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Semi-tractability of optimal stopping problems via a weighted
stochastic mesh algorithm

Denis Belomestny, Maxim Kaledin, John G. M. Schoenmakers

Abstract

In this article we propose a Weighted Stochastic Mesh (WSM) algorithm for approximating the
value of discrete and continuous time optimal stopping problems. It is shown that in the discrete
time case the WSM algorithm leads to semi-tractability of the corresponding optimal stopping
problem in the sense that its complexity is bounded in order by ε−4 logd+2(1/ε) with d being
the dimension of the underlying Markov chain. Furthermore we study the WSM approach in the
context of continuous time optimal stopping problems and derive the corresponding complexity
bounds. Although we can not prove semi-tractability in this case, our bounds turn out to be the
tightest ones among the complexity bounds known in the literature. We illustrate our theoretical
findings by a numerical example.

1 Introduction

The theory of optimal stopping is concerned with the problem of choosing a time to take a particu-
lar action, in order to maximize an expected reward or minimize an expected cost. Such problems
can be found in many areas of statistics, economics, and mathematical finance (e.g. the pricing prob-
lem of American options). Primal and dual approaches have been developed in the literature giving
rise to Monte Carlo algorithms for high-dimensional discrete time stopping problems. Solving high-
dimensional discrete optimal stopping problems is usually based on a backward dynamic program-
ming principle which is in some sense contradictory to the forward nature of Monte Carlo simulation.
Much research was focused on the development of fast methods to compute approximations to the
optimal value function. Most of these methods include a kind of regression on Monte Carlo paths,
see [4] for an overview. One of the most widely adopted regression algorithms by practitioners is the
Longstaff-Schwartz (LS) algorithm. It is based on approximating conditional expectations using the
least-squares regressions on a given basis of functions in each backward induction step. Longstaff
and Schwartz [14] demonstrated the efficiency of their least-squares approach through a number of
numerical examples, and in [6] and [18] general convergence properties of the method were estab-
lished. In particular, it follows from Corollary 3.10 in [18] that for a fixed number L of stopping oppor-
tunities and a popular choice of polynomial basis functions of degree less or equal to m, the error of
estimating the corresponding value function at one point is of order

5L

(√
md

N
+

1

mα

)
, (1)

where N is the number of paths used to perform regression, α ≥ 1 is related to smoothness of the
corresponding conditional expectation operator, d is the dimension of the underlying state space. On
the other hand, the computational cost of the least-squares MC algorithm is of order Nm2dL due to
the computation of a (random) pseudo-inverse at every stopping date. After balancing the variance
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D. Belomestny, M. Kaledin, J. G. M. Schoenmakers 2

and the approximation errors in (1), one obtains that complexity of the least-squares approach, that is,
the (minimal) number of “elementary” evaluations needed to construct an approximation for the value
function with accuracy ε, is bounded up to a constant not depending on L by

CL (ε, d) =
L 5L(2+3d/α)

ε2+3d/α
. (2)

This implies

lim sup
d↗∞

lim sup
ε↘0

log CL (ε, d)

d log(ε−1)
= 3/α. (3)

Furthermore, if we next want to construct an approximation for a continuous time optimal stopping
problem, then we need to let L→∞ resulting in the complexity bound:

C∞(ε, d) = O

(
ε−1/β 5(2+3d/α)ε−1/β

ε2+3d/α

)
,

where it is assumed that the error due to the time discretization is of order L−β for some 0 < β < 1,
independent of d. This implies that

lim
ε↘0

log C∞(ε, d)

log(1/ε)
=∞,

showing that complexity of thethe Longstaff-Schwartz algorithm for continuous time optimal stopping
problems may even grow faster than exp(1/ε). Similar complexity bounds can be derived for other
simulation based approximation algorithms, see, e.g. [8] for more general regression algorithms or
[10] for a novel nested type MC approach with complexity which is independent of d but exponential
in 1/ε.

We call a problem semi-tractable if there is an algorithm to solve it with complexity C(ε, d) satisfying

lim
d↗∞

lim
ε↘0

log C (ε, d)

d log(1/ε)
= 0. (4)

Our definition of tractability should be contrasted to the definition in [15] where a problem is said to be
(weakly) tractable, if there is an algorithm to solve it with complexity C(ε, d) satisfying

lim
d+ε−1↗∞

log C (ε, d)

d+ ε−1
= 0.

This definition seems to be counter-intuitive as it renders a problem with, for example, an algorithmic
complexity of order d2 exp(1/ (ε log log ... log ε−1)) to be (weakly) tractable while an algorithm with
complexity 2d/ε is not. In our setting the dimension d is typically fixed and the complexity rate with
respect to ε is of primary importance. In this paper we show that the discrete time optimal stopping
problems are semi-tractable in the sense of (4). To this end we revisit the mesh method of Broadie and
Glasserman [5]. By enhancing it with a suitable regularisation, we prove that under mild conditions,
the complexity of the resulting WSM (Weighted Stochastic Mesh) algorithm satisfies (4), provided the
transition densities of the underlying Markov chain are analytically known or can be well approximated.
Our algorithm bears some similarity to the random grid algorithm of Rust [16]. However, Rust [16]
studied the Markovian decision problems in discrete time with compact state space. Let us also remark
that a complete convergence as well as complexity analysis of the mesh method is still missing in the
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Semi-tractability of optimal stopping problems 3

literature, for some preliminary results see Agarwal and Juneja [1]. It turns out that in the case of
continuous time optimal stopping problems we need not to assume that the transition densities are
known but can use Gaussian transition densities of the corresponding Euler scheme. This results in
an algorithm which has complexity of order O(cdε−(2d+14)) for some constant c > 1. Although this
does not imply semi-tractability of continuous time optimal stopping problems, the proposed algorithm
is very simple and its complexity remains provably polynomial in ε as opposite to the LS approach.
To compare different algorithms for continuous time optimal stopping problems, we introduce the so-
called semi-tractability index

Γ
def
= lim sup

d↗∞
lim sup
ε↘0

log C (ε, d)

d log(1/ε)
. (5)

It turns out that the WSM algorithm has the smallest semi-tractability index among existing algorithms
for continuous time optimal stopping problems.

