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Generating structured non-smooth priors and associated
primal-dual methods

Michael Hintermüller, Kostas Papafitsoros

Abstract

The purpose of the present chapter is to bind together and extend some recent develop-
ments regarding data-driven non-smooth regularization techniques in image processing through
the means of a bilevel minimization scheme. The scheme, considered in function space, takes ad-
vantage of a dualization framework and it is designed to produce spatially varying regularization
parameters adapted to the data for well-known regularizers, e.g. Total Variation and Total Gener-
alized variation, leading to automated (monolithic), image reconstruction workflows. An inclusion
of the theory of bilevel optimization and the theoretical background of the dualization framework,
as well as a brief review of the aforementioned regularizers and their parameterization, makes
this chapter a self-contained one. Aspects of the numerical implementation of the scheme are
discussed and numerical examples are provided.

1 Introduction

1.1 Context

Non-smooth regularization functionals have played a central role in the field of mathematical imaging
since the introduction of Total Variation (TV) to basic image reconstruction problems in the 1990’s
[42, 126]. These functionals which, in the function space setting, involve (Radon) norms of distribu-
tional derivatives are used as priors in Tikhonov-like variational regularization problems. Their discrete
analogues involve versions of `1 norms thus promoting certain sparsity properties and resulting in
noise and artifact reductions as well as in edge-preserving reconstructions. Particularly, the latter prop-
erty has made this family of regularization functionals a popular tool in the field of image reconstruction
and inverse problems.

These inverse problems are typically of the form: Given data

f = Noisy(Tutrue), (1.1)

where utrue represents some ground truth image, that we wish to obtain, find a good approximation
u of utrue. Here, utrue as well as u are modelled as functions from some domain Ω ⊂ Rd into Rm.
For static black and white images u we have that d = 2, i.e., Ω is a two dimensional domain, typically
open, connected with Lipschitz boundary (e.g. a rectangle), and u is real-valued, i.e. m = 1. In this
sense u(x) models the intensity of the image at the point x ∈ Ω. Generalizations to domains of higher
dimension (3D, time-dependent problems) as well as multivalued images (multicolor, multimodal) are
also possible. But for the sake of ease of presentation of the essentials, we focus here on real-valued
images over a 2D domain, only. We denote the function space which utrue belongs to by X . As indi-
cated above, instead of utrue typically only some data f are available which correspond to a degraded
version of utrue. This degradation, comes from two sources as (1.1) depicts. First, the application of
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an operator T : X → Y , the forward operator reflects the transformation that utrue goes through
along with possible further limitations. For instance, in Magnetic Resonance Imaging (MRI) T stands
for a subsampling of the coefficients associated with the Fourier transform of the magnetization of
the tissue; see for instance [60, 100, 107]. In tomography, for example, this transformation is given
by the Radon transform, where typically only a relatively small number of line integrals is available
[113]. Apart from transformation and incomplete measurements, a second level of degradation comes
from the presence of random noise. It is the result of measurement or transmission errors, e.g., due
to the heating up of digital sensors, or other sources of inaccuracies that are too complex to be fully
quantified or that involve random effects. This noise can be additive, multiplicative, mixed or occur in
an even more complicated way in the measurement process. Additive noise in (1.1) leads to

f = Tutrue + η, (1.2)

where η represents a highly oscillatory function in some spaceY . Typically it is assumed that the mean
of η is zero; as otherwise a systematic deterioration is detected and remedied by suitable calibration.
In variational image processing, one then aims to recover utrue or at least a sensible approximation
thereof by solving a minimization problem of the type

minimize Φ(Tu, f) + Jα(u) over u ∈ X̃ , (1.3)

where X̃ is a subspace ofX containing functions whose regularity is typically dictated by Jα. The term
Φ(Tu, f) is a data fitting or fidelity term term which measures the distance between the data f and
the possible reconstruction u after the action of the forward operator. This ensures that the potential re-
construction will be close to utrue in a certain sense. The proper choice for Φ is often the consequence
of the statistics of the noise. For instance, for Gaussian noise 1

2
‖Tu − f‖2

L2(Ω) is a suitable choice
[42, 126], for salt-and-pepper noise ‖Tu − f‖L1(Ω) is preferable [15, 47, 65, 116], while for Poisson
noise the Kullback-Leibler divergence

∫
Ω
u − f log u dx is more appropriate [32, 128]. Mixtures of

noise can also be treated and are typically addressed by infimal convolutions of the single-noise fi-
delity terms; see for instance [36, 38] as well as the references therein. From a statistical viewpoint,
the choice of the data fidelty is often motivated by maximum likelihood considerations concerning the
underlying noise type. For the sake of simplicity, in the examples below we confine ourselves to an L2

fidelity term.

Minimizing just the fidelity term will not give any sensible results as this corresponds to the direct
inversion of T . Due to the presence of noise and potential deficiencies in T this is, however, typically an
ill-posed problem, in the sense that small variations in the data f may have an enormous deteriorating
effects on u. This adverse behavior is taken care of by an additional term Jα, the regularizer, which
makes the overall minimization problem well-posed. Typically it adds some extra regularity requirement
to the problem. This leads to a robust reconstruction where ideally the noise is filtered out, as well.

The parameter α is the regularization parameter and balances the effect of the two terms in (1.3)
thus determining the amount of regularization or filtering in the reconstructed image. It can be one
or more (positive) scalar quantities, or spatially varying functions. In the first case, the regularization
effect is uniform throughout the image (global effect) while in the second, this effect varies depending
on the magnitude of this function in different areas of the domain (local effect). We mention already
here that while in simple regularizers where the regularization parameter is included in a multiplicative
way the regularization effect scales with the magnitude of α, this is not the case for more complex
regularizers that involve, e.g., infimal convolutions, where two or more scalar parameters determine
the regularization effect in a more complex fashion. This makes their proper selection an even more
challenging task.
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Figure 1: TV denoising examples for different values of the scalar regularization parameter α. Left: Clean and
noisy images. Middle: TV denoised images, solutions of the problem (1.4) with T = Id. The parameter α is
increasing from left to right and top to bottom, corresponding to the marked points in the right figure. Right: Plots
that depict the PSNR and SSIM values of the solutions versus the parameter α. The third and fourth marked
points correspond to the highest PSNR and SSIM respectively

Indeed, even with a proper selection of both, the fidelity and regularization functionals, the problem
(1.3) contains one more degree of freedom, which is connected to a suitable choice of α. It aims at
producing the best reconstruction result within the capabilities of the selected Φ and J . Establishing
automatic regularization parameter selection rules with the help of rich and rigorous mathematical
theories that eventually lead to monolithic image reconstruction methods approaches lies at the heart
of this chapter.

At this point we wish to pin down several of the aforementioned concepts by considering the following
classical TV minimization problem

min
u∈BV(Ω)

1

2
‖Tu− f‖2

L2(Ω) + α|Du|(Ω). (1.4)

Without getting into too many details, we note for the time being only that here Y = L2(Ω), X̃ =
BV(Ω) the (non-reflexive Banach) space of functions of bounded variation and that Jα(u) = α|Du|(Ω),
the total variation of u (also denoted by TV(u)), multiplied by α. Here Du denotes the finite Radon
measure that represents the distributional derivative of u and |Du| the corresponding total variation
measure of Du. The regularization parameter here is a simple positive scalar, i.e., α = α > 0. For
precise definitions and properties of TV and BV(Ω) we refer to Section 2.1. The problem (1.4) and
its variants have been thoroughly used in many applications, like denoising [19, 40, 75, 68, 126],
deblurring [69, 142], inpainting [49, 70], zooming [110], image decomposition [48, 145] MRI and
PET reconstruction [17, 33, 127], image decompression [6, 24], dejittering [61, 62] to name a few.
The solution structure and its dependence on the parameter α are also well-studied and understood
[1, 2, 3, 4, 39, 41, 47, 65, 111, 115, 125, 139].

As it is observed in practice, but also proven theoretically in the works above, the strength of regular-
ization due the TV term is proportional to the parameter α, with large values resulting in cartoon-like
images of large constant areas and small values having little regularizing effect, meaning that the so-
lution u is such that Tu converges to the data f in an appropriate sense as α → 0. In Figure 1, one
can see a simple TV denoising example (T = Id) where this behaviour is depicted. Naturally, one is
interested in those values of α that produce a (close to) the best result with respect to some quality
measure. For the peak-signal-to-noise ratio (PSNR) and the Structural Similarity Index (SSIM) see the
two plots on the right hand side of Figure 1.

As far as TV minimization with a scalar regularization parameter is concerned, there exists several
works in the literature that focus on its automatic selection, see for instance [12, 57, 103, 105] and the
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references therein. However these works focus mainly on a scalar α which poses restrictions on the
reconstruction quality as we discuss later.

A series of works relevant to this problem as well as to the present survey, was initiated in [55] and at
the discrete setting in [102], and further explored in [35, 37]. There, an optimal parameter for the TV
minimization is computed by means of variants of the following bilevel optimization scheme

minimize
1

2
‖uα − utrue‖2

L2(Ω) over α ≥ 0,

subject to uα = argmin
u∈H1(Ω)

1

2
‖u− f‖2

L2(Ω) + α‖∇u‖L1(Ω) +
ε

2
‖∇u‖2

L2(Ω).
(1.5)

Here it is assumed that the ground truth utrue is known and the scheme aims at finding the scalar
α that produces the reconstruction uα that is closest to utrue in the L2 sense (optimal PSNR). The
reconstruction uα is a solution to a smoothed TV reconstruction problem, where smoothing is neces-
sary for the numerical solution. The rationale is then to use this parameter to restore data g that were
produced under the same circumstances as f , as this parameter is expected to be near optimal for g,
as well.

One of the drawbacks of TV minimization is the staircasing effect, i.e., the promotion of piecewise
constant (or blocky) structures [41, 125], stemming from the sparsity of the gradient which, in the
discrete setting, is due to the use of the `1 norm. Although local smoothings of the TV functional, e.g.
of Huber type [34, 75] can reduce this effect, a reduction or even total elimination is typically achieved
via the incorporation of higher order derivatives in the regularization process. For instance see the
contributions [42, 46, 74, 104, 108, 109, 121, 130, 132, 133, 135, 146] and also [119] for a more
general review. Arguably, one the most successful regularizers of this type is the Total Generalized
Variation of second order (TGV) [28], defined as

TGV2
α(u) = min

w∈BD(Ω)
α1|Du− w|(Ω) + α0|Ew|(Ω), (1.6)

where BD(Ω) is the space of functions of bounded deformation and Ew is the distributional sym-
metrized gradient of w; see Section 2.2 below for definitions. TGV has the ability to adapt to the regu-
larity of the images resulting in piecewise affine reconstructions where edges are still preserved. It has
already been successfully used in a variety of applications; see [22, 25, 30, 95, 100, 141] among oth-
ers. Note that here the set of regularization parameters consists of two positive scalars α = (α0, α1)
that balance the effect of the first and higher order terms in (1.6). Here the regularization strength is
decided in a more complicated way than in the TV case; see for instance Figure 2. There exist results
regarding the influence of these parameters on the structure of solutions, as well as their asymptotic
behaviour [29, 120, 122, 123]. These studies have mostly theoretical value providing little practical
guidance on how to select the parameters for (near) optimal results. We note that adaptation of the
scheme (1.5) was done for TGV in [54, 56], producing optimal parameters with the use of pairs of
ground truths and noisy images. Thus, up to now the choice of TGV parameters is mostly based on
heuristics only.

So far we have mentioned regularization functionals whose parameters are scalar quantities. As we
have already briefly alluded to above, this implies that the regularization strength is uniform across
the image. This is unwanted when the amount of noise is non-uniform across the image. Moreover,
it is also beneficial to impose weak regularization in image regions containing fine details in order for
these to be better preserved and to use strong regularization in homogeneous, i.e., smooth, image
areas. This can be achieved by introducing a spatially varying regularization weight, either acting on
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Figure 2: Left: Solutions of the L2–TGV denoising problem (using the same data as in Figure 1) with
combination of the regularization parameters (α0, α1) that correspond to the numbers 1-6 on the right
plots. The images 2 and 3 correspond to the highest PSNR and SSIM respectively. Right: PSNR and
SSIM values of the denoised images with respect to the parameters α0 and α1

the fidelity term or the regularizer. For TV minimization, this results in the following two problems:

min
u∈BV(Ω)

1

2
‖
√
λ(Tu− f)‖2

L2(Ω) + |Du|(Ω), λ ∈ L∞(Ω), λ ≥ 0 (1.7)

min
u∈BV(Ω)

1

2
‖Tu− f‖2

L2(Ω) +

∫
Ω

α d|Du|, α ∈ C(Ω), α > 0. (1.8)

Here the term
∫

Ω
α d|Du| denotes the integral of the continuous function α with respect to the mea-

sure |Du|. The first instance (1.7) and its variants have been studied and applied to image restoration
problems in several works. In [63, 64] grayscale and color images subject to blur and Gaussian noise
are restored using that model, while in [89] an L1 fidelity is considered for the case of random-valued
impulse noise. In finite dimensions, a technique based on a statistical multiresolution criterion can be
found in [67, 96]. In [5] a statistical approach with variance estimators different from the ones in [63, 64]
is examined. A deterministic choice rule using a pre-segmentation of the image and a piecewise con-
stant fidelity weight is considered in [18]. As this is related to the present chapter, we briefly mention the
basic idea of [63]. Given a normalized weight functionw ∈ L∞(Ω×Ω) with

∫
Ω

∫
Ω
w(x, y) dxdy = 1,

one defines at every point a localized residual as follows

Ru(x) :=

∫
Ω

w(x, y)(Tu− f)2(y) dy. (1.9)

In [63], assuming Gaussian noise of variance σ2, the parameter λ is updated iteratively in such a
way that the localized residual at every point does not significantly exceed σ2. The method has given
satisfactory results for image denoising and deblurring. However, one disadvantage of transforming the
regularization parameter into a weight function contained in the fidelity term is related to the fact that
it is not immediate clear how to extend the model to data domains, like Fourier or wavelet domains.
While analytically and numerically more complex, this observation supports the choice of a second
model (1.8) which seems more appropriate in view of such data domains. While these models are
equivalent for scalar regularization parameters, for spatially varying ones specific examples can be
found yielding singificantly different solution structures for (1.7) and (1.8), respectively; see [83].

The possibility to explore the space spanned by Φ and Jα by optimally selecting α, immediately leads
to the question of whether one can devise a scheme such that the choice of the (best) regularization
function α can be decided automatically. We note that as far as problem (1.8) is concerned, in order to
be consistent with the functional analytic framework, the function α should be measurable with respect
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to the measure |Du| where u is the solution. This is guaranteed when α ∈ C(Ω) as it was ensured
in [88] but also see also Proposition 2.9 below. We note that an adaptation of the framework (1.5) to
a spatially dependent parameter α can be found in [35, 51]. However this approach is mainly suitable
for calibrating TV-based denoising methods for noise of spatially varying intensity and one drawback
is the overfitting of the regularization parameter to the training image.

