an
additional spatial variable. Then, for ¢ € C*(RY; R") let

By (x) = X[, (x)96(x) + Xyo(x)

B3¢(x) = (V§Xy)! (x,x)0,6(x) + X5/ (x,x)9:0¢(x)
+ X900 (2, x)$(x) + X5 (20, 2)06(x) + (VEX 1) (2, ) (),

where we make the convention that summation over repeated indexes are over 1 < j < d,
i.e. excluding 0.

With this in hand we can define the notion of a solution of (60).
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Definition 5.4. A path v : [0,T] — M(R?) c (C,(R%))* is a solution to if for all
¢ € C;(IR?) the mapping defined by

(@) 1= 00 (@)~ [ vl ¥ ))dr =, (BL) - (B 9

satisfies |v§,(¢)| <t - s|3a”¢”C2' Above B = (B!, B?) is the unbounded rough driver con-
structed from X as in Proposition[5.3,

We see now that, in the special case when a = %o-aT and X = fﬁ,dZ,, existence of

solutions follows from the results of Sections[3 and

Proposition 5.5. Let p > 2 and let (Q),F, (%) ej0.1)- P) be a probability space that sup-
ports a d-dimensional Brownian motion W and an ¥y-measurable random variable, = €
L (Q:;RY) such that the push-forward measure P.(E) = v. LetZ € €7, ([0,T];R™) be a
a weakly geometric rough path. Under Assumption (4.2, we have

(i) B, generated by the rough path f BrdZ, asin Proposition is an unbounded rough
driver as in Definition[5.2.

(i) There exists a solution v of driven by B, in the sense of Definition This so-
lution is given by v, = L(x;), where, for P-a.e. w € Q, x(w) is the unique solution
to equation (20) with initial condition E(w), driven by the random rough driver F con-
structed in Lemma

Proof. From Sobolev embedding theorem [4, Corollary 9.13] , we have 8 € Z;%([0,T]; C; (R*;RY)).

Thus, using the construction (TT), we have that [ S,dZ, is a rough path over C; (RY;IR).
The first claim follows now by Proposition

We prove now the second claim. It follows from Proposition that the stochastic process
(x1)ejo,7] is adapted. We can thus define v := L(x) and denote by v the induced time-
marginals. From 1t&’s formula, Proposition 4.14] we get

B ll ) T 73
(@) = (@) + [ ST omalar+ [ vi(Vop)dz,

The proof is complete once we show that fot vr(VéB,)dZ, has an expansion in terms of the
unbounded rough driver. Recall that we get from Lemma|4.15, we have

(v(VeR). v(V*¢(B®B) + Vo(VBB + ') € Z;*([0,T]: H)

and this gives, using the sewing lemma/[2.1],

f V(8B )dZ, — v, (VaBI)Z!, - v, (V24Bl @ B + Vo(VBLB: + p1) 2

3
< Illsle = 5P

Regrouping the terms we can write

f ve(8B)dZr — v(BIVOZL, + BUVOZ]) - v, (BIV B,V ) ZY))

3
< Illsle = 5.
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By definition of B! we get
1By¢ ~ BIVOZ), ~ BLVIZ]lic, < Idlleylr = 51,

which gives

vi(BIVSZ, + BIVOZ]) ~vi(BYo)| < Ilyle = .
Moreover
1BY¢—BN BV Z,]llc, < ||B5VBioZ, + B VBOZ] + BV (BV)Zs]
- (BIVZ), + BVZ)) Bl - BV (BVH) Z] |, + Idllcale - s>
= liglcalr = 51>

This shows that we may rewrite the equation for v as

!
5rul0) = [ 3(T5(V00,0T))dr + v, (BLo + Bod) + V4,0

where v¥ € C3%((0, T]; (C; (IRY))*) is a remainder. O

5.2 A priori estimates for smooth vector fields

For this section we consider an approximation of equation (64), driven by a smooth (in time)
driver,
A = div(aVu) + XVu (70)

where X is smooth. We will find bounds on u in H"(IR?) depending only on a canonical
unbounded rough driver generated by X. The first step towards this goal is to write « and all
the derivatives as a vector in an L? space.

Let u denote the (smooth) solution of and let f = (u, Vu, ..., V"u) denote the vector of
gradients as taking values in the truncated tensor algebra 7" (R¢) = EBZ:O(]R")‘@‘I. We
will simply write gv for the 1-contractive product

(]Rd)®q % (]Rd)®r N (]Rd)@)(q—i—r—Z)’

e.g. for a g € (RY)®2 and v € IR? the product gv has component i given by g;v;.