The paper is organized as follows. A description of the proposed algorithm is given in Section 2.
Section 2.2 is devoted to convergence and complexity analysis of our algorithm. In Section 3 we turn
to continuous time optimal stopping problems. All proofs are collected in Section 5.

2 Discrete time optimal stopping problems

We begin with the description of the WSM algorithm for discrete time optimal stopping problems. Let us
assume a finite set of stopping dates {0, . . . , L} , for some natural L > 0, and let (Zl, l = 0, . . . , L)
be a Markov chain in Rd, adapted to a filtration (Fl, l = 0, . . . , L) . For a given set of nonnegative
reward functions gl, l = 0, . . . , L, on Rd, we then consider the discrete Snell envelope process:

Ul = Ul(Zl)
def
= esssup

τ∈Tl,L
El [gτ (Zτ )] , (6)

where Tl,L stands for the set of F -stopping times with values in the set {l, . . . , L}, and El := EFl
stands for theFl-conditional expectation, and the measurable functionsUl(·) exist due to Markovianity
of the process (Zl)l≥0.

For simplicity and without loss of generality we assume that the Markov chain (Zl)l≥0 is time homoge-
neous with l-steps transition density denoted by pl(y|x) and one-step density denoted by p(y|x) =
p1(y|x), so that

P [Zk+1 ∈ dy|Zk = x] = p(y|x)dy.

Fix some x0 ∈ Rd and assume that Z0 = x0. It is well known that the Snell envelope (6) satisfies the
dynamic program principle,

UL(ZL) = gL(ZL), (7)

Ul(Zl) = max {gl(Zl),E [Ul+1(Zl+1)|Zl]} , l = 0, . . . , L− 1.

Next we fix some R > 0 and define a truncated version of the above dynamic program via

ŨL(ZL) = gL(ZL) · 1ZL∈BR , (8)

Ũl(Zl) = max
{
gl(Zl),E

[
Ũl+1(Zl+1)

∣∣∣Zl]} · 1Zl∈BR , l = 0, . . . , L− 1,
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where BR
def
= {z : |z − x0| ≤ R} . Thus, by construction, Ũl vanishes outside the ball BR. Also by

construction it holds that
‖Ũl‖∞ ≤ GR

def
= max

0≤l≤L
sup
z∈BR

gl(z), (9)

which is easily seen by backward induction. In view of (8) we may write

E
[
Ũl+1(Zl+1)

∣∣∣Zl = x
]

=

∫
Ũl+1(y)

p(y|x)

pl+1(y|x0)
pl+1(y|x0) dy.

Now assume that we have a set of trajectories Z(n)
l , l = 0, . . . , L, with Z(n)

0 = x0, n = 1, . . . , N,
simulated according to the one-step transition density p, and consider the approximation:

E
[
Ũl+1(Zl+1)

∣∣∣Zl = x
]
≈ 1

N

N∑
n=1

Ũl+1(Z
(n)
l+1)

p(Z
(n)
l+1|x)

pl+1(Z
(n)
l+1|x0)

,

where in view of the Chapman-Kolmogorov equation

pl+1(Z
(n)
l+1|x0) =

∫
p(Z

(n)
l+1|z)pl(z|x0) dz ≈ 1

N

N∑
m=1

p(Z
(n)
l+1|Z

(m)
l ).

Hence we have approximately

E
[
Ũl+1(Zl+1)

∣∣∣Zl = x
]
≈

N∑
n=1

Ũl+1(Z
(n)
l+1)

p(Z
(n)
l+1|x)∑N

m=1 p(Z
(n)
l+1|Z

(m)
l )

. (10)

We thus propose the following algorithm. We start with

UL(Z
(n)
L )

def
= gL(Z

(n)
L )1

Z
(n)
L ∈BR

for n = 1, . . . , N. Once U l+1 is constructed on the grid for 0 < l + 1 ≤ L, we set

U l(Z
(r)
l )

def
= max

{
gl(Z

(r)
l ),

N∑
n=1

U
(n)

l+1(Z
(n)
l+1)

p(Z
(n)
l+1|Z

(r)
l )∑N

m=1 p(Z
(n)
l+1|Z

(m)
l )

}
1
Z

(r)
l ∈BR

, (11)

for r = 1, . . . , N. By construction, each function U l vanishes outside the ball BR. Working all the
way down to l = 0 results in the approximation:

U0 = max

[
g0(x0),

N∑
n=1

U
(n)

1 (Z
(n)
1 )

p(Z
(n)
1 |x0)∑N

m=1 p(Z
(n)
1 |x0)

]

for U0. As such the presented algorithm is closely related to the mesh method of Broadie and Glasser-
man [5] apart from truncation at level R and a special choice of weights.

2.1 Cost estimation

Let us estimate the cost of carrying out the backward dynamic program (11). One needs to compute
p(Z

(n)
l+1|Z

(m)
l ) for all l = 1, . . . , L, n, m = 1, . . . , N. This can be done at a cost of order N2Lc

(d)
f ,
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where c(d)
f is the cost of evaluating a (typical) function of 2d arguments. In the typical situation c(d)

f is
proportional to d. The evaluation of

1

N

N∑
m=1

p(Z
(n)
l+1|Z

(m)
l )

for l = 1, ..., L, n = 1, ..., N, has a cost of order N2Lc∗ with c∗ being the cost of an elementary
numerical operation, which is negligible if c∗ � c

(d)
f . So the overall cost of carrying out the backward

dynamic program (11) is of order N2Lc
(d)
f .

2.2 Error and complexity analysis

In this section we analyze convergence of the WSM estimate (11) to the solution of the discrete optimal
stopping problem (6) for l = 0 and a fixed x0 ∈ Rd asN →∞. Let us first bound a distance between
Ul and Ũl, l = 0, . . . , L.