A monolithic approach for the automatic selection of the spatially varying function α for problems of the
type (1.8) was extensively examined in two recent papers [85, 88]. There, with the aim of combining the
reconstruction and α-selection processes in a single mathematical framework, a bilevel optimization
approach is adopted with the difference (to the aforementioned approaches) that no ground truth or
any training pair is used but rather only the data f , hence the term monolithic. In the spirit of [63], one
looks for solutions of the problem (1.8) that force the localized residuals to remain within a variance
corridor, close to the variance σ2 of the noise. This restriction of the localized residuals close to an
interval [σ2, σ2] is imposed by keeping the value of the following upper level objective functional small

F (Ru) =
1

2

∫
Ω

max(Ru− σ2, 0)2dx+
1

2

∫
Ω

min(Ru− σ2, 0)2dx. (1.10)

In order to get a first understanding, the model considered in [85, 88] aims to approximate
minimize F (Ru) over u ∈ BV(Ω), α ∈ C(Ω)

subject to u = argmin
u∈BV(Ω)

1

2
‖Tu− f‖2

L2(Ω) +

∫
Ω

α d|Du|. (1.11)

Even though in principle the bilevel scheme (1.11) aims to achieve what was discussed above, there
exist serious obstacles regarding its functional analytic treatment, well-posedness, and its suitability for
numerical realization. No extra regularity is imposed on α, e.g. requiring it to be continuous or at least
measurable, and lack of any source of compactness jeopardizes the well-posedness of the scheme.
A possible remedy this is to add an extra H1 regularization term to F together with a boundedness
condition requiring α ∈ Aad where

Aad =
{
α ∈ H1(Ω) : α ≤ α ≤ α, a.e. in Ω

}
, 0 < α < α.

We further note that the first-order optimality condition of the lower level problem in (1.11) gives rise
to a variational inequality (VI) of the second kind. It constitutes a degenerate (non-qualified) constraint
(in the sense of the Karush-Kuhn-Tucker theory in Banach spaces) and imposes major challenges in
analyzing the dependence α → u. In order to replace the VI of second kind by a more tractable
VI of the first kind (but still yielding a degenerate constraint) dualization theory may be employed.
Indeed, instead of the lower level problem in (1.11) (primal problem) one considers its Fenchel predual
[66, 101] which reads

minimize
1

2
‖divp+ T ∗f‖2

B over p ∈ H0(div; Ω),

subject to p ∈ K(α) :=
{
q ∈ H0(div; Ω) ∩ L∞(Ω,Rd) : |q(x)| ≤ α(x) for a.e. x ∈ Ω

}
,

(1.12)
where ‖u‖2

B = 〈w,B−1u〉, with B = T ∗T and T ∗ the adjoint of T , assuming invertibility; see more
details in Section 2.3. Minimizers of the primal and predual problems are connected via the following
optimality condition

Bu = divp+ T ∗f. (1.13)

We note that this dualization result was shown in [101] and in [85] for α being a scalar and a continuous
function respectively. But as we show in Section 2.3 it also holds for α ∈ H1(Ω). Moreover, the
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predual problem (1.12) is more amenable to efficient, image resolution independent, function space
based solution algorithms, such as (inexact) semismooth Newton methods [101], that can solve the
problem up to a very high accuracy fairly quickly. Note that in view of (1.13) the localized residual
(1.10) can be written in terms of the dual variable p as follows

Ru(x) = R(divp)(x) =

∫
Ω

w(x, y)
(
TB−1divp− (TB−1T ∗ − I)f

)2
dy. (1.14)

This leads to the following bilevel minimization problem which was the starting point in [85]:
minimize J(p, α) := F (R(divp)) +

λ

2
‖α‖2

H1(Ω) over p ∈ H0(div; Ω), α ∈ H1(Ω),

subject to p ∈ argmin

{
1

2
‖divp+ T ∗f‖2

B : p ∈ K(α)

}
.

(1.15)

Existence of solutions of the bilevel problem (1.15) and also the establishment of the dualization frame-
work itself, which links the solution sets of the two problems via (1.13), are closely related to density
results of associated convex intersections. In general, the latter establish equivalences of the type

C ∩ Y X
= C, for Y = X, (1.16)

where X is a Banach space and C a convex subset, typically represented by pointwise constraints,
and Y a dense subset of X . As far as the bilevel problem (1.15) is concerned the density relation

{φ ∈ C∞c (Ω,Rd) : |φ(·)| ≤ α(·), in Ω}
H0(div;Ω)

= {p ∈ H0(div; Ω) : |p(·)| ≤ α(·) a.e in Ω}

is of particular importance. Here, we have C = K(α), X = H0(div; Ω) and Y = C∞c (Ω,Rd).
Establishing such density results can be traced back to [84] and to further extensions in [87]; see the
relevant discussion in Section 2.3.

We also note that dualization can be used in order to introduce a rigorous functional analytic framework
for a wide class of regularizers that are used in multimodal reconstruction problems. These typically
correspond to integrands that are pointwise functions of the gradient, exhibit linear growth

J(u) =

∫
Ω

jv(x,∇u(x)) dx, (1.17)

and incorporate some a priori knowledge v. In applications, v may correspond to some pre-reconstructed
modality. Functionals of the type (1.17) have been used in the discrete setting only and dualization was
used in [77] in order to introduce a functional analytic meaning.

Further challenges exist when devising numerical solution algorithms for the bilevel problem (1.15).
It is known that this problem falls into the class of Mathematical Programs with Equilibrium Con-
straints (MPEC) and suffers from constraint degeneracy. For the derivation of stationarity conditions,
it requires advanced non-smooth analysis techniques other than the classical Karush–Kuhn–Tucker
(KKT) theory; see [106, 118] and [13, 79, 82] for the finite and the infinite dimension problem setting.
An extensive discussion is given in Section 4.1.

The bilevel scheme (1.15) has produced promising results in applications like denoising, deblurring,
wavelet inpainting and MRI reconstruction [88], see an illustration in Figure 3. However, the staircas-
ing effect, a characteristic of TV, appears to remain in a reduced form. One may extend the above
framework to the weighted TGV case. For this purpose, similar dualization frameworks have to be
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Figure 3: Left: Comparison of the Bilevel weighted TV result with the best scalar TV and TGV denoising
results of the Figures 1 and 2. Right: the weighted regularization function α which is determined
automatically

established as well as efficient high accuracy algorithms for the solution of the corresponding dual
problem need to be developed. We note that an extension of [63] to the TGV case, that is, a study of
the problem

min
u∈BV(Ω)

1

2
‖
√
λ(Tu− f)‖2

L2(Ω) + TGV2
α(u) (1.18)

was done in [21] with good results. But the disadvantages from transforming the regularization param-
eter into a fidelity weight remain, as it was discussed before.

1.2 Main contributions and organization of this paper

While in its majority, this is a review paper, it also contains some novel elements. In view of this we
state clearly in the text which results are new and which are based on earlier works.

In Sections 2.1 and 2.2 we provide an overview of analytical properties of the TV and TGV functionals.
We emphasize the roles of the regularization parameters in the reconstruction, like asymptotic, exact
solutions as well as structural properties of the solutions of the corresponding variational problems.

In Section 2.3, after briefly reviewing the Fenchel–Rockafellar duality theory, we state the predual
problems of TV-based minimizations as well as their weighted versions, and the corresponding dual-
ization frameworks are established. We particularly emphasize the important role that density results
of convex intersections play in the establishment of these frameworks.

In Section 3 we discuss algorithms for the solution of the TV variational problems focusing on function
space semismooth Newton algorithms for regularized versions of predual problems.

A basic background on the theory of bilevel optimization with emphasis on different notions of station-
arity is discussed on Section 4.1. An overview of the bilevel framework for the automatic determination
of the regularization parameters, based on the incorporation of localized residuals on the upper objec-
tive, is given in Section 4.2. This is done for the TV case, whereas extensions to the TGV regularizer
are the current focus of research. We discuss first-order optimality conditions as well as the existence
of adjoint states that eventually lead to the derivation of a projected gradient scheme for the algorithmic
treatment of the bilevel minimization problem.

Section 5 is dedicated to numerical examples. In particular, in Section 5.1, discretization aspects for
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the TV bilevel problem are discussed and in Section 5.2 numerical examples are depicted.

2 Non-smooth priors

2.1 Total Variation

We start with some basic definitions and facts regarding the space of functions of bounded variation
BV(Ω). For an extensive study, we refer the reader to [8] but also to [11]. Here Ω ⊂ Rd denotes
an open, bounded, connected, domain with Lipschitz boundary. The space BV(Ω) consists of all
functions in L1(Ω) whose distributional derivative can be represented by a finite Radon measure
which is denoted by Du = (D1u, . . . , Ddu). It can be shown that an L1 function belongs to BV(Ω)
if and only if TV(u) <∞, i.e., it has a finite total variation, where

TV(u) := sup

{∫
Ω

u divφ dx : φ ∈ C∞c (Ω,Rd), ‖φ‖2,∞ ≤ 1

}
, (2.1)

It can be shown that in this case TV(u) is equal to the total variation measure of Du evaluated in
Ω, i.e., TV(u) = |Du|(Ω). In the special case u ∈ W 1,1(Ω) we have TV(u) =

∫
Ω
|∇u| dx. The

TV functional is convex, lower semicontinuous with respect to the strong L1 convergence and it is a
seminorm on the space BV(Ω). Moreover BV(Ω) is a Banach space when endowed with the norm
‖u‖BV(Ω) = ‖u‖L1(Ω) + |Du|(Ω).

Before we continue we would like to mention a few aspects on the isotropic and the anisotropic version
of TV. In the definition (2.1) the finite dimensional ‖ · ‖2,∞ norm is defined as

‖φ‖2,∞ = ess sup
x∈Ω

|φ(x)|,

where | · | is the usual Euclidean norm in Rd. This leads to the isotropic version of TV. If in (2.1), the
‖ · ‖∞,∞ norm is used instead, where

‖φ‖∞,∞ = ess sup
x∈Ω

max {|φi(x)| : i = 1, . . . , d} ,

then one is led to an anisotropic version of TV. In that case it holds that |Du|(Ω) =
∑d

i=1 |Diu|(Ω).
The resulting norms are equivalent, and while the isotropic version enjoys rotational invariance when
used in imaging problems, the anisotropic one is more amenable for our purposes when it comes
to the algorithmic treatment of the dual problem in the bilevel framework. For this part of the paper
we focus on the isotropic version, but make it explicit when there is an important difference to the
anisotropic version.

The measure Du can be decomposed into its absolutely continuous and singular parts with respect
to the Lebegue measure Ld, i.e.,

Du = ∇uLd +Dsu,

with ∇u denoting the Radon-Nikodým density of Du with respect to Ld. Without getting into details,
we mention thatDsu is further decomposed into the jump partDju and the Cantor part of the deriva-
tive Dcu. The jump part, is concentrated on the jump set Ju of u which is the set of points where u
exhibits (approximate) jump discontinuities. This is the set of points x ∈ Ω for which u+(x) > u−(x)
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where

u+(x) = inf

{
t ∈ [−∞,∞] : lim

r→0

Ld({u > t} ∩B(x, r))

rd
= 0

}
,

u−(x) = sup

{
t ∈ [−∞,∞] : lim

r→0

Ld({u < t} ∩B(x, r))

rd
= 0

}
,

are the approximate upper and lower limits of u, respectively. The total variation ofDju is then written
as

|Dju|(Ω) =

∫
Ju

|u+ − u−(x)| dHd−1,

with Hd−1 denoting here the d − 1-dimensional Hausdorff measure. The fact that BV functions are
allowed to have jump discontinuities, in contrast to Sobolev objects, renders them particularly suitable
for modeling image intensities as these typically exhibit discontinuities amounting to edges in images.

Besides the strong convergence in BV (norm convergence), two other types of convergence are use-
ful. We say that (un)n∈N converges weakly∗ in BV to u if it converges strongly in L1(Ω) and the
measures (Dun)n∈N converge weakly∗ to Du. This type of convergence is useful since it can be
shown that any bounded sequence in BV has a weakly∗ convergent subsequence (compactness in
BV). On the other hand we say that (un)n∈N converges strictly to u in BV, if it converges strongly
in L1(Ω) and also |Dun|(Ω) → |Du|(Ω). It can be shown that every u ∈ BV(Ω) can be strictly
approximated by C∞(Ω) functions. Regarding embeddings we have that BV(Ω) is continuously em-
bedded into Ld/d−1(Ω) if d ≥ 2 and in L∞(Ω) if d = 1.

Returning now to the corresponding TV regularization problem, which in more generality as before
reads:

minimize
1

p
‖Tu− f‖pY + α|Du|(Ω) over u ∈ BV(Ω). (2.2)

Here Y is a normed space, T : Ld/d−1(Ω) → Y bounded linear, α > 0 and p ≥ 1. Existence
and (potential) uniqueness of (2.2) have been shown in different works in the literature. Let us note
that in order to show existence, in many of these works, a condition of the type T (XΩ) 6= 0 is used,
where XA denotes the characteristic function of a set A ⊂ Ω. This condition reflects that T does not
annihilate constants. However this property is not necessary for an existence proof, one can show that
by using similar techniques as in [26] where the result is shown for TGV instead of TV. We summarize
in the following.

Theorem 2.1. Let Y be a normed space, T : Ld/d−1(Ω) → Y bounded linear, α > 0 and p ≥ 1.
Then the minimization problem (2.2) has at least one solution. If p > 1 and T is injective then the
solution is unique.

We are particularly interested in the parameterization of the problem (2.2), the dependence and struc-
ture of solutions with respect to such parameters. Basic asymptotic results are relatively easy to obtain
and are summarized in the following:

Proposition 2.2. The following asymptotic results hold:

(i) Let (un)n∈N ⊂ BV(Ω) be a sequence of solutions of the problem (2.2) for an increasing
sequence of parameters (αn)n∈N such that αn → ∞. Then there exists a subsequence of
(unk)k∈N and a constant c such that unk → c weakly∗ in BV(Ω) and it also holds

c ∈ argmin
u constant

‖Tu− f‖Y .
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(ii) Let (αn)n∈N be a decreasing parameter sequence such that αn → 0. Then for every sequence
(un)n∈N ⊂ BV(Ω) of the corresponding solutions of the problem (2.2) there holds

‖Tun − f‖Y → 0.

If in addition there exists u∗ such that Tu∗ = f , then there exists a sequence (un)n∈N of
solutions of the problem (2.2), that has a weakly∗ in BV(Ω) convergent subsequence to u∗.

In particular if T maps the set of constant functions to itself then (i) of Proposition 2.2 says that as the
regularization parameter grows then the solutions of (2.2) converge up to a subsequence to a constant
function which is closest to the data f , with respect to ‖ · ‖Y . If Y = L2(Ω) or L1(Ω) for instance,
then this constant will be the mean or median value of f , respectively.

The fine structure of the solutions for the TV minimization problem has also been well studied. The
solutions are characterized by piecewise constant structures, the staircasing effect. For instance it can
be shown [29, 125] that in the one dimensional denoising case, i.e., T = Id and Y = L1(Ω), L2(Ω),
the solution u will be constant in the areas where it is not equal to f (in a certain precise representative
sense). In the denoising case and in higher dimensions, in [41] the authors provide a characterization
of the area that will exhibit staircasing (extended support). In [99], it is shown that flat areas always
occur at global extrema of the data and the extrema of the solution.

