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Asymptotics of the eigenvalues of the Anderson Hamiltonian

with white noise potential in two dimensions
Khalil Chouk, Willem van Zuijlen

Abstract

In this paper we consider the Anderson Hamiltonian with white noise potential on the box
[0, L]? with Dirichletg boundary conditions. We show that all the eigenvalues divided by log L
converge as L. — oo almost surely to the same deterministic constant, which is given by a
variational formula.

1 Introduction

We consider the Anderson Hamiltonian (also called random Schrddinger operator), formally defined
by
H=NAN+E,

under Dirichlet boundary conditions on the two-dimensional box [0, L], where £ is considered to be
white noise. We are interested in the behaviour of this operator as the size of the box, L, tends to
infinity. In this paper we prove the following asymptotics of the eigenvalues. Let A(L) = A\ (L) >
Ao(L) > A3(L)--- be the eigenvalues of the Anderson Hamiltonian on [0, L}?. For all n € N,
almost surely

An(L)

Lh—{lgo log L

=4 sup  sup /—|V¢\2+Vw2.
R2

VeOe (B2) peCg (82)

IVIE <t [)2,=1

1.1 Main challenge and literature

In the one dimensional setting, i.e., on the box [O, L], the Anderson Hamiltonian can be defined using
the associated Dirichlet form as the white noise is sufficiently regular, see Fukushima and Nakao [11]
(see [31] for the regularity of white noise). In dimension two the regularity of white noise is too small
to allow for the same approach. A naive way to tackle the problem of the construction is to take a
smooth approximation of the white noise £. so that the operator 772 = A + &, is well defined as
an unbounded self-adjoint operator, and then take the limit ¢ | 0. However, .7Z2 does not converge,
but .7 — c. does converge to an operator .77 for certain renormalisation constants c. ;o o©.
This has been shown by Allez and Chouk [1] for periodic boundary conditions, using the techniques
of paracontrolled distributions introduced by Gubinelli, Imkeller and Perkowski [14] in order to study
singular stochastic partial differential equations. In this paper we extend this to Dirichlet boundary
conditions.

Recently, also Labbé [18] constructed the Anderson Hamiltonian with both periodic and Dirichlet
boundary conditions, using the tools of regularity structures. Gubinelli, Ugurcan and Zachhuber [13]
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K. Chouk, W. van Zuijlen 2

extend the work of Allez and Chouk to define the Anderson Hamiltonian with periodic boundary con-
ditions also for dimension 3.

One of the main interests in the study of this operator is due to its universal property, precisely it was
proved by Chouk, Gairing and Perkowski [6, Theorem 6.1] that under periodic boundary conditions the
operator .77 is the limit under a suitable renormalisation of the discrete Anderson Hamiltonian

A = Ay + NN

defined on the periodic lattice (+Z/NZ)? where Ay is discrete Laplacian and (ny(¢), i € Z*) are
centred |.1.D. random variables with normalised variance and finite p-th moment, for some p > 6.

Recently, Dumaz and Labbé [10] proved the Anderson localization for the one dimensional case for the
largest eigenvalues and they obtain the exact fluctuation of the eigenvalue and the exact behaviour
of the eigenfunctions near their maxima. Unfortunately, their approach used to tackle the Anderson
localization in the one dimensional setting is strongly attached to the SDE obtained by the so-called
Riccati transform and cannot be adapted to the two dimensional setting. Also Chen [5] considers
the one dimensional setting for the white noise (and shows A(L) ~ (log L)3), but also a higher
dimensional setting for the more regular fractional white noise (where A(L) =~ (log L)” for some
g € (%, 1) (and 5 € (%, %) for d = 1), where 3 is a function of the degree of singularity of the
covariance at zero). The techniques in his work do not allow for an extension to a higher dimensional
setting with a white noise potential.

The asymptotics of the principal eigenvalue is of particular interest for the asymptotics of the total
mass of the solution to the parabolic Anderson model: 0;u = Au + {u = Fu. Chen [5] shows
that with U (¢) the total mass of u(t, -), one has log U(t) ~ tAy, for some almost linear L, so that
the asymptotics of A\(L) leads to asymptotics of log U(¢): In d = 1 with £ white noise, log U (t) ~
t(logt)3; for d > 1 with £ a fractional white noise log U(t) = t(logt)?, with 3 as above. For
smooth Gaussian fields &, Carmona and Molchanov [4] show log U (t) ~ t(logt)2. In a future work
by W. Koénig, N. Perkowski and W. van Zuijlen, the following asymptotics of the total mass of the
solution to the parabolic Anderson model with white noise potential in two dimensions will be shown:
log U(t) ~ tlogt.

For a general overview about the parabolic Anderson model and the Anderson Hamiltonian we refer
to the book by Konig [17].

Let us mention that our main result is already applied in [24] to prove that the super Brownian motion
in static random environment is almost surely super-exponentially persistent.

1.2 Outline

In Section [2] we state the main results of this paper. In Section [3] we give a proof of the tail bounds
of the eigenvalues using the other ingredients presented in Section [2, and use to prove the main
theorem. The definitions of our Dirichlet and Neumann (Besov) spaces and para- and resonance
products between those spaces are given in Section |4} With the definitions given we can properly
define the Anderson Hamiltonian on its Dirichlet domain and state the spectral properties in Section[5]
In Section[6] we prove the convergence to enhanced white noise, that will be used to extend properties
for smooth potentials to analogue properties where enhanced white noise is taken; for scaling and
translation properties in Section[7] to compare eigenvalues on boxes of different size in Section[g8]and
to prove the large deviation principle of the enhanced white noise in Section[9]that leads to the large
deviation principle for the eigenvalues. In Section [10] we study infima over the large deviation rate
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Asymptotics of the eigenvalues of the Anderson Hamiltonian 3

function, which are used the express the limit of the eigenvalues. The more cumbersome calculations
needed to prove convergence to enhanced white noise are postponed to Section

Acknowledgements. The authors are grateful to G. Cannizzaro, C. Labbé, W. Kbnig, N. Perkowski,
A. van Rooij, T. Rosati and R.S. dos Santos for discussions. KC contributed to this paper when he
was employed at the Technische Universitét Berlin and was supported by the European Research
Council through Consolidator Grant 683164. WvZ is supported by the German Science Foundation
(DFG) via the Forschergruppe FOR2402 “Rough paths, stochastic partial differential equations and
related topics".

1.3 Notation

N = {1,2,...}. §;, is the Kronecker delta, i.e., 0y = land é;; = Ofork # .1 = Vv—1.
For f,g € L*(D), for some domain D C R* we write (f, g)r2(py = [, [g. We write T¢ for the
d-dimensional torus of length L > 0, i.e., RY/LZ%. (Q, P) will be our underlying complete probability
space. In order to avoid cumbersome administration of constants, we also write a S b to denote that
there exists a C' > 0 such that a < Cb. We write C'>°(A) for those functions in C'*°(A) that have
compact support in A°.

2 Main results

In this section we give the main results of this paper without the technical details and definitions; the
main theorem is Theorem

We build on the results on the spectrum of the Anderson Hamiltonian in [1]. They consider the operator
on the torus, i.e., periodic boundary conditions. In Section [4] we construct the framework of Dirichlet
and Neumann Besov spaces. In this way we generalise the main theorem of [1] to Dirichlet boundary
conditions on @1, = [0, L]*.

Theorem 2.1 (Summary of Theorem . Leta € (—%, —1). Lety e R* L > 0andT =y + Q.
For a Neumann rough distribution & = (£,Z) € X%(I") one can construct a stongly paracon-
trolled Dirichlet domain Dg(T"), such that the Anderson Hamiltonian on Dg(I") maps in L*(I") and
is self-adjoint as an operator on LQ(F) with a countable spectrum given by eigenvalues \(T', &) =
M(T,€) > \a(T,€) > -+ (counting multiplicities). For allm € N the map & — A\, (I, €) is locally

Lipschitz. Moreover, a Courant-Fischer formula is given for \,, (see (43)).

In Section [6| we show that there exists a canonical enhanced white noise in X

Theorem 2.2 (See Theorem Hand . Leta € (—%, —1). Forally € R* and L > 0 there

exists a canonical £ = (£],27) € X%(y + Qr) such that £/ is a white noise (in the sense that

is described in that theorem). We write &, = £9,&, = 2,2, = 29 and A\, (y + Qr, B) =
)\n<y + QLa (55?[{7 /BQE%)) fOfﬁ € R and An(y + QL) == )\n<y + QL; 1)

Now we have the framework set and can get to the key ingredients, of which two are given in Section
[Zk

23. (a) (Lemma[7.3) For L, 3 > 0,

An(Qr) Z %)\n(Q%,ﬁ) + 5= log 3.
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K. Chouk, W. van Zuijlen 4

(b) (Lemmal7.4) Fory € R?and L, 3 > 0,

Au(Qr, B) = Aaly + Q. B).
Moreover, if y + Q% N Q3 = 0, then X\, (Qr, 3) and A, (y + Qr, ) are independent.

In [12, Proposition 1] and [3, Lemma 4.6] the principal eigenvalue on a large box are bounded by
maxima of principal eigenvalues on smaller boxes. We extend these results from smooth potentials to
rough ones:

Theorem 2.4 (Consequence of Theorem B.6]). There exists a K > 0 such that for all ¢ > 0 and
L >r >0 with % € 2N, the following inequalities hold almost surely
max  A(rk+Q,e) SAQre) £ max Ak +Qz,.8) + 5

KENZ [kloo< L —1 kEN [kloo<L+1

Moreover, forn € N; ify,y1,...,y, € R? are such that (y; + Q) are pairwise disjoint subsets
of y + Qr, then almost surely A, (y + Qr,€) > minjeqr oy Ay + Q. €).

Another important tool that we prove is the large deviations of the eigenvalues, which —by the contrac-
tion principle and continuity of the eigenvalues in terms of its rough distribution— is a consequence of
the large deviations of (\/EfL, 5EL), proven in Section@

Theorem 2.5 (See Corollary[9.3). A,(Q1, v2) = M\(Q1, (VEEL, £21)) satisfies the large deviation
principle with rate € and rate function I1,,, : R — [0, oo] given by
L@ = it YV
\%

€L2(Qy)
)\n(Qva):x

In Section [10] we study infima over the large deviation rate function over half-lines, in terms of which
the almost sure limits of the eigenvalues will be described.

Theorem 2.6 (See Lemma [10.4, Lemma and Theorem|[10.7). There exists a C' > 0 such that
foralln € N,
pn = inf inf I}, ,[1,00) = lim inf I} ,[1,00) > C

L>0 L—o0
and

2
— =4 sup sup inf /—|V1/1|2+V¢2.
RQ

Pn veos ®2) Frog®2) , YT
HVH2 <1 dim F=n ||¢||

Using the scaling and translation properties of the comparison of the eigenvalue with maxima of
eigenvalues of smaller boxes in Theorem and the large deviations in Theorem we obtain the
following tail bounds in Section [3]

Theorem 2.7. Let K > 0 be as in Theorem (8.6, Letr > 0. We will abbreviate I, by I,. For all
p > inf I,(1,00) and ks < inf I3, [ 185 there exists an M > 0 such that for all L,z > 0 with

Lyx > M

e2logL—;w:x
PAQ1) < ><exp(7), o
( ( ) ) 2logL KT (2)

N[=
=

'In this statement we have choosen a =
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Asymptotics of the eigenvalues of the Anderson Hamiltonian 5

Using the tail bounds and the limit in Theorem [2.6] we obtain our main result by a Borel-Cantelli
argument and the ‘moreover’ part of Theorem [2.4] (see Section[3).

Theorem 2.8. With 2" = {2" : n € N}, for any sequence (y1) con in R?,

An 2
lim M:—ZKL sup  sup / — VY2 + VY as.
R2

Le2N, L—o0 log L 1 VeOm (82) peos (12)
IVIZ,<1 [lwl2,=1

3 Proof of Theorem and Theorem

In this section we prove Theorem[2.7]and Theorem [3.4] by using [2.TH2.6]

3.1. Let K > 0 be as in Theorem By consecutively applying the scaling in[2.3(a)l the bounds in
Theorem and then the independence and translation properties in [2.3(b), we get for L, 7, > 0
with L > erand £ € N

P (°A(Qr) <1)

P (A(Qg,e) + %logs < 1)

IN
=

( max Ark+Qp,e) <1-— % log 5)

kENZ |kloo< L —1

; 3)

) #{keNZ:|k|oo< L —1}
P (M@re) <1 5 loge)

and similarly

P(2A(Qr) > 1) <P (A(Q%,s) + 2 loge > 1)

§IP’< max )\(Tk—l—Qgr,E)—i—aﬁg—i—%logEZl)

kEN,|k|oo<L+1

<#{keNZ: klo < L+ 1}P (A(Q%T,e) > 1—%—§1oge). @)
Observe that there exists an M > 0 such that for all L, r,e > 0 with 5 > M

LLY < #{k € N2: [kloo < £ 1} < 2(£)2

Er

By combining the above observations we have obtained the following.

Lemma 3.2. Let K > 0 be as in Theorem[8.6 There exists an M > 0 such that for all L,r,e > 0
with £ € Nand £ > M

P(°A,(Qr) <1) <P <>\n(QT,5) <1- glogzs) (&) , (5)

P(e°A,(Q) > 1) <2 (8—LT)ZIP> ()\n(Q%T,s) >1— 4K — % log€> . (6)

N

3.3. Let r > 0. Let us now use the large deviation principle in Corollary [9.3] First, observe that as
. 2 2 . o . . .

lim. o 5-loge = 0, also An(@Qry€) + = log ¢ satisfies the large deviation principle with the same
rate function (by exponential equivalence, see [7, Theorem 4.2.13]). Hence for all & > inf I,.,,(1, 00)
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K. Chouk, W. van Zuijlen 6

[1 41K

and ks < infls, ,[1-25, 00) there exists a ¢ such that for € € (0, £¢) we have the following bound

on the probability appearing in (3) (using that 1 — 2 < e~ for x > 0):

K
2

P (ATL(QTW{_:) S 1-— %10g€> S 1 — 6_6% S e—e € 7 (7)
Proof of Theorem[2.24 This now follows by Lemma[3.2]and the bounds (7) and (8): We obtain

Vr > 0Vu > inf (1, 00) E|M>OVL,SB>OWith¥ GNand% > M :

L2 —px
P(M(Qr) <) <em=r® ()
VL,r >0V < inf Iy, [1 — 4 00) 3M > 0L,z > 0 with 2% € Nand 2% > M :
P (A(Qr) > ) < 2Lze7", (10)

We want to get rid of the condition that the quotient % has to be a positive integer. For this we use
that for all @ > 1 one has [a, 2a] NN # (.