Proposition 1. With

εl,R
def
=

∫
|x−x0|>R

Ul(x)pl(x|x0) dx

l = 0, . . . , L, it holds that

∫ ∣∣Ul(x)− Ũl(x)
∣∣pl(x|x0) dx ≤

L∑
j=l

εj,R. (12)

Proposition 2. Suppose that

max
0≤l≤L

gl(x) ≤ cg(1 + |x|), x ∈ Rd (13)

and that

E

[
max
l≤l′≤L

|Zl′|
∣∣∣∣Zl = x

]
≤ cZ(1 + |x|), x ∈ Rd. (14)

Suppose further that for some κ, α > 0, and l = 1, . . . , L,

pl(y|x) ≤ κ
(2παl)d/2

e
|x−y|2

2αl . (15)

for all x, y ∈ Rd. One then has∫ ∣∣Ul(x)− Ũl(x)
∣∣pl(x|x0) dx

≤ Lcgκ
(

1 + cZ + cZ |x0|+ cZ
√
dαL

)
2d/4e−

R2

8αL . (16)

Next we control the discrepancy between U0 and Ũ0.
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LS WSM QTM
3/α 0 2

Table 1: Semi-tractability index Γ of different algorithms for discrete time optimal stopping problems

Proposition 3. With

F 2
R

def
=

∫ ∫
|y−x0|≤R

p2(y|x)

pl+1(y|x0)
pl(x|x0) dxdy, (17)

and N such that (1 + FR) /
√
N < 1, it holds that

E
[∣∣U0 − Ũ0

∣∣] ≤ (3 +
√

2
)
LGR

1 + FR√
N

.

Corollary 4. Under the assumptions of Proposition 2, we have for (17) the estimate

F 2
R ≤

κ
(2πα)d/2

Vol(BR) =
κRd

(2α)d/2Γ (1 + d/2)
≤ κ (e/α)d/2Rdd−d/2,

where the last inequality follows from Γ (1 + a) ≥ aae−a for any a ≥ 1/2. Then by combining (16)
with Proposition 3 we obtain the error estimate,

E
[∣∣U0 − U0

∣∣] ≤ Lcgκ
(

1 + cZ + cZ |x0|+ cZ
√
dαL

)
2d/4e−

R2

8αL

+
(

3 +
√

2
)
Lcg(1 +R)

1 + κ1/2 (e/α)d/4Rd/2d−d/4√
N

. (18)

Proposition 5. Under the assumptions of Proposition 2 the complexity of the WSM algorithm is
bounded from above by

C(ε, d) = c1α
2c4
gκ2c

(d)
f cd2L

d+7ε−4

× logd+2

L (1 + cZ + cZ |x0|) e
cZ
√
αL

1+cZ+cZ |x0|23/4 (cgκ ∨ 1)

ε

 , (19)

where c1 > 0 and c2 > 1 are natural constants and c(d)
f stands for the cost of computing the transition

density pl(y|x) at one point (x, y).

Corollary 6. For a fixed L > 0 the discrete time optimal stopping problem (6) with g and (Zl)l≥0

satisfying (13), (14) and (15) is semi-tractable, provided that the complexity of computing the transition
density pl(y|x) at one point (x, y) is at most polynomial in d. Different approximation algorithms for
discrete time optimal stopping problems can be compared using the semi-tractability index (5). For
example, it follows from (3) that the semi-tractability index of the LS approach is equal to 3/α. Hence
it tends to 0 as the smoothness of the problem increases. Moreover from inspection of Theorem 2.4
in [3], we see that the Quantisation Tree Method (QTM) has semi-tractability index 2.

2.3 Approximation of the transition density

A crucial condition for semi-tractability to hold is availability of the transition density p(y|x) of the
chain (Zl)l≥0 in a closed (or cheaply computable) form. However it can be shown that if a sequence
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Semi-tractability of optimal stopping problems 7

of approximating densities pn(y|x), n ∈ N, converging to p(y|x) can be constructed in such a way
that ∣∣∣∣pn(y|z)− p(y|z)

pn(y|z)

∣∣∣∣ . (1 + |y − x0|m + |z − x0|m)n

n!
, y, z ∈ BRn (20)

for some m ∈ N and a sequence Rn ↗∞, n↗∞, then under proper assumptions on the growth
of Rn and the cost of computing pn (in fact it should be at most polynomial in d), one can derive a
complexity bound C(ε, d) satisfying

lim
ε↘0

log C(ε, d)

log 1
ε

is finite and does not depend on d .

To construct a sequence of approximations pn(y|z) satisfying the assumption (20), one can use var-
ious small-time expansions for transition densities of stochastic processes, see, for example, [2] and
[13]. Let us exemplify this type of approximation in the case of one-dimensional diffusion processes of
the form:

dXt = b(Xt) dt+ σ(Xt) dWt, X0 = x0,

where b is a bounded function, twice continuously differentiable, with bounded derivatives and σ is a
function with three continuous and bounded derivatives such that there exist two positive constants
σ◦, σ

◦ with σ◦ ≤ σ(x) ≤ σ◦. Consider a Markov chain (Zl)l≥0 defined as a time discretization of

(Xt)t≥0, that is,Zl
def
= X∆l, l = 0, 1, 2, . . . for some ∆ > 0. Under the above conditions the following

representation for the (one-step) transition density p of the chain Z is proved in [9] (see also [7] for
more general setting):

p(y|x) =
1√

2π∆

1

σ(y)
exp

(
−(s(x)− s(y))2

2∆

)
U∆(s(x), s(y)), x, y ∈ R,

with U∆(x, y) = R∆(x, y) exp
[∫ x

0
b̄(z) dz −

∫ y
0
b̄(z) dz

]
,

R∆(x, y) = E

[
exp

(
−∆

∫ 1

0

ρ̄(x+ z(y − x) +
√

∆Bz) dz

)]
, (21)

where Bz is a standard Brownian bridge, s(x) =
∫ x

0
dy
σ(y)

, g = s−1 and

ρ̄ = (b̄2 + b̄′)/2 with b̄ = (b/σ) ◦ g − σ′ ◦ g/2.

Note that the expectation in (21) is taken with respect to the known distribution of the Brownian bridge
Bz. By expanding the exponent in (21) into Taylor series, we get for ∆ small enough

p(x|y) =
1√

2π∆

1

σ(y)
exp

(
−(s(x)− s(y))2

2∆

)
× exp

[∫ x

0

b̄(z) dz −
∫ y

0

b̄(z) dz

] ∞∑
k=0

∆k

k!
ck(x, y)

with

ck(x, y) = (−1)kE

[(∫ 1

0

ρ̄(x+ z(y − x) +
√

∆Bz) dz

)k]
.
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If ρ̄ is uniformly bounded by a constant D > 0, then the above series converges uniformly in x and y
for all ∆ small enough. Set

pn(x|y) =
1√

2π∆

1

σ(y)
exp

(
−(s(x)− s(y))2

2∆

)
× exp

[∫ x

0

b̄(z) dz −
∫ y

0

b̄(z) dz

]{ n∑
k=0

∆k

k!
ck(x, y)

}
.

