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A class of second-order geometric quasilinear hyperbolic PDEs
and their application in imaging science

Guozhi Dong, Michael Hintermüller, Ye Zhang

Abstract

In this paper, we study damped second-order dynamics, which are quasilinear hyperbolic par-
tial differential equations (PDEs). This is inspired by the recent development of second-order
damping systems for accelerating energy decay of gradient flows. We concentrate on two equa-
tions: one is a damped second-order total variation flow, which is primarily motivated by the ap-
plication of image denoising; the other is a damped second-order mean curvature flow for level
sets of scalar functions, which is related to a non-convex variational model capable of correcting
displacement errors in image data (e.g. dejittering). For the former equation, we prove the exis-
tence and uniqueness of the solution. For the latter, we draw a connection between the equation
and some second-order geometric PDEs evolving the hypersurfaces which are described by level
sets of scalar functions, and show the existence and uniqueness of the solution for a regularized
version of the equation. The latter is used in our algorithmic development. A general algorithm
for numerical discretization of the two nonlinear PDEs is proposed and analyzed. Its efficiency is
demonstrated by various numerical examples, where simulations on the behavior of solutions of
the new equations and comparisons with first-order flows are also documented.

1 Introduction

Total variation flow (TVF) and mean curvature flow for level sets of scalar functions (called level-
set MCF in what follows) are important nonlinear evolutionary geometric partial differential equations
(PDEs) which have been of interest in many fields during the last three decades. In the literature,
they have been intensively investigated either analytically [4, 5, 6, 12, 18, 30] or from a computational
viewpoint [13, 14, 21, 38, 41], to name just a few. In particular, they both find application in imaging
science and geometry processing, and they are of common interest to variational and PDE methods
in image processing and analysis. This is due to the fact that an image (or more general data) can be
treated as a function defined on a bounded domain in Rn, or more specifically a rectangular domain
Ω ⊂ R2. This is also the particular focus of the current paper, where we consider u : R2 → R as an
image function, and ud as given degraded image data. In our practical context, distorted images are
(i) subject to some additive noise in which case ud = u + δ, where u denotes the true image, or (ii)
corrupted by displacement errors d : R2 → R2 which gives ud = u(x+ d(x)).

The first case is a fundamental problem in image processing and has been continuously and inten-
sively studied from many perspectives. Mathematical methods are also developed from several differ-
ent points of view, and many of them are based on the well-known Rudin-Osher-Fatemi (ROF) model
[42], where total variation (TV) is used for removing additive noise from image data. It is associated
with a non-smooth energy functional, and it has the beneficial property of preserving the disconti-
nuities (edges) of an image, which are often considered important features. Accordingly, TVF, the
gradient flow of the TV functional, has been studied in this context and also beyond, see for instance
[5, 6, 12, 14] and the references therein.
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Problems with displacement errors have, mathematically, been the subject of several recent studies.
This kind of error is not linearly separable like additive noise but rather it constitutes a nonlinear phe-
nomenon calling for new ideas for correction. In the literature, studies are mostly focused on specific
sub-classes such as, e.g. image dejittering which restricts the error d : R → R to occur on only one
direction. In the work of [37, 23, 24], it is found out that the level-set MCF and some of its variants
are capable of correcting displacement errors. An intuitive understanding is that the displacement er-
rors interrupt the level lines of image functions, and level-set MCF is in fact a minimizing flow for the
perimeter of the level lines of the functions. By setting u0 = ud, the evolution of the level-set MCF
produces a regularized solution which remedies the displacement errors in ud. A proper application
of the level-set MCF in this context needs, however, an appropriate stopping. Similarly, let the initial
data be a noisy image, the TVF is able to decrease the total variation of the noisy image, and thus
regularize the image when it is, again, properly stopped.

To summarize, we use the common framework:

ẇ = −∂Φ(w), (1)

where Φ is a general convex functional, and ∂ denotes the gradient (or subgradient) operator. Through-
out this paper, we will use Newton’s notation for the partial derivative with respect to time. In the context
for the level-set MCF, we understand w in (1) to be an immersion of a hypersurface representing a
level set of a proper function, and Φ denotes the area functional of the hypersurface. For TVF, we can
think of w as the evolutionary image function, and Φ(w) denotes the total variation of w.