Using Leibniz formula we have

q q-1
V9(XVu) = Z (q) vaixyitly, — Z (q) va-ix U 4 xv @) = xv ) 4 M)(.;I)f
=0\ =0\
where M}(.(q) : T (RY) - (R?)®4 is given by
@ n q-1 q
N e i
M (G%ym) _ Z;)(j)vq i yUD),
j= j=

We notice that the above sum is in (IRY)®? since we are doing a contractive product of
(Rd)®(q—j+l) and (]Rd)cb(jﬂ)_
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For each g we have
8 f\9) = V4 div(aVue) + VI(XVu) = div(aV @) + V(M ) + (XVFD + M0 p)
= div(aVf @) + MY+ MOV + (X979 + M),

This gives that f satisfies the 7(") (IR¢)-valued equation

Of = div(aVf) + VVf+Yf (71)
where we have set
V=P +x).  ¥=Pwl+u?). (72)
q=0 q=0

Remark 5.6. We notice that if we replace X above by X¢ where X¢ converges to a rough
path X, then the corresponding coefficients V¢, Y¢ have canonical rough path lifts, V¢ and
Y€, with values in Cg which remain bounded uniformly in €. This comes from the fact that
there are canonical iterated integrals between the Cz-valued paths t — fo' ay(x)dr and
t - X(x),

[ xowatir, [ anoix)

where the first term is simply the Riemann-integral and the second term is defined using
integration by parts as before.

Given the previous construction, we consider now a system of equations. We remark that
this is not just a vector valued version of the results found in [18], since we are not interested
in energy estimates. Indeed, the matrix a is allowed to be degenerate but we require spatial
smoothness. We consider the equation

0.f = div(aVf) + VVFf+ YT, (73)

for given functions a and V, Y smooth in time, and a given initial condition f;. The solution
is a vector valued function £ : [0, T] x R¢ — R", and the coefficients are on the form

Y:[0,T]xR? > RVeRY, V:[0,T]xR? - £(RY®R;R"),
a:[0,T]xR? - RY®RY.
We will assume that a is diagonal in (73), so component / reads

Ouf' = 0i(a0;f") + VoM + Y, 1 <IN, (74)

We begin with our main a priori estimate.

Proposition 5.7. Assume f is a solution of (73). Then there exists a constantC = C(a, B', B?)
such that
sup (Il 2rery) < Clfollizray 16 fstlly-1 ey < Cle = 51 (75)
1€[0,T]
where (B', B?) is an unbounded rough driver depending only on the rough path lift of the
path (V,Y).
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Proof. The finite-dimensional tensor (f®%)"! := f" f! then satisfies

8,(f2) =2f&®0,f =2f& div(aVf) + 2fQ@VVf+2f&Yf
=27 & div(aVf) + VY2 4+ V2

where
V:=2[deV:=1deV + Veld, Y :=2[d®Y :=1d®Y + Y ®1d,
both belongs to the space £L(R" @ RV; RY ® R"). Define now the unbounded rough driver
! . . t . . o, .
B = f V.V + Vepdr, B¢ = f V.V +7,] f VoV + Yopdodr — (76)
s N N
and the drift .
() = - f 2(av ", V) = (f'f Y (aVet))dr
N

for functions ¢ : RY — RY @ RV. This gives the dynamics

®2.4
st

2,1 2,2
Sfi? = omS + BG A7 + B+

on the scale (W"*(R%; RY @ RV)),. Let p € W?*(RY; RN @ RV) and write

!
jomS ()] < llgllyre f 21V aV I+ lallyrs A1 dr,

N

which shows that m®? has bounded variation in (W?*(R%; RN @ RV)*).

Now, by the a priori bounds, [11, Theorem 2.9], we get

A
12 sy < € (nfnzw(s,t;m'f =Pt [+ el "izdr)'

N

where C depends on IIB®2||,,. Testing f‘g’2 against the N x N identity matrix Iyxy and using
that a is positive semi-definite we get

SUIFIR,) st = 6mE2 (Insw) + fE2(BEX" Insn + BZ " Insy) + fo (Inscw)

!
<-2 f (V™) aV £l adr + £ 1Bl = sI + 1f 2B el = P + 1ol (e
S
!
<=2 [N @V sy + CUF e = 8
S
!
U=t [ 2T QTS s -+ el
S

Note that [|(V))TaVf il < NI(Vf")TaVf . Indeed, write a = oo and use the
Cauchy-Schwarz inequality

(V) av " = %(O-TVfl)T(O'TVf”) < %IO'TVflllo-TVf"I.
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Summing over [ and n gives that the above is bounded by %fozl loTV £*2. Integrating
w.r.t. x we get the claim.

If we choose s, ¢ such that CNJt — 5|* < 1 we get

S(IAI72)st < ClAUGew gy (11 = 517+ llallyrs (£ = 5) ).

From the rough Gronwall lemma, [11], Lemma 2.11], the first bound of holds.

For the second inequality we notice that the evolution of f on W™?(IR?; IR") reads
Sfst = Omy + BLfs + BLfs+ £ (77)

where m; = fol div(a,Vf,)dr and we have defined the unbounded rough driver
t . . t . o r . .
B¢ = f V,Vé + Y,¢dr,  BLo = f [V,V-+Y,] f VoV + Yepdodr  (78)
N N N

Since the operator is self-adjoint it is easy to bound the variation of m in H2;
6 ()] < (8 = ) fllzo ([, 9:2) Nlallwrllgll 2 < (2= $)Clifoll 2llallyr.o @l 2
This gives, using [11, Theorem 2.9],
1f il < Cle = 5P foll 2. (79)

where C depends on ||Bl|, and |lally1.. Take now a mollifier ¢, and decompose ¢ = ¥, *
¢+ (I —yy) * ¢ for any n > 0 and any test function ¢ € H' (RY;RY). This gives

(6 fses (T =) % D) S Mfllpoo (5.0:2) 1T = ) = @li2 S M foll 21l g,
and for the smooth part ¥, * ¢ we use the equation to get

(8 st Uy % 0)1 < (2 = )l foll 2llallyrss Wy = Bl + IBllallfoll 21l = Sllg + Bl foll 211w * ll 2
+ [t = sPYCllfoll 2y * @l
< foll2Cl (= )+ 1= 51"+l = 5P + 1 = 5P|l

Choosing n = |t — 5| we get the second inequality in (75). m|

5.3 Existence of a smooth solution

With the previous a priori estimates at hand, we are ready to prove existence of a solution.