Another characteristic of the (isotropic) TV minimization is that no new discontinuities are created in
the solution, up toHd−1 measure. This has only been shown so far for the denoising case.

Theorem 2.3. Let f ∈ L∞(Ω) ∩ BV(Ω) and α > 0. If u is the solution of the problem

min
u∈BV(Ω)

1

2
‖u− f‖2

L2(Ω) + α|Du|(Ω),

thenHd−1(Ju \ Jf ) = 0.

This result was first proven in [39] and was extended in [139], for a wider class of first-order regularizers
including Huber-TV. We note that this result does not hold for the anisotropic TV; see [39, Remark 4]
nor for the L1 fidelity. Furthermore, there is a knowledge gap concerning the jump set inclusion when
the operator T not the identity.

2.2 Total Generalized Variation

Total generalized variation (TGV) is a higher-order extension of TV, which is tighly related to functions
of bounded deformation as pioneered by P.-M. Suquet [134] and then further developed by P. Ciarlet,
R. Temam and G. Strang [52, 137, 138]. TGV was introduced in [28] primarily to reduce the often
unwanted staircasing effect. For vector of two scalar parameters α = (α0, α1), the TGV (of second
order) of a function u ∈ L1(Ω) is defined as follows

TGV2
α(u) = sup

{∫
Ω

u div2φ dx : φ ∈ C∞c (Ω,Sd×d), ‖φ‖2,∞ ≤ α0, ‖divφ‖2,∞ ≤ α1

}
.

(2.3)
Here, Sd×d denotes the space of symmetric d × d matrices. For a function φ ∈ C∞c (Ω,Sd×d) the
first- and second-order divergences are defined as

(divφ)i =
d∑
j=1

∂φij
∂xj

, i = 1, . . . , d, and div2φ =
d∑
i=1

∂2φii
∂x2

i

+ 2
∑
i<j

∂2φij
∂xi∂xj
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Clean Isotropic TGV Isotropic TV

Noisy Anisotropic TGV Anisotropic TV

Figure 4: Comparison between scalar TV and TGV isotropic and anisotropic denoising versions. The
(scalar) regularization parameters have been manually adjusted for optimal SSIM

Similarly with TV, the anisotropic version of TGV can be defined by substituting the finite dimensional
norms ‖ · ‖2,∞ by the corresponding norm ‖ · ‖∞,∞.

In [30] it was shown that a function u ∈ L1(Ω) has finite TGV value if and only if it belongs to
BV(Ω), with the norm ‖ · ‖BGV := ‖ · ‖L1(Ω) + TGV2

α being equivalent to ‖ · ‖BV(Ω). Similarly to
TV, TGV is a convex functional, lower semicontinuous with respect to the strong L1 convergence. In
[26, 30] it was shown that TGV can be equivalently written as

TGV2
α(u) = min

w∈BD(Ω)
α1|Du− w|(Ω) + α0|Ew|(Ω). (2.4)

Here E stands for the distributional symmetrized gradient and BD(Ω) is the space of functions of
bounded deformation, i.e., the space of all functions w ∈ L1(Ω,Rd) such that Ew is an Sd×d-
valued finite Radon measure [134]. The formulation (2.4) of TGV, sometimes called the minimum or
primal representation, or differentiation cascade, gives more insights into its regularizing mechanisms.
Indeed, in areas where the data is close to an affine function, locally the variable w can be equal to
∇u, resulting in a low value of the first term in (2.4). In this case, also the second term has also low
value, since is it roughly equal to E(∇u) = D2u (hence the second-order derivative information). On
the other hand, setting (locally) w = 0 in (2.4) gives back α1|Du|(Ω). Thus, TGV has the possibility
to behave locally both like first- and second-order TV. This means that TGV is more suitable to be
used in reconstruction of piecewise smooth images. Indeed we depict a simple denoising example in
Figure 4.

The asymptotics of TGV with respect to parameters have been studied in [122] with some results also
in [26, 140]. In summary, results analogous to Proposition 2.2 hold for TGV as well, with the difference
that only convergence of either α0 or α1 to zero is enough to give the results of Proposition 2.2 (ii) and
the constant functions are substituted by affine ones in (i). The latter family of functions constitutes
the kernel of the TGV functional.

Of particular interest is whether there exist combinations of parameters such that TGV2
α(u) =

α1TV(u). This can indeed happen for certain special functions u, and in general one can show that
there exist parameters such that TGV is “almost” TV. We summarize this in the following (compare
also [120, 122]).
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Theorem 2.4. There exists a constant C ≥ 0 depending only on the domain Ω such that if with
α = (α0, α1) satisfies α0/α1 > C , then

TGV2
α(u) = α1|Du−mE(∇u)|(Ω), for all u ∈ BV(Ω), (2.5)

where for a function g ∈ L1(Ω,Rd) we define

mE(g) := argmin
w∈KerE

‖g − w‖L1(Ω,Rd). (2.6)

Note here that the kernel of the symmetrized gradient Ker E consists exactly of all the functions of
the form r(x) = Ax + b where b ∈ Rd and A ∈ Rd×d is a skew symmetric matrix. Theorem 2.4
thus states that for a large ratio α0/α1 TGV is (almost) equivalent to TV up to an affine correction.
In practice this means that for such a combination of parameters the reconstructed images still suffer
from a kind of (affine) staircasing effect; see [122].

As far as the structure of solutions is concerned, TGV regularized images have a piecewise affine
structure, as expected. This has been studied analytically mainly in dimension one in [14, 29, 120,
123]. Regarding to whether a result analogous to Theorem 2.3 holds for TGV as well is in general
unknown. Under some additional regularity assumptions a corresponding result can be shown [140].

In the remainder of this exhibition we primarily focus on TV as our model concept. We mention, how-
ever, that the analogous questions, e.g., concerning dualization (next section), bilevel optimization for
selecting α0, α1 and efficient numerical realization are important for TGV, as well. Some of these
problems are in the focus of currently ongoing research in mathematical image processing.

2.3 Dualization

In many circumstances, instead of considering problems of the type (2.2) or its TGV-version it is
convenient to rather study their respective (pre)-dual problem. Dualization is here understood in the
sense of Fenchel–Rockafellar. In particular, for structured classes of nonsmooth variational problems,
duality theory provides a convenient framework for characterising solutions of variational problems
through their associated dual quantities. We also point out that the notion of predualization arises here
due to the non-reflexive nature of BV(Ω) and BD(Ω), respectively. Dualizing the predual of (2.2) yields
(2.2); and analogously for TGV. As we further develop this paper we will address further advantages
of this approach, both on the functional analytic as well as on the algorithmic/numerical level. We start
by briefly reviewing the main duality theorem; for details see [66].

Consider a general variational problem of the form

inf
u∈U

F1(u) + F2(Λu), (2.7)

where U, V are Banach spaces, Λ : U → V is a bounded linear operator, and F1 : U → R,
F2 : V → R are proper, convex, lower semicontinuous functions. The problem (2.7) is referred to as
the primal problem. The dual problem of (2.7) is given by

sup
v∗∈V ∗

−F ∗1 (Λ∗v∗)− F ∗2 (−v∗). (2.8)

Here, Λ∗ : V ∗ → U∗ denotes the adjoint operator of Λ, while F ∗1 : U∗ → R denotes the convex
conjugate of F1, i.e.,

F ∗1 (u∗) = sup
u∈U
〈u∗, u〉U∗,U − F1(u),
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for u∗ ∈ U∗, and similarly for F ∗2 . We denote by inf Pprimal and by supPdual the infimum of (2.7) and
the supremum of (2.8), respectively. The following proposition states that provided these quantities are
equal, the solutions of the two variational problems are connected by an Euler-Lagrange system. From
now on ∂F denotes the subdifferential of the convex function F .

Theorem 2.5. Suppose that both the primal and the dual problems (2.7) and (2.8) have solutions and
that

−∞ < supPdual = inf Pprimal < +∞ (zero duality gap). (2.9)

Then all solutions u, v∗ of the primal and the dual problem, respectively, are related through the
following first-order optimality conditions:

Λ∗v∗ ∈ ∂F1(u), (2.10)

−v∗ ∈ ∂F2(Λu), (2.11)

which are also equivalent to

u ∈ ∂F ∗1 (Λ∗v∗), (2.12)

Λu ∈ ∂F ∗2 (−v∗). (2.13)

Conversely, if u ∈ U and v∗ ∈ V ∗ satisfy (2.10)–(2.11), then they are solutions of (2.7) and (2.8),
respectively, and −∞ < supPdual = inf Pprimal < +∞.

There are several conditions that guarantee zero duality gap, eventually leading to the characterization
(2.10)–(2.11) or (2.12)–(2.13). Below we highlight two of the most useful ones in practice.

Proposition 2.6. Suppose that one of the following conditions holds:

(i) [66, Proposition 2.3] There exists u0 ∈ U such that F1(u0) < ∞, F2(Λu0) < ∞ and F2 is
continuous at Λu0.

(ii) [10] The set
⋃
λ≥0 λ(dom(F2)− Λ(dom(F1))) is a closed subspace of Y .

Then the dual problem (2.8) has a solution and (2.9) holds true.

Our target is to apply this dualization framework to a class of TV and TGV variational problems and
their weighted parameter versions. For that we will first need several definitions.

Definition 2.7. Let 1 ≤ q ≤ ∞ and p ∈ Lq(Ω,Rd). We have divp ∈ Lq(Ω) if there exists
w ∈ Lq(Ω) such that for all φ ∈ C∞c (Ω)∫

Ω

∇φ · p dx = −
∫

Ω

φw dx.

Then we define
W q(div; Ω) :=

{
p ∈ Lq(Ω,Rd) : divp ∈ Lq(Ω)

}
with the norm ‖p‖qW q(div;Ω) := ‖p‖q

Lq(Ω,Rd)
+‖divp‖qLq(Ω). Similarly we define the spaceW q(div2; Ω)

as the space of all functions p ∈ Lq(Ω,Sd×d) whose first- and second-order divergence belong to
Lq, equipped with the norm ‖p‖q

W q(div2;Ω)
:= ‖p‖qLq(Ω) + ‖divp‖q

Lq(Ω,Rd)
+ ‖div2p‖qLq(Ω).
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Using the density ofC∞c inLq, it can be shown that the first- and second-order divergences are unique.
Moreover both spaces above are Banach equipped with the associated norms as stated above. We
refer to [27] for a more general definition of these spaces. Note that when q = 2 then the standard
notation is H(div; Ω) and H(div2; Ω); see [71] for the former space. The spaces W q

0 (div; Ω) and
W q

0 (div2; Ω) are defined as

W q
0 (div; Ω) = C∞c (Ω,Rd)

‖·‖Wq(div;Ω)
,

W q
0 (div2; Ω) = C∞c (Ω,Sd×d)

‖·‖Wq(div2;Ω)

Using the definitions above, the following integration by parts formulae hold true:∫
Ω

∇φ · p dx = −
∫

Ω

φ divp dx, for all p ∈ W q
0 (div; Ω), φ ∈ C∞(Ω,R), (2.14)∫

Ω

Eφ · p dx = −
∫

Ω

φ · divp dx, for all p ∈ W q
0 (div2; Ω), φ ∈ C∞(Ω,Rd), (2.15)∫

Ω

∇φ · divp dx = −
∫

Ω

φ div2p dx, for all p ∈ W q
0 (div2; Ω), φ ∈ C∞(Ω,R), (2.16)

with Eφ denoting the symmetrized gradient of φ.

With these definitions, we can now state the following result for the scalar version of TV and TGV.

Proposition 2.8. Let d > 2, u ∈ Ld/d−1(Ω) and α, α0, α1 > 0

αTV(u) = sup

{∫
Ω

u divp dx : p ∈ W d
0 (div; Ω), ‖p‖2,∞ ≤ α

}
(2.17)

TGV2
α(u) = sup

{∫
Ω

u div2p dx : p ∈ W d
0 (div2; Ω), ‖p‖2,∞ ≤ α0, ‖divp‖2,∞ ≤ α1

}
(2.18)

As we will see later, these equivalent characterizations of the two regularizers are important for the
associated dualization framework for the corresponding regularization problems. The proof of Propo-
sition 2.8 is immediate once the following two density results are shown:

Cα
Ld(Ω)

= Kα, (2.19)

Cα
Ld(Ω)

= Kα, (2.20)

where

Cα :=
{

divφ : φ ∈ C∞c (Ω,Rd), ‖φ‖2,∞ ≤ α
}
, (2.21)

Kα :=
{

divp : p ∈ W d
0 (div; Ω), ‖p‖2,∞ ≤ α

}
, (2.22)

Cα :=
{

div2φ : φ ∈ C∞c (Ω,Sd×d), ‖φ‖2,∞ ≤ α0, ‖divφ‖2,∞ ≤ α1

}
, (2.23)

Kα :=
{

div2p : p ∈ W d
0 (div2; Ω), ‖p‖2,∞ ≤ α0, ‖divp‖2,∞ ≤ α1

}
. (2.24)

Questions regarding density results of the above type deserve a separate discussion. They relate
to a more general category of questions regarding whether for a given Banach space X , a dense
subspace Y = X , and a convex subset C ⊂ X , the following density result holds:

C ∩ Y = C. (2.25)
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We caution the reader that will such density results may be thought of as being available since Y = X ,
there exist striking counterexamples for such a density result (2.25) to fail in general; see [84]. However,
among other results, in [84], the density (2.25) was shown for X = H0(div; Ω) endowed with its
norm, Y = C∞c (Ω,Rd), and

C =
{
p : p ∈ W d

0 (div; Ω), |p(x)| ≤ α(x), for a.e. x ∈ Ω
}
, where α ∈ C(Ω), α > 0.

The proof uses the theory of mollifiers, and the result is generalized to X = W d
0 (div; Ω). Note that

this result is more general than (2.19) where only density for the divergences is required. In fact it is an
interesting question if this result is strictly weaker, i.e., whether there are counterexamples where the
density holds for the divergence (or another differential operator) but not for the full norm. We note that
apart from dualization in variational imaging problems, these type of density results find applications
in the study of the limiting behavior of discretized problems, vanishing viscosity problems and others;
see [84, 87, 90, 91].

The equalities (2.19)–(2.20), that is, the densities only for the first- and second-order divergences
accociated with the TV and TGV functionals were shown in [27, Proposition 3.3] in more generality,
i.e., in the context of TGV of arbitrary order; see also [23, Proposition 7]. The associated proof exploits
duality and uses scalar weights, only. It turns out that it can be easily be adapted to the case where
the weights are continuous functions bounded away from zero.