Fix L,r > 0, p > inf I,(1,00) and & < inf 3, [1 — £3%, 00). Let M > 2 be as in the above
statements. For all L, z > 0 such that L\/z > rM there exist r; € [r, 2r] such that %5 € Nand
9 € [5,7] such that %5 € N. As

p > inf I,(1,00) > inf I, (1,00) and k < inf I%T[ 0K o0) < inf Igw[ — 15, ),

we obtain (9) for r = r; and for r = r3. The right hand side can then be bounded by the right
hand sides in (1) and (2). O

Let us first prove the convergence of the principle eigenvalue, before proving Theorem

Theorem 3.4. For any sequence (yr)pcon in R?.
A 2
lim M =—=4 sup  sup / — VY + V?  as.
R2

Le2N,L—oo log L P1 Veoge (k?) peCee (R?)
IVIE <1 [l9]% =1

Proof. Without loss of generality we may assume y;, = 0 forall L € 2. Let p, ¢ € R be such that
p < p% < ¢. We show that

AQoym A Qom
lim inf M >p as., lim sup M <q as.
m—oo log 2™ m—oo  lOg 2™
By the lemma of Borel-Cantelli it is sufficient to show that
> A(QQW) QQWL
P|——*% < p| < o0, P < 00.
mzzl [ log 2m b > Z log 2™ >
By Lemma

lim inf 7,.(1,00) = lim inf I3 L1 — 185 50) = p,..

r2
T—00 7—00
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Asymptotics of the eigenvalues of the Anderson Hamiltonian 7

Let r > 0 be large enough such that

pinf I,(1,00) < 2 < qian%T[ — 188 '50).
Let y¢ > inf 1,(1, 00) be such that pu < 2 and k& < inf /3, [1 — 1% 00) be such that gr > 2. By

Theorem[2.7|for M € N large enough

o0 A(QQm) o0 _mp2(2—;;u)7n
> p| ) < 3 <,

m=M m=M
which is finite because % > 1 for large m, as 2 — pu > 0. Also
= A(Qom =, 8mlog?2
S r [T o] < 3 T
m=M 08 m=M r
which is finite as 2 — kg < 0 (and because 27*"m — 0 for a > 0). O

Proof of Theorem[2.8. Without loss of generality we take y;, = Oforall L € 2N, Letn € N. Let us first
. An(Qom

observe that as A, (Qam) < A(Q2m ), we have lim sup,, . 10(522;71 ) < p%. Letzy,..., 2, € Qo

such that (z; + Q1) are disjoint, then by Theorem we obtain almost surely

An n+m . . An 2m i m
lim M > min lim (2"zi + Qor)
m—oo  log 2ntm i€{l,...n} m—oo log 2" + log 2™

2
> —.
P1

4 Dirichlet and Neumann Besov spaces, para- and resonance
products

Let d € N. Let L > 0. We will first introduce Dirichlet and Neumann spaces on Q7 = [0, L]%. In
order to do this we use 3 different bases of L%([0, L]?), one standard (the ¢;’s), one as an underlying
basis for Dirichlet spaces (the 0;’s) and one as an underlying basis for Neumann spaces (the ng’s).
After defining these spaces (in Definition we prove a few results that compare Besov and Sobolev
spaces. Later, in Definition |4.18 we show how to generalize this to spaces on general boxes of the
form Hle[ai, b;]. Then we present bounds on Fourier multipliers (Theorem and define para-
and resonance products (Definition and state their Bony estimates (Theorem |4.25).

In the following we will introduce some notation. For q € {—1,1}% and z € R? we use the following
short hand notation (q o x is known as the Hadamard product)

d
(H q) = th qox = (ql‘xlv .. '7qd$d)~
=1

We call a function f : [—-L,L]* — C odd if f(z) = (J]q)f(qo ) foralq € {—1,1}% and
similarly we call f evenif f(x) = f(qox)forallq € {—1,1}% Note that if f is odd, then f = 0 on
[0, L)% For any f : [0, L]* — C we write f : [—L, L]* — C for its odd extension (the ~ notation
is taken as it looks like the graph of an odd function) and f : [~ L, L]* — C for its even extension
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K. Chouk, W. van Zuijlen 8

(similarly, the notation — is taken as it looks like the graph of an even function), i.e., for the functions
that satisfy

f(gox) Hq ), flqox)=f(z) forallz €0,L]% qec {-1,1}"

If a function f : [—L, L]* — C is periodic in the sense that it can be extended periodically on R?
(with period 2.L) we will also consider it to be a function on the domain TgL

For k = (k1,...,kq) € Ng let v, = 92— 5#{iki=0} and write 0x., and ny, 1, or simply 0, and ny, for
the functions [0, L] — C and e, o1, or simply ey, for the function [—L, L]¢ — C given by

V() =0p(2) = (3)2 Hsm (Zk;x;), (11)
d_ d
g (z) = n(z) = ve(3) EHCOS Tkix;), (12)

eror(z) = ey(z) = (;L> et ’“”>. (13)

Note that 0, () equals the right-hand side of (1) and 11 () equals the right-hand side of (12) for
€ [~L, L)%, so that 0, and T, are elements of C“(TgL) We can also write 0, and 11, as follows

d s — T,
- d erL i — e LM .
i=1 ge{—1,1}¢
_ d eL Mt _|_ e~ LMt
k(1) = w(3)? H 5 =v Y eqar(2). (15)
=1 ge{-1,1}¢

For an integrable function f : T, — C its k-th Fourier coefficient is defined by

1 i
7 / f@)e t®ode (ke Z).
5,

P =) = g

4.1. ltis not difficult to see that for ¢, ¢ € LQ([O, L]%), the following equalities hold:

F(p)(k) = Hq @)(qok)forallk € Z% q € {—1,1}%, (16)
F(@)(k) =0forall k € Zd with k; = 0 for some 1, (17)
F (@) (k) = Z(@)(qok)forallk € Z% q € {-1,1}%, (18)
(B, 9) 12 r2ienne = 250, ) 2,00 = (B, 0) L2114, (19)
(p,01) =i 9F () (k) forall k € N, (20)

(21)

(p,ni) = Z (@) (k) forall k € NZ.
4.2. By partial integration one obtains that
F(0°f) (k) = (£R)*F (f) (k).

Sothat Z (Af)(k) = —|2k|*Z (f)(k). Consequently (Af, ) = —|Tk[*(f,0k) and (A f, 1) =
—|Zk[*(f, ny). This will be used later to define (a — A)~! fora € R\ {0}.

Moreover, from this one obtains that the spectrum of —A is given by {Z—i|k\2 . k € Z%} and that
every ey, is an eigenvector.

DOI 10.20347/WIAS.PREPRINT.2606 Berlin 2019



Asymptotics of the eigenvalues of the Anderson Hamiltonian 9

Lemma4.3. {0, : k € N} and {n,, : k € N¢} form orthonormal bases for L*([0, L]%).

Proof. We leave it to the reader to check that those sets are orthonormal. Let ¢ € L%([0, L]¢).
By expressing ¢ and @ in terms of the basis {e;, : k € Z%} and using n one obtains @

D rena(P: )0 and B = 3o v (B, )W

ol

Definition 4.4. We define the set of test functions on |0, L]d that oddly and evenly extend to smooth
functions on TY, (here . (T4,) = C°°(T4,)):

Zo([0, L) == {p € C=([0, L]) : ¢ € (T3},

([0, L) == {p e ([0, L]") : € F(Tg,)}.

We equip -#([0, L]%), #,([0, L]?) and Y(TSL) with the Schwarz—seminorms. Note thaff] C=°([0, L]?)
is a subset of both . ([0, L]%) and .7, ([0, L]%).

In the following theorem we state how one can represent elements of .7, ., and .#}, and of ., .7}
and .7 in terms of series in terms of e, 0 and ny.

Theorem4.5. (a) Everyw € . (T4,), ¢ € ([0, L]%) and ¢ € #([0, L)) can be repre-
sented by

W= aer, ©= Y bdp, V=) cny, (22)

kezd keNd keNg
where (ak)reza, (br)rena and (ci)peng in C are such that

Vn € N: sup(1+ |k])"|ax| < oo, sup (1 + |k|)"|bk] < oo, sup(1+ |k|)"|ck| < oo,
kezd keNd keNg

(23)
anda, = (w, 6k>, bk = <g0,0k> andc, = <77/J, le>.

Conversely, if (ax)rez, (b )kena and (cx) ena satisfy then . cza Gk€l, D pena UKk and
> keng Ckl converge in S (T4,), ([0, L]?) and .#,([0, L]?), respectively.

(o) Everyw € ' (T4,), u € ([0, L]%) andv € .Z!([0, L]%) can be represented by

w = Z ager, U= Z b0k, v = Z CpMg, (24)

kezd keNd keNg
where (ak)reza, (br)rena and (i) yeng in C are such that

|a| |0 |kl
IneN: sup—— <00, sSUp ———F+—— <00, SUp ————— < 00, (25)
keze (14 [K[)" kena (1 +[K[)" reng (14 [k
anda, = (w, 6k>, bk = (u,bk> andc, = (v,nk>.

Conversely, if (ax ) reza, (b )kene and (cx) ewa satisfy then ;4 Gk€k, D pena UKk and
> end Ckl; converge in & (T4,), ([0, L]%) and .7.([0, L]?), respectively.

2For the notation see Section
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K. Chouk, W. van Zuijlen 10

Proof. Let w € .#(T4,). As one has the relation .7 (A"w)(k) = (—Z—i|k‘|2)”ﬁ’(w)(l€) for all

n € Ny, we have and 3y cpap<n Z (W) (k)ex N2 win S (T4,), see also [29, Corollary
2.2.4].

Let p € .%([0, L]¢). Using the shown convergence above for w = , by ({4), (T6), and
Y. F@Wer=D > F@Naok)eqr =D (@00
kez? keNd qe{—1,1}d keNd
|k|<N [k|<N |k|<N
Hence 37, cna.j<n (#; Ok) O converges to ¢ in 7 ([0, L]9).
Let ) € .7,(]0, L]%). Using the shown convergence above for 1), by (T5), and
> F@)k)er = Y 2R T F(@G) o k)egr = Y ol

kezd keNg ge{—1,1}4 keNG
|k|<N |k|<N |k|<N

Hence 7, cna.j<n (¥; i)y, converges to ¢ in 7, ([0, L]9).

[(B)] follows from [(a)
O

For o € .#([0, L]?), note that ¢ = >, _ya (e, 0x)d%. Moreover, note that w € .%(T4, ) is odd if
and only if (w, eqor) = ([T q){w, ex) forall k € Z% and q € {—1,1}%. This motivates the following
definition.

Definition 4.6. For u € .7;([0, L]%) we write @ for the distribution in ./(T%,) given by @ =
> wena (U, 0)0y. For v € ([0, L]?) we write T for the distribution in .#’(T4,) given by 7 =
D ena (W, ). An w € " is called odd if (w, eqor) = ([Ta)(w,ex) for all k € Z7 and
q € {—1,1}% Ifinstead (w, eqox) = (w,ex) forall k € Z% and q € {—1,1}%, then w is called
even.

Note that © is odd and v is even.

By and Theorem foru € A([0,L]%), ¢ € SA([0,L]%) and v € L/([0,L]%), v €
Zu((0, L]%)

(u,0) =27%a, @), (v,9) =27%v,¢). (26)
Theorem 4.7. (a) We have

¢ ¢ ([0, LN} = {y € L(T9,) : ¢ is odd},
20 € A0, L]} = {¢ € F(T3,) : 1) is even},

and .%y(T4, ) and (T2, ) are closed in . (Tay).
(b) L(T4,), ([0, L)) and #,(]0, L)) are complete.
(c) We have
FYTL,) = (i u € A0, LI} = {w € #(Td,) - w s oci),
Z(Td,)) = {v:ve.Z(0,LN} = {w e (T : wis even),

and .7}(T¢,) and 7. (T4, ) are closed in ' (T4, ).
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Asymptotics of the eigenvalues of the Anderson Hamiltonian 11

d) (T4, .Z([0, L]%) and .7([0, L]%) are (weak*) sequentially complete.
2L 0 n

Proof. [(a)|follows as convergence in . implies pointwise convergence and therefore the limit of odd
and even functions is again odd and even, respectively. foIIows from|(a)| as f(TgL) is complete
(see [9, Page 134]). If a net (w,),er in 7 converges in .#’ to some w, then (w,, ex) — (w, ex)
for all k, so that w is odd. |(d)| follows from |(c)| as .#’(T%, ) is weak* sequentially complete (see [9),
Page 137]). O

As we index the basis ey, 0, and ny by integers and notby k£ € %Zd, in the next definition of a Fourier
multiplier we have an additional % factor in the argument of the functions 7 and o.

Definition 4.8. Let 7 : RY — R, 0 : [0,00)? — R, w € Z(T%,), u € ([0, L]¢) and
v € .7/([0, L]?). We define (at least formally)

kezd
oD =Y o()u,0)o, oD =Y o(%)(v,n)n. (27)
keNd keNg

Let (x, p) form a dyadic partition of unity, i.e., x and p are C* radial functions on R?, where Y is
supported in a ball and p is supported in an annulus, such that for p_; := x and p; := p(277-) for
j > 0one has

1
Do) =1 <> pw <1 (yeR?, (28)
j=-1 j=—1
|j — k| > 2= suppp; Nsupppr =0  (j,k € Np). (29)

Letw € '(T%,), u € ([0, L]?) and v € ([0, L]?). We define the Littlewood-Paley blocks
Ajw, Ajuand Aju for j > —1 by Ajw = p;(LD)w, Aju = p;j(LD)u, Aju = p;(LD)v, i.e.,

ANjw =Y "(w,ex)pi(k)en, Aju=> (u,00)p;(k)or, Aju =Y (v,01)p;(k)ny.

kezd keNd keNg

Let & : RY — R be the even extension of o, i.e., 5(q 0 x) = o(x) for all z € [0,00)? and
q € {-1,1}% As o(D)o = o(£)0 and 5(D)d), = o(£)dy, by Theorem we obtain that for all
u € ([0, L}?) and v € Z([0, L]Y),

s(D)yu=7(D)i, o(D)v =7 (D)s. (30)

d
Moreover, with a4, = 2 » for p < 0o and a4, = 2~% we have forall p € [1, o]

—_—

lo(D)ullLeo,z1e) = aapllo(D)ullocng, ) = aapllT(D)allpoerg, ),
2L 2L

lo(D)vlLro,L0) = aapllo(@)vll oy, ) = aaplla(D)v] Loy, )-
2L 2L

Therefore, by applying the above to o = p;,

aapllillsg, = 2N Aulrr)iz-1ller,  aapllvllg, = 12 NA0] L )iz-1lles.

This motivates the following definition.
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Definition 4.9. Leta € R, p, ¢ € [1, 00]. We define the Dirichlet Besov space BJ: ([0, L]?) to be the
space of u € .7 ([0, L]?) for which [ul| oo := aapllt]lBg, < oc. Similarly, we define the Neumann

Besov space By:([0, L]?) as the space of v € .#([0, L]) for which [|v|| gr.o := |[T]| g, < oc.