More recently, second-order dynamics of the form

ẅ + η(t)ẇ = −∂Φ(w), (2)

have been of great interest in the field of (convex) optimization; see, e.g. [45]. By some of the authors
and other colleagues [10, 47, 15], it has also been applied as regularization methods for solving inverse
problems. The damped second-order dynamics are supposed to be superior to the first-order gradi-
ent flows. The case of η(t) being a constant is sometimes called a Heavy-Ball-with-Friction system
(HBF) in the literature, see, e.g., in [11]. This system is an asymptotic approximation of the equa-
tion describing the motion of a material point with positive mass, subject to remaining on the graph
of Φ(w), which moves under the action of the gravity force, and the friction force (η > 0 is the as-
sociated friction parameter). The introduction of the inertial term ẅ(t) to the dynamic system allows
to overcome some of the drawbacks of gradient descent methods, such as the well-known zig-zag
phenomenon. However, in contrast to gradient descent methods, the HBF system is not necessarily a
descent method for the potential energy Φ. Instead, it decreases the total energy (kinetic+potential).
The damping parameter η may control the kinetic part. Larger values of η in (2) result in more rapid
evolution, while smaller values yields (2) more wave-like characteristics. The optimization properties
of the HBF system have been studied intensively in [1, 2, 11], and the references therein. Numerical
algorithms based on the HBF system for solving special problems, such as, e.g. large systems of linear
equations, eigenvalue problems, nonlinear Schrödinger problems, inverse source problems, etc., can
be found in [25, 26, 43, 46]. There we can also see that numerical algorithms for second-order damped
systems are far more efficient than algorithms for first-order systems. There are also studies on cases
where η(t) is time-variant. In particular in the recent work [45, 8, 9] many associated properties have
been carefully analyzed, also a connection to Nestrov’s acceleration algorithm [40] has been revealed.

We note that the standard theory on HBF does typically not apply to PDEs, i.e., when ∂Φ gives rise to
a (nonlinear) partial differential operator. In our context, however, we are confronted with quasilinear
hyperbolic PDEs. In fact, in this paper, we investigate the damped second-order dynamics for both TVF
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and level-set MCF. The aim is to understand the new equations and their solutions from a theoretical
point of view, on the one hand, and to apply them to two class of imaging problems, on the other hand.
In so doing, there are several mathematical challenges to overcome. First of all, difficulties arising due
to the non-linearity and non-smoothness in both the second-order TVF and the second-order level-
set MCF have to be addressed. Second, both the second-order dynamics are of PDEs of quasilinear
hyperbolic type, which are in general subtler than first-order ones of parabolic type as the maximum
principle is out of reach in the former case. Moreover, for the level-set MCF, no convex energy has
been found so far to be associated to the function u introduced above. Consequently, convex analysis
techniques can not be applied here. Compared to TVF, fundamental mathematical questions such as
the existence of solutions and also uniqueness of the solution require more efforts, or even need to
introduce a new concept for solutions of the second-order level-set MCF. Therefore, the results of this
paper will not only provide novel PDE methods for image processing, but also contribute and propose
interesting research questions in the fields of PDE and geometric analysis.

The contributions of the paper are twofold. (i) From a mathematical analysis point of view: We prove
existence and uniqueness of the solution to the Cauchy problem for the damped second-order TVF.
In doing so, we take the advantage of the TV energy functional being convex. We employ Yosida
approximation to show the existence of the solution, and develop an iterative scheme, for proving
the uniqueness of the solution. For the damped second-order level-set MCF, we find a connection
between the equation and another novel second-order geometric PDE which evolves hypersurfaces.
This provides insight into the behavior of solutions of the second-order level-set MCF if we take the
hypersurfaces to be the level sets of our function. The damped second-order level-set MCF is a fully
degenerate quasilinear hyperbolic PDE, for which general theory seems to be elusive at this point. As
a first step towards a solution concept, we show the existence and uniqueness of the solution to a
regularized version of the damped second-order level-set MCF, which is also used in our numerical
development. However, the resolvability of the original equation remains an open problem. (ii) In view
of applicability, it is known that the first-order level-set MCF is a minimizing flow of the total variation
of the initial data. However, it exhibits different behavior than the first-order TVF. In fact, while the
first-order TVF is known to decrease the contrast, the first-order level-set MCF shrinks the scale of
image features. Their second-order counterparts as we studied in this work are able to preserve
these features. We also note, however, that second-order equations are numerically superior when
compared to their first-order counterparts.