The case of weighted TGV, for a variety of finite dimensional norms, may also be addressed. It builds
on the following result, for which | · |r denotes the finite dimensional r-norm for 1 ≤ r ≤ ∞, and
r∗ is such that 1/r + 1/r∗ = 1 with the obvious definitions for r = 1,∞. Let α = (α0, α1) with
α0, α1 ∈ C(Ω) and α0, α1 > α > 0, α ∈ R. Define the weighted TGV functional, as follows:

TGV2
α(u) = sup

{∫
Ω

u div2φ dx : φ ∈ C∞c (Ω,Sd×d), (2.26)

|φ(x)|r ≤ α0(x), |divφ(x)|r ≤ α1(x), for all x ∈ Ω}

Then this functional has also the equivalent expression

TGV2
α(u) = min

w∈BD(Ω)

∫
Ω

α1 d|Du− w|r∗ +

∫
Ω

α0 d|Ew|r∗ . (2.27)

Moreover, the weighted TGV functional

TGV2
α(u) = sup

{∫
Ω

u div2φ dx : φ ∈ C∞c (Ω,Sd×d), (2.28)

|φ(x)|r ≤ α0(x), |divφ|r ≤ α1(x), for all x ∈ Ω}

is also equal to

sup

{∫
Ω

u div2p dx : p ∈ W d
0 (div2; Ω), |p(x)|r ≤ α0(x), |divp(x)|r ≤ α1(x), for a.e. x ∈ Ω

}
(2.29)

for all u ∈ Ld/d−1(Ω).

Recapitulating, we have described how the following equalities can be established when α, α0, α1 ∈

DOI 10.20347/WIAS.PREPRINT.2611 Berlin, July 31, 2019



Generating structured non-smooth priors and associated primal-dual methods 17

C(Ω) bounded away from zero, where TVα(u) =
∫

Ω
αd|Du|:

TVα(u) = sup

{∫
Ω

u divp dx : p ∈ W d
0 (div; Ω), |p(x)|r ≤ α(x), for a.e. x ∈ Ω

}
, (2.30)

TGV2
α(u) = sup

{∫
Ω

u div2p dx : p ∈ W d
0 (div2; Ω), (2.31)

|p(x)|r ≤ α0(x), |divp(x)|r ≤ α1(x), for a.e. x ∈ Ω} .

Regarding more general weight functions, at least for TV, the following proposition follows from [77,
Corollary 3.5, Proposition 3.8].

Proposition 2.9 ([77]). Let α ∈ BV(Ω) with 0 ≤ α(x) ≤ C for a.e. x ∈ Ω. Moreover let j(x, z) =
α(x)b(z), with b : Rd → R being a convex, positively 1-homogeneous, even function such that there
exists γ > 0 with b(z) ≤ γ|z| for all z ∈ Rd. Then for every u ∈ BV(Ω) it holds that∫

Ω

j(x,∇u(x)) dx+

∫
Ω

j−(x, σDcu) d|Dcu|+
∫
Ju∩Ω

(u+(x)− u−(x))j−(x, σDju) dHd−1

= sup

{∫
Ω

u divp dx : p ∈ W d
0 (div; Ω), j◦(x, p(x)) ≤ 1, for a.e. x ∈ Ω

}
,

(2.32)
where

j◦(x, z∗) = sup
z:j(x,z)≤1

z∗ · z.

In particular, if α ∈ W 1,1(Ω) with 0 ≤ α(x) ≤ C for a.e. x ∈ Ω and b(z) = |z|r∗ , then∫
Ω

α d|Du|r∗ = sup

{∫
Ω

u divp dx : p ∈ W d
0 (div; Ω), |p(x)|r ≤ α(x), for a.e. x ∈ Ω

}
.

(2.33)

The result of (2.32) also holds for more general integrands j that are not of the type α(x)b(x) but
nevertheless satisfy some boundedness, convexity, and 1-homogeneity assumptions. The associated
proof combines some duality and lower semicontinuity results from [7]. In order to derive (2.33) from
(2.32) note first that if j(x, z) = α(x)b(z) with b(z) = |z|r∗ , then j◦(x, z∗) = |z|r/α(x) which
resolves the right hand side. Moreover, when α ∈ W 1,1(Ω), then for the set of its jump points Jα we
have thatHd−1(Jα) = 0 which implies |Du|(Jα) = 0 for every u ∈ BV(Ω) [8, Lemma 3.76]. Then
we can write α instead of α− and j−(x, z) = α(x)b(z). Thus, in this case the left hand side of (2.32)
equals∫

Ω

α(x)|∇u|r∗ dx+

∫
Ω

α(x)

∣∣∣∣ dDcu

d|Dcu|

∣∣∣∣
r∗
d|Dcu|+

∫
Ju∩Ω

(u+(x)− u−(x))α(x)

∣∣∣∣ dDju

d|Dju|

∣∣∣∣
r∗
dHd−1,

=

∫
Ω

α(x)|∇u|r∗ dx+

∫
Ω

α(x)
d|Dcu|r∗
d|Dcu|

d|Dcu|+
∫
Ju∩Ω

(u+(x)− u−(x))α(x)
d|Dju|r∗
d|Dju|

dHd−1,

=

∫
Ω

α d|Du|r∗

where we have followed the properties of convex functions of measures [58]. We point out that the
supremum on the right hand side of (2.32) is finite if and only if u ∈ BV(Ω). Also, it suffices to have
0 < α ≤ α(x) < C for a.e. x ∈ Ω for some strictly positive constant α.
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2.4 Dualization of the variational regularization problems

The formulation of the TV and TGV regularizers and their weighted versions, of the type (2.30), (2.31)
and (2.33) is the key for establishing the duals of the corresponding regularization problems. We will
state a general duality result only for the weighted TV case which is connected to Proposition 2.9. The
derivation of a corresponding result for TGV is the subject of current research.

The following proposition is a consequence of Proposition 2.9 and [77, Theorem 5.1].

Proposition 2.10 ([77]). Let 1 ≤ p < ∞, α ∈ W 1,1(Ω) with 0 < α < α(x) < C for a.e. x ∈ Ω.
Moreover let (Y , ‖ · ‖Y) be a Banach space, with f ∈ Y , and T ∈ L(Ld/d−1(Ω),Y). Then, there
exists a solution to the primal problem

min
u∈BV(Ω)

1

p
‖Tu− f‖pY +

∫
Ω

αd|Du|r∗ (2.34)

to its predual problem

min

{(
1

p
‖T · −f‖pY

)∗
(divp) : p ∈ W d

0 (div; Ω), |p(x)|r ≤ α(x) for a.e. x ∈ Ω

}
, (2.35)

and zero duality gap holds.

Note that the coercivity condition 0 < α < α(x) < C is not only necessary for the solution of the
primal problem to belong to BV(Ω) but also for the establishment of the duality result itself. However
according to [77, Proposition] it can be omitted provided that the range of T ∗, Rg(T ∗) is closed
and Ker(T ) is finite dimensional. In that case the solution of the primal problem (2.34) cannot be
guaranteed in BV(Ω) but only to Ld/d−1(Ω).

In the special case where B = T ∗T is invertible and p = 2 and Y = L2(Ω), then the predual
problem (2.35) takes a more precise form since(

1

2
‖T · −f‖2

L2(Ω)

)∗
(u∗) =

1

2
(u∗+K∗f,B−1(u∗+K∗f))−1

2
‖f‖2

L2(Ω) =:
1

2
‖u∗+K∗f‖2

B−
1

2
‖f‖2

L2(Ω)

(2.36)
for every u∗ ∈ Ld(Ω); see also [101]. We note that if T ∗T is not invertible then one can add a
quadratic term γ

2
‖u‖2

L2(Ω) for some small γ > 0 in the primal problem (2.34). In that case B =
γI + T ∗T . Moreover the optimality conditions that correspond to (2.10)–(2.11) are

Bu = T ∗f + divp, (2.37)

〈(−div)∗u, p̃− p)〉W d
0 (div;Ω)∗,W d

0 (div) ≤ 0, for all p̃ ∈ W d
0 (div), |p(x)|r ≤ α(x) for a.e. x ∈ Ω,

(2.38)

where u and p solve (2.34) and (2.35), respectively; see [85, 101].

3 Numerical algorithms

In this section we review some of the most popular numerical algorithms for the solution of the non-
smooth variational problems arising in imaging, as these were discussed in the previous section. We
should already mention here that the majority of the algorithms are considered in the discretized setting
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only, that is, in this case images are not modeled as functions on a continuous domain Ω, but rather as
functions defined on a discretized grid Ωh = {1, 2, . . . n} × {1, 2, . . .m} where n ×m is the pixel
resolution of the image. Even though, this seems quite natural and in the end in practice, discretization
will inevitably take place anyway, devising a solution algorithm directly in the discrete setting has its
disadvantages as we shall explain below. But before we come to this, we start with a brief historical
review focusing on the algorithms for the solution of the classical TV minimization problem (1.4).

In the initial paper [126], the TV denoising problem was solved by using a gradient projection method
where the step length was related to a (pseudo) time marching scheme with a constant step length
over all time steps. This approach however is extremely slow even though some improved time step-
ping schemes have been studied, e.g., in [143]. Subsequently, several other (improved) algorith-
mic approaches were developed such as graph cut methods for the anisotropic TV minimization
[53], fixed point iterations [98], augmented Lagrangian-based strategies [136, 146, 147], ADMM and
Douglas-Rachford splitting [131]. Particular attention has been drawn to Bregman iteration methods
[72, 117, 69, 148]. A particular characteristic of this family of methods is the reduction of contrast loss
(bias) which is characteristic to these derivative based regularization methods see [31] as well as [16]
for a review.

It has become widely accepted that the most efficient and applicable techniques to solve non-smooth
variational problems (not only the L2–TV problem) are based on convex duality. First works can be
found in [40, 42] and [45]. A very popular current method is the Primal-Dual hybrid gradient method
(PDHGM) or otherwise called Chambolle-Pock algorithm [43] and its extensions; see [44] for a com-
prehensive review of the corresponding family of methods. These methods are aiming to find solutions
to saddle-point problems of the following form

min
x∈X

max
y∈Y
〈Kx, y〉+G(x)− F ∗(y) (3.1)

where typically X, Y are finite dimensional real vector spaces, G,F are proper, convex, lower semi-
continuous functions. andK : X → Y is a continuous linear operator. Using the Fenchel–Rockafellar
duality theory presented in the previous section it can be shown that (x, y) solves (3.1) if and only if
x and y solve the following primal and dual problems, respectively, i.e.,

min
x∈X

F (Kx) +G(x),

max
y∈Y

−G∗(−K∗y)− F ∗(y).

The Chambolle–Pock iteration then reads as follows

yk+1 = proxσF ∗(yk + σKxk+1), (3.2)

xk+1 = proxτG(xk − τK∗yk), (3.3)

xk+1 = xk+1 + θ(xk+1 − xk). (3.4)

Apparently, it consists of an alternation of a (proximal) descent in the primal variable x and an as-
cent in the dual variable y followed by an extrapolation step. The Chambolle–Pock algorithm is also
a popular method of choice when it comes to solving inverse problems involving the TGV functional
[20, 24, 95, 100]. Its popularity stems from the fact that the prox operations in (3.2)–(3.3) can typi-
cally be computed cheaply leading to an easy implementation. Unfortunately, even though one obtains
good reconstructions after relatively few iterations, solving the problem to high accuracy with this and
any other first-order method (given some objective stopping rule; other than closeness of successive
iterates, which is not objective and may stop the iteration prematurely due to negligible progress of the
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chosen iterative solver) typically leads to an excessive number of iterations. Sufficiently high accuracy,
however, turns out to be particularly desirable in the context of the bilevel optimization problems that
we discuss in the present exposition. A second issue that is often not addressed well by first-order
algorithms is (image) resolution independent convergence, which is typically connected to function
space algorithms [86]. Resolution independence refers here to the fact that, given an objective stop-
ping rule and an initial iterate common to all resolution levels, the number of iterations to satisfy such
a stopping rule is robust under refinements of the resolution of a given image datum (over a bounded
domain).

In view of the issues highlighted in the previous paragraph, we now turn our attention to Newton-type
methods. In its very basic form, Newton’s method aims to solve a nonlinear system

F (x) = 0, (3.5)

with F : Rn → Rn differentiable, by an iteration which, given some initial guess x0, computes a root
of a current linearization of (3.5) at every step, i.e., one finds for k = 0, 1, 2, ... an update direction dk

with

∇F (xk)dk = −F (xk), (3.6)

xk+1 := xk + dk. (3.7)

For x0 close to x∗ with the matrix ∇F (x∗)−1 being (uniformly) invertible along the iterates, the iter-
ates converge at a rate that depends on the order of continuity of ∇F . More specifically, the rate of
convergence is (q-)quadratic when∇F is Lipschitz, and the rate is (q-)superlinear for Hölder continu-
ous∇F . Relaxations on the regularity of F can still yield convergent Newton methods, with the most
relevant regularity here being semismoothness [78, 112, 124]. Of particular interest are semismooth
Newtons in Banach spaces [50, 78]. For the rest of this section we give a basic account on such
methods and how they can be used for the accurate solution of the TV (and TGV) problems.

Suppose that F : D ⊂ X → Z , where X,Z are Banach space and D is an open set, and we are
interested in finding x∗ ∈ D such that F (x∗) = 0. We assume that the map F is generalized (or
Newton) differentiable on an open set U ⊂ D, that is, there exists a family of mappings G : U →
L(X,Z) such that

lim
d→0

1

‖d‖X
‖F (x+ d)− F (x)−G(x+ d)d‖Z = 0, (3.8)

for all x ∈ U . This condition extends a characterization of semismoothness in finite dimensions
to possibly infinite dimensional Banach spaces. The operator G is referred to as the generalized
(or Newton) derivative of F at x. Note that G need not be unique. However, when F is Fréchet
differentiable at X , then G(x) is unique and equals the Fréchet derivative of F at x. For some given
x0 ∈ U , the corresponding semismooth Newton iteration reads

dk = −G(xk)−1F (xk), k = 0, 1, 2, 3, . . . (3.9)

xk+1 = xk + dk, (3.10)

where G(xk) is an arbitrary generalized derivative of F at xk. Then the following convergence result
is available [78].

Proposition 3.1. Let x∗ be a solution of F (x) = 0 and F be Newton differentiable in an open
neighborhood U containing x∗. Assume furthermore that G(x) is nonsingular for all x ∈ U and that
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the set {‖G(x)−1‖ : x ∈ U} is bounded. Then, provided ‖x0 − x∗‖X is sufficiently small, the
semismooth Newton iteration (3.9)–(3.10) is well-defined and converges superlinearly to x∗, i.e.,

lim
x→x∗
x 6=x∗

‖xk+1 − x∗‖X
‖xk − x∗‖X

= 0.

Under suitable assumptions, it can be shown that semismooth Newton methods exhibit a discretiza-
tion independent convergence [93, 76]. In fact, for sufficiently small mesh sizes (for discretizing the
associated Banach spaces) either the number of iterations of the discretized method is essentially
constant with respect to the mesh size, or that the discretized method achieves essentially the same
convergence rate independently of the mesh size. We now show how this framework can be applied
for the solution of the TV-type variational problem.