Theorem 5.8. Let Assumption hold forn > 6 + %’ and let ug € C°(RY) be given. Then
there exists a solution to which belongs to C and

3
Sug = f div(a,Vu,)dr + Bl us + B2us + uil (80)
N

holds in C; in the sense that u% € C3%([0,T]);C;(RY)), where B = (B',B?) is the un-
bounded rough driver constructed from X as in Proposition|[5.3
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Proof. Denote by u€ the solution of when X is replaced by X¢, which we write

! 73
ous, = [ div(aVuydr + X5 Vu + [ XV Vi) + 1)
N

N

Setting /€ = (u5,...,V"uc) and choosing N large (in fact N = 1 +d + --- 4+ d") we see
that is on the form where V€ and Y€ are defined from X¢ using (72). We then
build the unbounded rough driver B®? and B€ from V€ and Y€ according to and
respectively.

By the assumptions on a, X and ug we get

n

sup llufllz = sup > IVAIR, ay = sup £ < C sup fol?
€or] " te[O,T],;) H2(RY) o] RS 7 (R?)) cor] RET() (RY))

for some constant C. For ¢ € H"t!, define ® € L2(R%; T (R%)) by & = (¢, V¢, ..., V")
and notice

n

(6us;, ) 1 Z(dvk o V0) 2 (ra) = (65, @ ) 12 (Re;70) (R
k=0

<Clt- s|“||CI)||H1(Rd;T(n) (R4)) <Clt- S|a||¢||[-1n+l(][{d)
Since H"*! and H""! are dual w.r.t. to the inner product on H", we get ||6u|lgu-1 (Ra) <
C|t — s|*. By similar reasoning we get ||u§,||Hn_3(]Rd) < CJt — s> using (79).

Since u€ lies in a bounded set of C*([0,T]; H"~'(R)) n C([0,T]; H*(R?)), by Arzela-
Ascoli there exists a subsequence u* := u® converging in C([0,T]; H"(IRY)) some ele-
ment u. Here H" (IR?) denotes H"(IR?) equipped with the weak topology. Choosing now
n>6+ %’ and using Sobolev embedding [4, Corollary 9.13] we get that u<! is bounded in
C32([0,7]; C3(RY)) and u € C([0, T]; CS(RY)).

It is straightforward to take the limit in and use the uniform bounds on u“% to obtain

(80). O

5.4 Uniqueness
Theorem 5.9. Let Assumption hold for n > 6 + 4. Then solutions of are unique.

Proof. Let v be a solution to (60), i.e. for all ¢ € Cg we have

5Vst(¢) = f Vr(Tr(arV2¢))d”_ VS(BAI"t(p) + VS(B?zQS) + Vl?vt(d))

where ¥4 € C37([0,T]; (C3(R?))*) and B = (B', B?) is the unbounded rough driver con-
structed from X. Let u be the solution of the backward equation with final condition
¥ € C*(RY) so that

1
Sug = — f Tr(a,VZu,)dr + Bl us + B2us + ui,

N
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holds in Cz. We then have

"
ov(u)se = v (ug) + vs(Sug) + vy (Sus) = f v,(Tr[aerus])dr +vs(- Stu; + B ,uy]) + Vit( 5)
N

¢
—f vs(Tr[arvzur])dr+Vs(Bltus) + v (B2uy) —i—vs(uit)
S
+ VA () + v (Bhay) = vi(Bladh,) = vy (BYBlyus)
¢ ¢
:f&vS,(Tr[a,VZM,])dr— v,(Tr[a,&Vzusr])dr
S
8 () 4 v (uh) + 9 () + 4 (BLauy) — vs(BLut) (82)
AN S\ "st st\ " st st s s st*st

where we have defined

# . Lx f . 1
Vy = 0vyg + B vy, ug, = Oug — Bug

st T

and we have used that the path is geometric which gives v(B.,BLus) = vs(B2uy). Using

i i 2a . 3 d\\* i 2a 3 d
the equations for u and v we get v* € C3*([0,T; (C;(R“))*) and u* € C5%([0, T]; C; (R?)).
Using this and analyzing every term in we see that

16v(u) gl < 1t = 5%, = vi(u;) = const.
and in particular vy (¥) = vo(ug). If v is any other solution with the same initial condition,

the same analysis gives v7(¥) = vo(up) which gives that vy (¢) = vr(¢). Since y was
arbitrary the result follows. O

6 The McKean-Vlasov equation

Letd,m € IN be fixed. Let (Q), 7, (F7)e[0.r), P) be a complete filtered probability space and

W be a d-dimensional Wiener process on it. Let 2 : Q) — R? be an Fy-measurable random
variable. Let Z € €7([0,T],R™), for & € (1, 1). Moreover let @ € (},a@) and p = 1

In this section we prove well-posedness of the equation
d.xt = O'(.[:(x,),x,)dW, +,8(.£(x,),x,)dZ,, X0 = E S Rd (83)
We start by defining the notion of solution we shall use.