It obviously holds pn(y|x) > 0 for ∆ < ∆0(D) and∣∣∣∣pn(y|z)− p(y|z)

pn(y|z)

∣∣∣∣ ≤ (∆D)n

(1−∆D exp(∆D))
(22)

uniformly for all x, y ∈ R. Hence the assumption (20) is satisfied with m = 0, provided that ∆ < ∆0

for some ∆0 depending only on D. Similarly if ρ̄ ≤ 0, then (20) holds. To sample from pn we can use
the well-known acceptance rejection method which does not require the exact knowledge of a scaling
factor

∫
pn(y|x) dy.

3 Continuous time optimal stopping for diffusions

In this section we consider diffusion processes of the form

dX i
s = bi(Xs) ds+

m∑
j=1

σij(Xs) dW
j
s , X i

0 = xi0, i = 1, . . . , d, (23)

where b : Rd → Rd and σ : Rd → Rd×m, are Lipschitz continuous and W = (W 1, . . . ,Wm) is a
m-dimensional standard Wiener process on a probability space (Ω,F , P ). As usual, the (augmented)
filtration generated by (Ws)s≥0 is denoted by (Fs)s≥0. We are interested in solving optimal stopping
problems of the form:

U?
t = esssup

τ∈Tt,T
E[e−r(τ−t)f(Xτ )|Ft], (24)

where f is a given real valued function on Rd, r ≥ 0, and Tt,T stands for the set of stopping times
τ taking values in [t, T ]. The problem (24) is related to the so-called free boundary problem for the
corresponding partial differential equation. Let us introduce the differential operator Lt :

Ltu(t, x) =
1

2

d∑
i,j=1

aij(x)
∂2u

∂xi∂xj
(t, x) +

d∑
i=1

bi(x)
∂u

∂xi
(t, x),

where

aij(x) =
d∑

k=1

σik(x)σjk(x).

We denote byX t,x
s (orX t,x(s)), s ≥ T, the solution of (23) starting at moment t from x : X t,x

t = x.
Denote by u(t, x) a regular solution of the following system of partial differential inequalities:

∂u

∂t
+ Ltu− ru ≤ 0, u ≥ f, (t, x) ∈ [0, T )× Rd, (25)(

∂u

∂t
+ Ltu− ru

)
(f − u) = 0, (t, x) ∈ [0, T )× Rd,

u(T, x) = f(x), x ∈ Rd,

DOI 10.20347/WIAS.PREPRINT.2610 Berlin 2019



Semi-tractability of optimal stopping problems 9

then under some mild conditions (see, e.g. [11])

u(t, x) = sup
τ∈Tt,T

E[e−r(τ−t)f(X t,x
τ )] , (t, x) ∈ [0, T ]× Rd, (26)

that is, u(t, x) = U?
t (x).

With this notation established, it is worth discussing the main issue that we are going to address in
this section. Our goal is to estimate u(t, x) at a given point (t0, x0) with accuracy less than ε by an
algorithm with complexity C?(ε, d) which is polynomial in 1/ε. As already mentioned in the introduction
some well known algorithms such as the regression ones fail to achieve this goal (at least according
to the existing complexity bounds in the literature).

Let us introduce the Snell envelope process:

U?
t

def
= esssupτ∈Tt,TEFt [g(τ,Xτ )] , (27)

where (somewhat more general than in (24)) g is a given nonnegative function on R≥0 × Rd. In
the first step we perform a time discretization by introducing a finite set of stopping dates tl = lh,
l = 1, . . . , L, with h = T/L and L some natural number, and next consider the discretized Snell
envelope process:

U◦tl(Xtl)
def
= esssup

τ∈Tl,L
EFtl [g(τ,Xτ )] ,

where Tl,L stands for the set of stopping times with values in the set {tl, . . . , tL}. Note that the
measurable functions U◦tl(·) exist due to Markovianity of the process X. The error due to the time
discretization is well studied in the literature. We will rely on the following result which is implied by
Thm. 2.1 in [3] for instance.

Proposition 7. Let g : [0, T ]× Rd → R be Lipschitz continuous and p ≥ 1. Then one has that

max
l=0,...,L

∥∥U?
tl
(Xtl)− U◦tl(Xtl)

∥∥
p
≤ c◦e

C◦T (1 + |x0|)
L

,

where the constants c◦, C◦ > 0 depend on the Lipschitz constants for b, σ, and g, respectively.

In order to achieve an acceptable discretization error we choose a sufficiently large L, and then con-
centrate on the computation of U◦.

In the next step we approximate the underlying process X using some strong discretization scheme
on the time grid ti = iT/L, i = 0, . . . , L, yielding an approximation X. It is assumed that the
one step transition densities of this scheme are explicitly known. The simplest and the most popular
scheme is the Euler scheme,

X
i

tl+1
= X

i

tl
+ bi(X tl)h+

m∑
j=1

σij(X tl)
(
W j
tl+1
−W j

tl

)
, X

i

0 = xi0, (28)

i = 1, . . . , d, which in general has strong convergence order 1/2, and the one-step transition density
of the chain (X tl+1

)l≥0 is given by

p̄h(y|x)
def
=

1√
(2πh)d |Σ|

exp

[
−1

2
h−1(y − x− b(x)h)>Σ−1(y − x− b(x)h)

]
(29)
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with Σ = σσ> ∈ Rd×d and h = T/L. Now we will turn to the discrete time optimal stopping problem
with possible stopping times {tl = lh, l = 0, . . . , L}. To this end we introduce the discrete time

Markov chain Zl
def
= X tl adapted to the filtration (Fl)

def
= (Ftl), and gl(x)

def
= g(tl, x) (while abusing

notation slightly) and consider the discretized Snell envelope process

Utl(X tl)
def
= esssup

τ∈Tl,L
EFtl

[
g(τ,Xτ )

]
= esssup

ι∈Il,L
EFl [gι(Zι)]

def
= Ul(Zl), (30)

where Il,L stands for the set of stopping indices with values in {l, . . . , L}, and the measurable func-
tions Utl(·) (or Ul(·)) exist due to Markovianity of the process X (or Z). The distance between U and
U◦ is controlled by the next proposition.