We start with TV and in particular of the (anisotropic) TV predual problem withL2 fidelity, (2.35)–(2.36):

min
p∈W d

0 (div;Ω)

1

2
‖divp+ T ∗f‖2

B

subject to |p(x)|∞ ≤ α(x) for a.e. x ∈ Ω,

(3.11)

where α ∈ W 1,1(Ω) is a weight function. In order to address the constrained minimization problem
(3.11) with Newton methods we substitute the box constraints by the following penalty functional (which
equals as smoothed version of the Moreau-Yosida regularization with respect to the L2(Ω)-norm of
the indicator of the constraint set in (3.11))

Pδ(p, α) :=

∫
Ω

d∑
i=1

(Gδ(−(pi + α)) +Gδ(pi − α)) dx (3.12)

where p = (p1, . . . , pd) and Gδ : R→ R,

Gδ(r) =


1
2
r2 − δ

2
r + δ2

6
, if r ≥ δ,

r3

6δ
, if 0 < r < δ,

0, if r ≤ 0,

(3.13)

for δ > 0. The idea is that when the quantity Pδ(p, α) is small then p is expected to approximately
satisfy the box constraints in (3.12). This is achieved by multiplying this term by 1/ε with ε sufficiently
small. We note that if one is interested only in solving the reconstruction problem via a dual approach,
the additional smoothing by δ > 0 is not needed. One may rather directly work with the aforemen-
tioned Moreau-Yosida regularization. In the context of bilevel optimization, however, the dual of the
reconstruction problem becomes a constraint thus asking for additional smoothing (hereby expressed
by Gδ with δ > 0) for a subsequent derivation of stationarity conditions of the bilevel problem.

Note that Pδ(p, α) is well-defined if both p and α enjoy L2 regularity. As α ∈ W 1,1(Ω), this would
be automatically satisfied for α for d = 2 by Sobolev embedding; otherwise L2-regularity must be
assumed in addition. As far as p is concerned, L2 regularity results from the minimization process
anyway. For uniqueness of a solution p in (3.11) a multiple of the L2-norm of p may be added to the
objective. The resulting modified predual problem reads

min
p∈H1

0 (Ω)d

β

2
‖∇p‖2

L2(Ω)d +
γ

2
‖p‖2

L2(Ω)d +
1

2
‖divp+ T ∗f‖2

B +
1

ε
Pδ(p, α). (3.14)
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The reason for the additional H1
0 -regularization (typically with 0 < β � α ≤ α(x) for x ∈ Ω) for p

is the facilitation of the convergence analysis of the Newton method in function space as well as the
need for differentiability of the solution map α 7→ p(α), which is necessary in the context of bilevel
optimization. Observe that the homogeneous Dirichlet boundary conditions on p aim to capture the
boundary conditions associated with space W d

0 (div; Ω). It can be shown that the associated Euler–
Lagrange system for (3.14) reads for V = H1

0 (Ω)d

〈−β∆p+ γp−∇B−1divp−∇B−1T ∗f, v〉V ∗,V +
1

ε
〈Pδ(p, α), v〉L2(Ω)d,L2(Ω)d = 0, ∀v ∈ V.

(3.15)
Here the Laplacian ∆ : H1

0 (Ω)d → [H1
0 (Ω)d]∗ is defined as 〈∆p, v〉V ∗,V =

∑d
k=1

∫
Ω
∇pk ·∇vk dx.

Moreover Pδ : H1
0 (Ω)d × L2(Ω)→ L2(Ω)d is defined as

Pδ(p, α) := G′δ(p− α1)−G′δ(−p− α1),

where p− α1 = (p1 − α, . . . , pd − α) and similarly for −p− α1. Furthermore,

G′δ(r) =


r − δ

2
, if r ≥ δ,

r2

2δ
, if 0 < r < δ,

0, if r ≤ 0,

(3.16)

In other words the equation (3.15) is of the type F (p) = 0 where F : H1
0 (Ω)d → [H1

0 (Ω)d]∗ with

F (p) = −β∆p+ γp−∇B−1divp−∇B−1T ∗f +
1

ε
Pδ(p, α). (3.17)

The regularized version (3.14) is consistent with the original predual problem (3.11) in the sense
that when the parameters β, γ and ε tend to zero then the divergences of the approximate solu-
tions converge to the divergence of the solution of the original problem in the appropriate sense;
see [85, Theorem 5.1]. In the same work (Theorem 5.2), differentiability properties were established
for the solution mapping α 7→ p(α) where p(α) solves (3.15). In particular it was shown that
p(·) : L2+ξ(Ω) → H1

0 (Ω)d is Gâteaux differentiable, for every ξ ∈ (0, ξ(d)], where ξ(d) = +∞
for d = 1, ξ(d) ∈ [0,∞) for d = 2 and ξ(d) = 2d/(d − 2) for d > 2. While such results are
needed for deriving stationarity conditions in bilevel optimization (where α also becomes an optimiza-
tion variable), we stress once again that the H1

0 -regularity (which lifts the smoothness of p) is crucial
for establishing such a result.

As noted above, one may indeed choose δ = 0 [101]. Then we getG′0(r) = max(r, 0) which is (still)
a semismooth mapping when considered from Lr(Ω) to L2(Ω), 2 < r; see [78]. Even though, in this
case one can still devise a convergent Newton algorithm, which is in fact equivalent to an (efficient
to implement) primal-dual active strategy [78, 101], here we prefer to keep δ > 0, as we need the
differentiability property of α 7→ p(α) for the bilevel optimization scheme.

Algorithm 1 displays the corresponding function space version of Newton’s method ((3.9)–(3.10), in
general terms) specified for solving the equation (3.15).

Before we close this section we would like to make a few remarks regarding the term γ
2
‖p‖2

L2 in the
TV regularised predual problem (3.14). Similar statements apply to the TGV-context. The first remark
is that in practice one can set γ = 0, which suggests that the bilateral constraints impose some type
of uniqueness. Alternatively, still for γ = 0, one may add a projection onto the (nontrivial) kernel of
div to the objective of the predual problem in order to guarantee uniqueness of a solution p. The other
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Algorithm 1
Function space Newton algorithm for the solution of the regularized TV dual problem (3.14)

Initialise: p0 ∈ H1
0 (Ω)d

while stopping criterion not satisfied do
Find δkp ∈ H1

0 (Ω)d such that

−∇B−1divδkp−β∆δkp+γδkp+
1

ε

(
G′′δ(p

k − α1) +G′′δ(−pk − α1)
)
δkp = −F (pk), in H−1(Ω)d

Update pk+1:

pk+1 = pk + δkp

end while

remark concerns γ > 0. In this case, this type of L2-regularization of the predual problem, typically
corresponds to a Huber regularization of the regularizing functional in the primal problem. In order to
elaborate on this, consider the Huber function ϕ : R→ R+ [97]

ϕ(t) =

{
|t| − γ

2
, if |t| ≥ γ,

1
2γ
t2, if |t| ≤ γ

(3.18)

which constitutes a local smoothing of the absolute value function. Then one can define the (isotropic)Huber
total variation functional as follows

TVϕ(u) =

∫
Ω

ϕ(|∇u|) dx+ |Dsu|(Ω), u ∈ BV(Ω) (3.19)

as well as the corresponding variational problem

min
u∈BV(Ω)

1

2
‖Tu− f‖2

L2(Ω) + αTVϕ(u), (3.20)

(here written only) for a scalar α > 0. Consequently, one can show (see [75]) that the predual of
(3.20) is (up to a constant)

min
p∈W d

0 (div;Ω)

1

2
‖divp+ T ∗f‖2

B +
γ

2α
‖p‖2

L2(Ω)

such that |p(x)|∞ ≤ α(x) for a.e. x ∈ Ω.

(3.21)

Also in [75] an alternative Newton approach for the solution of the TV minimization problem was pro-
posed. Indeed, instead of using Newton to solve the first-order optimality condition of the regularized
predual problem, it was used to solve the primal-dual optimality conditions of the type (2.10)–(2.11)
which correspond to the primal and the predual Huber-TV problems (3.20), (3.21) respectively, with
an additional small H1-regularity term µ

2

∫
Ω
|∇u|2dx in the primal problem. As µ, with 0 < µ � α,

tends to zero a solution of the Huber-TV problem is approached.

4 Bilevel Optimization

In order to construct a structured non-smooth TV- or TVG based prior (or regularization term) we
will resort to a bilevel optimization technique. Given some image data f , such an approach aims at
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optimizing with respect to both simultaneously, the regularization weight α and the reconstruction u.
For this purpose we collect several basic notions and concepts in bilevel programming. For the ease of
exposition we tailor the general discussion to the problem structure which is relevant in our subsequent
image processing context. For a general introduction to bilevel programming in finite dimensions we
refer to [59, 106], and to [13, 114] for a respectively limited access to infinite dimensional settings.

4.1 Background

Consider the following hierarchical optimization problem

min F(v, β) over (v, β)

s.t. β ∈ Bad ⊂ B,

v ∈ argmin{G(w; β) : w ∈ Vad ⊂ V }.
(4.1)

Here, V and B denote Banach spaces, Vad and Bad associated non-empty, closed and convex sub-
sets, respectively. Further,F : V ×B → R and G : V → R are assumed continuously differentiable
functions. Problem (4.1) constitutes a bilevel optimization problem for (v, β), where F represents the
upper level objective and Bad the upper level constraint set. Further, G is the objective of the lower
level optimization problem with lower level constraints Vad. Note that the optimization variable β enters
the lower level problem as a parameter only, i.e., we may consider v = v(β), assuming that the lower
level problem admits a solution. Clearly, more general settings of (4.1) with respect to constraints and
objective requirements (on both levels, respectively) are conceivable, but would go beyond the scope
of this presentation.

Bilevel problems are notoriously delicate. In order to grasp some of the inherent complexities, we next
discuss exemplarily some of the structural challenges. First, in case G is non-convex (or Vad is non-
convex), still assuming existence of a solution to the lower level problem, computing a feasible point
of (4.1) requires to compute a global (!) solution to a non-convex minimization problem, which resides
in the constraint set of the overall problem. This, however, cannot be guaranteed by any of the current
state-of-the-art solvers which makes the computation of a feasible point elusive, not even speaking of
a minimizer of (4.1). Moreover, typically optimization solvers operate on first-order characterizations
(KKT-system or Euler-Lagrange equation) of solutions. Replacing the lower level problem by KKT-
conditions yields an overall minimization problem which follows a standard structure of a nonlinear
program, but this new problem would not be equivalent to the original bilevel problem. For instance,
when Vad := {w ≤ b} ⊂ H1

0 (Ω) with b ∈ H1
0 (Ω) the KKT-system associated with the lower level

problem reads

G ′(v; β) + λ = 0 in H−1(Ω), (4.2)

v ≤ b, λ ≥ 0 in H−1(Ω), 〈λ, v − b〉H−1,H1
0

= 0, (4.3)

where 〈·, ·〉H−1,H1
0

denotes the duality pairing between the Sobolev space H1
0 (Ω) =: V and its

(topological) dual H−1(Ω) = V ∗. In this case, using this KKT-system instead of the lower level
problem would yield the following mathematical program with equilibrium constraints (MPEC) (see,
e.g., [106, 79] for rather general accounts of MPECs)

min F(v, β) over (v, λ, β)

s.t. β ∈ Bad ⊂ B,

G ′(v; β) + λ = 0 in H−1(Ω),

v ≤ b, λ ≥ 0 in H−1(Ω), 〈λ, v − b〉H−1,H1
0

= 0,

(4.4)
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which is no longer equivalent to (4.1), in general. Equivalence is, however, regained when G is convex.
In this case, the KKT-system is necessary and sufficient for characterizing a solution to the lower level
problem. Hence, one may study (4.4) analytically and also numerically. But the reader should be
cautioned that (4.4), while appearing to be yet another nonlinear program in Banach space as studied,
e.g., in [149], suffers from notoriously degenerate constraints. In order to illustrate this, we focus only
on the complementarity system

v ≤ b, λ ≥ 0 in H−1(Ω), 〈λ, v − b〉H−1,H1
0

= 0 (4.5)

in the constraint set of (4.4). Moreover, to ease the discussion we assume that λ admits L2(Ω) reg-
ularity. The latter is often realistic under addition regularity requirements on the problem data. In this
case we have

〈λ, v − b〉H−1,H1
0

= 0 ⇔
∫

Ω

λ (v − b)dx = 0 ⇔ λ (v − b) = 0 a.e. in Ω.

From the latter relation it is straightforward to see that the typical surjectivity requirement of linearized
constraints for the existence of multipliers (see [149]; Zowe-Kurcyusz-Robinson (ZKR) constraint qual-
ification (CQ)) fails at the presence of a biactive set

B := {x ∈ Ω : λ(x) = 0, v(x) = b(x)}

at a solution (v, λ, β) with |B| > 0 where | · | denotes the d-dimensional Lebesgue measure. This
jeopardizes the existence of (bounded) Lagrange multipliers and thus the availability of a KKT-system,
which is typically the starting point for numerical solvers.

Assuming that G is strictly convex (over the non-empty, closed and convex set Vad) yields a unique
solution v = v(β) of the lower level problem. One may now reduce (4.1) to a problem in β by
considering β 7→ v(β). This results in

min F̂(β) := F(v(β), β)

s.t. β ∈ Bad ⊂ B.
(4.6)

In case Bad is simple, this may at first glance appear to be a tractable minimization problem. A closer
inspection, however, reveals that while β 7→ v(β) is often found to be (locally) Lipschitz continuous,
this map is not Fréchet differentiable in general. Consequently, F̂ is typically not Fréchet differentiable,
even if F : V × B → R enjoys Fréchet differentiability. Moreover, even if all constituents in (4.1) are
convex, the reduced objective F̂ : B → R may still be non-convex only. Summarizing, solving (4.6)
amounts to minimizing a non-smooth and non-convex objective over a constraint set Bad, which is
a very delicate task. Some of the involved issues relate to computability of generalized derivatives
of F̂ , the design of an optimization solver guaranteeing descent from one iterate to the next, and the
availability of a computable stopping rule. Concerning the latter note that due to the non-smoothness of
F̂ one can only expect a set-valued generalized derivative ∂F̂(β) at a solution β. Given the properties
of Bad, a stationarity condition of (4.6) then reads

0 ∈ ∂F̂(β) +NBad(β), (4.7)

where we assume that a sum rule for differentiation applies, and NBad(β) denotes the normal cone to
Bad at β. Note that NBad(β) = ∂IBad(β) where IBad is the indicator function of Bad, i.e., IBad(β) = 0
if β ∈ Bad and IBad(β) = +∞ otherwise, and ’∂’ is the subdifferential of convex analysis. Now, an
iterative solver of (4.6) typically has only one generalized gradient of F̂ at its disposal per iteration.
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Assuming simple constraints in Bad allowing for an explicit characterization of NBad(β), this still ren-
ders checking of (4.7) at an iterate elusive as information on the entire set ∂F̂(β) would be needed,
in general. If, however, F̂ is Fréchet differentiable at β, then (4.7) requires to compute F̂ ′(β) and to
check whether

−F̂ ′(β) ∈ NBad(β),

which is tractable when NBad(β) admits an explicit representation.