Definition 6.1. Letp > 1 and @ € (3, %]. We say that an (F;)»0-adapted stochastic process
x: Q% [0,T] - R? is a solution to equation (83) with initial condition E € L (Q, Fo; RY), if

(i) e := L(x;) is such that

(1(B). 1(VBu(B))) € 25 (0.T]; H).

and F+ defined from o-(1) and B(u) as in Lemmal4.8|is a rough driver in the sense of
Definition (3.1).
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(i) P-almost surely, x satisfies

I
[11

dx; = th(xt), X0

in the sense of Definition[3.4.

Before proceeding we state the assumptions that will be in force throughout the section.

Assumptions 6.2. Letk > 4 +3 andp > 1,
(i) We assume B € L(R™,C; ® HX).

(i) Let o : P,(RY) — L(RY H*) be a measurable function, such that there exists a
constant C, > 0, with

llor (1) = e graspaty < CoWo(ps,v), Mo (u)ll ety < o Vi1, v € Pp(RY).

We now introduce a suitable space of measures in which will be useful for proving well-
posedness of (83). The set up is reminiscent of the controlled space as introduced in [17],
but tailored for measures on path spaces.

Definition 6.3. Letp > 1. We say that a pair (1, ) € P,(C§ ([0, T];RY)) x C*([0, T]; L(R™; C} (R4 RY))
is controlled by Z provided for every ¢ € Ci ® H* we have that

(u(¢), u(Vigy)) € 2570, T); HY).

Here we used the notation

w()i= | o(wr,-)du(w), ﬂ(V1¢7){=f Vi (wr, ) y] (wr)du(w).
Cca @

For p > 1, we denote by Mé“’p the set of all such controlled pairs equipped with the metric

d((1.7), (v, 0)) = Wy, v) + y=dacs+  sup (@) =v(8), 1(Vigy) =v(Vi60))llz ot

<
161l c3g7t<!

Remark 6.4. We note that in Definition [6.1] (i) the law, u, = L(x;), of the solution is only
defined for the time-marginals, and a priori it is not clear how to construct from this a mea-
sure on the path space C{ ([0, T];IR?). However, since x satisfies the equation in Definition
x is a random variable in C*([0, T];RY), and letting h — 0 in and we see
that x takes values in C ([0, T];R?). Hence it induces the measure L(x) on C3([0, T];RY)
which clearly has time-marginals ;.

Remark 6.5. Let 8 and o satisfy Assumpt/on wn‘h k> 4+3, and Iet ,u y) € Mzap

Then, o(1) and u(B),u(V1By) satisfy Assumption 4.2 Assumptlon is verlfled by
' -

replacing ¢ = ', fori = 1,...,m, in Defmltlon Assumptlon follows trivially
by the boundedness in Assumptlon | We are only left with verlfymg- )} For all
s,t €[0,T],

1
llo~ () = ()l LRy < Cor Wi (o pis) < € [f jwr = wsFdu( )} SCa(fa[w]ﬁdﬂ(w)] =51
0

(84)
This gives that - € C*H* c CP™ HY ifp = 1
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Theorem 6.6. Suppose o and 8 satisfies Assumption[6.4and p > 2. For any Eg € L (Q, Fo; RY)
there exists a unique solution x of in the sense of Definition[6.1]

Proof. We fix o, 8 satisfying Assumptions [6.2]and construct the following mappings

M o o[0T x (0T HY) — 60 M
(wy) = (o (w), (B(u),B(1)")) b P e (L(0).8).

and we shall use the notation T'(u,y) := (£L(x),8(u)). By letting &~ — 0 in (25) and
we see that £(x) is supported on C([0,7];R¢). In Lemma|6.7]and Lemma 6.8 we show

that I' is a contraction mapping on a subset of /\/@“’p for a small time parameter Ty < T.
Then, noting that Ty = Ty(p,a,0,B,Z) does not depend on the initial condition Eo, the
solution can be constructed iteratively on the full time interval [0, T'] by concatenation of the
solutions defined on [0, Ty, [To,2T0)] etc. o

(85)

Lemma 6.7. Define
— — 1
L=L(@.5.2) i= 1+ Co+ Wllcgem ) (1 + [Zla v [2]3), (86)

2a,0
Z ]

and the closed subset of M
@ 1__
1= {(u) € M2 (). o)) < 1. Wluto) < 37}

Assume Assumption [6.2 with p > 2. There exists a small time T = T (p,a,0,B,Z), such
thatI' leaves Br invariant.