Table 1: Notations and abbreviations.

Notation Description

f(x) if there is only spatial variable x, then f : Ω→ Rn is time-independent

f(t)
if there is only temporal variable t, then f maps to either real values in Rn,
or elements in some function spaces that is f(t) = f(·, t)

f(x, t) f is both space- and time-dependent

ḟ & f̈ first-order and second-order time derivative of f , respectively

∇f spatial gradient (including distributional sense) of function f

div(v) spatial divergence of the vector field v

(·, ·) inner product of two elements in Hilbert spaces (mostly L2 space)

〈·, ·〉 inner product of two elements in Rn
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Notation: In Table 1 we summarize some notations and abbreviations which will be frequently used in
this paper. The function u, which is appeared often in the text, is notationally not distinguished between
time-independent and time-dependent versions. However, it should be clear in the context which one
is using. In most of the paper, we omit to write the spatial variable x for functions which depend on
space and time.

The remainder of the paper is structured as follows: Section 2 provides the mathematical analysis of
the total variation flows. Section 3 investigates the level sets mean curvature flows. Section 4 presents
an algorithm and the results of numerical comparisons. A convergence analysis of the algorithm is
deferred in the Appendix.

2 Total variation flows

2.1 The first-order total variation flow

We start by reviewing the first-order total variation flow (TVF) and its corresponding variational method.
Total variation has become a standard tool in mathematical methods for image processing since the
final decade of the last century, which is attributed to the seminal work of Rudin, Osher and Fatemi
[42], who introduced the following nonsmooth variational model for recovering noisy images

min
u

1

2

∫
Ω

∣∣u(x)− ud(x)
∣∣2 dx+ αTV (u). (3)

Here α > 0 is a regularization parameter, and TV (·) is known as the total variation functional. Prob-
lem (3) is usually referred to as ROF model in the literature. From a practical point of view, TV (·) is
preferable in image processing to the standard Tikhonov regularization (quadratic smooth regulariza-
tion) because it is able to keep sharp contrast (edges) in the image.

We recall the definition of TV (·) here. Let Ω ⊂ R2. For a function u : Ω → R, the total variation is
defined as

‖Du‖ := sup

{∫
Ω

u(x) div(v(x))dx : v ∈ C∞0 (Ω), |v(x)| ≤ 1 for all x ∈ Ω

}
, (4)

where C∞0 (Ω) presents the set of infinitely continuously differentiable functions compactly supported
in Ω. The space of functions of bounded variation on Ω usually denoted by BV (Ω), is given by

BV (Ω) :=
{
u ∈ L1(Ω) : ‖u‖BV < +∞

}
, where ‖u‖BV := ‖u‖L1 + ‖Du‖ . (5)

It is well known that BV (Ω) is a Banach space, and the Sobolev space W 1
1 (Ω) is embedded into

BV (Ω). We are reminded that for functions u ∈ W 1
1 (Ω) the total variation is equally characterized

by the L1 norm of the spatial gradient of u, that is

‖Du‖ =

∫
Ω

|∇u(x)| dx, for u ∈ W 1
1 (Ω). (6)

In the following, we shall consider a Hilbert space for the function u, in particular we assume u ∈
L2(Ω) for the purpose of subsequent studies. Note that for simplicity, in the following we always use
the gradient notation∇ instead of D for functions also in BV (Ω). Let TV (u) be the total variation of
the function u ∈ L2(Ω), then

TV (u) :=

{
‖Du‖ , u ∈ L2(Ω)

⋂
BV (Ω);

∞, u ∈ L2(Ω) \BV (Ω).
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It is not difficult to find that the functional TV (·) is convex, proper, and lower semi-continuous on the
Hilbert space L2(Ω).