Let us next assume that B is reflexive, B 3 β 7→ v(β) ∈ V is directionally differentiable, rendering
F̂ directionally differentiable as well. Starting from (4.7) and noting that TBad(β) = NBad(β)◦ :=
{d ∈ B : 〈d, µ〉B,B∗ ≤ 0 for all µ ∈ NBad(β)}, we characterize a solution β to (4.6) by

F̂ ′(β; d) ≥ 0, for all d ∈ TBad(β). (4.8)

Here, F̂ ′(β; ·) denotes the directional derivative of F̂ at β and TBad(β) is the tangent cone to Bad

at β. The latter is the polar cone of NBad(β), i.e., NBad(β)◦. The characterization (4.8) is called
B(ouligand)-stationarity condition. In the stated form, it is generally difficult to check numerically. With
the availability of an explicit characterization of v′(β; ·), however, this condition may be related to a
specific minimization task; see, e.g., [82]. In such cases, often also equivalence to so-called strong sta-
tionarity may be shown. Through the explicit characterization of v′(β; ·), strong stationarity (or briefly
S-stationarity) is a primal-dual condition (similar to the KKT-system in classical nonlinear program-
ming, with the (Lagrange) multipliers constituting the dual variables [149]), whereas B-stationarity is a
purely primal concept. It is well known that in general it is not possible to devise a numerical solution
scheme which guarantees to terminate successfully at an S-stationary point. In special instances, e.g.,
under certain constraint regularity, however, algorihms may discover S-stationary points; see, e.g., [9]
for a finite dimensional account and [81] for a specific infinite dimensional instance.

Depending on the problem structure, besides B- and S-stationarity the notions of C(larke)- and
M (ordukhovich)-stationarity are relevant. From the viewpoint of numerical computability,C-stationarity
is the most attractive format; see, e.g., [92]. For more on stationarity conditions in infinite dimensions
we refer to [79, 82] and the references therein, and to [129] for an exposition in finite dimensions.

We end this section by returning to (4.1) under the assumption that Vad = V and G is (twice) con-
tinuously differentiable and convex. In view of convexity of the lower level problem and (4.4) we may
replace (4.1) equivalently by

min F(v, β) over (v, β)

s.t. β ∈ Bad ⊂ B,

G ′(v; β) = 0 in V ∗.

(4.9)

Since G ′ is once more differentiable, one may apply classical KKT-theory in Banach space [149] to
obtain a primal-dual characterization of a solution to (4.9), provided G ′′(v, β) along with Bad satisfies
the ZKR-CQ. This CQ also allows to locally reduce the problem through the implicitly defined function
β 7→ v(β) with G ′(v(β), β) = 0. Similar to before, this yields (4.6). Under our smoothness require-
ments and non-degeneracy assumption on G ′′ at (v(β), β) (through ZKR-CQ) the implicit function
theorem yields (local) differentiability of β 7→ v(β) and, thus, of β 7→ F̂(β). In this case, (4.6) may
be solved numerically by a projected gradient method, provided the structure of Bad is sufficiently
simple allowing for an efficient computation of the projection of the iterates. The latter viewpoint will
be relevant in our numerical approach to computing structured non-smooth priors in the subsequent
sections of this paper.
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Figure 5: Illustration for the suitability of the functional F (R·), see (4.10)–(4.11), as an upper level
objective. Evaluation of F (Ru) where u solves the (anisotropic, unregularized) primal TV (left) and
TGV (right) denoising problems for a variety of scalar regularization parameters α and (α0, α1), re-
spectively. The points where this functional is minimal, respectively, is in both cases close to the points
that maximize the PSNR. The minimum (for F (R·)) and maximum (for PSNR) points are denoted with
a bullet in all graphs. We used the values σ = 0.00798, σ = 0.01202 and w a spatially invariant
averaging filter of size 7× 7.

4.2 Bilevel optimization–a monolithic approach

The exposition of this section is related to [85, 88] and the references therein which address an auto-
mated statistics-based selection of the weight function α in TV minimization problems. In this way, a
data-motivated structuring of a non-smooth prior will be obtained. As we mentioned in the introduction
as well, the main idea of these approaches is to minimize a suitable upper level objective over both,
the image u and the regularization parameter α subject to u being a solution to a (regularized) vari-
ational regularization problem with parameter α. As a consequence of Fenchel-Rockafellar duality,
equivalently the predual problem can be used instead of the primal problem in the lower level.

The upper level objective we discuss here is based on localized residuals. The latter are defined as a
function R : L2(Ω)→ L∞(Ω) by

Ru(x) :=

∫
Ω

w(x, y)(Tu− f)2(y)dy (4.10)

We note that Ru(x) can be interpreted as a local variance. Indeed, given Gaussian noise of variance
σ2 and zero mean, we have

∫
Ω

(Tutrue − f)2 dx =
∫

Ω
η2 dx = σ2|Ω|. Consequently, if a recon-

structed image u is close to utrue then it is expected that for every x ∈ Ω, Ru(x) will be close to
σ2. Hence it is natural to consider an upper level objective which aims to keep Ru within certain tight
bounds σ, σ where σ < σ < σ. This can be achieved through the function F : L2(Ω)→ R with

F (v) :=
1

2

∫
Ω

max(v − σ2, 0)2dx+
1

2

∫
Ω

min(v − σ2, 0)2dx. (4.11)

Hence, by minimizing F (Ru) one aims to find Ru close to the variance σ2. In order to illustrate the
viability of this choice of an upper level objective we evaluate the upper objective functional F (R·) for
a series of scalar TV denoising restorations obtained from a variety of parameters α for the example
image shown in the introduction (Figures 1, 2 and 3). As we see in Figure 5, the minimum value of
the functional F (R·) is achieved for scalar parameter values α (for TV), and (α0, α1) (for TGV) that
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are not far away from those that are optimizing the PSNR. Note moreover that in order to optimize the
PSNR one needs the ground truth image utrue! This, however, is not the case for F (R·).

As we have also discussed previously we must impose also certain regularity for the regularization
parameters α in order for the dualization results to hold. Here we impose H1-regularity which turns
out to also facilitates existence and differentiability analysis, even though the consideration of lower
regularity of α is certainly of interest. Furthermore, for reasons we discuss later, we need to constrain
these parameters in box sets of the type

Aad = {α ∈ H1(Ω) : α ≤ α ≤ α}, (4.12)

A0
ad = {α0 ∈ H1(Ω) : α0 ≤ α0 ≤ α0},
A1
ad = {α1 ∈ H1(Ω) : α1 ≤ α1 ≤ α1},

(4.13)

for TV and TGV, respectively. Here α, α ∈ L2(Ω) with 0 < ε0 ≤ α(x) < α(x) − ε1 in Ω for some
ε1 > 0 and similary for α0, α0 and α1, α1.

Recalling that the localized residuals can be expressed in terms of the dual variables p as

Ru(x) = R(divp)(x) =

∫
Ω

w(x, y)
(
TB−1divp− (TB−1T ∗ − I)f

)2
dy, (4.14)

Ru(x) = R(div2p)(x) =

∫
Ω

w(x, y)
(
TB−1div2p− (TB−1T ∗ − I)f

)2
dy, (4.15)

for the TV and TGV problems, respectively, the associated bilevel problems (which are related to (4.9)
with appropriate settings for the various constituents) are given by

min JTV(p, α) := F (R(divp)) +
λ

2
‖α‖2

H1(Ω) over (p, α) ∈ H1
0 (Ω)d ×Aad

s.t. p ∈ argmin
p∈H1

0 (Ω)d

β

2
‖∇p‖2

L2(Ω)d +
γ

2
‖p‖2

L2(Ω)d +
1

2
‖divp+ T ∗f‖2

B +
1

ε
Pδ(p, α),

(PTV)

and

min JTGV(p, α0, α1) := F (R(div2p)) +
λ0

2
‖α0‖2

H1(Ω) +
λ1

2
‖α1‖2

H1(Ω)

over (p, α) ∈ H2
0 (Ω,Sd×d)×A0

ad ×A1
ad

s.t. p ∈ argmin
p∈H2

0 (Ω,Sd×d)

β

2
‖∆p‖2

L2(Ω,Sd×d) +
γ

2
‖p‖2

L2(Ω,Sd×d) +
1

2
‖T ∗f − div2p‖2

B

+
1

ε0
Qδ(p, α0) +

1

ε1
Pδ(divp, α1).

(PTGV)

Here, Sd×d refers to the set of real, symmetric d× d matrices.

Existence of solutions to the problems (PTV) and (PTGV) can be shown using standard arguments;
see for instance [85, Theorem 6.1] for the TV-case. We note that as we have shown in the dualiza-
tion section, H1-regularity of α suffices to establish the connection between the primal and predual
problems in the TV case. In [88], α was further enforced to be a C(Ω)-function which was guaranteed
by a regularity result of H1-projections onto the set Aad which was part of the associated solution
algorithm. In particular the following result was shown [88, Corollary 2.3].

Proposition 4.1. Let Ω ⊂ Rd, d ≤ 3, be a bounded convex set and

A = {α ∈ H1(Ω) : α ≤ α ≤ α}, with α, α ∈ H2(Ω),
∂α

∂ν
=
∂α

∂ν
= 0. (4.16)
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Let PA : H1(Ω)→ A ⊂ H1(Ω) denote the projection operator, that is

PA(ω) := argmin
α∈A

1

2
‖α− ω‖2

H1(Ω), ω ∈ H1(Ω).

Then, if ω∗ = PA(ω), the following implication holds true:

ω ∈ H2(Ω) and
∂ω

∂ν
= 0 =⇒ ω∗ ∈ H2(Ω) and

∂ω∗

∂ν
= 0.

Furthermore,

max(‖ω∗‖H2(Ω), ‖ω∗‖C0,r(Ω)) ≤ C
(
‖Lω‖L2(Ω) + ‖Lα‖L2(Ω) + ‖Lα‖L2(Ω)

)
for some r ∈ (0, 1) and with L = −∆ + I .

Hence, in order for C(Ω) regularity for the weight function α to be guaranteed by the projection it
suffices thatα,α satisfy the conditions in (4.16). In particular this is satisfied when these are constants.
Furthermore, since–as we will see later in the algorithm–this projection is performed in an iterative
fashion, the initialization for α must satisfy (4.16).

As we have discussed in the previous section, it is not yet shown that W 1,1 regularity for α0 and α1

suffices to establish a dualization framework for TGV, even though one expects that it can be shown
with similar arguments. Hence, for TGV we will follow the H1-projection regularity result as described
above. In fact as we will see in the (preliminary) numerics for TGV, we treat only α1 as a spatially
varying function and α0 remains a constant.

We make another remark regarding the box constraints for the parameters (4.12) and (4.13). In [56] it
was shown that a PSNR-optimizing upper level objective J̃(u, α) = ‖u(α)− f‖2

L2(Ω) subject to H1

and Huber-regularized TV and TGV denoising problems produces under some mild conditions optimal
scalar solutions α and (α0, α1) that are strictly positive. This, however, appears to require to solve a
nonconvex problem to global optimality. Although, as we have already depicted in Figure 5, the upper
level objective we discuss here is not far away from optimizing the PSNR, keeping the parameters
strictly positive via (4.12) and (4.13) seems indeed necessary.

Let us next address how to treat the bilevel problems (PTV) and (PTGV) algorithmically. For this pur-
pose, let α 7→ p(α) and (α0, α1) 7→ p(α0, α1) denote the solution map of the lower level problems,
equivalently the solutions of the optimality conditions (3.15) and analogously for the TGV problem.
Then the problems (PTV) and (PTGV) admit the following reduced versions

min ĴTV(α) := JTV(p(α), α), over α ∈ Aad , (4.17)

min ĴTGV(α0, α1) := JTGV(p(α0, α1), α0, α1), over α0 ∈ A0
ad, α1 ∈ A1

ad. (4.18)

In view of our general discussion in the preceding subsection we have arrived at the level of (4.6) with
corresponding settings for F̂ , β, v(β) and Bad and a smooth, i.e., differentiable reduced objective.
Indeed, the reduced functional ĴTV : H1(Ω) → R is differentiable as a composition of differentiable
functions. One can show a similar results for ĴTGV, as well. We note however that from now on we
will consider only scalar α0 yielding A0

ad = {α0 ∈ R : α0 ≤ α0 ≤ α0} where α0, α0 ∈ R, and
also we set λ0 := 0 in (PTGV).

In order to proceed, we now recall some basic facts from optimization (Karush-Kuhn-Tucker) theory
in Banach spaces [149] adapted to our purposes. Let V,A, Z be Banach spaces, X = V × A,
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θ : X → R and g : X → Z continuously Fréchet differentiable functions. Let, moreover, C ⊂ X be
a non-empty, closed convex set. Consider the problem{

min
x∈X

θ(x)

s.t. x ∈ C and g(x) = 0.
(4.19)

and suppose that the following constraint qualification holds for a solution x of (4.19)

g′(x)[C(x)] + {λg(x) : λ ≥ 0} = Z, where C(x) = {λ(c− x) : c ∈ C, λ ≥ 0}. (4.20)

Then there exists an adjoint state (Lagrange multiplier) z∗ ∈ Z∗ that fulfills the following condition
[149]

θ′(x)− z∗(g′(x)) ∈ C(x)+, (4.21)

where C(x)+ := {x∗ ∈ X∗ : x∗(x) ≥ 0, for all x ∈ C(x)}.
Assume now that for every ξ ∈ A the equation g(x) = 0 has a unique solution v(ξ) ∈ U , that is
g(v(ξ), ξ) = 0. Further assume that gv(v(ξ), ξ) ∈ L(V, Z) is continuously differentiable. Then from
the implicit function theorem (see, e.g., [94] for details), we get that v(ξ) is continuously differentiable.
Then one can define the reduced problem min

ξ∈A
θ̂(ξ) := θ(v(ξ), ξ)

s.t. ξ ∈ Ĉ := {ξ ∈ A : (v(ξ), ξ) ∈ C},
(4.22)

where now θ̂ is differentiable as well. The derivative of the reduced functional θ̂′ ∈ A∗ can be then
computed with the help of z∗ as follows

θ̂′(ξ) = θξ(v(ξ), ξ) + gξ(v(ξ), ξ)∗z∗, (4.23)

where gξ(v(ξ), ξ)∗ ∈ L(Z∗,A∗) is the adjoint operator of gξ(v(ξ), ξ) ∈ L(A, Z).

Coming back to our bilevel problems, we can easily see that the above abstract framework can be
adjusted to the problems (PTV), (PTGV) and their corresponding reduced problems (4.17) and (4.18).
Indeed considering (PTV) first, we set V = H1

0 (Ω)d, A = H1(Ω), Z = V ∗, C = V × Aad,
T (x) = JTV(p, α) and

gTV(x) = −β∆p+ γp−∇B−1divp−∇B−1T ∗f +
1

ε
Pδ(p, α)

Then it can be shown that all necessary differentiability results hold; see [85] for details, and the
corresponding condition to (4.21) read for the adjoint variable q ∈ V and an optimal pair (p, α) ∈
V ×A

〈div∗J ′0(divp), p〉V ∗,V + 〈−β∆q + γq −∇B−1divq +
1

ε
D1Pδ(p, α)q, p〉V ∗,V = 0, (4.24)

〈λ(−∆ + I)α +
1

ε
(D2Pδ(p, α))∗q, α− α〉A∗,A ≥ 0, (4.25)

for all p ∈ V and for all α ∈ Aad, where J0 := F (R·). Moreover D1 and D2 denote derivatives with
respect to the variables p and α, respectively.
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The reduced derivative of ĴTV can be computed as

Ĵ ′TV(α) = λ(−∆ + I)α +
1

ε
(D2Pδ(p(α), α))∗q(α) (4.26)

where q(α) solves (4.24) for α = α and p = p(α).