Proof. We start by looking at the controlled function,

I19B(1) sl = | fc B ) wlt(@) e < WBllcsp fc l6wgldp(w)

|t — 5|

W =

< Bllc3g f (@ladu(w)lt = sI* < 1Bllcagpt Wp (1 o)l = 81 <
<

To show the bounds on the rough driver, start by noting that, by linearity,

1B(1), B(1) Nl 7.zt < ||ﬁ||cg®Hk sup (@), u(Vioy)llz . < ”ﬁ”cg@flk

1603071

and thanks to @4), llo-(u)ll = z(reax) < Co. This gives that for (u,y) € Br, we have
L(o(u),B(u),Z) < L(o,B,Z), where L is defined in (36). The previous observation and
imply _

[F'u]a = [Fﬂ]a;Cg < ZJT%KP
for any @ < @ and for any p > 1 and for a random variable K, € L*(Q)). From the a priori
estimates we see that there exists a constant C > 0, depending only on p (which may
change from an inequality to the next), such that

[x]alle < C(E[[F], v [F]g/a])l/p e e A3
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We may now choose T < (3CL'*+1/®)~#% such that

Dl < 5. (87)

From Lemma[4.76]we get,
sup  [1(L(x) (@), L) (VidB() )z g <T T (14 N[all,2 )L < T2 (1 + CLY)L.

1603071

and we choose T < (3(1 + C)(1 + L'*1/@))~a% such that the above is bounded by 1. This
shows that

AT (1,7, (50,0)) = I[elallzy + B+ sup ML) (), L (T8t < 5.

<
1603071

This, together with implies I'(Br) c Br. m

Lemma 6.8. Assume Assumption|[6.2 with p > 2. There exists a constant0 < ¢ < 1 and a
small time T = T (p, a, 0,8, Z), such that, for all (u,y), (v.{) € Br, we have

d(T (1), T(v.0)) < ed((1,7), (%:£)):

Proof. Let M = K([[O']]Z ¥k 1)(L(c0,8,Z) + L(6,7,Z)) be defined as in Lemma (4.17|
We have seen in the proof of Lemmathat, for (u,y) € Br, we have L(o(u),B(u),Z) <

| <
L(o.,B,Z). Moreover, from (84), we have [o-(u)]) < C T(fcw ) < £, for u € Br.
Hence M < KL, for some universal constant K K(a,p). We estimate the Wasserstein

distance of the image laws, as given in (85). From Lemma [4.17] there exists p > p and
C(T) > 0, such that limy_,o C(T) = 0 and

Wo(L(x), L)) < ll[x=Yalle SC(T)eMp(IIO'(,u) ~ (W)l £ (R m0) (88)
HNB().BW)) = BO).BON Nz amr)
<C(T)e* D d((1.y). (v.2)). (89)

We study now the Gubinelli derivative. For all s,7 € [0, T], we have

1B(11) st = BO) allye <U((VBY) s = v(VBE)s) Zaallge + Ma(B)Y, = £(B) e
<l (w(B).u(VBy)) = (v(B). v(VB))llz.aix ([Z)o + 1t = 51°°).
Hence, using@ > aand L > L,
B(1e) =B e < [B) =Bt < WBlicson T Ld((w. 7). () (90)

For the last term in the definition of the metric d, we have, using Proposition and
proceeding as in

sup  [I(E[¢(x)]. E[V1g(x)B(x)]) = (E[6()]. EV16(3)y(0) Dz < C(T)e XD d((11.7). (v.0)).

<
|I¢IIC2®H/<—1

We now add together (89), (90), and to obtain
d(T(1.y).T(.0)) < C(T)e®*D d( (1, 7). (v.2)).

Choosing T = T (p, a, o, 8,Z) small enough, depending on L, we conclude the proof. O
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7 Non local rough PDEs

Let d,m € N be fixed. Let Z € 62 ([0,T],R™), for @ € (3, 3). Moreover let @ € (3,@) and
p = 1. Leto and g satisfy Assumption [6.2]

We turn to the Fokker-Planck equation induced by the rough diffusion, which formally reads

o = STV (o (W) ]) ~ div (B2, o € PR, (92)

We define the notion of a solution in a similar way as in the linear case, Definition but
where now the unbounded rough driver depends on the solution itself.

Definition 7.1. We say that a path u : [0,T] — P,(IR?) is a solution of with initial
condition uo € P,(R?) provided

(i) forall g € C; ® HF,
((9). u(VeB(w)) € 27([0,T]; HY).

(i) u satisfies with the unbounded rough driver B = BH defined from
t ‘ "
X = [ Bluazn X = [ ) [ Blu)azudz,
N N N

as in Proposition[5.3, and a; = 3o~ (u;)o ().

Existence of a solution to is relatively straightforward.

Theorem 7.2. Suppose o and 8 satisfies Assumptions Uo € ?p(]Rd) forp > 2 and
Z € C3,([0,T;R™) fora € (3, 5). Let (O, F, (1) .efo.7) P) be a complete probability space
that supports a d-dimensional Brownian motion W and an ¥y-measurable random variable,
5 e IP(Q;RY) such that the push-forward measure P.(E) = uo. Then, there exists a
solution u of (92), in the sense of Definition|7.1] This solution is given by u, = L(x;), where
x is the unique solution to the McKean-Vlasov equation (83) with initial condition =, in the

sense of Definition[6.1].

Proof. The proof is completed by following the same steps as in Proposition [5.5|except the
unbounded rough driver depends on the solution itself. O

The following result will be crucial for proving uniqueness of the non-local Fokker-Planck
equation.