Given the following minimization problem

min
{
TV (u) : u ∈ L2(Ω)

⋂
BV (Ω)

}
, (7)

the first-order TVF is nothing but the negative L2 gradient flow for minimizing (7), which reads{
u̇(t) = div

(
∇u(t)
|∇u(t)|

)
, in Ω× (0,∞)

u(0) = u0, in Ω× 0.
(8)

Note here that− div
(
∇u
|∇u|

)
has been identified with an element of the subgradient of TV (u), which

is rather formal. It is important to give a sense to (8) as a partial differential “equation". This was
addressed in e.g. [6]. The idea there is to introduce some vector field p(t) as an element in the space
X(Ω) := {p(t) ∈ L∞(Ω,R2) : div(p(t)) ∈ L2(Ω)} for all t ∈ (0,∞). Then the equation (8) is
understood in the sense of u̇(t) = div(p(t)), where p has the form:

p(t) =

{
∇u(t)
|∇u(t)| , if ∇u(t) 6= 0;

γ(t) for some |γ(t)| ≤ 1, if ∇u(t) = 0,
(9)

which provides a more detailed understanding of (8). This also applies later to (11), one of our target
equations in this paper. For a further mathematical analysis of the first-order TVF, we refer to, e.g.,
[5, 6, 12]. There, the existence and uniqueness of solutions of the Cauchy problem (8) with Neu-
mann/Dirichelet boundary condition on Ω was established. Also, the more general case where Ω is
the entire space Rn was studied. These developments are mostly motivated by applications in image
denoising. Indeed, setting the initial value u0 = ud, and running the flow stopped at a proper time,
yields a regularized image. Usually the filtering of TVF is less destructive to the edges in images than
filtering with a Gaussian, i.e., solving the heat equation with the same initial value u0.

A formal connection between the TVF (8) and the ROF variational model (3) can be drawn as follows.
Given the initial value u0, we consider an implicit time discretization of the TVF (8) using the following
iterative procedure:

um − um−1 ∈ ∆t∂TV (um), for m ∈ N. (10)

Identifying the time step ∆t with the regularization parameter in (3), that is α = ∆t, we see that
(10) is in fact the Euler-Lagrange equation of (3). Therefore each iteration in (10) can be equivalently
approached by solving (3), where we take u = um and ud = um−1.

2.2 The damped second-order total variation flow

Following the idea of damped second-order dynamics for gradient flows of convex functionals in Hilbert
spaces, we introduce the following second-order TVF:

ü(t) + ηu̇(t)− div
(
∇u(t)
|∇u(t)|

)
= 0, in Ω× (0,∞),

u(0) = u0, u̇(0) = 0, in Ω× 0,
∂νu(t) = 0, on ∂Ω× (0,∞),

(11)

where η > 0 is the so-called damping parameter, which is assumed to be a constant, and ∂Ω denotes
the boundary of the domain Ω ⊂ R2 which is Lipschitz continuous, ∂ν is the normal derivative and ν
denotes the outward unit normal vector on ∂Ω.

In order to study the resolvability of (11) we consider the following concept for its solutions.
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Definition 2.1. A function u ∈ V := L∞((0,∞);D(∂TV ))∩C2((0,∞);L2(Ω)) is called a strong
solution of (11) provided

ü(t) + ηu̇(t) + ∂TV (u(t)) 3 0 for all t > 0. (12)

given the initial and boundary conditions in (11).

Before discussing the existence of solutions for (11), we recall the resolvent operator as well as the
Yosida approximation operator for the TV functional. These are standard tools available in many
classic textbooks (see e.g. [16, Chapter 7]):

Definition 2.2. (i) The resolvent operator Jλ : L2(Ω) → D(∂TV ) is defined by Jλ(w) := u,
where u ∈ L2(Ω) ∩BV (Ω) is the unique solution of

u+ λ∂TV (u) 3 w.

(ii) The Yosida approximation operator Aλ : L2(Ω)→ L2(Ω) is defined as

Aλ(w) := (w − Jλ(w))/λ.

The operators Jλ and Aλ have the following properties (see also [16, Chapter 7]):

Proposition 2.1. (i) For any fixed λ > 0, Aλ is a Lipschitz continuous mapping, i.e.