We will also use the following notation: H§' = By, HY = ByS, 65" = By, €~ = B . In
Theorem we justify the use of the notation H§ = BS:S‘.

As Bj is a Banach space, || - || 2.0 is @ norm on B2([0, L]?) under which it is a Banach space.

Similarly, || - || gx.o is @ norm on By ([0, L]%) under which it is a Banach space.
4.10. Observe that by Lemmal4.3 Hy = Hy) = L*and || - [[gg = || [l = || - [ 2.
4.11. Byj4.2we have (a — A)7Lf = o(D) f for o(z) = (a + 2|z[?)~L.

4.12. For any function ¢ and A € R we write [,y for the function x +— ¢(\x). For a distribution
u we write [yu for the distribution given by ([ u, ) = A\™%(u, liw' As lyeg o, = )\_ge,ﬁ%, and

(lu, ek’%) = \"%(u, ex.ar), we have for u € .'(T%,)
Le(AD)u] = o(D)[lyu). @31)
Similarly, 3T) holds for u € .7([0, L]?) and u € .7.([0, L]%) (use e.g.[4.1).

Theorem 4.13. C2°([0, L]?) is dense in By ([0, L]?) foralla € R, p, g € [1,00).

Proof. The proof follows the same strategy as the proof of [2, Proposition 2.74]. O

Theorem 4.14. With either @ = R? or Q = T3, fora > 0, H*(Q) = B$,(Q) = A$,(Q) (for the
definitions see |30, p. 36] and [27, p. 168]) and their norms are equivalent.

Proof. For H*(R?) = F3,(RY) see [30, p.88], for Fi§',(R?) = BS,(R?) see [30, p.47] and for
B$,(R?) = A3 ,(R?) see [30, p.90]. The statements for the torus can be found in [27, p.164,168,169],
where it is mentioned that the proofs are similar as for the R¢ space. O

The following is a consequence of the fact that the norms of H (T4, ) (see [27, p. 168]) and BS', (T3, )
are equivalent.

Theorem 4.15. For all o € R we have

g = [ A+ EP(fond2 W fllag = [ L+ FP)(f0n)

keN3 keN3

Theorem 4.16. For o > 0 the spaces B35 ([0, L]%) and Hg ([0, L") are equal with equivalent
norms, where Hg' ([0, L]%) is the closure of C2°([0, L]¢) in H*(R?).

Proof. As C2°([0, L]%) is dense in By’5 ([0, L]%) (Theorem it is sufficient to prove the equiva-
lence of the norms on C2°([0, L]%). Let f € C2°([0, L]%). By definition of the AS, norm, || f||ag ,(1,) =

~ _ ~ é ~
”fHAg‘,Q(Rd)- As D°f = DPf we have ||fHA312(TgL) = 22||f||A§“,2(TL)- Because ||f||Bg,2(TgL) =
25 11l 2.2 (0, ) (by definition), the proof follows by Theorem|4.14 O
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Asymptotics of the eigenvalues of the Anderson Hamiltonian 13

Theorem 4.17. Letp,q € [1,00| and 3,y € R,y < f3. Then BY (T4,) is compactly embedded in
B (T9,). i.e., every bounded set in B (T3,) is compact in B] (T4, ). The analogues statement

holds for BY2([0, L]?) and B2([0, L]%) spaces. In particular, the injection j : Hy ([0, L]Y) —
H{ ([0, L)) is a compact operator.

Proof. We consider the underlying space to be ']I‘gL; the other cases follow by Theorem Suppose
that u, € BY  and ||[uy|| ;s < 1foralln € N. We prove that there is a subsequence of (i, )nen that
’ p,q

converges in B) . By [2, Theorem 2.72] there exists a subsequence of (u,,)nen, Which we assume
to be the sequence itself, such that u, — win .’ and |ul|gs < 1. As (up, ex) — (u, e;) for all
p,q

k € Z% we have |A;(u, — u)||r» — Oforall j > —1.Lete > 0. Choose J € N large enough
such that 20777 < ¢, so that forall n € N
1272 (= w)l2) 3 gt llen < 2072714 (w0l 20)52 g1 e
< Q(V—ﬁ)J(HunHBgTq + Hu”qu) < 2e.

Then, by choosing N € N large enough such that || (277 || A (u, —u)]|| )7 |lee < eforalin > N,
one has with the above bound that ||u, — ul|gy < 3eforalln > N. O

Definition 4.18. Lety € R%, s € (0, 00)? and

d

I'=y+]]lo,si]

i=1

Let 1 : T[,[0,5] — [0,1]¢ be given by I(z) = (2,...,5%). For a function ¢ we define new

? 54
functions Iy and Z,p by lp(x) = ¢ o l(z) and F,p(x) = (x — y) and for a distribution u we
define the distributions lu and .7, u by by (lu, @) = |det |~ (u, " @) and (Fu, ©) = (u, T, @).
We define

() = A0, 1Y), A(T) = ZUZ([0,1]%)),
o(D)u = Z,l[(lo)(D)((Z,1)"w)]. (32)

Note that the definition of o(D)w is consistent with by Moreover, we define

lull 2.0 (1) o= [ det |7 [| (1) ul

By ([0,1])

where for p = 0o we make the convention that | det l|7% = 1. Observe that this agrees with our defi-
nition of the By on [0, L] forall L > 0 (see also|4.12). Similarly, we define ., (I"),.#/(T"), By¢'(T)

and || - ”B;;;f;(r)-

The following theorem gives a bound on Fourier multipliers, similar as in [2, Theorem 2.78]. However,
considering the particular choice H7 = BQ,Q allows us to reduce condition to control all derivatives of
o to a condition that only controls the growth of ¢ itself.

Theorem 4.19. Lety,m € Rand M > 0. Leto : R — R be C* on R?\ {0} and such that
lo(z)| < M(1+ |z])™™ forallz € R%. Then

lo(D)w|| grimera,y S Nwll gv(ra,y- (33)
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By (30) one may replace “H" (T%,)” by “H, ([0, L]?)".

If, moreover, for all « € Ni with || < 2|1 + ¢] there exist a C,, > 0 such that |0°0(z)| <
Cyolz|™ 1ol for all z # 0, then

lo(D)w

¢rtm(Te,) 5 “w EV(T,)" o4

By (30) one may replace “¢7(T4,)” by “67([0, L]%)".
Proof. Let a > 0 be such that p(k) = 0 if |k| < a. Then for 5 > 0 one has |p;(k)o (k)] <

M1+ %j)*mpj(k) < ML™a=m279mp,(k) forall k € Z4. As o is bounded on the support of p_,
there exists a C' > O such that forall j > —1

lo(D)Ajwllzz = | D lwlen)Plo(5)Plps (k)2 < C27™ | Ajuwl| 2.

kezd
follows from [2, Lemma 2.2]. O

4.20. Using the multivariate chain rule (Faa di Bruno’s formula) one can prove that o(z) = (1 +
72|x|?)~! satisfies the conditions in Theorem (those needed for (34)).

One other bound that we will refer to is a special case of [2, Proposition 2.71]:

Theorem 4.21. Forall o € R,

ol S ol ey

Now we consider (para- and resonance-) products between elements of ., ([0, L]%) and ./([0, L]¢),
and between elements of .%/([0, L]%).

4.22. Let wy, wy € '(TZ,) be represented by w; = Y keza rer and wy = Y, o4 bieg. Then
formally wywy = Y, 7a Crmm, With ¢, = Zk,lezd,k+l:m ab;.

Of course this series is not always convergent (e.g. take a;, = by, = |k|™ for some n € N and see
(25)). But if it does, then due to the identities

d~ _ -
(2L)20;1y = 1 Z Ofc+pol s (35)
pe{flvl}d
4= = _ _
(2L)20x0, = (—1)* Z Vkipol(H P)kpots (36)
pE{—l,l}d
a_ _ VRl
QLM = D g, (37)
pe{—1,1} k+pol

the product obeys the following rules
even X even = even, odd X even = odd, odd X odd = even.

For example, if u € ./ and v € ., and uv exists in a proper sense, then uv € .75.

Definition 4.23. For u € .;([0, L]) U./([0, L]¢) and v € .Z!([0, L]¢) we write (at least formally)

uU=0v0u= Z Ajuljv, u@uv= Z Ajuljv. (38)
5,j>—1 i,j2>—1
i<j-1 [i—jl<1
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4.24. As 0/1;5; = 5kﬁm and ngn,, = nin,,, we have (at least formally)

P —_~— —~—

UQU=umU, uSv =] (AOX
uUQUV=uU, uSv (] u@©u

||

N
<l
||

=g
<l
)
L

©
©

||

N
<
||

S
<
=
A=

With this one can extend the Bony estimates on the (para-/resonance) products on the torus to Bony
estimates between elements of B2 ([0, L|%) and B7([0, L]?) and between elements of B ([0, L]7).
We list some Bony estimates in Theorem [4.25]

Theorem 4.25. (Bony estimates) With HY = HY (T4, ) and ¢€* = €*(T4,),

Sary 1|z [[€ 5o
-5 S (1 llan 1€
Sary |11l

(@)
(0)
()

Eh

SJOQ’Y

1614~ 11€
(d) Forall o

EC -

Sana 1f (1€
By|4.24 one may replace “H" " by “H{ ([0, L]%)” and € by “€2([0, L]%).

[

Proof. For|[(a)l and[(b)] see [25, Lemma 2.1] and [2, Proposition 2.82] where the underlying space is
R rather than the torus. Forsee [2, Proposition 2.85].@follows from the rest. O

5 The operator A + £ with Dirichlet boundary conditions

We define the Anderson Hamiltonian and study its spectral properties that will be used in the rest of the
paper. In this section we assume d = 2,y € R?and s € (0, 00)? and write T' = y + ]2, [0, 5,
Moreover, we let o € (—3, —1) and & € €(I"). We abbreviate €*(I") by 6, H () by H{,
etc. We write 0 : R? — (0, oo) for the function given by

(@)=
o) = T
Additional assumptions are given in[5.10, Remember, see[4.11] that (D) = (1 — A)~.

Definition 5.1. For 5 € R, we define the space of Neumann rough distributions, written %E , to be the
closure in €7 x €2°+2 of the set

{((,(@a(D)—c): (€S ceR}
We equip %E with the relative topology with respect to Cgf X cgn26+2_
We will now define the Dirichlet domain of the Anderson Hamiltonian analogously to [1] did on the
torus.

Definition 5.2. Let§ = (£, =) € X%. For0 < v < a+2 we define @2’“’ = {feH]: f€cH Y,
where f% := f — f © o(D)&. Moreover, we define an inner product on .@2’7, written (-, >@§a~, by

<f7 g>9§’W = <f7 g)Hg + <fﬂ£7gﬁ£>H02"/

DOI 10.20347/WIAS.PREPRINT.2606 Berlin 2019



K. Chouk, W. van Zuijlen 16

For —% < v < a + 2 we define the space of strongly paracontrolled distributions by @Z’”’ ={f¢€
H) . f¢ € H2}, where f*¢ .= f% — B(f,€)and B(f,€) = c(D)(fE+ fo & — (A —
1)f)© (D) —23% 0,,f © d,,0(D)E). We define an inner product on @2’7, written (- ->©Z,w,

by (f, g)z)z,w = (f,9) g + (f*%,9"%) 2. As in the periodic setting, one has D7 € Hy for all
vE (-2, a+2). Wewrite D} = {f € H{"*™ : f** € HZ}.

We will define the Anderson Hamiltonian on the Dirichlet domain in a similar sense as is done on
the periodic domain, however we choose to change the sign in front of the Laplacian as this is more
common in literature on the parabolic Anderson model.

Definition 5.3. Let —5 <y < a +2, £ Xy We definthe operator 7 : .@;” — Hg” by
Hef =ANf+fOE+ RO+ Z(f,0(D)E,E)+ [E+ ok

where Z(f,g,h) == (f ©9) © h — f(g © h).

We state the main results about the spectrum of the Anderson Hamiltonian, on its Dirichlet domain.
These results are analogous to the Anderson Hamiltonian on the torus [1]. Moreover, they are similar
to the results of [18], which proof is based on the theory of regularity structures.

Theorem 5.4. Let§ € X. For—5 <y <a+2

17 £l g S 1F g (14 [1€]1x5)* (41)
He(Dg) C L? and Az : Df — L* is closed and self-adjoint as an operator on L*. There exist
ML, &) > Xo(I0,€) > -+ such that o () = o,(H) = { \(I,€) :n € N} and#{n € N :
M (I, €) = A} = dimker(A — ) < oo forall A € o(Hz). One has

De= P ker(A—4).

Neo ()

There exists an M > 0 such that for alln € N and&,0 € X

M1, €) = An(T, 0)] S 1€ = Olxg (1+ [[€]lxg + 116]1)" (42)
With the notation C for “is a linear subspace of”,
A(I,€) = sup inf (), ) (43)
FroY | YEF

3 =
dim F=n ol L2=1

In particular,

ML) = sup (A, ¥

YeD: [yl 2=1

Remark 5.5. Let us mention that in an analogous way one can state (and prove) the same statement
for the operator with Neumann boundary conditions by replacing “0” by “n” and “H," by “H,,".

3The definition needs of course justification to show Hg_Q is really the codomain, this is shown in Theorem
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Remark 5.6. In [1] it is pointed out that in one may replace D} by .@g for v € (%, a + 2), and
(A, )2 by H()—w(%%@zqga where Ho_”<" VHy H," x H] — Ris the continuous bilinear
map (see [2, Theorem 2.76]) given by

a (F 9y = D (Dif, Dg)re.
i,j>—1
li—j|<1

This is done for the periodic setting, but the arguments can easily be adapted to our setting.

5.7. Letn € L* (which equals H?, see[4.10). By Theorem[4.19|c(D)n € HZ, which is included in
%! by Theorem Then by Theorem n ® a(D)n € HL. Moreover, if n. — nin L2, then
n. ® o(D)n. — n® o(D)nin H} (by the same theorems). Hence, by Theorem we obtain the
following convergence in Xy for all v < —1

(12, me © o(D)ne) — (n,n © a(D)n).

We write \,,(I', ) = A\ (T, (9,7 © a(D)n)).

By[5.7]and the continuity of & — \,,(T", £), see (@2) in Theorem [5.4] we obtain the following lemma.
Lemma 5.8. The map L*(T') — R, n — \,(I',n) is continuous.