Turning now to the bilevel TGV-problem (PTGV), the corresponding, spaces, sets and functions will be
V = H2

0 (Ω,Sd×d), A = R ×H1(Ω), Z = V ∗, C = V × A0
ad × A1

ad, T (x) = JTGV(p, α0, α1)
and

g(x) = β∆2p+ γp+∇2B−1div2p−∇2B−1T ∗f +
1

ε0
Qδ(p, α0)− 1

ε1
∇Pδ(divp, α1)

The adjoint variable q ∈ V satisfies for an optimal triplet (p, α0, α1)

〈(div2)∗J ′0(div2p, p)〉V ∗,V + 〈β∆q + γp+∇2B−1div2q +
1

ε0
D1Qδ(p, α0)q

− 1

ε1
D1∇Pδ(p, α1)q, p〉V ∗,V = 0,

(4.27)

〈λ(−∆ + I)α1 −
1

ε1
(D2∇Pδ(p, α1))∗q, α1 − α1〉H1(Ω)∗,H1(Ω) ≥ 0, (4.28)

〈 1

ε0
(D2Qδ(p, α0))∗q, α0 − α0〉R,R ≥ 0, (4.29)

for all p ∈ V , α0 ∈ A0
ad and α1 ∈ A1

ad. The derivative of the reduced objective is then computed by

Ĵ ′TGV(α0, α1) = λ(−∆ + I)α1 +

(
1

ε0
(D2Qδ(p, α0)),− 1

ε1
(D2∇Pδ(p, α1))

)∗
q(α0, α1) (4.30)

where again q(α0, α1) solves (4.27) for α0 = α0, α1 = α1 and p = p(α0, α1).

For the reduced derivatives we have that Ĵ ′TV(α) ∈ H1(Ω)∗ and Ĵ ′TGV(α0, α1) ∈ (H1(Ω) × R)∗.
In order to obtain the gradient of these functional which are essential for the design of gradient based
descent algorithms we can apply the inverse Riezs maps to the reduced gradients as follows

∇ĴTV(α) := R−1
H1 Ĵ

′
TV(α) ∈ H1(Ω), (4.31)

∇ĴTGV(α0, α1) :=
(
R−1
H1P1Ĵ

′
TGV(α0, α1), P2Ĵ

′
TGV(α0, α1)

)
∈ H1(Ω)× R, (4.32)

where for (r1, r2) ∈ H1 × R we have

Ĵ ′TGV(α0, α1)[r1, r2] = P1Ĵ
′
TGV(α0, α1)[r1] + P2Ĵ

′
TGV(α0, α1)[r2].

The above representation of the derivative and gradients of the reduced functional together with the
regularity results for theH1–projection provide the basis for devising a function space based projected
gradient algorithm. Indeed such an algorithm is devised in [88] (compare Algorithm 1 in that reference)
for the case of bilevel TV and it can be similarly done for bilevel TGV.
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Original Standard grid Staggered grid

Figure 6: Comparison of the standard versus staggered grid discretization see [86]. The latter pro-
duces a sharper result which is closer to the one belonging to the original functional space problem.

5 Numerical examples

In the section we will provide some numerical examples for the bilevel TV and TGV algorithms which
aim to solve the discretized versions of (PTV) and (PTGV), respectively. We will also discuss some
discretization and algorithmic aspects.

In the discrete setting, (grayscale) images are considered as functions from Ωh → R where Ωh =
{1, 2, . . . , n} × {1, 2, . . . ,m} is a discrete cartesian grid that corresponds to the image pixels. We
defined the mesh size, that is the distance between the grid points as h = 1/

√
nm. All the discrete

differential operators will be computed on these points. However we also emphasize that computing
primal, dual variables as well as differential operators and their adjoints in different points has to be
done with care. First, one has to devise discretizations which respect, on the discrete level, the relation
between a discrete operator (including boundary conditions) and its associated adjoint. Moreover, so-
called inf-sup-stability of the discretization is relevant. It takes care of a robust relation between the
primal and dual problems under resolution refinements. For the predual of the TV problem, it has
been found [86] that a staggered grid discretization of the vector field p and the associated differential
operators successfully eliminates some discretization artifacts. We depict such an example in Figure
6 where the dual TV denoising problem (isotropic) is solved by using a standard discretization and a
staggered grid as it is described in [86]. It is known theoretically [111] that applying the isotropic L2–
TV denoising problem with data f being a characteristic function of a disk yields as result a rescaled
version of f (simple constrast lost). However this is not the case with the standard discretization as
a certain smoothing is observed on edges not aligned with the grid. By using a staggered grid this
effect is essentially eliminated. We would also like to point out that examples like this demonstrate
the necessity of studying variational imaging problems in function space setting in order to study the
models independently of discretization artifacts. Further uses of staggered grid discretization methods
can also be found in [73, 136].

5.1 Discrete operators for (PTV)

We will generally keep the same notation for the discrete differential operators (than for continuous
ones). We set the following discrete function spaces

Uh = RΩh , Wh = Uh × Uh.

For a function u ∈ Uh the discrete `2 norm is defined as

‖u‖2
`2(Ωh) = h2

∑
(i,j)∈Ωh

|ui,j|2 (5.1)
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We define the discrete gradient ∇ : Uh → Wh and divergence operator div : Wh → Uh such that
they satisfy the adjoint relation ∇ = −div>. For p = (p1, p2) ∈ Wh the divergence is defined with
standard backward differences as

(divp)i,j =
1

h

(
p1
i,j − p1

i−1,j + p2
i,j − p2

i,j−1

)
, (i, j) ∈ Ωh

setting p1
ĩ,j̃

= p2
ĩ,j̃

= 0 if (̃i, j̃) falls outside the grid (ghost grid points). We also need to defined the

discrete vectorial Laplacian ∆ : Wh → Wh where ∆p = (∆Dp
1,∆Dp

1) with ∆D : Uh → Uh. In
order to be consistent with the function space setting where p ∈ H1

0 (Ω)2 the discrete Laplacian must
impose zero Dirichlet boundary conditions, hence (following good practice in numerical analysis) we
avoid defining ∆D as div∇ as the latter would result in (unsuitable) mixed boundary conditions. Thus,
we define ∆D using the discrete five-point Laplacian stencil

1
h2 × 1 -4 1

1

1

and again setting pĩ,j̃ = 0 for ghost grid points. We will also make use of the discrete Laplacian with
zero Neumann boundary conditions ∆N : Uh → Uh which will be used to act on the weight function
α. These are the desired boundary conditions for α dictated by Proposition 4.1. For this purpose, we
use the same stencil but we set the function value of ghost grid points to be the same as the function
value of the nearest grid point in Ωh. We follow a similar approach for the∇div : Wh → Wh operator
for the denoising case where there T = B = Id. We discretize∇div directly as follows

(∇divp)i,j =
1

h2

(
p1
i+1,j − 2p1

i,j + p1
i−1,j + p2

i+1,j − p2
i+1,j−1 − p2

i,j + p2
i,j−1

p2
i,j+1 − 2p2

i,j + p2
i,j−1 + p1

i,j+1 − p1
i−1,j+1 − p1

i,j + p1
i−1,j

)
by setting again zero values outside the grid. Typically, in the implementations the variables are re-
garded as long vectors resulting from concatenating the columns of the pixel mask based matrix
representation.

We will also need discrete version ofH1-types of norms and norms of the corresponding duals spaces.
For the discrete H1-norm acting on the weight function we use

‖α‖H1(Ωh) = h
√
α>(I −∆N)α (5.2)

while the dual norm is defined as

‖r‖H1(Ωh)∗ = ‖(I −∆N)−1r‖H1(Ωh) = h
√
r>(I −∆N)−1r (5.3)

based on the H1(Ω) → H1(Ω)∗ Riezs map α 7→ r = (I − ∆N)α. We will also use the discrete
dual H1

0 (div,Ωh)-norm as

‖v‖∗H1
0 (div,Ωh) = h

√
v>(I −∇div)−1v. (5.4)

For the discrete version of the averaging filter in the definition of the localized residuals (4.10) we use
a spatially invariant averaging filter of size nw × nw, that is, with entries of equal value whose sum is
equal to one.
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With these definitions the discrete version of (PTV) is the following
min

1

2
‖(R(divp)− σ2)+‖2

`2(Ωh) +
1

2
‖(σ2 −R(divp))+‖2

`2(Ωh) +
λ

2
‖α‖2

H1(Ωh)

over (p, α) ∈ Wh × (Aad)h

such that − β∆Dp+ γp−∇B−1divp−∇B−1T ∗f +
1

ε
Pδ(p, α) = 0.

(Ph
TV)

Here we have

(Aad)h = {α ∈ Uh : α ≤ αi,j ≤ α, for all (i, j) ∈ Ωh}, (5.5)

and R(divp) being a discrete convolution, for which here we use periodic boundary conditions. The
penalty function Pδ : Wh → Wh is also defined straightforwardly in the discrete setting by point-wise
application of the function G′δ.

Regarding the choice of the lower and upper bounds for the local variance σ2 and σ2, respectively, we
follow here the rules

σ2 = σ2

(
1 +

√
2

nw

)
, σ2 = σ2

(
1−
√

2

nw

)
(5.6)

where σ2 is the variance of Gaussian noise which is assumed to be known. The derivation of the
formulae (5.6) is done using statistics of the extremes; see [88, Section 4.2.1].

We now proceed with describing the algorithm for the numerical solution of (Ph
TV). In fact, we use a

discretized projected gradient method with Armijo line search for globalization. The discretized gradient
of the reduced functional is computed with the help of the adjoint equation which is the discrete version
of (4.24). We summarize this in Algorithm 2.

We note that in the algorithm above 1 denotes the matrix [Id; Id] of size nm× 2nm.

A few remarks on the solution of the lower level problem are in order. The target is to solve the problem
for sufficiently small ε using Algorithm 1. In order to ensure robustness, we employ a path following
approach which, starting for a large ε`, successively solves gTV,ε(p

`, α) = 0 for ε = ε` until a fixed
tolerance

gTV,ε`(p
`+1, α) < tol(l)

is reached. Then ε`+1 is obtained by decreasing ε` by a factor 0 < θε < 1. This yields ε`+1 :=
max(θεε

`, ε) for some 0 < ε� 1; compare also [88, Algorithm 3].

The projection P(AAd)h is computed by applying a semismooth Newton method to the associated
minimization problem. It adapts the path-following method developed in [80] to the projection problem;
compare [88, Algorithm 4]. We just mention here that the original discretized H1–projection problem
P(Aad)h(α̃) min

1

2
‖α− α̃‖2

H1(Ωh) :=
h

2
(α− α̃)>(I −∆N)(α− α̃)

over α ∈ (Aad)h = {α ∈ Uh : α ≤ αi,j ≤ α}
(5.7)

is substituted by the following version where the constraint is treated by a penalty term

min
α∈Uh

1

2
‖α− α̃‖2

H1(Ωh) +
1

2εα

(
‖(α− α)+‖2

`2(Ωh) + ‖(α− α)+‖2
`2(Ωh)

)
(5.8)

for some small εα > 0.
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Algorithm 2
Discretized projected gradient method for the solution of the bilevel TV image reconstruction problem
(Ph

TV)

Input: f , α, α, σ, σ, λ, β, γ, ε, δ, nw τ 0, 0 < c < 1, 0 < θ− < 1 ≤ θ+

Initialise: α0 ∈ Ahad and set k := 0.
repeat

Use Algorithm 1 to compute the solution pk of the lower level problem

gTV(pk, αk) := −β∆Dp
k + γpk −∇B−1divp−∇B−1T ∗f +

1

ε
Pδ(p

k, αk) = 0

Solve the adjoint equation for qk

−∇B−1divqk − β∆qk + γqk+
1

ε

(
G′′δ(p

k − αk1) +G′′δ(−pk − αk1)
)
qk

= 2∇B−1T ∗divpk
(
w ∗

(
(R(divpk)− σ2)+ − (σ2 −R(divpk))+

))
Compute the reduced derivative

Ĵ ′TV(αk) =
1

ε
1>
(
−G′′δ(pk − αk1) +G′′δ(−pk − αk1)

)
qk + λ(I −∆N)αk

Compute the reduced gradient

∇ĴTV(αk) = (I −∆N)−1Ĵ ′TV (αk)

Compute the trial point αk+1 = P(Aad)h

(
αk − τ k∇ĴTV(αk)

)
while ĴTV(αk+1) > ĴTV(αk) + cĴ ′TV(αk)>(αk+1 − αk) do (Armijo line search)

Set τ k := θ−τ
k and re-compute αk+1 = P(Aad)h

(
αk − τ k∇ĴTV(αk)

)
end while
Update τ k+1 = θ+τ

k and k := k + 1
until some stopping condition is satisfied

5.2 Bilevel TV numerical experiments

For the test images depicted in Figure 7 with resolution n = m = 256, we now depict some examples
where we compare some weighted TV reconstructions, produced by Algorithm 2, with scalar TV ones.

Cameraman Parrot Turtle Hatchling

Figure 7: Test images, resolution 256× 256.
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We first report the values of the different parameters that we used for these numerical examples. For
the lower level problems parameters we used β = 10−4, γ = 10−4, δ = 10−3, ε = 10−8. Initially the
lower level problem is solved for ε0 = 10−3 and subsequently decreased by a factor of θε = 0.6 down
to a final values ε = 10−8. For every εl each problem is solved up to an accuracy tol(l) = 10−10.
The equation in Algorithm 1 corresponds to a linear system in finite dimensions. Here we simply
used MATLAB’s backslash command, even though preconditioned conjugate gradient methods can
be used as well; see [75, 101]. For the H1-projection we used εα = 10−8. For the constraint set
(Aad)h we used α = 10−8 and α = 10−2. For the upper level objective of the bilevel problem we
chose λ = 10−9 and w to be a nw × nw filter normalized (i.e., with entries 1/n2

w), with nw = 7.
The local variance barriers σ2 and σ2 were set according to (5.6). Since we are depicting examples
with σ2 = 102 and σ2 = 4× 10−4 the corresponding values for (σ, σ) are (0.00798, 0.01202) and
(3.2 × 10−4, 4.8 × 10−4). For the Armijo line search parameters we set τ 0 = 10−3, c = 10−8,
θ− = 0.25 and θ+ = 2. The vector p0 is chosen to be the zero vector.

Note that since we are confronted essentially with a non-convex problem, i.e., the reduced objective is
non-convex, initialization of the algorithm with respect to α is crucial. Here we follow [88] and set the
initial regularization weight sufficiently large α0 = 2.5 × 10−3 so that the associated initial image is
cartoon-like.

We depict some first examples in Figure 8. There we have corrupted the images in Figure 7 with
Gaussian noise of variance σ2 = 0.01. In the second row we depict the best scalar TV examples,
where the scalar parameter has been manually optimized via a bisection procedure with step 0.125×
10−4. We depict here the examples that correspond to the optimal parameters with respect to the
Structural Similarity Index SSIM [144]; see also Table 1 for the optimal PSNR values as well. In the
third row we depict the weighted TV denoising images u with the corresponding weight functions α
in the fourth row. Note that the weighted TV reconstructions are better both visually and with respect
to both, PSNR and SSIM. In fact we see that the weight functions get well adapted to the structure of
the images, having lower values in areas of high details and larger in homogeneous areas. Thus, we
obtained a structured non-smooth prior.