‖Aλ(w1)− Aλ(w2)‖ ≤ 2

λ
‖w1 − w2‖ for all w1, w2 ∈ L2(Ω).

(ii) Aλ is a monotone operator, i.e. (Aλ(w1)− Aλ(w2), w1 − w2) ≥ 0 for all w1, w2 ∈ L2(Ω).

(iii) Aλ(w) ∈ ∂TV (Jλ(w)) for all w ∈ L2(Ω).

(iv) For all w ∈ D(∂TV ):

sup
λ>0
‖Aλ(w)‖ ≤

∣∣(∂TV )0(w)
∣∣ := min

v∈∂TV (w)
‖v‖. (13)

(v) For every w ∈ L2(Ω):
lim
λ→0

Jλ(w) = w.

We need the following lemma.

Lemma 2.2. [6, Proposition 1.10] Let u ∈ D(∂TV ), and β ∈ ∂TV (u). Then,

(β, u) = TV (u).

Note that this is a special case of a general result which states that the above equality still holds true
for an arbitrary convex functional homogeneous of degree 1 besides the TV functional. Having these
results at hand, we proceed to proving the existence of a solution to (11).

Theorem 2.3. Given u0 ∈ D(∂TV ), there exists a solution of (11) in the sense of Definition 2.1.
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Proof. We first consider the following approximate problem with fixed λ > 0:
üλ(t) + ηu̇λ(t) + Aλ(uλ(t)) = 0, in Ω× (0,∞),
uλ(0) = u0, u̇λ(0) = 0, in Ω× 0,
∂νuλ(t) = 0, on ∂Ω× (0,∞).

(14)

For simplicity, denote H = L2(Ω), and introduce the space H ×H with scalar product

([u1, v1]>, [u2, v2]>)H×H = (u1, u2) + (v1, v2),

and the corresponding norm ‖[u, v]>‖H×H =
√
‖u‖2 + ‖v‖2. Note that in the following proof, if

there is no specification, then ‖·‖ always means the H norm. Now, we define vλ(t) = u̇λ(t) and
z(t) = [uλ(t), vλ(t)]

>, and then, rewrite (14) as a first-order dynamical system in the phase space
H ×H , i.e. {

ż(t) = F (z(t)) in Ω× (0,∞),
z(0) = [u0, 0]> in Ω× 0,

(15)

where F (z(t)) = [vλ(t),−ηvλ(t)− Aλ(uλ(t))]>.

We show first that F is Lipschitz continuous for every fixed λ > 0. This is true by using the Lipschitz
continuity of the Yosida approximation operator Aλ, and we have the following inequalities

‖F (z1(t), t)− F (z2(t), t)‖H×H
=
√
‖vλ,1(t)− vλ,2(t)‖2 + ‖η(vλ,1(t)− vλ,2(t)) + (Aλ(uλ,1(t))− Aλ(uλ,2(t)))‖2

≤
√

(1 + 2η2)‖vλ,1(t)− vλ,2(t)‖2 +
8

λ2
‖uλ,1(t)− uλ,2(t)‖2

≤
√

1 + 2η2 +
8

λ2

∥∥[uλ,1(t), vλ,1(t)]> − [uλ,2(t), vλ,2(t)]>
∥∥
H×H .

The existence and uniqueness of the solution of (15) follow from the Cauchy-Lipschitz-Picard (CLP)
theorem (see e.g. [16]) for first-order dynamical systems. In particular we can infer that

uλ ∈ C1((0,∞);H), and u̇λ ∈ C1((0,∞);H),

and u̇λ ∈ C1((0,∞);H) indicates that uλ ∈ C2((0,∞);H).

In the remaining part of the proof, we show that as λ → 0+ the function sequence (uλ)λ converges
to a solution of our original problem (11) in the sense of Definition 2.1. We prove this by the following
steps.

Step 1. We show that u̇λ ∈ L2((0,∞);H).