Proposition 7.3. Leta € (3,3), @ € (3.@) and Z € €2,([0,T],R™) is weakly geometric.

Define for (u,y) € M?’p and ¢ € C; ® H*,

t t r
Xf,:qu(,ur,-)er, Xft:f‘p(ﬂr")f ¢(uu,-)dZuer. (93)

ThenX? € €2 ([0,T]; H").
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Proof. We prove this result in two steps. First we show that the controlled path (u(¢), u(Vidy))
can be continuously approximated by controlled paths which takes values in a finite-dimensional
space. This clearly gives that X? can be approximated by a sequence of finite dimensional
rough paths. In the second step we use that the finite dimensional rough path is weakly
geometric to find a smooth approximation of X%.

Step 1. For simplicity we only show this for ¢ € C; (R?) ® L*(IRY), the general case follows

by replacing ¢ by D§¢ for |8] < k. Let {e,} be an orthonormal basis of L?(IR¢) and define

Z<¢ en>en )

We now show that (¢" (i), Vo™ (1)y) — (#(w), Vo(u)y) in 222 ([0,T]; L?) for any o’ €
(a,@).

Start with the first component.

2
166" (1) = 568 () sllZ2 = > K6D(11)str x> = f]R d f 08(w.y)wen(y)dp(w)dy

n>N n>N

_ f f f V16 (ws + 06wsr, ) wren(y) dOdp(w >dy
R4 BY

= f f (Vig ws+06wsz) €n>wstd0d/l( )

ff D KV1g(ws + B6wy), en) [w]2dbdu(w)it — s,

n>N

Now for fixed w, 6 and every s, € [0, T] we have the monotone convergence

D KV 16(ws + 6w, en)” = 0
n>N

as N — oo since ¢ € C; (IR?) ® L*(IR?). Moreover, for fixed N, as a function of s and ¢ the
above is continuous. By Dini’s theorem we get

sup > KV1(ws + B8y ), en)? = 0

St SN
as N — oo. This gives
6" (1) = $(1)2 1 < sup f [ 60+ 080) Pl ) — 0
n>N

by monotone convergence. In a similar way one can show that Vi¢" (uy) converges to
Vig(uy) in C*([0, T]: L*(RY)).

To see the convergence of the remainder, ¢N(p)§, = 6™ (1) s — V19N (usys)Zs, We note
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first that this term is obviously bounded in C3%([0, T]; L*(IRY)). Furthermore, writing

2

||¢N(ﬂ)£l - ¢(/‘l)§t”i2 - Z Ld 5<¢((x))’ en>st - <V1¢((1)s), €n>7s(ws)zstd,ll(a))

n>N

f Z |(5<¢ )senyst — (Vig(ws), en)ys(ws) Zst| du(w

0 n>N

Using Dini’s theorem and monotone convergence as before we get that for any € > 0 there
exists N such that for all N > N, we have sup, , ||¢" (,u)ﬁ, - ¢(u)§,I|Lz <e

This gives, uniformly in s,
™ (), — p(w)E 2 < € A Cle— 5P < €740 — 52

where we have used the geometric interpolation a A b < a!™b* for any « € (0,1). By
choosing « correctly we get ¢ (u)* — ¢(u)* in €22 ([0, T]; L*(RY)).

Step 2. We now proceed to prove that X? can be approximated by a smooth path. Let € > 0.
From the above continuity we can choose N such that

[X¢N _ X(b]a’/ < g’

where X?" is constructed by replacing ¢ with ¢ in (93).
As spelled out in Lemma , there exists @ < o’ and a smooth path X"-¢ such that [X¢N -
XV€], < 5. This gives
[XVe - X9, < [XV€—X?"), + X" - Xy <.
O

Theorem 7.4. Suppose o, 8 satisfies Assumptions 6.4 for k > 9 +d and uy € P,(R?) is
given with p > 2. Then there exists at most one solution u of in the sense of Definition
[Z1

Proof. Let u be a solution of (92). From the the assumptions on 8 and o- we may construct
the time-dependent coefficients (o-(u), (B(u), V1B(B(1)u))) from which we construct the
rough driver F# as in Lemma[4.8] Denote by x* the solution of

dx? = O'(Nt, xl;)th ‘|‘,8(,Ut, Xﬁ‘)dZt,
i.e. dx}' = F, (x;). From Proposition we see that v satisfies

o = %Trvzqo-(u)a(u)w — div(Bu))Z. (94)

asin Definition | where X, (x f[o’ r, x)dZ, and Xy (x, y) fﬁ pr. %) [ B y)dZ,dZ,.

From the assumption on g, the Sobolev embeddlng [4, Corollary 9.13] H* c €T3 (RY; IRY)
for k > 4 +n+ 3 and Proposition [7.3| we see that X € €2([0,T]; C;**(R% R?)). Now if

n> 6+ ¢, we get from Theorem 5.9/ that there exists at most one solution of @4). In par-
ticular, we see that u; = v, which gives that x* is a solution of (83). Since this equation is
well-posed, this uniquely describes wu. O
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A Appendix

A.1 Kolmogorov continuity theorem

In this section we prove a Kolmogorov continuity type theorem for rough drivers. The proof
is done exactly as in [15, Theorem 3.1], so we only sketch the proof to convince the reader
that the steps are the same.