σ2 = 0.01 Cameraman Parrot Turtle hatchling

best scalar α for PSNR 27.54, 0.7857 28.88, 0.8119 29.27, 0.7924, 27.57, 0.7597

best scalar α for SSIM 27.19, 0.8064 28.51, 0.8421 29.11, 0.8044 27.46, 0.7687

bilevel TV 27.85, 0.8259 28.96, 0.8477 29.60, 0.8176 27.55, 0.7750

σ2 = 4× 10−4 Cameraman Parrot Turtle hatchling

best scalar α for PSNR 36.26, 0.9364 37.29, 0.9448 37.31, 0.9394 36.31, 0.9471

best scalar α for SSIM 35.80, 0.9460 37.03, 0.9492 37.06, 0.9443 36.02, 0.9521

bilevel TV 36.30, 0.9486 37.01, 0.9476 37.50, 0.9481 35.82, 0.9479

Table 1: PSNR and SSIM comparisons for the images of Figures 8 and 9. Every cell contains the
corresponding PSNR and SSIM value.

We depict a second series of examples in Figure 9, where we have used the same example images
but with considerable lower Gaussian noise of variance σ2 = 4 × 10−4. There we see that the low
level of noise can make the weighting function α to adapt even more to the data. In the “cameraman”
and “turtle” images, again the weighted TV result outperforms the best scalar TV one both in SSIM
and PSNR; see again Table 1. In the “Parrot” the best scalar results are slightly better in terms of SSIM
and PSNR, but perhaps not visually. The same holds for the “hatchling” image. We believe that this is
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PSNR=20.00, SSIM=0.3304 PSNR=20.04, SSIM=0.2773 PSNR=19.99, SSIM=0.2448 PSNR=20.00, SSIM=0.3349

PSNR=27.19, SSIM=0.8064 PSNR=28.51, SSIM=0.8421 PSNR=29.11, SSIM=0.8044 PSNR=27.46, SSIM=0.7687

PSNR=27.85, SSIM=0.8259 PSNR=28.96, SSIM=0.8477 PSNR=29.60, SSIM=0.8176 PSNR=27.55, SSIM=0.7750

Figure 8: First row: images corrupted with Gaussian noise of variance σ2 = 0.01. Second row: Best
scalar TV reconstructions in terms of SSIM. Third row: weighted TV reconstructions. Fourth row: the
spatially adapted weight function α

due to the fact that in both of these images, the clean image itself already contains some noise – this
is indeed the case in the background of the parrot image – which is still significant given the low level
of artificial noise. In the “hatchling” image in fact, oscillatory features of different scale dominate. The
bilevel TV also interferes with this type of noise which is naturally present in the images resulting in a
lower PSNR and SSIM. Nevertheless the bilevel TV images are still visually more amenable than their
best manually optimized scalar TV reconstructions.
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PSNR=34.00, SSIM=0.8403 PSNR=34.03, SSIM=0.8355 PSNR=33.99, SSIM=0.8184 PSNR=33.95, SSIM=0.8837

PSNR=35.80, SSIM=0.9460 PSNR=37.03, SSIM=0.9492 PSNR=37.06, SSIM=0.9443 PSNR=36.02, SSIM=0.9521

PSNR=36.30, SSIM=0.9486 PSNR=37.01, SSIM=0.9476 PSNR=37.50, SSIM=0.9481 PSNR=35.82, SSIM=0.9479

Figure 9: First row: images corrupted with Gaussian noise of variance σ2 = 4 × 10−4. Second row:
Best scalar TV reconstructions in terms of SSIM. Third row: weighted TV reconstructions. Fourth row:
the spatially adapted weight function α

5.3 Discrete operators for (PTGV)

We now turn our attention to the discretized version of the bilevel TGV problelm (PTGV). For that we
need to defined the discrete function space

Vh = Uh × Uh × Uh,

associated with the predual p, i.e., p = (p11, p12, p22) with p11, p12, p22 ∈ Uh. In this problem, for the
discrete gradient and divergence we have, ∇ : Wh → Vh and div : Vh → Wh satisfying again the
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Figure 10: Symmetric finite difference stencil for the second-order derivative operators
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Figure 11: Finite difference stencils that constitute the discrete bi-Laplacian ∆2

adjoint relation∇ = −div>. For p ∈ Vh, the divergence is defined again as

(divp)1
i,j =

1

h
(p11
i,j − p11

i−1,j + p12
i,j − p12

i,j−1), (i, j) ∈ Ωh,

(divp)2
i,j =

1

h
(p12
i,j − p12

i−1,j + p22
i,j − p22

i,j−1), (i, j) ∈ Ωh,

setting again zero values at the ghost nodes. For the second-order gradient ∇2 : Uh → Vh we have
that∇2 = (Dxxu,Dxyu,Dyyu), where Dxx, Dxy, Dxy are operators Uh → Vh and are defined us-
ing the stencils as shown in Figure 10 with zero values at ghost points. Note that the use of symmetric
differences for the mixed derivative results to a symmetric matrix for the matrix representing Dxy.
The resulting operators Dxx, Dxy, Dyy are self-adjoint. Hence for the discretized second divergence
div2 : Vh → Uh, we have div2p = Dxxp

11 + 2Dxyp
12 +Dyyp

22. The vector bi-Laplacian is an op-
erator Vh → Vh where p 7→ (∆2p11,∆2p12,∆2p22) with ∆2 = Dxxxx +Dyyyy +Dxxyy +Dyyxx.
The resulting stencil for the ∆2 is as shown in Figure 11. In order to reflect the boundary condi-
tions of H2

0 (Ω,S2×2), the bi-Laplacian must be endowed with both, homogeneous Neumann and
homogeneous Dirichlet boundary conditions. Again this is enforced by considering at any ghost points
(up to two of them in the boundary) zero value. Finally we discuss the discretization of the operator
∇2div2 : Vh → Vh, which is equal to

(∇2div2p)11 = Dxxxxp11 + 2Dxxxyp12 +Dxxyyp22

(∇2div2p)12 = Dxyxxp11 + 2Dxyxyp12 +Dxyyyp22

(∇2div2p)22 = Dyyxxp11 + 2Dyyxyp12 +Dyyyyp22

where in fact it holds Dxxxy = Dxyxx, Dxxyy = Dxyxy = Dyyxx and Dxyyy = Dyyxy.
For these fourth-order discretized differential operators we use the stencils shown in Figure 12-13:
and also using again the same rule to enforce homogeneous Neumann and homogeneous Dirichlet
boundary conditions.

We remark that the matrix representing the operator ∇2div2 described above will not be symmetric
due to the factor of 2 multiplying the terms concerning p12. This leads to a non-symmetric linear
system when employing a Newton-type iteration. However, having a symmetric matrix is beneficial as
this can lead to a more efficient and robust solution of the corresponding linear system via iterative
solvers, such as, e.g., conjugate gradients. A possible remedy to solve for (p11, 2p12, p22) rather than
(p11, 2p12, p22). This eliminates the factor 2 in the p12 part of the matrix that represents ∇2div2. In
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Figure 12: Finite difference stencils that constitute the discrete bi-Laplacian ∆2
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Figure 13: Symmetric finite difference stencil for the fourth order derivative operators

this case, however, other operators must be modified as well. For instance, the vector bi-Laplacian
must take the form (∆2, 1

2
∆2,∆2), similarly for the other differential operators. The functions Qδ and

Pδ must be accordingly modified as well. The following version of the discrete dual H2
0 (Ωh)

∗-norm is
used for termination purposes:

‖v‖∗H2
0 (Ωh) = h

√
v>(I + ∆2)−1v. (5.9)

We also use the discrete H1(Ωh)
∗-norm as in (5.3) along with the discrete Riezs map α1 7→ (I −

∆B)α1 as in the case of bilevel TV. We are now ready to write down the discrete version of (PTGV):
min

1

2
‖(R(div2p)− σ2)+‖2

`2(Ωh) +
1

2
‖(σ2 −R(div2p))+‖2

`2(Ωh) +
λ

2
‖α1‖2

H1(Ωh)

over (p, α0, α1) ∈ Vh × (A0
ad)h × (A1

ad)h

s.t. β∆2p+ γp+∇2B−1div2p−∇2B−1T ∗f +
1

ε0
Qδ(p, α0)− 1

ε1
∇Pδ(divp, α1) = 0.

(Ph
TGV)

Here we have

(A0
ad)h = {α0 ∈ R : α0 ≤ α0 ≤ α0},

(A1
ad)h = {α ∈ Uh : α1 ≤ (α1)i,j ≤ α1, for all (i, j) ∈ Ωh}.

The discrete penalty functions Pδ : Wh → Wh and Qδ : Vh → Vh are defined in the obvious way.
We use the same rule as in (5.6) for the choice of σ2, σ2.

The corresponding projected gradient algorithm for the numerical solution of (Ph
TGV) is stated in Algo-

rithm 3.

For the sake of notation, here 1 notes a matrix either of form [Id; Id] or [Id; Id; Id] of size nm×2nm
or nm × 3nm, respectively, depending on whether it is applied to α1 or α0. On the other hand, 1
denotes a matrix of size 1 × 3nm with all entries equal to one. The projection P(A1

ad)h is computed
as in the bilevel TV algorithm while P(A1

ad)h(α0) = max(min(α0, α0), α0). As in the TV case, also
here a path following scheme is used to solve gTGV,ε0,ε1(p, α0, α1) = 0. This is done successively
for ε0 = ε`0, ε1 = ε`1 down to a tolerance

gTGV,ε`0,ε
`
1
(p`+1, α0, α1) ≤ tol(l)
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Algorithm 3
Discretized projected gradient method of the solution of the bilevel TGV image reconstruction problem
(Ph

TGV)

Input: f , α0, α0, α1, α1, σ, σ, λ, β, γ, ε0, ε1, δ, nw τ 0
0 , τ 0

1 , 0 < c < 1, 0 < θ− < 1 ≤ θ+

Initialise: α0
0 ∈ (A0

ad)h, α0
1 ∈ (A1

ad)h and set k = 0.
repeat

Use a Newton-type method to compute the solution pk of the lower level problem

gTGV(pk, αk0, α
k
1) := β∆2pk+γpk+∇2B−1div2pk−∇2B−1T ∗f+

1

ε0
Qδ(p

k, αk0)− 1

ε1
∇Pδ(divpk, αk1) = 0

Solve the adjoint equation for qk

β∆2qk + γqk +∇2B−1div2qk +
1

ε0

(
G′′δ(p

k − αk01) +G′′δ(−pk − αk01)
)
qk

− 1

ε1
∇
(
G′′δ(divpk − αk11) +G′′δ(−divpk − αk11)

)
divqk

= −2∇B−1T ∗div2pk
(
w ∗

(
(R(div2pk)− σ2)+ − (σ2 −R(div2pk))+

))
Compute the reduced derivatives with respect to α0 and α1

Ĵ ′TGV,α0
(αk0, α

k
1) =

1

ε0
1
(
−G′′δ(pk − αk01) +G′′δ(−pk − αk01)

)
qk

Ĵ ′TGV,α1
(αk0, α

k
1) = − 1

ε1
∇
(
−G′′δ(divpk − αk11) +G′′δ(−divpk − αk11)

)
qk + λ(I −∆N)αk1

Compute the reduced gradients

∇α0 ĴTGV(αk0, α
k
1) = Ĵ ′TGV,α0

(αk0, α
k
1), ∇α1 ĴTGV(αk0, α

k
1) = (I −∆N)−1Ĵ ′TV(αk0, α

k
1)

Compute the trial points

αk+1
0 = P(A0

ad)h

(
αk0 − τ k0∇α0 ĴTGV(αk0, α

k
1)
)
, αk+1

1 = P(A1
ad)h

(
αk1 − τ k1∇α1 ĴTGV(αk0, α

k
1)
)

while

ĴTGV(αk+1
0 , αk+1

1 ) > ĴTGV(αk0, α
k
1)

+ c
(
Ĵ ′TGV,α0

(αk0, α
k
1)>(αk+1

0 − αk0) + Ĵ ′TGV,α1
(αk0, α

k
1)>(αk+1

1 − αk1)
)

do(Armijo line search)
Set τ k0 := θ−τ

k
0 , τ k1 := θ−τ

k
1 and re-compute

αk+1
0 = P(A0

ad)h

(
αk0 − τ k0∇α0 ĴTGV(αk0, α

k
1)
)
, αk+1

1 = P(A1
ad)h

(
αk1 − τ k1∇α1 ĴTGV(αk0, α

k
1)
)

end while
Update τ k+1

0 = θ+τ
k
0 , τ k+1

1 = θ+τ
k
1 and k := k + 1

until some stopping condition is satisfied
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and then setting ε`+1
0 := max(θεε

`
0, ε0), ε`+1

1 := max(θεε
`
1, ε1) for some 0 < θε < 1.

5.4 Bilevel TGV numerical experiments

Here we will show a few numerical examples produced by Algorithm 3. The same test images as for
the bilevel TV case were used; see Figure 7. For the lower level TGV problem we used β = 10−3,
γ = 0, δ = 10−6, ε0 = 10−12, ε1 = 10−12. Initially the lower problem is solved for ε00 = 103,
ε01 = 103 and each of these successively decreased by the same factor θε = 0.05 down to finite
values ε0 = ε1 = 10−12.

We again used backslash for the solution of the linear systems, but sophisticated iterative solvers may
be employed as well. We set α0 = 10−7, α0 = 10−2, while for the H1-projection we used again
εα = 10−10, and α1 = 10−7, α1 = 10−2. The normalized filter w and the local variance barriers σ2

and σ2 were chosen as before. For the Armijo line search we set τ 0
0 = 1, τ 0

1 = 10−12, while c, θ−,
θ+ were chose as in the TV case.

We note that extra attention must be paid to the initialization of the algorithm. As in the TV case α0
0

and α1
0 must be large enough in order to produce cartoon-like images, providing the local variance

estimator with useful information. However, if α0 is initially too large then there is a danger of following
into the regime of Theorem 2.4, in which the TGV functional and hence the solution map of (at least the
non-regularized) lower level problem does not depend onα0. This means that there is a danger that the
derivative of the reduced functional with respect to α0 will be close to zero, thus making only negligible
progress towards optimality. This behavior was confirmed by intensive numerical experimentation.
Note that an analogous phenomenon can hold also in the case where α0 is much smaller than α1.
Then the effect of α1 becomes negligible. In fact this has been shown in [122, Proposition 2] for
dimension one, but numerical experiments indicate that this can indeed be also a viable scenario in
higher dimensions. In our examples we used α0

0 = and α0
1 = 9× 10−4 and 3.125× 10−6.

We show the results in Figure 14. Once again we notice in general a clear improvement in image
quality in comparison to the best scalar TGV results. The only exception is again the “hatchling” image
where the scalar TGV result is slightly better than the weighted TGV one, even though the latter one
is able to preserve better the detailed features in the eyes region. Finally in Figure 15 we depict for
the sake of comparison the regularization functions α and α1 for the weighted TV and TGV results
respectively, that correspond to the Figures 8 and 14.
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