59. Let( € .. Then ¢ := ((,( ® o(D)¢) € X, f © 0(D)¢ € H? and B(f,¢{) € H” for all
p € R (use Theorems|4.19|, |4.20 and |4.25|). Therefore, for all v < 1, .@g” = H}" and @Z’V = H?

andfor f € H), fO (= f*“0(+2Z(f,a(D),C)+ f(C®a(D)),so that

Hf = Af+ fC= A (44)

Now suppose ( € L™ C €. Then ¢ := (¢,{ ® o(D)¢) € XY, but the Bony estimates give
feo(D)¢ € HY (and not € H?). Nevertheless, by the Kato-Rellich theorem [26, Theorem X.12]
on the domain H{ the operator .7# defined as in is self-adjoint. As the injection map HZ — L2
is compact (see Theorem [4.17), every resolvent is compact. Hence by the Riesz-Schauder theorem
[26, Theorem VI.15] and the Hilbert-Schmidt theorem [26, Theorem VI.16] there exist )\1(I’, C) >
Xa(T,¢) > -+ such that () = 0,() = {\(I', () : n € N} and #{n € N: \,([',() =
A} = dimker(A — J%) < oo for all A € (7). Moreover, by Fischer's principle [20, Section 28,
Theorem 4, p. 318f] and Lemma

An(ra C) = Sup2 J)relg <%77Z), 1/1>L2
DEHS ) =1

= sup inf /—|V1/)|2+C1/12. (45)
FCC® er
dim F=n [[¥ll 2=1

The proof of Theorem [5.4] follows from the results of the Anderson Hamiltonian on the torus with the
help of Lemma The proof is written below Lemma We may restrict us to the case ' = ().

5.10. For the rest of the section y = 0 and b; = L for all 4, i.e., ' = Q; = [0, L]°.

*In this reference the operator is actually assumed to be compact and symmetric, whereas we apply it to %”5 But the
compactness is only assumed to guarantee that the spectrum is countable and ordered, so that the arguments still hold.
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511. Forq € {—1,1}% and w € .’ we write [;w for the element in .7’ given by (lyw, @) =
(w, p(q o)) for p € .. Then wis odd if and only if w = ([] q)lqw forallq € {—1,1}%and w is
even if and only if w = [yw forall q € {—1,1}<.

Lemma5.12. Leté € X3 Let2 <y < a+2. Write& = (£, E), 77 = 77(T5,), D3 = Dg(T5,).

@ 77 = {w € 77 wis oad), D" = {w € DY : w is o}, Hef = Hif and
||f||9§'y ~ ]|f||(jg forall f € 2" and Hfﬂfozw ~ ||f\|@% for all f € D¢

(b) H(287) C HY 2, #(Dg") C L2

(c) H(lof) = lgtz ] forall f € Qg andq € {—1,1}%

(d) o(H) C o(H) (for the operators either on the & or® domains) and for alla € C\ o ()
the inverse of a — ¢ : @2 — L? is self-adjoint and compact.

Proof. Mfollows from the identities (39), j?ﬁ/g = fi, B(f,&) = B(f, &), ¢ = ¢ and because
191z = llgllgy forally € Rand g € H([0, L]?) (indeed, 9llg2y = Nl9ll 53, by definition and

I Wlmg ~ I - g2y and [ - [[sg, = || - ||z~ by Theorems|4.14and 4.16).
(b)|follows fromas %%(@g) C H""? and #(Dg) C H" (see [1]).

follows by a straightforward calculation; use that 7 (I, f) = 1.7 (f), lapi = pi, £ = € and
;2 =Zforqe {-1,1}%

(d)|Let a € C be such that a — 7% has a bounded inverse %,. By|(c)| (a — %) f is odd if and only
if f is odd, indeed, if (¢ — %) [ is odd, then (a — J%)[f — (] q/lij/c] =0 Esee and thus
f = (ITa)lyf - Hence a — 7% has a bounded inverse %2 such that Z2h = %, h. From the fact that
R, is self-adjoint and compact it follows that Z? is too.

O

Proof of Theorem[5.4. By Lemma it follows that .7 is a closed densely defined symmetric op-
erator and that o (%) C o(;) so that % is indeed self-adjoint. As the resolvents are com-
pact, the statements in Theorem up to follow by the Riesz-Schauder theorem [26, Theorem
VI.15] and the Hilbert-Schmidt theorem [26] Theorem VI.16] because of the following identity, where
R, = (n— )"

0(He) = 0p(He) = {n— 5 : A € op(Ry) \ {0}},

this means that A — I?,, is boundedly invertible (or injective) if and only if © — % — S is, and in turn
follows from the identity

i~ % = H) = N~ H) = 1= (A= R,)(u — )
— (- AN~ 1= (u— )\ - R,).

As every eigenvalue of .7 is an eigenvalue of %% which is locally lipschitz in the analogues sense

of (42), also holds by the equivalences of norms in Lemma [5.12(a)| follows from Fischer’s
principle [20, Section 28, Theorem 4, p. 318]. O
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6 Enhanced white noise

In this section we prove Theorem 6.4} we first recall a definition and introduce notation.

Definition 6.1. A white noise on R is a random variable 1 : Q — .(R¢) such that for all f € .’
the random variable (W, f) is a centered complex Gaussian random variable with (W, f) = (W, f)

and E(W, [)(W, g)] = (f,g)12for f,g € 7.

6.2. Then f — (IV, f) is linear [22, Remark below Definition 1.1.1]and as ||(W, f)|l 2@ = || f]| 22,
the map f — (W, f) extends to a bounded linear operator # : L?(R%) — L?(£2) such that for all
f € LA(RY), # f is a complex Gaussian random variable, % f = # f and E[# f# g] = (f, 9) 1>
forall f, g € L*(R%).

6.3. Let IV be a white noise on R? and % as in For the rest of this section we fix L > 0. Unless
mentioned otherwise 7 € C'>°(R%, [0, 1]) is an even function that is equal to 1 on a neighbourhood of
0. Define &1, € 74 (]0, L]%) by (for (# ', 1y, 1), we interpret ny, 1, to be the function in L?(RR?) being
equal to ny, 1, on [0, L]? and equal to 0 elsewhere)

§Le = Z T($k) (W 0 L) v . (46)

kend

For k € N define Z;, := (# ,n ). Then Z} is a (real) normal random variable with
E[Zy] =0, E[ZyZ)) = 0. (47)

Theorem 6.4. Letd = 2. Foralla < —1 there exists a&; € X\ such that the following convergence
holds almost surely in X¢, i.e., on a measurable set 2, with P(Qr) = 1

1. 15 g D e — C¢ = s 48
siO,z—:E@lQrfIWl(O,oo)(fL’ §L, QJ( >§Lv C) EL (48)

where c. = 2log(2). The &, is a white noise in the sense that for p,v € #(Qr), £L(p) and
¢1.(1) are normal random variables with

E[¢L(p)] = 0, E[EL(p)EL(¥)] = (0, ¥) L2((0,1)4)- (49)

Moreover, for p € C°(Q)) one has almost surely (i.e., on {))

(€1 ¢) =1, ) = D W ) (e 0) = (W),

keNg
Hence, for every L > 0 the W viewed as an element of ' (()1) extends almost surely uniquely to a
fL in cgna.
Instead of taking (), as an underlying space, we can also take a shift of the box, i.e., y + Q:
6.5. For y € R¢ we define
&= 7| 3 TERTH s
keNd

If d = 2, by Theorem [6.4|there exists a £/ = (¢/,ZY) € X2(y + Q1) such that almost surely

I; Y ) D)&Y —Ll 1V — ¢v 50
aiOge(l@I?(o,oo)(SL’g’gL’sQU( )gL,s 2w Og(5>) I ( )

and such that £7 is a white noise in the sense described in Theorem H (i.e. T_ &7 satisfies (@9)).
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For the rest of this section we fix L > 0 and drop the subindex L; we write (. = &, . and
N = Ng -

Definition 6.6. Define =. € ./,(Q) by
Ee(r) = & © 0(D)&(x) — E[§: © o(D)E:(x)]. (51)

The strategy of the proof of the following theorem is rather similar to the proof on the torus in [1], but
due to the differences of the Dirichlet setting and for the sake of self-containedness we provide the
proof.

Theorem 6.7. Foralla < —g, & converges almost surely as € | 0 in 6, to the white noise {;, (as
in Theorem|[6.4). Moreover, ford = 2 and all « < —1, =, converges almost surely ase . 0 in €22
We denote its limit by =.

Proof. The proof relies on the Kolmogorov-Chentsov theorem (Theorem[6.8). Lemmal6.70]shows that
the required bound for this theorem can be reduced to bounds on the second moments of A;(&. —
&) () and A;(Z. — Z5)(x), given in (the proofs of these bounds are lengthy and therefore
postponed to Section[T). follows from

B, )€ )] = S 7(ek) o, me) () 25 S (o, (v, 1) = (0, 9).

keNg keNg
O

Theorem 6.8 (Kolmogorov-Chentsov theorem). [16, Theorem 2.23] Let (. be a random variable with
values in a Banach space X for all ¢ > 0. Suppose there exist a, b, C' > 0 such that for all £, > 0,

E[lI¢: = Gll%] < Cle = o]'*.
Then there exists a random variable  with values in X such that in L*(2, X) and almost surely

lim =(.
€10,e€QN(0,00) CE C

Proof. This follows from the proof of [16, Theorem 2.23]. O

It is generally known that the p-th moment of a centered Gaussian random variable Z can be bounded
by its second moment, as E[| Z|P] = (p — 1)!'E[|Z|?]% (see [23, p.110]). We will use the generalisa-
tion of this bound, which is a consequence of the so-called hypercontractivity.

Lemma 6.9. [22, Theorem 1.4.1 and equation (1.71)] Suppose that Z,, forn € N are independent
Gaussian random variables. If Z is a random variable of the form )~ a,, Z,, or vameN i Zn L
with a,,, a,, m € C, then forp > 1

P

2

E[lZ]] < p"E[|Z]]:.

Lemma 6.10. Let A > 0 anda € R.
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(a) Suppose ( is a random variable with values in !([0, L]%) such that A;{(z) is a random
variable of the form as Z is, as in Lemma foralli > —1 and z € [0, L]d. Then, if for all
i>—1,2€l0,L]?

E[|Ail(2)]?] < A27, (52)
then for all k > (0 there exists a C' > 0 independent of ( such that for all p > 1
E[ICI7 _y_ 5] < CPPLIA%, (53)
(b) Suppose that ((.).~o is a family of such random variables for which holds, such that for all
k e Nd
E[| (¢, nie) ] = 0. (54)
Then forallk > 0 andp > 1
[HCEHP _____ 2] =0,

and thus we have (. —> 0 (convergence in probability) in CK

Proof. For k > 0, by Lemma with C,. = Ziz—l 27Kt

B[ICIP, 5 = > 275 PE[|AC], 1<¢Ld(zw> A% < CPLiab.

i>—1 i>—1

Using the embedding property of Besov spaces [2, Proposition 2.71], i.e., there exists a C' > 0 such
that || - || g2 <O || w—9—x, ONe obtains (53).

[(®) By Lemma (and Fub|n|)

(VS|

E[AGIL] < 1 / EAG @)% de S L [ 32 pik) Bl n) )

keNg

and so

P

2

B¢, -] < P7L 22“‘“ ST pRE(G ) 2]+ AR S 2

i=—1 keNd i>I+1
The latter becomes arbitrarily small by choosing I large and subsequently £ small. O
6.11. The following two statements are proved in Section
(a) (Lemma For all v € (0, 1) there exists a C' > 0 such thatforalli > —1,£,0 > 0,

E[||Ai(¢ — &)]|%] < €214 ie — 5.

(b) (Lemma(11.17) Letd = 2. For all v € (0, 1) there exists a C' > 0 such that for all i > —1,
£,0>0

E[[|Ai(Z: — Z5)|I7] < C227]e — ).
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Definition 6.12. Define c.;, € R by

1 T(£k)?
Cop = Y L (55)

In the periodic setting one has that with £ defined as in [1], E[{. ® o(D)¢{.(z)] = c. 1. Observe
that it is independent of x. In our setting, the Dirichlet setting, we have (remember and use that

Zi,jz—l,u—j\gl pi(k)p;(k) = 1)

T(Ek)? 2
E[¢. © o(D)é.(x)] = Z Wnk(ﬁ) :
kENZ + 1z lkl
Note that
TR r(5h)? 4
2 =R 2 1 2Rp e o (56)
keN?2 L2 kENZ L2

Lemma [6.15|deals with this = dependence of E[¢. ® o(D)&. ()]

The following observation will be used multiple times.

6.13. As 0 < p; < 1 and thereis a b > 1 such that p; is supported in a ball of radius 2°b for all
1> —1,onehasforalli > —1, k € Ngandv > ()

2i Y
pi(k) < <Qbr’k’) - (57)

Theorem 6.14. Let 7 : R? — [0, 1] be a compactly supported even function that equals 1 on a
neighbourhood of 0. Lety € R. Forallh € H we have ||h — 7(¢D)h|| 7 — 0 and for 3 <

1h = 7(D)hll g < &Il -
Proof. By assumption on 7 there exists an a > 0 such that 7 = 1 on B(0, a). Then

1—7(£k) =0 k| < 22
L+IZP <@+ 52070 k| 2 22,

By the following bounds the theorem is proved; by Theorem[4.15

Ih=7(Dhllys S [ DL+ EPPL = 7(£8)* A )2 S €77 |l g

keNg
O

Lemma 6.15. Let 7 : R?> — [0, 1] be a compactly supported even function that equals 1 on a
neighbourhood of 0. Then
T(£k)? 9
T — ———m(r)" — L
Z 1+ z_z k|2 (2) €

keN3

is an element of ., and converges in 6, " to a limit that is independent of 7, as € | 0 for all y > 0.
In particular, x — E[¢. ® 0(D)&(x)] — c..1, convergesin€, " ase | 0 forally > 0.
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Proof. As there are only finitely many k € N§ for which 7(£k) # 0, 2 — E[. © 0(D)& ()] — c. 1,

is smooth. By (37), as nx(0) = %Vk and vg, = Vg,

2 2 2 2 2 2
2 __ k k 4vg
k(l’) =7 Qk( )+ [V(kl,O) (2k1,0)(90)+

Moreover, as 0y € H,* and (0p, ny) = 2 for all k € Ng, and as nyy,(z) = ny,(2z)

)

2 T(fk)2
L§:1+%ﬂM2%@)

keNZ

[7(eD)*o(D)do](22).

=

By Theorem o(D)dy € H_, so that by Theorem 7(eD)?0(D)dy — o(D)dy in H} and
thus in Cﬁno (by [2, Theorem 2.71]). This convergence is ‘stable’ under ‘multiplying the argument by 2’

(see also[4.12).