Proposition 8. There exists a constant CEuler > 0 depending on the Lipschitz constants of b, σ, and
g, such that

max
l=0,...,L

E
[∣∣U◦tl(Xtl)− Utl(X tl)

∣∣] ≤ CEuler
√
h.

Thus, combining Proposition 7 and Proposition 8 yields.

Corollary 9. If X is constructed by the Euler scheme with time step size h = T/L, where L is the
number of discretization steps, then under the conditions of Proposition 7 and Proposition 8 we have
that

E [|U?
0 (x0)− U0(x0)|] . CEuler

√
h for h→ 0, (31)

where . stands for inequality up to constant depending on c◦, C◦ and CEuler.

Since the transition densities of the Euler scheme are explicitly known (see (29)), the WSM algorithm
can be directly used for constructing an approximation U0(x0) based on the paths of the Markov
chain (Zl). To derive the complexity bounds of the resulting estimate, we shall make the following
assumptions.

(AG) Suppose that cg > 0 is such that

g(t, x) ≤ cg (1 + |x|) for all 0 ≤ t ≤ T, x ∈ Rd. (32)

(AX) Assume that there exists a constant cX̄ > 0 such that for all 0 ≤ l ≤ L,

EFtl

[
sup
l≤l′≤L

∣∣X l′h

∣∣ ∣∣∣X lh = x
]
≤ cX̄ (1 + |x|) , x ∈ Rd, (33)

uniformly in L (hence h). This assumption is satisfied under Lipschitz conditions on the coef-
ficients of the SDE (23), and can be proved using the Burkholder-Davis-Gundy inequality and
the Gronwall lemma.

(AP) Assume furthermore that
(
X lh, l = 0, . . . , L

)
is time homogeneous with transition densities

plh(y|x) that satisfy the Aronson type inequality: there exist positive constants κ and α such
that for any x, y ∈ Rd and any l > 0, it holds that

plh(y|x) ≤ κ
(2παlh)d/2

e−
|x−y|2
2αlh .

This assumption holds if the coefficients in (23) are bounded and σ is uniformly elliptic.
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The next proposition provides complexity bounds for the WSM algorithm in the case of continuous
time optimal stopping problems.

Proposition 10. Assume that the assumptions (AG), (AX) and (AP) hold, then

� the cost of computing U0(x0) in (30) for a fixed L > 0 with precision ε > 0 via the WSM
algorithm is bounded from above by

C(ε, d) = c1α
2c4
gκ2c

(d)
f cd2

T d+7

hd+5

× ε−4 logd+2

 T
h

(1 + cX̄ + cX̄ |x0|) e
cX̄

√
αT

1+cX̄+cX̄ |x0|23/4 (cgκ ∨ 1)

ε

 . (34)

� the cost of computing U?
0 (x0) with an accuracy ε > 0 via the WSM algorithm is bounded from

above by

C?(ε, d) = c1α
2c4
gκ2c

(d)
f cd2

T d+7

ε2d+14

× logd+2

T (1 + cX̄ + cX̄ |x0|) e
cX̄

√
αT

1+cX̄+cX̄ |x0|23/4 (cgκ ∨ 1)

ε

 . (35)

The first statement follows directly from Proposition 5 by taking in (19), α = αh, cZ = cX̄ , and
L = T/h. Then by setting h � ε2 we obtain (35) (with possibly modified natural constants c1, c2).

Discussion As can be seen from (35),

ΓWSM = lim
d↗∞

lim
ε↘0

log C?(ε, d)

d log ε−1
= 2 (36)

and this shows the efficiency of the proposed algorithm as compared to the existing algorithms for
continuous time optimal stopping problems at least as far as the semi-tractability index is concerned.
Indeed, the only algorithm available in the literature with a provably finite limit of type (36) is the
quantization tree method (QTM) of Bally, Pagès, and Printems [3]. Indeed, by tending the number of
stopping times and the quantization number to infinity such that the corresponding errors in Thm. 2.4-b
in [3] are balanced, we derive the following complexity upper bound

C?QTM (ε, d) = O

(
1

ε6d+6

)
(37)

Hence ΓQTM = 6.

4 Numerical experiments

In the following experiments1 we illustrate the WSM algorithm in the case of continuous time optimal
stopping problems. A lower bound for the value function u(t0, x0) at a given point (t0, x0) via the WSM

1The data that support the findings of this study are available from the corresponding author upon reasonable request.
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LS WSM QTM
∞ 2 6

Table 2: Semi-tractability index Γ of different algorithms for continuous time optimal stopping problems.

algorithm can be obtained using a suboptimal policy computed on an independent set of trajectories.
This policy can be constructed either directly via (10) or by using an interpolation of the likelihood
weights

p(Z
(j)
l+1|·)∑N

m=1 p(Z
(j)
l+1|Z

(m)
l )

.

The fastest and simplest way to do this is to use the nearest neighbour interpolation based on training
set of trajectories, in all experiments below the number of neighbours was set to 500.

4.1 An American put on a single asset

In order to illustrate the performance of the WSM algorithm in continuous time, we consider a financial
problem of pricing American put option on a single log-Brownian asset

Xt = X0 exp(σWt + (r − σ/2)t),

with r denoting the riskless rate of interest, assumed to be constant, and σ denoting the constant
volatility. The payoff function is given by g(x) = (K − x)+ and a fair price of the option is given by

U0 = sup
τ∈T [0,T ]

E
[
e−rτg(Xτ )

]
.