According to the definition of Jλ and the assumption u0 ∈ D(∂TV ), we have

TV (Jλ(u0)) ≤ TV (u0) <∞. (16)

Defining a Lyapunov function of the differential equation (14), that is

Lλ(t) = TV (Jλ(uλ(t))) +
1

2
‖u̇λ(t)‖2, (17)

it is not difficult to show that
L̇λ(t) = −η‖u̇λ(t)‖2 (18)

DOI 10.20347/WIAS.PREPRINT.2591 Berlin 2019



G. Dong, M. Hintermüller, Y. Zhang 8

by considering (14). Integrating both sides in (18), we obtain∫ ∞
0

‖u̇λ(t)‖2dt ≤ Lλ(0)/η = TV (Jλ(u0))/η <∞, (19)

which yields u̇λ ∈ L2((0,∞), H) for all λ ≥ 0.

Step 2. We prove that both uλ, u̇λ ∈ L∞((0,∞), H) are uniformly bounded.

Since Ω ⊂ R2, according to Sobolev’s inequality, see e.g. [3, Theorem 3.47], a constant C indepen-
dent of λ exists such that

‖Jλ(uλ)(t)‖ ≤ C · TV (Jλ(uλ)(t)). (20)

On the other hand, according to the assertion (v) in Proposition 2.1, a constant λ1 exists such that for
all λ ∈ (0, λ1],

‖Jλ(uλ(t))− uλ(t)‖ ≤ 1 for all t ∈ (0,∞). (21)

Note that it follows from (18) that E(t) is a non-increasing function. Thus, we obtain together with (20)
and (21) that

‖uλ(t)‖ ≤ ‖Jλ(uλ(t))‖+ 1 ≤ C · TV (Jλ(uλ(t))) + 1

≤ C

(
TV (Jλ(uλ(t))) +

1

2
‖u̇λ(t)‖2

)
+ 1 = CLλ(t) + 1 ≤ CTV (u0) + 1 <∞,

which yields uλ ∈ L∞((0,∞), H) for all λ ∈ (0, λ1].

The uniform boundedness of u̇λ follows from the following inequality:

‖u̇λ(t)‖2 ≤ 2TV (Jλ(uλ(t))) + ‖u̇λ(t)‖2 = 2Lλ(t) ≤ 2TV (u0) <∞.

Step 3. We argue that both Aλ(uλ), üλ ∈ L∞((0,∞);H) are also uniformly bounded.

We have shown in Step 2 that Jλ(uλ(t)) ∈ H is uniformly bounded for all λ ∈ (0, λ1], and for all
t ∈ (0,∞). Now we show, by contradiction, that Aλ(uλ) ∈ L∞((0,∞);H) is uniformly bounded .
Assume that there exists λ∗ ∈ (0, λ1] such that (Aλ∗(uλ∗(tk)))k∈N is an unbounded sequence, i.e.,
limk→∞ ‖Aλ∗(uλ∗(tk))‖ =∞. On the other hand, (Jλ(uλ(tk)))k∈N is uniformly bounded for all λ ∈
(0, λ1]. Hence, there exists a weakly convergent subsequence, still denoted by (Jλ∗(uλ∗(tk)))k∈N
with some weak limit in H . Note that there must exist a subsequence such that the elements of
(Jλ∗(uλ∗(tk)))k∈N are not constant functions, otherwise we get Aλ∗(uλ∗(tk)) ≡ 0 which is already
a contradiction. We consider in particular this subsequence and use the same notation.

Now, let us define dk := Aλ∗(uλ∗(tk))/ ‖Aλ∗(uλ∗(tk))‖ and its smooth approximation d̃k ∈ C∞0 (Ω),
such that for arbitrary ε ∈ (0, 1) we have:

(Aλ∗(uλ∗(tk)), d̃k) ≥ (Aλ∗(uλ∗(tk)), dk)− ε.