Let us write h, for

T(£(L,m)? Vim
he(w) =Y o LL G g0 ().

et L+ 72+ ) Yoo

Let v > 0. With ANl < |pi(l,0)] S 27(1 +12)77, hence

IT(£(1,m))? — 1
1+ (2 +m?)

sup 2” A (he = ho)lle S > (L+17)72

iz- I,meNg

By Lebesgue’s dominated convergence theorem and the next bound it follows that hy € %~ and
he = hoin €7

L+ e 2 1
Z 1+Z—§(l2+m2)§/o /0 (14 [r]7) 1+LTJ2+L8J2deT

I,m€eNy
o o
—y
S C —i—/ / T
1 0 r

[e.e] oo 1
50-1—/ T_l_vdr/ 5 du < oo,
1 o l+u

where we used the substitution u = . In the same fashion the term with “(0, m)” instead of “(0, )"
converges. By these convergences and by plugging in the factor 2 also here the convergence is proved

(remember (56)). O

1
= dsdr

Before we give the proof of Theorem (6.4, we study the behaviour of ¢, ;..

Lemma 6.16. Let L > /2. Let T : R? — [0, 1] be almost everywhere continuous, be equal to 1 on
B(0, a) and zero outside B(0, b) for some a,b with0 < a < b. Forall L > 0,

cEL——log—

convergesinR ase | 0.
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Proof. We define |y| = (|y1], ly2]) and hp(y) = (L? + w%|y|?)~! for y € R2. Then

o= [ rELolPhalo) .

We first show that

Cel, — /2 7($y)*hy(y) dy — 0.
R

Write A(s,t) for the annulus {y € R? : s < |y| < t}. To shorten notation, we write § = <

-yl < V3 .

o [t = [ )~ hat)ay

+/ T(0y))?he(lyl) — 7(6y)*hely) dy.
(2—v2,54+v2)

As

As hi([y]) = ha(y) = ho([yDhe () (y* = [[y]1*). he(ly]) < he(y) and (y* = [[y]*) < 1+[yl.
we have iy ([y]) — hi(y) < (1 + |y|)hi(y)? As the latter function is integrable over R?, it follows

by Lebesgue’s dominated convergence theorem that fB(o a3 h(ly]) — hr(y) dy converges in R.
]
On the other hand, the integral over the annulus can be written as

| LR P
Ala—v3sprvas) 02 L2 + 0*[[§]2 6212 + [z]?

Again by a domination argument (note that B ‘2 is integrable over annuli), using that 35 |5 ]2 < 2+
5117 < L2+ 5]
0=7)

1 ! s :
o ho(y)dy = | ——5ds+ ds.
27 Jp(0,2-v2) 1y)dy /0 1+ 7282 N /1 1+ 71232 / e e2 + 1252 7T282

The last integral converges as ¢ | 0 to zero. For the second integral we consider

E 1 1 1 1 a
S . S P . S s = —log().
/1 1+ 7282 725 ° /1 m2s(1 4 m2s?) /1 m2s ° 2 Og(e)

, we conclude that this integral converges to 0. By some substitutions (remember

ol
ol

Hence by the above calculations we obtain that c..;, — 2 log £ converges in R. O
Proof of Theorem[6.4. This is a consequence of Theorem and Lemmas and O

7 Scaling and translation

In this section we prove the scaling properties of the eigenvalues, by scaling the size of the box and
the noise. In this section we fix . > 0 and n € N.

Lemma 7.1. Suppose thatV € L>([0, L]%). Forall 3 > 0

M ([0, L4, V) = g Aa([0, 519, 82V (5)).
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Proof. Fixn € N and write A\ = A, ([0, L]?, V). Suppose that g € HZ (see[5.9) is an eigenfunction
for A of A + V. With gg(x) := g(Sx) we have for allmost all =

Ags(x) + BV (Bx) = B*(Ag)(Bz) + BV (Bx) = B*Ags(x).

So that 3%\ is an eigenvalue of A + 5%V (3-) on

0, As the multiplicities of the eigenvalues on
[0, L]* and [0, 5]* are the same, 57X = A, ([0, 5], 5

51
2V (8)- 0

L
7.2. Fory € R?, L > 0 and 8 € R we write

Ay + Qr, B) = My + Qr, (667, 721)), Ay +Qr) = Ay + Q1. 1),
where £} = (¢7,2Y) is asin[6.5]

Lemma7.3. For(5 >0

M (QL) = 3 An(Qz, B) + 2log .

Proof. fl5¢, is a white noise on Qz, so that (Blstp, ) < (fé,nk) for all k € N2 and thus
Loy L a6 Byl12llogs. = 7(5D)lIske] £ € . Sothatby Lemma
M (QLy (Epe éLe @ (D)L — 2log(L))) = % n (Qr, &) — 2log(1)
L (Qu. e
Lo (Qs (B8

d
L =
B

~ 210g(2)])) + 210g 8.

Lemma 7.4. Fory € R? and 3 > 0

Aa(Qrs B) = My + Qu. B).
Moreover, ify + Qr, N Qr, = 0, then X,,(Qr, 8) and \,,(y + Q1,, 3) are independent.

Proof. As (see also Definition in particular @2) gy f = T (H 57 ev (T f)), itis sufficient
to show &, < 7, &% As T, W L W we have T €. £ ¢, and hence obtain £, < 7, &Y
by and (50).

For the “moreover”; note that ({7, #/, 1) )kenz @nd ((#', 1k 1)) renz are independent when y +
Q1N QL =0 @ ELT, W ) (W v )] = (Zy (i rlg,), i rle,) = 0). O

8 Comparing eigenvalues on boxes of different size

8.1 Bounded potentials

In this section we prove the bounds comparing eigenvalues on large boxes with eigenvalues on
smaller boxes for bounded potentials, see Lemma Theorem and Theorem In Section
Theorem we extend this for white noise potentials. We fix d € N and use the notation
‘k|oo = MaX;e{1,...d} ’kz|
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Lemma8.1. Let L > r > 0 and ( € L>([0, L]%). Forally € R? such thaty + [0,r]¢ C [0, L],
we have

Ay +10,7]%,¢) < Aa([0, L], €).

Proof. This follows from as one can identify a finite dimensional F' = HZ(y + [0,7]%) with a
linear subspace of H2([0, L]?) with the same dimension. O

We will now prove an upper bound for A, (Qr,, ) in terms of a maximum over smaller boxes. For this
we cover (), by smaller boxes that overlap and correct the potential with a function that takes into
account the overlaps. We use the following lemma.

Lemma 8.2. Letr > a > (. There exists a smooth functionn : RY — [0, 1] withn = 1 on [0, r —a]?
and suppn C [—a,r]? such that ||Vn||s < £ for some K > 0 that does not depend on r and a,
and

Z nx—rk)*=1 (z€RY. (58)

kezd

Proof. We adapt the proof of [12, Proposition 1] and [3, Lemma 4.6]. Let o : R — [0, 1] be smooth,
@ =00n(—o0,—1]and ¢ = 1on[1,00) forall z € R. Let

(@) = ooz + 1)(1 - p(2E) 1 1))

Then ¢ = 0 outside [—a, 7], { = 1on [0, —a]and >, _, ((x — rk)* = 1. Moreover, ||('[| <

211 /@ loe + VT = @] ). Hence with 1 : R — [0, 1] defined by 1(x) = [17_, ¢(2;) we have
and ||Vl < & for some C' > 0. O

8.3 (IMS formula). Write ny.(z) = n(z — rk). Then

A + Apw) — 2npA () = |V [

Consequently, with 4,0 = () (S = ) and @ = 3", a [Vii|?

% — o = Z 7’/ka (59)

kezd

(59) is also called the IMS-formula, see also [28, Lemma 3.1] with references to first works in which
it appears. The technique to prove [12, Proposition 1], which we slightly generalize, is basically the
IMS-formula.

Theorem 8.4. For allr > a > 0 there is a smooth function ®, , : RY — [0, 00) whose support is
contained in the a-neighbourhood of the grid rZ° + d[0, T]d, is periodic in each coordinate with period
r, with || @, || < £ for some K > 0 that does not depend on a andr, such that € L>*(R%) and
L>r

A0, L)% ¢) — & < A0, L], ¢ = ®,,) < max  A(rk+[—a,7],().  (60)

keENE, |kloo<L41
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Proof. Let 7 be as in Lemma (8.2} 1 () = n(x — rk)and ®,, = ® = >, ;4 |Vi|*. By Lemma
it follows that ||®||. < < for some K > 0 that does not depend on a and r. Observe that
2 heNd: bl < L +1 Tk €Quals 1 on [0, L]®. With Hy, as inwe have Hy < A(rk + [—a,7]%)n;, for all

k € Z%. Hence we have by the IMS-formula (59) on Hj5([0, L]%)

H—P < Z MNrk + [—a, )Y i < max Ak + [—a,r]?).
. L kENG, koo < £+1
KENG, [kloo< L +1

O

Theorem 8.5. Let( € L=(R?). Lety,y1,...,yn € RY, L > r > 0 be such that (y; + [0,r]9)™,
are pairwise disjoint subsets of y + [0, L]¢. Then

Moy +10,L]%¢) > min Ay +10,71%,¢). (61)

1e{l,...,n}

Proof. By (see also (111))

Ay +10,L]%,¢) > sup min / —|ViIP+ (s
Fryeerfrs i€{1,....,n}
Fi€C (yit[0,r)N), 1 fill L2 =1
which proves by with n = 1. O

8.2 White noise as potential

In this section we prove analogous bounds to those in Lemma[8.7] Theorem [8.4]and Theorem [8.5| by
replacing the bounded potential { by white noise, i.e., we prove Theorem

Theorem 8.6. (a) Forallk >0, L >r > 0withZ € Nandy € R? such thaty + Q, C Q1

Ay + Qr, k) < A(Qr, k) a.s. (62)
(b) There exists a K > 0 such that forall k > 0 and L > r > a > 0 with Hia €N,

AQp, k) < max ATk + Qria,k) + 5 as (63)

T kENZ ko< L 1 “

(c) Fork > 0,L >r > 0witht € Nandy,y,...,yn € R? such that (y; + Q,), are
pairwise disjoint subsets of y + (),

A(y+Qr, k) = Emin Ay + Q. k) as. (64)

1,...,n}

Let us describe how one can prove Theorem Suppose L,r,x > 0 and % € N. It is sufficient to
show that for all y € R? such that y + @, C Q1 almost surely one has the following convergences

)\n(y + Q’I‘J H£/L75> —Ce — An(y + QW "i)a ATL(QL? "iéi,s) —Ce — ATL(QL? ’i)a

for an appropriate {7, .. We choose 7 _ to be as £} _ in but here 7 = 1(_ 1)2. Then

)\n<y + QT7 Ké},,s) - )‘n(y + Q’I‘J ’ieg) - A”(y + QT7 (’KLQ‘ZEIJ ’129?6; @ U(D)Qg))7
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for 8¢ (which equals &7 _|,+q, in L*(y + Q)) given by

07 = Z <£/L,ev %nkm>L2(y+Qr)%nk,r

keNZ
= > GO ) (ner, i) 1210 Ty (65)
keNZ teNG
Therefore the following theorem resembles the missing part of the proof.

Theorem 8.7. Let L > r >0 With% € Nandy € R? be such thaty + Q, C Qr. LetT = L1,1)2
and 0¥ as in @8) (c. = 2log(2)), we have (6¢,0¢ © o(D)6Y — c.) 5evinxo(y+Q,).

grre

Remark 8.8. The conditions % e Nand7t = I (_1,1)2 in Theorem are of computational reasons;
7 = 1(_1,1)2 assures that G, asin equals a sum and % € N assures cancellations in sums, see
also Remark [1.211

In order to prove Theorem we summarize some results from Section [11] The proofs are lengthy
and rely on similar techniques as the bounds in and are therefore postponed to Section

8.9. Letd = 2, L > r > 0 such that % € N.Let& = &, beasin Section@(i.e., defined with a
T € C*(R?%[0,1])). Let £ be as in with L = rand 7 = 1(_y 1), Z{ be as in with “€.”
instead of “¢.” and let 6. = 0° equal the right-hand side in with 7= 1y 1)2.

(a) (Lemma’s and|[11.9) For all v € (0, 1) there exists a C' > 0 such that for all 1 > —1,
e >0,

E[l|Aie]7oe] V E[ Akl 7] V E[| Abe]|7o] < C21H77,
(b) (Lemma[i1.10) E[|(f. — &, ny)|*] — 0 for all k € N3. Along the same lines of the proof

E[|{¢ — &, ng.)|?] — Oforall k € N2,

(c) (Lemma's[11.17|and|11.18) Let ©. = 6. ® o(D)f. — E[6. © o(D)6.]. Forall v € (0, c0)
there exists a C' > O such thatforalli > —1,¢ > 0

E[|AE 7] VEAZZe] V E[| A0 7] < C27".

(d) (Lemma[i1.26) E[f. ® o(D)f. — & ® o(D)&] — 0in €, for all v > 0.

(e) (Lemmal6.15) E[¢. ® o(D)é. — &L @ o(D)E] — 0in 6, forall v > 0.

(f) (Lemma[i1.27) E[|{0: © 0(D)f. — &L © o(D)EL,n,)[*] — Oforall z € N2,

(9) (Lemmal[i1.29) E[|(Z. — =.,n.)|*] — Oforall z € N3,

Proof of Theorem[87 We give the proof for y = 0, for general y we refer to Remark and
Remark[11.28on how to extend the statements in[8.9] for 6. to 6?.

By Theorem|[6.4]it is sufficient to show that in X

(& — €.6 @ o(D)& — £ @ (D)) 50,
(0 — €,0. © o(D)f: — £ © 7(D)EL) = 0.

This follows by applying Lemma [6.10{b)] for which the ingredients are given in[8.9] Let us mention that

for (. = 0. ® o(D)f. — &L ® (D). the bound (52) follows by[8.9(c) and[(d)as (. = O. + E[f. ®
o(D)b: — L © o(D)&] — 2L 0

DOI 10.20347/WIAS.PREPRINT.2606 Berlin 2019



Asymptotics of the eigenvalues of the Anderson Hamiltonian 29

9 Large deviation principle of the enhancement of white noise

In this section we assume L > 0 and write £ = (£, Z) for the limit £, as in Theorem [6.4, We prove
the following theorem.

Theorem 9.1. (/¢ cE) satisfies the large deviation principle with rate € and rate function X —
[0, 00] given by (11, 2) = 5][¥all7:

Remark 9.2. Analogously, by some lines of the proof in a straightforward way, the statement in Theo-
rem holds with underlying space the torus and (£, =) being the analogue limit as in Theorem
as is considered in [1].

As a direct consequence of this large deviation principle and the continuity of the eigenvalues in the
(enhanced) noise (see (42)), we obtain the following by an application of the contraction principle (see
[7, Theorem 4.2.1]).