No closed-form solution for the price of this option is known, but there are various numerical methods
which give accurate approximations to V0. The parameter values used are r = 0.08, σ = 0.20,
δ = 0, K = 100, T = 3. An accurate estimate for the true price obtained via a binomial tree type
algorithm is 6.9320 (see [12]). In Figure 1 we show lower bounds due to WSM, the least squares
approach of Longstaff and Schwartz [14] (LS) and the value function regression algorithm of Tsitsiklis
and Van Roy [17] (VF) as functions of the number of stopping times L forming a uniform grid on [0, T ].
These lower bounds are constructed using a suboptimal stopping rule due to estimated continuation
values evaluated on a new independent set of trajectories. The maximal degree of polynomials used
as basis functions in LS and VF are indicated by the numbers (2 and 4) in the legend. As can be
seen WSM lower bounds are more stable when L increases. The VF lower bounds seem to diverge
as L→∞. A similar behaviour of regression algorithms for increasing L was observed in

5 Proofs

5.1 Proof of Proposition 1

For l = L the statement reads∫ ∣∣∣UL(x)− ŨL(x)
∣∣∣ pL(x|x0)dx =

∫
1|x−x0|>R g(x)pL(x|x0)dx = εL,R,
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(a) (b)

Figure 1: Lower bounds for the price of a one-dimensional American put option approximated using
different methods and a uniform grid tk = kT/L, k = 0, . . . , L, of exercise dates. The numbers
of training paths are Ntrain = 1000 (a) and Ntrain = 2000 (b), and the number of new trajectories
used to construct lower bounds is Ntest = 20000 in both cases. In LS and VF regression methods a
polynomial basis of degree 2 and 4 is used.

so then it is true. Suppose (12) is true for 0 < l+1 ≤ L. Then, by using |max(a, b)−max(a, c)| ≤
|b− c| and the fact that Ũl(x) vanishes for |x− x0| > R,

∣∣∣Ul(x)− Ũl(x)
∣∣∣ ≤ 1|x−x0|≤R |max [g(x),E [Ul+1(Xl+1)|Xl = x]]

−max
[
g(x),E

[
Ũl+1(Xl+1)

∣∣∣Xl = x
]]∣∣∣+ 1|x−x0|>RUl(x)

≤ 1|x−x0|≤RE
[∣∣∣Ul+1(Xl+1)− Ũl+1(Xl+1)

∣∣∣∣∣∣Xl = x
]

+ 1|x−x0|>RUl(x).

Hence we have by induction,

∫ ∣∣∣Ul(x)− Ũl(x)
∣∣∣ pl(x|x0)dx

≤
∫

1|x−x0|>RE
[∣∣∣Ul+1(Xl+1)− Ũl+1(Xl+1)

∣∣∣∣∣∣Xl = x
]
pl(x|x0)dx+ εl,R

≤
∫ ∣∣∣Ul+1(y)− Ũl+1(y)

∣∣∣ pl+1(y|x0)dy + εl,R

=
L∑

j=l+1

εj,R + εl,R =
L∑
j=l

εj,R.

5.2 Proof of Proposition 2
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Combining the assumptions (32) and (33) yields,

Ul(x) = esssup
τ∈Tl,L

E [gτ (Zτ )|Zl = x]

≤ cgE

[
1 + max

l≤l′≤L
|Zl′ |

∣∣∣∣Zl = x

]
≤ cg (1 + cZ) + cgcZ |x| .

Using ∫
|x−x0|>R

e−
|x−x0|

2

2αl dx ≤ e−
R2

8αl (4/3)d/2 (2παl)d/2, and

∫
|x−x0|>R

|x− x0| e−
|x−x0|

2

2αl dx ≤
√∫

|x−x0|>R
e−
|x−x0|2

2αl dx

√∫
|x− x0|2 e−

|x−x0|2
2αl dx

≤ e−
R2

8αl2d/4(2παl)d/2
√
dαl

we get (note that (4/3)1/2 < 21/4),

εl,R ≤
κ

(2παl)d/2

∫
|x−x0|>R

(cg (1 + cZ) + cgcZ |x|) e−
|x−x0|

2

2αl dx

≤ κcg (1 + cZ + cZ |x0|)
(2παl)d/2

∫
|x−x0|>R

e−
|x−x0|

2

2αl dx

+
κcgcZ

(2παl)d/2

∫
|x−x0|>R

|x− x0| e−
|x−x0|

2

2αl dx

≤ κcg
(

1 + cZ + cZ |x0|+ cZ
√
dα
√
l
)

2d/4e−
R2

8αl

≡
(
A+B

√
l
)
cgκe−

R2

8αl ,

for l ≥ 1 (ε0,R = 0 for R > 0). Now by (12), i.e. Proposition 1, we get∫ ∣∣Ul(x)− Ũl(x)
∣∣pl(x|x0) dx ≤ L

(
A+B

√
L
)
cgκe−

R2

8αL ,

whence the estimate (16).

5.3 Proof of Proposition 3

Let us write the sample based backward dynamic program (11) for step l < L in the form,

U l

(
Z

(i)
l

)
= 1

∣∣∣Z(i)
l −x0

∣∣∣≤R max

[
gl(Z

(i)
l ),

N∑
j=1

U l+1(Z
(j)
l+1)wij

]
(38)

by defining the weights

wij :=
p(Z

(j)
l+1|Z

(i)
l )∑N

m=1 p(Z
(j)
l+1|Z

(m)
l )

, (39)
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where l is fixed and suppressed. Let us further abbreviate

E [f ](x) = E [f(Zl+1)|Zl = x] =

∫
f(y)p(y|x)dy

for a generic Borel function f ≥ 0. Using,

Ũl

(
Z

(i)
l

)
= 1

∣∣∣Z(i)
l −x0

∣∣∣≤R max
[
gl(Z

(i)
l ), E [Ũl+1](Z

(i)
l )
]
,

(38), and |max(a, b)−max(a, c)| ≤ |b− c|, we thus get∣∣∣U l − Ũl
∣∣∣
N

:=
1

N

N∑
i=1

∣∣∣U l(Z
(i)
l )− Ũl(Z(i)

l )
∣∣∣ ≤

1

N

N∑
i=1

1
∣∣∣Z(i)
l −x0

∣∣∣≤R
∣∣∣∣∣
N∑
j=1

U l+1(Z
(j)
l+1)wij − E [Ũl+1](Z

(i)
l )

∣∣∣∣∣
≤ 1

N

N∑
i=1

1
∣∣∣Z(i)
l −x0

∣∣∣≤R
N∑
j=1

wij

∣∣∣U l+1(Z
(j)
l+1)− Ũl+1(Z

(j)
l+1)
∣∣∣

+
1

N

N∑
i=1

1
∣∣∣Z(i)
l −x0

∣∣∣≤R
∣∣∣∣∣
N∑
j=1

Ũl+1(Z
(j)
l+1)wij − E [Ũl+1](Z

(i)
l )