Theorem A.1. Suppose F = (F,TF) is a random rough driver such that

E(IFgll’,] < Cl— s, E[IFg|7)%] < Cle - s
b

b

for g and B such that g8 > 1. Then for every a € (0,8 — 611) we have

E(IFI JJ<c,  ENFIY2] <C

b b

and if -1 > 5 then F is rough driver fora € (3,8 - 7).

Proof. Take T = 1 for simplicity and denote by D, the uniform partition of [0, 1] with mesh
27" and let

K, := sup ||Ft,t—|—2‘”||c3’ K, := sup ||IFI,I+2‘"||C2-
teD, b teD, b

By assumption on F we get

E[KY < E[Y Frpyanlly] s 27"0P0) E[KYY < E[Y [Fypponll??] < 277054,
(K] [Z 1142 Ci] [ ] [Z 1142 Cg]

teD,, teD,

Let s,t € U D, and choose m such that |D,, 11| < |t — s| < |D,,|. There exists a partition {ti}ﬁ\’zo
of [s, 7] such that (7, +1) € D, for some n > m + 1, and for each fixed such n there are at
most two such intervals from D,,. We get

N-1
IFaller < 3 WFugillea <2 )" Ka
i=0

n>m—+1

and using Fy, = YN/ Fy,,, + VF,,, Fy,, which is easily seen from Chen’s relation, we
get
N-1 2
Bl < D IFullca + IFulleslFalles <2 ) Ka+ |2 D7 Ka
i=0 n>m-+1 n>m-+1
This gives
I1Fsill e I sill 2
b b < N
lr—sle = lt—sl®
where X K
K, =2 . K,:=2 1
;) |Dn|® nZZO |Dnl®
which belongs to L7(Q) and L¢/%(Q)) respectively. This proves the claim. |
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A.2 Weakly geometric rough paths

We prove that rough path integration w.r.t. a weakly geometric rough path yields a weakly
geometric rough path.

Lemma A.2. Assume Z is weakly geometric and E is a separable Hilbert space and
(Y,Y’) € 22°([0,T]; E). Then the rough path X defined by

! t
Xy i= f vkazk, X, = f X, ® Yzl - X, X
N

N
is also weakly geometric.
Proof. Let {e;} be an orthonormal basis of E and use the component notation
g =(g.edp, gEE, W) = (h,e;®ej)por, heE®E.

The components of the integrals may thus be spelled out

73 . . ! . . . .
X = f vikazk, XY = f XiyHazk - xix/
S

st sst
N
where the above are scalar integrals defined by their local expansions
=i yiksk iklplk — m=ij _ yivyikok ily ik i ik Lk
st T Ys Zst + YS Zst’ st T XsYs Zst+ (Ys Ys +XsYs )Zst
respectively. Since Z/ — XiE/ = yi'y/* 7% and by definition of X we get
Y Y. st s=ist — ts ts st y g
ij _ yilyik—ylk 3 ' ik k 2
X =YY 25 < Nt = s, XL, — Y"Z5| < |t — s
which gives
ij i i v ilyikeylk Jlyikplk _ vjk—k vl ol 3
|xsi] +X‘;[ _Xi‘tX;tl g |YS YS Zst + Ys Ys Zsl - Ys ZS[YS ZSt' + |t_ Sl (l"
Now, since Z is weakly geometric we have
ilv ikl Jlyikeglk _ yilyikoplk kI _ yilyikol k
YoY& Ly, +YOYS L, =YY (Zst +ZS,) =YY 2,2,
which gives
Lj \l i v 3
lxstj + X{vt _vatxitl Sle=sl™.

It is straightforward to check that the above left hand side is the increment from s to  of the
function 7 — X/ + X{" - X{X;. Since 3a > 1 we get that this function is constant and equal
to 0. |

In the next lemma we show how to construct the approximation in Proposition[7.3]

Lemma A3. Fix N.K.d,m > 0, a € (3,%) and let Z € €%,([0,T];R™) be a weakly
geometric rough path. Moreover, fori = 1,...,d,n =1,...,Nandk = 1,...,K, lete, €
L*(IRY) be an orthonormal basis and 6*5" € 22¢ ([0, T],R), fora’ € (%, @) . Let ¢ = ¢'* =
ZnN:1 6%"e, and construct X¢ as in (93). Then, for every a € (%,a’) there exists X€ such
that

QQ(X¢,X6) — 0, fore — 0.
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.....

&= e,2; € L*(R% RY), where 1, i, n satisfy the relation

t:=dn-1)+i, i=1,....,d,n=1,...,N. (95)
Let VV be the finite dimensional vector space defined as

VN :=span{¢’ |T=1,...,dN} c L*(R% RY).

We note that dim(V") = dN. On this space we construct a rough path as follows, for
,j=1,...,dN,

t . - - - - t . u . - -
X = CLE = ( f el;kv”dz’;) g, Xy :=Cleeé = ( f gikn f 9{,”’mdzﬁ,dz’;)§’®§f.
S S N

Here and in the following we always assume that the triples (z,i,n) and (J, j,m) satisfy
relation (95). Moreover, we always use the convention that we are summing over repeated
indices, in this case k,/ = 1,..., K. Itis immediate to see that X¢ = (Y X", 3¢¥ | X*7).