Corollary 9.3. \,,(Qr,¢) = \.(Qr, (€1,€%=1)) satisfies the large deviation principle with rate >
and rate function Ir, ,, : R — [0, o] given by

Ipa(z)= inf 3V (66)
VeL2(Qyr)

An (QL 7V)=CIZ

Theorem is an extension of the following theorem. A proof can be given by using [8, Theorem
3.4.5], but as our proof is rather simple and — to our knowledge — different from proofs in literature, we
include it.

Theorem 9.4. /=€ satisfies the large deviation principle with rate function € ([0, L]%) — [0, oc]
given by ¢+ 3||v|17

Proof. We use the Dawson-Gartner projective limit theorem [7, Theorem 4.6.1] and the inverse con-
traction principle [7, Theorem 4.2.4]. Let J = N with its natural ordering. Let %, = Riforalli € J. Let
pi; be the projection %; — %} on the first i- coordinates Let % be the projective limit lim. % (see
[7, above Theorem 4.6.1], it is a subset of H EJ ). Let p; : & — % be the canonical projection.

Let s : N — N¢ be a bijection. Write /, = Ds(n). Let ® : €*(T4,) — % be given by ®(u) =
((u,0}),...,{u,0,))nen- This ® is continuous and injective. We first prove that ® o £ satisfies the
large deviation principle.

For every n € N the vector ((5,0 ),...,{&,0))) is an n-dimensional standard normal variable,
whence v/2({€,01),...,(£,0))) = ((/€£,07), ..., (/€&,0.))) satisfies a large deviation principle
on R™ with rate funct|on given by I,,(y) = |y|2 = 13" | y2. By the Dawson-Gértner projective
/
1

limit theorem the sequence /((&, ), .. (5, 0/ })nen satisfies the large deviation principle on %

with rate function

1
IT((Y1y. - Yn)nen) =sup L, (y1,...,yn) = sup = 2.
(1, yndnen) = SUD Ly, -, 4n) n€1§2i2y

The image of €, under ® is measurable, which follows from the following identity

3 st <o}

O(6Y) = {(al, ey Qp)neN © SUp

1>—1
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As P(®(\/e§) € ®(€>)) = 1, and the domain on which [ is finite is contained in ®(€"), i.e.,
{ly e & : I(y) < oo} C P(6), by [7, Theorem 4.1.5] ®(1/c§) satisfies the large deviation
principle on ® (%) with rate function I (restricted to ®(%%)).

Now we apply the inverse contraction principle. & : € — ®(%) is a continuous bijection. Also
Io®(y) = %Hzﬁ”%z (by Parseval’'s identity). Hence the proof is finished by showing that /¢ is
exponentially tight in €. Let m > 0 and K,,, := {¢) € €~ : [ o ®(¢b) < m}. As L* is compactly
embedded in H,?“ by Theorem which is continuously embedded in €, (by [2, Theorem 2.71],
K, is relative compact in €,*. By the large deviation principle on ®(%%) it follows that

limsup e log P(ve€ € K,,,°) < limsup e logP(v/z€ € K¢) < —m.
el0 el0

This proves the exponential tightness of /£ in €%, which finishes the proof. O

To prove Theorem[9.1|we use Theorem|[9.4]and the extension of the contraction principle, [7, Theorem
4.2.23]:

Theorem 9.5. [7, Theorem 4.2.23] Let 2" be a Hausdorf space and (% ,d) be a metric space.
Suppose that (7). ).~¢ are random variables with values in 2 that satisfy the large deviation principle
with (rate € and) rate function I : 2~ — [0, 00|. Suppose furthermore that F5 : & — % is a
continuous map for all 6 > 0, F' : 2~ — % is measurable and that for all ¢ € [0, c0)

lim sup d(Fs(z), F(z)) =0, (67)
640 ze2:1(x)<qg

and that Fs(n.) are exponential good approximations for F'(n.), i.e., if for all § > 0

I}E)l lim sup € log P(d(Fs(n.), F'(n:)) > 6) = —o0. (68)
el0

Then F'(n.) satisfies the large deviation principle with rate function %" — |0, co| given by

= inf  I(x).
4 zeﬁ’{%(x):y (.T)

Lemma 9.6. Let v € (—3,—1). Let T be as in and write hs = T(0D)h. There exists a C' > 0
such that for all 6 > 0 and h € L?

|hs © 0(D)hs — h ® o(D)h

%‘Qa-ﬁ-? S C(SiaithH%Q. (69)

Proof. By Theorem|[4.25](note 2a: + 4 > 0) and Theorem[4.21| (also using [|hs]| a+1 < [ ro-1)

th ® J(D)h5 —h® O(D)h gRot2
< [[(h = hs) © o(D)hs]| y2a+s + ||h © o(D)(hs — h)|| 20+
S 17 = hsll o+ || A]

HSTLs
so that (69) follows by Theorem[6.14as || ]| ya+1 < ||| 2 (see also[4.10). O

Proof of Theorem[@dl For & > 0 we write 15 as in Lemmal9.6and define Fs : 6*(Q1) — X3(Qr)
by

Fg(h) = (h, h5 O] O'(D)h(;)
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We define F' : €2(Qr) — X3(Qyr) as follows. If for b € €2((Q1) the function hs © o(D)hs
converges in €212, then F'(h) = (h,hs ® o(D)hs); if hs ® o(D)hs does not converge, but
hs © o(D)hs — c5 does (where c; = 2 log(3)), then define F'(h) = limgyo(h, hs © o(D)hs — cs);
whereas if hs © 0(D)hs — cs does not converge for all ¢s, then F'(h) = 0.

With 2" = €2(Qr) and @ = X%(Qr) and . = /&, by Theorem [9.4] and Theorem [9.5] it is
sufficient to prove that and hold because when F'(¢) = (11,19) # 0 then ¢ = 1)y.
e First we check (67). By Lemma[9.6|we have (F'(h) = (h, h © o(D)h) and)
sup |F5(h) = F(h)lxg S 07°"'¢",

he€(Qr):Ikll 2<q
forallg > 0, i.e., holds.
e Now we check (68). Let & > 0. We have that = := limso & © 0(D)&s — ¢ exists almost surely by
Theorem[6.4} Hence, for p > 1

P (IFs(vEE) = F(VESlss > 8) < SE [Ies © 0(D)s — Zl s
eP2p

< 5, (G +E [||§5 ©o(D)és — s — E||f,;n2a+z])

Let n = — (2« + 2). By Lemmas|6.10}|6.15} |6.16{and [11.17| there exists a C' > 0 such that for all
p>1

E [t © 0(D)s — ¢5 — Elpusa] < CPRO™.
Therefore (using that a? 4+ 0? < (a + b))

2e

P (17358 - F(vEls > ) < [3(cs+ o]

Hence with p = % we obtain

limsupelogP (||F5(vVe) — F(v/E€)|lxg > ) < limsuplog [2(ecs + C6")]
el0 el0

< log(%70").
So that

léiiglimsupslogﬁ” (1F(Ve&s) — F(VEE)||xe > 6) = —o0,
el0

i.e., holds. O

10 Infima over the large deviation rate function

In this section we consider infima over sets of the rate function Iz, ,, as in (66). We prove the results
summarized in Theorem
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Lemma 10.1. Fora,b € RandallT > 0
(1 —7)inf I} ,[b, 00) + %(1 — HL2a® <infI;,[b+ a,00)
< (1 7)inf Iy, 00) + 5(1+ 1) L%
Consequently, if (ar,) >0 in R withlimy,_,, Lay = 0,

lim inf I} ,[b,00) = lim inf I ,[b + ar, o)
L—oo L—oo

= lim inf I} ,(b+ ar,00) = lim inf Iy, (b, 00).
L—oo L—oo

Proof. As \,(Qr, V) +a = \(Qr,V + alg,), and |jalg, |l = aL, and 2(V,alg,) <
T||V||%2 + %CLZLQ forall 7 > 0;

inf Iy ,[b+a,00) = inf L[V +alg,|?
L aco) = int 3V +ale, i,
)‘n(QL,V)Eb
<(1+71 inf  L1|V|? + 11+ Had’L2
S(r) inf Vg, + 30+
)\n(Q[nV)Zb
The lower bound can be proven similarly. O
We define
HLn = inf IL,n[L OO): Pn = iI;t[‘) Kimn- (70)

We prove that p,, is bounded away from 0 uniformly in n (Lemma|10.4) and give an alternative varia-
tional formula for p,, (Lemma and Theorem|[10.7).

Lemma 10.2. if,, = inf I1 ,(1,00) = inf veceoo,) 5|V |32

)\n(Qsz)Zl
Proof. The first equality follows by Lemma The second follows by Lemma[5.8] O

We will use Ladyzhenskaya’s inequality [19], which is a special case of the Gagliardo— Nirenberg
interpolation inequality [21].

Lemma 10.3 (Ladyzhenskaya’s inequality). There exists a C' > 0 such that for all L > 0 and

feH (Qr),
1f11Ze < CIV Fllz2ll £l 2 (71)

Lemma 10.4. There exists a C' > 0 such that p,, > C' foralln € N.
Proof. Letn € N.Let L > Oande > 0.Let V € CX(Q1) be such that A\,(Qr,V) > 1

and $||V||2; < prn + €. By there is a ) € C°(Qy) with [[1)]|z2 = 1 such that (by partial
integration)

1—sswww;+/vw§4wwm+mwmwmh
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and so using Ladyzhenskaya’s inequality (71), which implies HV?&HLQ > Hlll7a,

1—e+|IVY7
VIz. > > ||¢|| !
t 191134 ||¢|| t
As a® + b* > 2ab we have jip,, +¢ > £[|V||7. > /15 As this holds for all ¢ > 0 we conclude
that iz, > % for all L > 0. Hence p, > % O
Lemma 10.5. Foralln € N, a > 0,
. . 1 2 o : 1
B0 el 21V len = ), 0, T 72
An(Qr;V)>a V2 <+

Moreover, i1, ,, is decreasing in L, and one could replace ‘infr~”in (72) by 1im;_,,". In particular,
Pn = th—wo ML

Proof. With W = L?V/(L-) we have W € C(Q1), W72,y = LIV ||72(q, and by Theorem
)\n(QL, V)= M\(Qp, %W(%)) = ﬁ)\n(Ql, W). Therefore

: 1 2 . 11
inf WV I72 = inf ——QHWHLQ (73)
VeCee(QL); 2 @) WeC (Q1); 2L (@)
M (Qr,V)>a An(Q1,W)>alL?
1 . L2
inf e = inf — . (74)
VecOO(Q ) 2An(QL7 ) Wecoo(ng 2A’VL(Q17W)
VIZ2<3 W2, < 2=

With this, follows directly from Lemma That p, ,, and

1

inf o

Ver2(Qy)
V]2 ,<a

are decreasing in L follows from Lemma O

Lemma 10.6. Let % be a topological space and f g : % — R be continuous functions. Leta > 0
and suppose that p := inf; - infwegy;f( )>aL (L > 0. Then

inf inf M = inf inf
L>0 wew L L>0 wew f( )
f(w)>al g(w)<

—a

Proof. By definition we have VL > 0Vw € % : +g(w) < p = f(w) < aL, by continuity of f
and g we obtain (by taking X' = Lpa)
K w
VK>0‘v’w€€V:g(w)§—:>Q§
a K
Let £ > 0. Then there exists an L such that VL > Lo 3wy € % such that f(w;) > alL and
1g(wr) < p+ e. Then with KO Loa(p + ¢) forall K > K there exists a w € % (namely wy,

forL_ )such that g( ) <1 - and ( ) > m.Sothat

ISl R

sup sup flw)

1
K>0 ’wE“yK p
g(w)gg
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By and Lemma (for a = 1) we obtain the following theorem, which expresses p,, in another
variational form.

Theorem 10.7.

2
— =4 sup sup inf /—|V7,/J|2—|—V1/)2.
]RQ

Pn vecse (r2) Froer2)  Y§F
% =1
IVI3,<1 dimF=n 17127

11 Bounds on second moments and convergence of Gaussians

In this section L > r > 0. We will consider 7 : R — [0, 1] to be either 1(_; ;)2 or an even
C'2° function that is equal to 1 on a neighbourhood of 0. We prove the bounds and convergences
mentioned in and in We will use the following notation:

Ze= W, wer), =W, ,n,)= Z Ze(Me,1, Wi ) £2(Q,)

eeN2
§€ - 57",57 Xli - Z T(%E>ZE<nE,L7 nk,r>L2(Qr)7
teNg
O . N9 d © _
i,5>—1
li—j]<1

so that (see also (65))
0= Ximer, &= 7(Ek) Zimg,,

keNg keNg
Ok, 1
¢ ®o(D)E = %T@mgﬁ(;z)z%r%
k,JEN2 + 3=l
Ok, 1
0000 = Y L xixinem,
k,lEN2 1+ 350

11.1 Terms in the first Wiener chaos

In this section we consider only the terms in the first Wiener chaos, i.e., &, and 6..

Lemma 11.1. Forally € (0, 1) there exists a C' > 0 such that for alli > —1,£,0 > 0,
E[ Aill2] < 02147, (75)
and ifT € C2°(R?, [0, 1]) there exists aC' > 0 such that for alli > —1,,0 > 0,

E[| Ai(& — &)lI%] < €2 e — o] (76)

Proof. As Ai(&re — &5)(x) = Yopenz pi(k)(7(ck) — 7(0k)) Zing,r (), and [y, |12, < (3)? by
(57) we have foralln > 0

B -l 526 5 CEEEET

keNgd
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On the other hand, as |7| < 1, using

) 1 )

E[||AE |2 ] < 20d+m)1 = < olddm)i
l18iele) 52007 3 s £ 217"
€No

which proves (75). Suppose 7 € C2°. As |T(ek) — 7(0k)| < ||7']|ocle — ||k and || 7| = 1,
(7(ek) = 7(0k))* S I7'lI%]e = ol |K]™. (77)

% < 00, we obtain (76) by taking n = 2. O

Therefore, as ZkeZd (1+]&]

11.2. Let us introduce a bit more notation. We write and introduce for £, k, 1 € N¢, ¢ > 0

Bep = (Mep, W) r2(orey,  Fe(k,l) = Z T(£8)° By By = E[ X X[].
teNg
In order to bound E[||A;6.]|2«] = D reng |1 At ||z | Ay p || L E[X7XT], we first give a bound
for F.(k,1). In order to do that we first find an expression for by, ; = (N 1, W) 22(j0,,)) Where
m,l € Nj as Bg’k = ngl béi,ki-

(k)

11.3. In this paper we make the following convention: SmT = 1forallk € Z.

11.4. Due to the identities 2 cos(a) cos(b) = cos(a — b) + cos(a + b) for a,b € R and

sin(m(a £1)) = (—1)"sin(7a) forl € Zanda € R, (78)
we obtain
bt = (W, W) £2([04]) = \/_mel cos(Fma) cos(Elx) dx
1 o] i mro ]
_ [r1, [sinteCE =) sin(a(E 1)
L me ] ]
r1 sin(7 ("))
=\/7=(=Dvmn Y (79)
Lm ity L TP
Similar to (79), fory € R
2 " T s v
by, 1 = (Wn.zs M) L2y 400]) = \/L_rymyl ) cos(Fmax + Fmy) cos(Tlr) dx
rl . sin(m (%)) cos(m ("))
= Z;<_1> UV Z {w sin("ry) + Tmr i 4yl cos(Ty) | -
pE{—l,l}

See Remark[11.11]and Remark|11.28| on how this expression is used to prove the statements in this
section for general y and not just y = 0.