∣∣∣∣∣
≤:
∣∣∣U l+1 − Ũl+1

∣∣∣
N

+Rl+1, (40)

using that the weights in (39) sum up to one. One thus gets by iterating (40),∣∣∣Uk − Ũk
∣∣∣
N
≤

L−1∑
l=k

Rl+1 (41)

since UL − ŨL = 0. Let us now introduce

w◦ij :=
1

N

p(Z
(j)
l+1|Z

(i)
l )

pl+1(Z
(j)
l+1|x0)

, (42)

and consider the generic term

Rl+1 =
1

N

N∑
i=1

1
∣∣∣Z(i)
l −x0

∣∣∣≤R
∣∣∣∣∣
N∑
j=1

Ũl+1(Z
(j)
l+1)wij − E [Ũl+1](Z

(i)
l )

∣∣∣∣∣
≤ 1

N

N∑
i=1

1
∣∣∣Z(i)
l −x0

∣∣∣≤R
N∑
j=1

Ũl+1(Z
(j)
l+1)

∣∣wij − w◦ij∣∣
+

1

N

N∑
i=1

1
∣∣∣Z(i)
l −x0

∣∣∣≤R
∣∣∣∣∣
N∑
j=1

(
w◦ijŨl+1(Z

(j)
l+1)− 1

N
E [Ũl+1](Z

(i)
l )

)∣∣∣∣∣
=: Term1 + Term2.

Due to (9) one has,

Term1 ≤
GR

N

N∑
i=1

N∑
j=1

1
∣∣∣Z(i)
l −x0

∣∣∣≤R1∣∣∣Z(j)
l+1−x0

∣∣∣≤R
∣∣wij − w◦ij∣∣ ,
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and due to (39) and (42) we may write,

∣∣wij − w◦ij∣∣ =

∣∣∣∣∣ p(Z
(j)
l+1|Z

(i)
l )∑N

m=1 p(Z
(j)
l+1|Z

(m)
l )
− 1

N

p(Z
(j)
l+1|Z

(i)
l )

pl+1(Z
(j)
l+1|x0)

∣∣∣∣∣
=

p(Z
(j)
l+1|Z

(i)
l )∑N

m=1 p(Z
(j)
l+1|Z

(m)
l )

∣∣∣∣∣1− 1
N

∑N
m=1 p(Z

(j)
l+1|Z

(m)
l )

pl+1(Z
(j)
l+1|x0)

∣∣∣∣∣ .
and so obtain,

Term1 ≤
GR

N

N∑
j=1

1
∣∣∣Z(j)
l+1−x0

∣∣∣≤R
∣∣∣∣∣1− 1

N

∑N
m=1 p(Z

(j)
l+1|Z

(m)
l )

pl+1(Z
(j)
l+1|x0)

∣∣∣∣∣ .
We are now going to estimate

E [Rl+1] . E [Term1] + E [Term2] .

It holds that

E [Term1] ≤ GR

N
E

[
1
∣∣∣Z(1)
l+1−x0

∣∣∣≤R
∣∣∣∣∣
N∑
m=1

(
1−

p(Z
(1)
l+1|Z

(m)
l )

pl+1(Z
(1)
l+1|x0)

)∣∣∣∣∣
]

≤ GR

N
DR +

GR

N
E

[∣∣∣∣∣
N∑
m=2

1
∣∣∣Z(1)
l+1−x0

∣∣∣≤R
(

1−
p(Z

(1)
l+1|Z

(m)
l )

pl+1(Z
(1)
l+1|x0)

)∣∣∣∣∣
]

with

DR := E

[
1
∣∣∣Z(1)
l+1−x0

∣∣∣≤R
∣∣∣∣∣1− p(Z

(1)
l+1|Z

(1)
l )

pl+1(Z
(1)
l+1|x0)

∣∣∣∣∣
]
.

Now consider the i.i.d. random variables,

η(l+1)
m := 1

∣∣∣Z(1)
l+1−x0

∣∣∣≤R
(

1−
p(Z

(1)
l+1|Z

(m)
l )

pl+1(Z
(1)
l+1|x0)

)
, m = 2, ..., N,

which have zero mean. Then, by Cauchy-Schwartz one has that

E

∣∣∣∣∣
N∑
m=2

η(l+1)
m

∣∣∣∣∣ ≤
√√√√E

(
N∑
m=2

η
(l+1)
m

)2

= ER
√
N with

E2
R := Var

(
η

(l+1)
2

)
= E

1∣∣∣Z(1)
l+1−x0

∣∣∣≤R
∣∣∣∣∣1− p(Z

(1)
l+1|Z

(2)
l )

pl+1(Z
(1)
l+1|x0)

∣∣∣∣∣
2
 ,

Concerning Term2, let us write

E [Ũl+1](Z
(i)
l ) =

∫
Ũl+1(y)

p(y|Z(i)
l )

pl+1(y|x0)
pl+1(y|x0)dy

= E

[
Ũl+1(Z0,x0

l+1 )
p(Z0,x0

l+1 |Z
(i)
l )

pl+1(Z0,x0

l+1 |x0)

]
,
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where Z0,x0 is an independent dummy trajectory. We thus have

E [Term2] = E

[
1
∣∣∣Z(1)
l −x0

∣∣∣≤R
∣∣∣∣(w◦11Ũl+1(Z

(1)
l+1)− 1

N
E [Ũl+1](Z

(1)
l )

)∣∣∣∣]
+ E

[∣∣∣∣∣
N∑
j=2

ζ
(l+1)
j

∣∣∣∣∣
]
,

where for j = 2, ..., N, the random variables

ζ
(l+1)
j := 1

∣∣∣Z(1)
l −x0

∣∣∣≤R
(
w◦1jŨl+1(Z

(j)
l+1)− 1

N
E [Ũl+1](Z

(1)
l )

)
=
1
∣∣∣Z(1)
l −x0

∣∣∣≤R
N

(
p(Z

(j)
l+1|Z

(1)
l )

pl+1(Z
(j)
l+1|x0)

Ũl+1(Z
(j)
l+1)− E

[
Ũl+1(Z0,x0

l+1 )
p(Z0,x0

l+1 |Z
(1)
l )

pl+1(Z0,x0

l+1 |x0)

])
are i.i.d. and have zero mean. We so have by Cauchy-Schwartz again,

E

[∣∣∣∣∣
N∑
j=2

ζ
(l+1)
j

∣∣∣∣∣
]
≤

√√√√E

(
N∑
j=2

ζ
(l+1)
j

)2

=

√
NVar

(
ζ

(l+1)
2

)
≤ FRGR/

√
N, where

F 2
R = E

1∣∣∣Z(1)
l −x0

∣∣∣≤R
∣∣∣∣∣ p(Z

(2)
l+1|Z

(1)
l )

pl+1(Z
(2)
l+1|x0)

∣∣∣∣∣
2


=

∫ ∫
|y−x0|≤R

p2(y|x)

pl+1(y|x0)
pl(x|x0) dxdy.