We prove now that (X, X) is geometric, i.e. that the following relation holds
2 Sym(X)g[ == XSZ‘ ®Xs[, VS, te [O, T]

Let us look more in detail what the tensor product on the right hand side is, for 7,7 =
I,...,dN,

(X ®Xy)™ = (CL,CI)E@E = (CL,Clenen)ei ®¢;. (96)
Each of these terms is a tensor product which is mostly zero. Let us now describe each
component of (96). We start by introducing the indexes
ti=d(i-1)4+f, f=1,...d 1=1,...4dN.

We assume from now that the couple (1, f) and (J, g) always assume the previous relation.
We obtain

(Xg® Xst)f’j = ((Xg® Xst)i’j)f’g = C;Cs_teneméi,j’f,g.

[ X = (Gl (eime) s = Clle"e" sy
The symmetry condition reduces to verify the scalar equality

T~ _ b]
CstCst =C

st

which is satisfied thanks to Lemmal[A.2l

The rough path X? is thus in 62%([0, 7], V). Since VV is a finite dimensional space, we
can find a smooth approximation X¢ in ([0, T], VV), for some @ € (,’). Hence, since

VN ¢ L2(R4;IR?), this is also an approximation in €%([0, T], L?(R¢; IR¥)). O
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A.3 A separable subspace of the Holder space

Proposition A.4. The space CZ([0,T]; E) is equal to the closure of C'([0,T]; E) with re-
spect to the C*-topology. In particular, C§ ([0, T|; E) is separable if E is separable.

Proof. For simplicity we assume E = RR. We clearly have [f]o; < 27|V f]le sO that

C'([0,T]) c ([0, T]), which shows one inclusion by taking the closure.
To see the reversed inclusion, we take f € C{ ([0, T]), a standard mollifier p,(u) = np(nu)

and let f" = fOT fupn(t—uw)du = ftT_tf,_up,,(u)du. Then f" is smooth and we get for
t—sl<h

T—t
- f < f o= Foalpn(u)di < [Flaslt — sl

so that [/"]a.n < [f]an- Let us show that /" converges uniformly to f.

f,jo‘ pn(t—u)du—‘fo Jupn(t—u)du| < [f]afo |t — ul"on(t —u)du
< [f]af]RIt—uIapn(t—u)du: [f]an_ajﬂ;lrlap(r)dr

i = f'l =

which converges to 0 uniformly in .

Now, write
|6.f5 — .1 ] _
= Fla<[f=Man+  sup =L <2[f]on + 207N = o
(s.t)eAT:|t—s=h |t = sl
which gives
nh_)nc}o[f - fn]a' S 2[f]oz,h-
By assumption on f, letting 2 — 0 gives that /" — f in C*([0,T]). m|

A.4 Rough Gronwall lemma

Lemma A.5. Assume that G : [0, T] — Ry is such that there exists constants L > 0 and «,
and a regular control w such that for every (s,t) € Ar with w(s,1) < L,

6Gs < w(s, t)l/" sup G, + ¢(s,1), (97)

0<r<t

where ¢ : Ar — Ry is such that ¢(s,t) < ¢(0,T). Then
2w(0,T
sup G; < Zexp{¥} (Go+¢(0,T7))
a

0<t<T

where a := 1 v L71(2¢?)7%.
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Proof. Choose K to be the largest integer such that
o(K-1)L<w(0,T) < aKL.
Since w is regular, we may choose a partition 0 = 79 < t; < --- < tg = T such that
w(0,1;) = akL and w(tk, trey1) < aL,
fork =0,1,...,K — 1. Introduce the notation

Gs<i := sup Gy, G< = Go«

s<r<t

Fix 7 € [tx-1,]. Since a < 1, we get

k=2 k-1 k=2
6GOZ = Z 6Gl‘,’li+1 + G[k_]l‘ < (U(ti, ti+l)KGSIi+1 + Z ¢(tta ti-i—l) + ¢(tk—l9 t)
i=0 i=0 i=0

k-1

< (aL)'* " ey, + K(0,T).
i=0

We now define the function

{ a)(O,t)}
H; .= G expq— ,

alL
so that
S (0, tt+1) S i+1 k+1
Z Gepy = Z H;,. ., exp 3 < H, e <Hge .
i=0 i=0
This gives
Gi <t < Go+ (L) *He, ™ 4+ K¢p(0,T),
and thus

Ger < max Gy <, < Go + (aL)'*H e 4 K¢ (0, 7).

1<i<

Multiplying the above inequality by exp{ (0, )} yields

H, < exp {_w(O, 2 } Go + exp {—M} (@L)"*Hey ™ + exp {_wg), /) } K$(0,T).

alL al

Then taking the supremum over ¢ < 1, we arrive at

0,1 0, 0,
He, <exp {—w( ) } Go + exp {—M} (L)' *Heye ™! + exp {‘w

alL aL
< Go + (aL)**Hoy + K¢(0,T)

Owing to the definition of a, we find
H< <2Go+ 2K¢(0,T).
By the definition of H we get

w(0.T)
Ger < ™ (2Go + 2K6(0,T))

w(0,
and by definition of K we have K < ( ) +1<e < and the result follows. O
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