11.5. We will use the following bound in the following without further mentioning

sin(z) 3
— < Tira forx > 0. (80)

Moreover, uniformly over a, b > 0

1+a)1+0)=Q+a+b+ab)>(1+a+0b) 2 (1+Va%+1?).
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Let us also state bounds of sums by integrals, that we will use numerous times in this section.
Lemma 11 6 Let M e N and f : [0 M] — R be a decreasing measurable function. Then
Zm 1 f(m) < fo z)de < SSM70 f(m). If f instead is increasing, then SN f(m) <

) dI<Zm1f( m).

11.7. In some other cases we bound a sum by an integral using that the following holds. For k € Z¢
and z € Boo(k, 1), ie., |z — k| < £ and thus |z — k| < v,

[l = 1] < 1%l = 2] + [J] = RI] < [1R] = [21] + %2 (81)

The following bound will be used multiple times and is due to the above argument and the bound on
the integral as in Lemma|[B.1} For v, > 0 such that 0 < , for all u, v € R,

L L 1 82
2 =y (i o & D 2

Theorem 11.8. For all § > 0 there exists a C' > 0 such that for all k, | € N

d

[Fe(k D) < C T+ [k = 1) (83)

i=1
Proof. One has |F.(k,1)| < Hle > meng |Omok;bmi; bimn| S 1+|%—n| < 1+|mj\£Nn\ for
n € Ny where N = £ (see (80)),
Fk0 < T] !
lelmN —|—\m Nk;i| 14 |m — Nl;|

Foralld > Oonehas 1+ |m —u| > (1+|m— u|)1*g, so that follows by (82). O

Lemma 11.9. Forally € (0, 1) there exists aC' > 0 such that for alli > —1,¢ > 0,

E[[|Aib: |} ~] < C21H)7, (84)
Proof. By 270 Ay pl| e S (1+‘1k|)5 < TIL, s and as for § > 0, [E[X;X7]| =
(1+k )d
[FL(R, D] S H?:1(1 + ki — 1;])°~1, we have
2~ R A7) S ( e L (k-1 )d
e, (1 + k) T (14 l)

Let & < ~y (in particular 6 < 1J“TV). By we obtain

. 1
—(d+dv)i 2
2~ [HNRNAL |2 ] < E (YR < 00.
keNy

Lemma 11.10. E[[(0. — &, ni)|*] — 0 forallk € N3.
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Proof. E[|(0- — &, ni) [°] = E[|X] — 7(5k) Z4°] S Y eeny Bin(T(58) — 7(£k))% By Lebesgue's
dominated convergence theorem this converges to zero. O

Remark 11.11. Let y € R? be such that y + @), C Q.. Proving Lemmal(11.10|for “6, £¥” instead of
“0., £." is straightforward. To adapt Lemmal11.9/as mentioned above, it is sufficient to adapt the bound

in (83), for which one uses that [bY | < @ which holds because 1 .4 mﬁg)) < 1+|i—u
’ N N N

forallm,l € Npandp € {—1,1}.

11.2 Terms in the second Wiener chaos

In this section we consider only the terms in the second Wiener chaos, i.e., =. (Lemmal[11.17), O,
(Lemma(11.18) and 0. © o(D)f. — & © o(D)E. (Lemma's|11.26/and[11.27). In[11.15{we make an
assumption for the rest of the section. We start by presenting auxiliary lemma’s and observations.

Lemma 11.12. There existb > 0 and ¢ > 1 such that
supp p° C B(0,0)> U {(z,y) € R? x R?: L|z| < |y| < cfa]}

Consequently, uniformly in k, 1 € Z¢

P00 Pk
(T4~ (T k)

(85)

Proof. Let0 < a < bbe such that supp py C {z € R?: a < |z| < b} and supp p_1 C B(0,b). If
i,j € {—1,0},thenz,y € B(0,b). Leti,j > 0and|i — j| < 1. Suppose that z, y € R? are such
that p;(x)p;(y) # 0. Then |z| € [2'a, 2'b] and |y| € [27a, 27b] C [2" " a, 277 ). This in turn implies

L] < £27h=2""1a < |y| < 27 < 227q < 2.
O

11.13. Let k,[, 2 € N¢. We write ny = 1y, here. By (and using (26)) and as ngo, = 1, for all
qc {_1’ 1}d!

[NJIsH

_ Vil
(e, m2) 2, = (2r) Z (Mhppol, M2) 12(0,)

v
pE{—l,l}d k+pol
_d Vil

= (27’) 2 V 5qok+p0l,z- (86)
pae{—1,1}d TPl

By combining this with (57) we have for z € (0,7)%and v > 0

27
Mm@ S Y plaok+po D) S T @D
e A+ =1)

11.14. By Wick’s theorem [15, Theorem 1.28] (as E[Z,. Z;] = Oy.)

E[ZkZlZmZn] - 6k,l5m,n + 5k,m5l,n + 5k,n5m,l7 (88)
E ([ZkZl - 5k,l] [ZmZn - 5m,n]) = 5k,m5l,n + 5k,n5m,l- (89)

11.15. From here on, in this section we assume d = 2.

DOI 10.20347/WIAS.PREPRINT.2606 Berlin 2019



K. Chouk, W. van Zuijlen 38

11.16. As ||k| — |l|]| < |k — 1|, we have (1 + |k —1]|)™" < (1 + ||k — |I||)~” and therefore have
the following bound by [11.7]and Lemma [i1.12]for v € (0,1) and [ € N2

POk 1) /” z 2
- 1+2 dr < (1 l v, 90
2 Wby SV Gy S A (®0)

keNZ c

Lemma 11.17. Let =. be as in Definition|[6.6 (for {. = &.,) andy € (0,1). There exists a C' > 0
such that forallt > —1,¢ > 0

B[ A7) < €27, (91)
andifT € C°(R?,[0,1]) there exists aC' > 0 such that foralli > —1,¢,6 > 0

E[|Ai(Z: — Z5) L] < Cle — d[2%7. (92)

Proof. First observe Z,.. = 3, o p°(k, Z)%[%% — Op1|nimy. By (B9) and (87) (as both
)

contributions dy, 01, and dy, ,0,,, ; can be bounded by the same expression by Lemma|11.12)
27 E[|Ai(Ere — Erg)[|7]

PPk, 1)?  [r(ek)T(el) — 7(5k)7(51)]?
S GrEgpr ask-0m

k,l€NZ

On the other hand, as |7| < 1, using

2 E[| A7) S D P QUZ’W ! <D .
(L+ S22 (L + [k =1])> (1+]1[)5—
k,lEN2 r 1eNG

Suppose 7 € C°. As

T(ek)T(el) — 7(0k)7(01)
= (1(ek) — 7(k)) (7(el) + 7(61)) + (7(ek) + 7(6k)) (T (el) — 7(61)),

we can use the bound as in the proof of Lemma to obtain
|7 (ek)7(el) — (k) T(D)[* < 4l|7'l|Zle — S (|&" + |I]).

Using Lemma([i1.12]and we obtain

o _ _ 1 p® (K, 1)?
P IE[AEe — S)lEa] Sl -0 Y b 3 AR

2 T 2 T b= 1P
1
Sle— (mleZN% (1+ 1)zt
O
Lemma 11.18. Forally € (0, 00) there exists a C' > 0 such that foralli > —1,¢ > 0
E[[]Ai0. 7] < C27. (93)
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Proof. First note that©. = >, JeN2 1+ |l|)2 ne 0y, [ XEXE — E[XEX[]]. The identity extends

to
E ([Xp X7 — EQXGXTN[XG X5 — BIXG X0 = Fe(k,m)Fo(l,n) + F(k,n)Fe(l,m).
By exploiting symmetries, by Lemma[11.12)and by we have

Z pQ(kv l) pQ(m,n) |F6<k7m>F€(l7n)|
(L [k = 1) (1 [ = n])7 (L4 7)1 + [m?)

27E[[| A0 IT] <

~Y

k,l,m,neN2

We will bound the p® function by 1, bound F. as in Theorem [11.8|for some § > 0 (will be chosen
small enough later) and we ‘split the dimensions’ by using that 1 + |k[* 2> (1 + k1)(1 + k) and
(14 |k —1))" = (1 + ki — 11])2(1 + |k — I2])2 and we obtain

2
o L+ |k —m])~ (1 + |l —nl)! 1
27E[|| A0 3] S ( 5 . . (94
! “]N<m§goa+w—m2<Lum—w2@+mrwm o

For § < 3 we have by

> (1+ |l =nl)° ! vy (1+ |k —m]|)°~* < 1

A 1 A S R LR O R R R

andford <

Z 1 1 < 1
(14 |m =121 4+m ™~ (1+1)7=30

meENy
so that for § < 1 the right-hand side of is finite. O

11.19. Observe that

65—: © U( )‘9 - fs © U Z IO |l|2nk,rnl,r[Xlin€ - T(§k>7—($l)‘%€‘%]
k,le N2

We write for k,1 € Nd and ¢ > 0
Ge(k,1) = Fo(k, 1) — 7(5k)%05,. (95)
Observe that
Ge(h,1) = E[XEXT — r(2k)r(21) 25,21
By Theorem we also have the existence of a C' > 0 such that for alle > 0 and k, [ € N2

2
Gk, D) < CTJ+ ki — 1)) (96)

=1

However, we will also use another bound to prove Lemma(i1.26|and Lemmal11.27] The bound will be
given in Theorem [11.25] We will first prove the auxiliary Lemma’s([11.22] [11.23|and [11.24]
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11.20. From here on we take 7 = 1(_; 1), write N = % and assume N € Nand N > 2.

Remark 11.21. That we assume N € N is due to the fact that this guarantees cancellations in (99),
whereas N > 2 is used in (toensure 1 — ~ > 1).

Lemma 11.22. Forallk,l,M € Ny withk # lorfork =1 < %

Z Z 51n(7r%)2 1 . 1
pac{—1,1} lm=M (FHa)(F+pk) |~ 1+ 1+

Proof. We separate thecasesp = q = 1,withpg=—landp =q = —1.

eIncase p = q = 1 we have

sm % & 1 1
< du < R
2 Z pIEE Z)N/Ml(1+%+k:/\l)2 TR A O

p,ge{—1,1} m= M

We will now consider calculations for which at least one of p and q equals —1.

For P> Mandp,q € {—1,1} and k, € Ny such that gl — pk # 0 (we use (78))

- sin(ry)? 1 sin(r (i +pk))*  sin(r(F +al))*]
Z: (5 +plk) — ql - ka[

¥ +al) (5 + plk %+ pk m o+ gl
P+pNE . a2 PNl . 2]
1 sin(m%;) sin(7 %)
= NS T NZ ] (98
M_M[ 2 2. —m %8
m=M+pNk m=M+qNI |

e Let us consider pq = —1 by taking p = —1 and q = 1. And let us note thatif £ = [ = 0, then
is valid, so we consider k + [ # 0. By cancellations of terms we obtain for P > M + N (k + 1) (so
that P — Nk > M + NI)

i sin(m %) 1 MJFZNZ_l sin(m)? P+ZNZ sin(m %) 99)
m = B —m |-
m=M (¥ +OGF —k)  k+l m=M-Nk N m=P—Nk+1 N
By taking P — 00 we obtain
> sin(m)? 1 M sin(m)?
> N = P (100)
m=M (¥ O = k) T rNe N
By distinguishing between the cases M < Nk and M > Nk we obtain by

i sin(m %) - 1
m:M(%%—l)(%—k) T 14k
e We are left with the case p = q = —1. We consider k > [. For M > Nk > NI we have
m\2 0 : m\2 o)
Z msm(ﬂix) < Z 81;1(7TN)2 < W} :
S G-DE-R T S G- & 0k
o 1 1
< — del— 101
”/M_1(1+%—k)2 SR on
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Hence we derive the desired bound for [ < k < %

Fork >land P > M + N(k —1) (sothat P — Nk > M — NI), we have — similarly to (99) —

i S B G S i S
m=M (F =0 -k k-l m=M-Nk N m=P—Nk+1 N
and thus
- sin(rf)? 1 M sin(rm)?
D mop@mom kol 2 m 103
i (8 —D(F = k) -~ "m=M-Nk N
It is sufficient to show the following (of which the case k£ < M is proved in (T07)
(1 M
1+ N <1
i m 1 M - k4l
Z sin(m)? < ) < ¥ <5, (104)
S G0GE-0| Y phy M <d<h
1 M
s R
*If0 < M < Nl , thenM — Nk <M — Nl —1 < 0andso
M-NI-1 . m\2
1 Z SIH(ZN) 5 1 .
k=l Sfne N 1+1-7%
* I Nl < M < N%t then M — Nk < Nl+1— M < 0and thus
M—Ni-1 m NI+1-M ./ m\2
1 Z sm(Zﬁ)z _ 1 Z _SlH(Zﬁ) < L .
k=l SCw W k=l N l+5 -1
* Whereas, if N2 < M < Nk, then0 < Nk — M < M — NI — 1 and thus
M—Ni—-1 NI+1I-M . m
1 Z sin(m %) _ 1 Z sin(m %) < 1 _
LA W k— m=Nk-M+1 N l+k—%
O
Lemma 11.23. Forall k > %
= sin(m)? ‘ 1
p.ae{—1,1} m=0 (X +ak)(F +pk) |~ 1+ [k - %|
Proof. Ask+ % >k — % >0,
M- 2 M
sin (72 1 1
S|t s [ e s
pae 1,1} m=0 +C|]{7) +pk3) 0 (].‘i‘k?—ﬁ) 1+|k_ﬁ‘
O
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As a consequence of Lemmas [11.22| and [11.23| and the expression of b,,; in [11.4, we obtain the
following lemma.