Secondly, one has

E

[
1
∣∣∣Z(1)
l −x0

∣∣∣≤R
∣∣∣∣(w◦11Ũl+1(Z

(1)
l+1)− 1

N
E [Ũl+1](Z

(1)
l )

)∣∣∣∣]
≤ 1

N
E

[
1
∣∣∣Z(1)
l −x0

∣∣∣≤R p(Z
(1)
l+1|Z

(1)
l )

pl+1(Z
(1)
l+1|x0)

Ũl+1(Z
(1)
l+1)

]

+
1

N
E

[
1
∣∣∣Z(1)
l −x0

∣∣∣≤RE
[
Ũl+1(Z0,x0

l+1 )
p(Z0,x0

l+1 |Z
(1)
l )

pl+1(Z0,x0

l+1 |x0)

]]

≤ GR

N
E

[
1
∣∣∣Z(1)
l+1−x0

∣∣∣≤R p(Z
(1)
l+1|Z

(1)
l )

pl+1(Z
(1)
l+1|x0)

]

+
GR

N
E

[
1|Z0,x0

l+1 −x0|≤R
p(Z0,x0

l+1 |Z
(1)
l )

pl+1(Z0,x0

l+1 |x0)

]
=:

GR

N
HR.

Next it follows that

DR ≤ 1 + E

[
1
∣∣∣Z(1)
l+1−x0

∣∣∣≤R p(Z
(1)
l+1|Z

(1)
l )

pl+1(Z
(1)
l+1|x0)

]

= 1 +

∫
pl(x|x0) dx

∫
|y−x0|≤R

p2(y|x)

pl+1(y|x0)
dy

≤ 1 + F 2
R.
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Further, one obviously has that E2
R ≤ 2 + 2F 2

R, and HR ≤ 1 + F 2
R since

E

[
1|Z0,x0

l+1 −x0|≤R
p(Z0,x0

l+1 |Z
(1)
l )

pl+1(Z0,x0

l+1 |x0)

]
≤ 1.

By now taking the expectation in (41) and gathering all together we obtain,

E
[∣∣Uk − Ũk

∣∣
N

]
≤ (L− k)GR

(√
2 + 2F 2

R + FR√
N

+
2 + 2F 2

R

N

)
(43)

≤
(

3 +
√

2
)

(L− k)GR
1 + FR√

N
,

assuming that N is taken such that (1 + FR)/
√
N < 1.

5.4 Proof of Proposition 5

In order to achieve a required accuracy ε > 0, let us take R and N large enough such that both error
terms in (18) are equal to ε/2. Hence, we first take

Rε,d = (8αL)1/2 log1/2
Lcgκ

(
1 + cZ + cZ |x0|+ cZ

√
dαL

)
21+d/4

ε
,

that isR↗∞ when d+ε−1 ↗∞. Then take, with� denoting asymptotic equivalence forR↗∞
up to some natural constant,

Nε � L2c2
gκ (e/α)d/2 d−d/2Rd+2

ε ε−2 � αc2
gκ (8e/d)d/2 Ld/2+3

× ε−2 logd/2+1
L
(

1 + cZ + cZ |x0|+ cZ
√
dαL

)
21+d/4cgκ

ε
.

Thus, the computational work load (complexity) is given by

c
(d)
f N2

εL ≤ c1α
2c4
gκ2c

(d)
f (8e/d)d Ld+7

× ε−4 logd+2
L
(

1 + cZ + cZ |x0|+ cZ
√
dαL

)
21+d/4cgκ

ε
(44)

where c1 is a natural constant. Now let us write

d−d logd+2
L
(

1 + cZ + cZ |x0|+ cZ
√
dαL

)
21+d/4cgκ

ε

= d2 logd+2

L1/d
(

1 + cZ + cZ |x0|+ cZ
√
dαL

)1/d

21/d+1/4 (cgκ)1/d

ε1/d

 .
Then, using the elementary estimate

(
a+ b

√
d
)1/d

≤ aeb/a, for a, b > 0, d ≥ 1, and assuming

that ε < 1, (44) implies (19).
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5.5 Proof of Proposition 8

On the one hand one has

U◦tl(Xtl)− Utl(X tl) = esssup
τ∈Tl,L

EFtl [g(τ,Xτ )]− esssup
τ∈Tl,L

EFtl
[
g(τ ,Xτ )

]
≤ esssup

τ∈Tl,L
EFtl

[
g(τ,Xτ )− g(τ,Xτ )

]
≤ esssup

τ∈Tl,L
EFtl

[∣∣g(τ,Xτ )− g(τ,Xτ )
∣∣] ,

and on the other one has similarly

Utl(X tl)− U◦tl(Xtl) = esssup
τ∈Tl,L

EFtl
[
g(τ ,Xτ )

]
− esssup

τ∈Tl,L
EFtl [g(τ,Xτ )]

≤ esssup
τ∈Tl,L

EFtl
[
g(τ ,Xτ )− g(τ,Xτ )

]
≤ esssup

τ∈Tl,L
EFtl

[∣∣g(τ,Xτ )− g(τ,Xτ )
∣∣] .

Hence we get

E
[∣∣U◦tl(Xtl)− Utl(X tl)

∣∣] ≤ E

[
sup

0≤s≤T

∣∣g(s,Xs)− g(s,Xs)
∣∣]

≤ LgE

[
sup

0≤s≤T

∣∣Xs −Xs

∣∣] ≤ CEuler
√
h,

due to the strong order of the Euler scheme, with Lg being some Lipschitz constant for g.
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