Lemma 11.24. Forallk,l € Ny W/the/therk;élork;—l< ande > 0

( > b, ! ! (105)

meNo,mzL
Forallk € Ny withk > M ~v ande >0

1
D P e et (108)

mENo,TTL<%

Proof. Let M € Ny be suchthatm > £ ifandonly it rn > M, then [M —£| < 1and |5 —%| < &
By using that N' > 2 we have 1+ |k — %4\ 2 14|k — Z|. Therefore (T05) follows from Lemma(11.22
and similarly (106) follows from Lemma(11.23 O

Theorem 11.25. LetT = 1(_1 1)2. There exists a C' > 0 such that for alle > 0 and k, | € Nj

( . i
H?Zl 1+\k1—7\ + 1+|l$—£\ iffori € {1,2} either k; # I;
orki=1; >,

if either k'l # lz or kl = ll Z g (107)

Gk, DI S § Tz T
and k’gfi = lgfi < §7

kZ:l1<£forZ€{1,2}

1 1
L 1+|k1—£| + 1+|k2—£|

Proof. Letk,l € N§. If k = [ with || < £, then

Gkl =] > BB S| X |+ DX B

meNg:|m|oo> L meNg,m>L meNg,m>£

If £ and [ are not like that, then

Gy = (D b ) (X bokabma).

meNo,m<% mEN07m<£
By using that when k; # [;
< Z bm,ki bm,h) - < Z bm,ki bm,h) 9
mGNO,m<£ mGNO,mZ%
the bound (107) then follows from Lemma|11.24 O

Lemma 11.26. Let7 = 1(_11)2. E[f. © 0(D)0. — { © 0(D)&] — 0in 67 forally > 0.

Proof. By[11.19]and
Pk,1) |Gk,
(L4 [12) (L |k = 1)

sup 27| AE[f: © 0(D)f. — & @ 0(D)E | S Z

>_1
= k,lENZ
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We use (107) and split the sum in the three regions for which we have the bounds:

Ry = {(k,1) € Nj x N} : Vi € {1,2} either k; # [ ork; = [; > -},
Ry = {(k,1) eNg xNg :Ji € {1,2} either k; # L or k; = 1; >
Ry ={(k,1) e Ny x N§ : Vi € {1,2} k; = ; < *}.

e [Sum over 7] By exploiting symmetries using Lemma(i11.12

PQ(k?,l) |G (k l)| 1 2
2 IR Aoty ST

(kheR

. Z p®(k, 1) 1 1 ]

TG AP A k=) I+ 2= b1+ ]2 = b
72 Z p®(k, 1) 1 1 1 |
) k,lENZ (L) T+ k=17 1+ 2 = L] 1+ [£ — Ay

X
2

By andas (14 [1))7 > (14 14)2(1 + 1)

2
1 1 J i
< § < (14+2)771 <ed.
aN( (1+l)'£1+|§—zy> SA+7) 1 5en

1eNp

, secondly using with § = 7

g and k3_; = l3_; < g},

For .2 by Lemmal11.12there exist b > 0, ¢ > 1 such that (using that |k — I| > |k; — [;])

(k, 1) 1
Z(1+|k—l|)71+|§—k2|

keN?

1 ll
keN2
|k|§b k1<c|l| ko <cll|

1 1
NZ |_—k;2+lz: (1+ |k ) §01+|§—k2|'

We will bound the second sum on the right hand side by its corresponding integrals and will bound

these to get a bound on the sum over k. Straightforward calculations show

cll| 1
A<+
/o T+ =gy s @+l

On the other hand, ford > 0and z > 0

i 1
/ ————dr Slog(1+2)%(1+2) S (1+5)*(1+2)°.
o 1+]f—al

Hence for all & > 0 (we use (82) for the last inequality)

1
1 l ll—"f+51 1128

7SS T Y

leNg

< 1+125

ZEN; 1_{_ll_|_121+'yf§1_‘_|7€_"_l1|( e)

1
1 1 1 5(5’y

NZ 1+l21+5z 1_|_l17261_'_‘§_l1‘( +5) (+)

lo GNQ
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Therefore, by choosing 6 < ¥ we obtain also L2 — 0.

e [Sum over 25] Again by exploiting symmetries using Lemma(11.12|(we bound the sum over Rs by
the sum over all | € NZ,ky € Ny and take k1 = [;), using for o <

POk, 1) |Gk, 1) 1 1
2 (1+1[712) (1 +!k—l\ ”Z Ill Z%(1+Ikz—lz!)’*1+|£—kz!

(k,l)ER2

1 1 1
1 20 'y.

e [Sum over 73] Again by symmetries

PPk, 1) |Ge(k, D)
Z (1+|l|2)(1+|k—l| NZ 1+111+5Z 1+12151+|—— o]’

(kul)€R3

which by @2) is < (14 2)* ! forall § > 0. O
Lemma 11.27. LetT = 1(_y1)2. E[|[(6. © 0(D)0. — & © o(D)&.,n.)|*] — 0 forall z € Nj.

Proof. By (86), as i <y, <1lforallk e Ng,
E[|(6: © 0(D)f. — & © a(D)&, 1))
p° (k1) p®(m,n
5 Z ( ) ( ) Z 5tok+pol,2550m+qon,z

21712 2102
k,l,m,neN2 + =P 1+ i) prase{—1,1}2

E (IXEX] — m(ER)r(E) B XX — 7(Em)r(2n) 2, 2))

Let us first find a bound for the expectation in the above expression. By [11.14]
E ([X;XF — r(2R)7 (20 B Z[X5 X5 — m(Em)7(5n) 2,23
= Z [0e.10m.n + OemOin + 06 nOm. (] Be s BriBmmBuan
£,l,m,neNZ
x [r(zm)7(zn) = 7(Em)T(Cn)][T(FOT(ZD = 7(CR)T (R (108)
The & (0 n contribution to is given by G (k,1)G.(m,n).

Let us consider the d¢ nd;, contribution; the contribution by d¢ 0w 1 is the same by interchanging ‘m’
with ‘n’. Using that 72 = 7 we compute

[r(EO7(ZD) = 7Cm)rC)llr (Z8)7(2Y) — 7(FR)7(CD]
= [L=7(Cm)7(Cn) = r(CR)TCOIT(ZO7(Z) +7(Cm)T(Cn)T(TR)T(CD),

and use this to obtain that the contribution by d¢ 0, equals

Z BE,kBE,mB[,lB[,n[T(%E)T(%[) - T(fm)TGn)][T(%E)T(%[) - T(ik)T(%l)]

= [ =7(Em)7(En) = 7(CR)T(EDNG(R, m) + 7(5F)0km) (Gl n) + 7(31)d1n)
+7(Em)T(En)T(R)T(2)0kmO1n

= [ =7@Gm)7(En) — 7(CK)T(71)]
x (Ge(k,m)Ge(l,n) + 7(£0) 01,0 Ge(k, m) + 7(5k) 0k mG=(1,n)) -

DOI 10.20347/WIAS.PREPRINT.2606 Berlin 2019



Asymptotics of the eigenvalues of the Anderson Hamiltonian 45

By the previously mentioned symmetry of the contributions of d¢ w01 n and d¢ nOm,(, We can leave the
contribution by d¢ 4w ( oUt in the following bound:

E[|(6- © 0(D)f. — & © o(D)&:, ) [’]

1 1
S Z 1 4+ ’l|2 1 + |n|2 Z 5tok+pol,z Z 5som+qon,z

k,l,m,neNZ pre{—1,1}4 q,s€{—1,1}¢

x |Go(k, )Ge(m,n) + G-(k,n)G=(l,m) + 7(£0)6,mGe(k, ) + 7(£k) 0 nGe (1, m)|

By extending G, evenly to Z2 in the sense that G.(k,1) = G.((|k1|, |k2|), (|11], |I2])), we can sum
over k € Z? instead of g o k with g € {—1,1}? and k € N2, and obtain

E[[{f. © o(D)f. — & © a(D)E:, )]
< Z 1+|l|21+|n|2<|aa(2—l,l)ag(2’—n,n)|—|—|ag(z—l,n)@€(l,z—n)|

+ (5|11|:\21*n1|5\12|7|7~’2*n2\HES(Z -1, n)’ + ’@E(L Z = n)H) S %2,2 + ‘%E,Z + CKE,Z?

where
1 _
; 2
€72 1+ w
1 1 — _
B.., = Z RS |n|2‘G€<Z —1,n)G.(l,z — n)|,
l,neZ?
1 1 _ _
Cow =Y TFIPTT |n|25|l1\,IZ1—n1|(5|12|,\22—N2|“G6<Z — L) +[G(l, 2 — n)]].
€72

We will now show that lim, o @7 , = lim. |y . ., = lim. | €. . = 0. For %, and €. . we show this
by showing the summands are bounded by a summable function, which is sufficient by Lebesgue’s
dominated convergence theorem as lim. o G-(I,n) — Oforall [, n € Z.

e For €., itis sufficient to note that (as |G| < 1)

1
EZNZ 1—|—|z—n|21—|—|n|2

nez?
* By (96)
2
1 1 1
%az ,S
’ 22 1+!l\21+\n\2n(1+|\%—li\ = [ng[)*=0
IRV i=1
2
1 1 1

< .
~ 11 (;Z L flz] = U] 1+ |nf (1 + []I] - WD”)

By we obtain

% <f[/o° ! /OO ! L dyd
Z ~ xr
© J 1+ ||z] — = T+y(1+|z—y|)t° 4

2
dr S .
NH/ TR AT = Uiy TR
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e For 47/, . we use the bound given in Theorem [11.25| (the bound does not work here). For all
z € N2 we have

B 2 1 1
_ <
Gelz =105 ) (uw —f " T+ e - [a] —2'“') |

=1

Hence, by letting 6 € (0, 3) and bounding (1 + [I|?) Z (14 11)*°(1 + I5)'*?, by @2),

1 1
ez S + - -
ZGZN(l—Fl (1+ |1 — z|)! 5)1+|l—g|
1 1

< — 0.
TR P

O

Remark 11.28. Let y € R? be such that y + Q, C @ (as in Remark [11.11). We show how to
prove certain lemmas for “0Y, &Y, ©Y, =" instead of “0., &, ©., Z.". Lemma can be adapted
as only is used (and can be adapted as is mentioned in Remark [11.11). For Lemma[i1.26|and
Lemma|[11.27]itis sufficient to adapt the bound in Theorem|11.25] By replacing sin (7 %%)? either
by sin(m5%) cos(m ) L0 or cos(m ) Ly,20, one can still follow the lines of the proofs of Lemma
[11.22)and Lemma[11.23] because for the equality in (78) is used, but this still holds by replacing
“sin” by “cos”. This then provides the extension of Lemma([i1.24]and thus of Theorem[11.25

Lemma 11.29. Let 7,7’ : R? — — [0, 1] be compactly supported functions that are equal to 1 on a
neighbourhood of (. Let J be as in Definition 6.6 with “r'” instead of “r”. E[|(Z. — =L, n,)|*] = 0
forall z € NZ.

Proof. By and (88), as % <y, < 1lforalk € N2,
E[|(E. - EL,n.)[%]
Ok, 1) p®(m,n
5 Z P ( ) P ( ) Z 5tok+pol,2650m+qon,z(5k,m5l,n + 5k,n5l,m>

72712 21012
k,l,m,neNZ L+ 5 1+ 7z n] prase{—1,1}2

[r(ER)T(ED) = 7GR ED) - [r(Em)r(n) — 7/ (Em)r ()]

s T T

As both 7(£k) — 1 and 7/(2k) — lase | Oforall k € NG, itis sufficient to show that the
summand can be bounded by something summable. By symmetries and Lemma|11.12|we can bound
the summands (in the < sense) by

1
Z —5k ,;ro(z—pol)»
p,r,q,5€{—1,1}2 ( |l| )

which is clearly summable over k, [ € NZ. O
A The min-max formula for smooth potentials
LemmaA.1. Let fi, ..., f, be pairwise orthogonal in HZ. There exist pairwise orthogonal figy - s fuk

in C° for k € N such that for all i

k—o0

fix —> f; in H{. (109)
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Proof. Let g;, € C2° be such that g;, — f; in Hg for all 7. By doing a Gram-Schmidt procedure

on gik,---,9nk We can give the proof by induction. We prove the induction step, assuming that
ka =01k fn_l,k = gn—1 are pairwise independent. We define
n—1
<gn k> fz k>
fok = Gng — Y T fike
" " Z <fz k> fz k>
Then f, j is pairwise independent from f ., ..., fo—14. Asfori € {1,...,n — 1} we have
<gn,k)fi,k:> — <fna fz> = 07
it follows that f,, x — f- O
Lemma A.2. Let( € L. Then (for notation see[5.4)
M(Qr,¢) = sup inf (J%¢,¢) = sup inf (), ). (110)
FcHZ | VEF FCCe  YEF
dim F=n, ol L2=1 dim F=n 1%l 2=1

Proof. First observe that

)\n(Q[n C) sup lTI}f <‘}%wa 77Z)>
flv 7anH2 w Z lfl
s, fJ)HQ =61 a;€[0,1], ZZ La2=1

Let fi,..., fn € HZ with (f;, fj)Hg = 0;;. By Lemmathere exist fi g, ..., for in C° with
(fiks fj7k>Hg = 0;; (by renormalising) such that (109) holds. Then

inf T, ) — inf F,
V=TI oufs < &) V=S aifis S
a; €[0,1], ZZ o= a;€[0,1],3°7  aF 2=1
< sup [(Hah, ) 2 — (o, o) 12|
P= Zz la’bfz,‘p Zl 10¢zfi,k
Qg 6[0 1} =1« 7. =1
S sup Zalfz Zazfz < i = fuklluz = 0.
OaiE[O,lL ? 195 7=1 HO =1
This proves
M(Qr, ()= sup inf (HY, ), (111)
fi,ens anCoo P= Z azfz
<fi,fj)H2 ij 2 €[0,1], Ez L=l
and therefore (110). O]

B Useful bound on an integral

Lemma B.1. Letv,0 € (0,1) and~y + 6 > 1. There exists a C' > 0 such that for allu € R

< 17776’.
/0 Ao 1 ap F =00+l (112)

Consequently, there exists a C' > 0 such that for all u,v € R

1 1
< _ 1—7—0'
/R(1+|$—U|)7 Ao s O+ u—vl) (113)
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Proof. We have uniformly in a € (0,1)

S| 1 S| ! 1
dz < —d — dzr<1+(1 =y <1,
/0 (a+z)7 (14 z)? x_/l o $+/0 (a+x) 31+ (+a) ~

Hence forallu > 0

/°° 1 1 dx_/oo 1 1 4
w (T+rz—uwrQ+2)? " f, Q+2)(1+u+2z)

:(1+u)1‘7‘9/( 1 ! de < (14 u)'77 (114)
0

On the other hand we have

2 1 1 u 7]
<1+ 9 [ de <A ru)t
/0 Q+u—=)(1+a) z < ( +2) /0 1+ 2 v S (1+u) )

1—~—0 . . .

and S|m|IarIy f m 1+$)9 dz < (1 + w)'77% In case u is negative, the bound is already
proved in ( (by interchanging € and ).

For (113) it is sufficient to observe that

> 1 > 1

- d
/U (I + | —ul) <1+|x—v| / 1+|x+v—u|> (Itay "

| o o= [ L
Z.

(A [z —ul) <1+|as—v| ) 1+|x+u—v|> (1+a)

O
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