Note that such d̃k always exists since Aλ∗(uλ∗(tk)) ∈ L2(Ω) and C∞0 (Ω) is dense in L2(Ω). Note
that dk and d̃k are uniformly bounded in L2(Ω) for all k ∈ N. Moreover, TV (d̃k) is also uniformly
bounded as d̃k ∈ C∞0 (Ω) and Ω ⊂ R2 is compact. Since Aλ∗(uλ∗(tk)) ∈ ∂TV (Jλ∗(uλ∗(tk))), we
have for every k ∈ N,

TV (Jλ∗(uλ∗(tk)) + d̃k)− TV (Jλ∗(uλ∗(tk))) ≥ (Aλ∗(uλ∗(tk)), d̃k) ≥ ‖Aλ∗(uλ∗(tk))‖ − ε,
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Second-order geometric quasilinear hyperbolic PDEs 9

for ε ∈ (0, 1), which implies

‖Aλ∗(uλ∗(tk))‖ ≤ 1 + TV (Jλ∗(uλ∗(tk)) + d̃k) ≤ 1 + TV (Jλ∗(uλ∗(tk))) + TV (d̃k)

≤ 1 + TV (u0) + TV (d̃k).

This means that (‖Aλ∗(uλ∗(tk))‖)k∈N is a bounded sequence, which is a contradiction. Therefore,
we have that Aλ(uλ(·)) ∈ L∞((0,∞);H) is uniformly bounded for all λ ∈ (0, λ1].

The uniform boundedness of üλ ∈ L∞((0,∞);H) for λ ∈ (0, λ1] follows from the obtained results
u̇λ, Aλ(uλ) ∈ L∞((0,∞);H) and equation (14).

Step 4. Now we are ready to show that there exists a function u ∈ C2((0,∞);H) which is a solution
to (11) in the sense of Definition 2.1.

First, we claim that for every sequence (λk)k∈N with λk → 0, there exists a uniformly convergent
subsequence (uλk)k∈N ∈ C2((0, T ];H) (here we do not change the notation for the subsequence)
and for every t ∈ (0, T ] of arbitrary T ∈ (0,∞), so that

uλk → u in C2((0, T ];H), and u̇λk → u̇ in C1((0, T ];H). (22)

This follows from the Arzelá-Ascoli theorem by noting that

uλk ∈ L∞([0,∞);H) and u̇λk ∈ L∞((0,∞);H)

are uniformly bounded for all λ ∈ (0, λ1), as well as üλk ∈ L∞((0,∞);H). Therefore, all elements
of both (uλk) and (u̇λk) are Lipschitz continuous thus equicontinuous over t ∈ (0,∞). Note that
subsequences have to be applied here whenever they are needed.

Furthermore, the uniform boundedness of üλk in L∞((0,∞);H) implies that there exists a subse-
quence (λkj)j∈N such that for almost every t ∈ (0, T ] and arbitrary T <∞:

üλkj ⇀ ü in L2([0, T ];H) as j →∞. (23)

Now we show that u(t) ∈ D(∂TV ) for every t ∈ (0, T ], and it holds that

ü(t) + ηu̇(t) ∈ −∂TV (u(t)) for a.e. t ∈ (0, T ].

We first notice for each t > 0 that

−üλ(t)− ηu̇λ(t) = Aλ(uλ) ∈ ∂TV (Jλ(uλ)),

which means that for arbitrary but fixed w ∈ H , we have

TV (w) ≥ TV (Jλ(uλ)(t))− (üλ(t) + ηu̇λ(t), w − Jλ(uλ(t))).

Consequently, for 0 < s ≤ t ≤ ∞, it holds that

(t− s)TV (w) ≥
∫ t

s

TV (Jλ(uλ(τ)))dτ −
∫ t

s

(üλ(τ) + ηu̇λ(τ), w − Jλ(uλ(τ)))dτ.

Using the triangle inequality and Definition 2.2 of the Yosida approximation operator, we get:

‖Jλ(uλ(t))− u(t)‖ ≤ ‖Jλ(uλ(t))− uλ(t)‖+‖u(t)− uλ(t)‖ = λ ‖Aλuλ(t)‖+‖u(t)− uλ(t)‖ .
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It has been shown in Step 3 that ‖Aλuλ(t)‖ is uniformly bounded for all λ ∈ (0, λ1) and all t ∈
(0,∞). In combination with the uniform convergence of uλ → u, we have that Jλ(uλ)→ u as λ→ 0
uniformly for all t ∈ (0, T ]. Using the lower semi-continuity of the TV functional, Fatou’s Lemma, and
the convergence (22) and weak convergence (23), we conclude upon sending λ = λkj → 0 that

(t− s)TV (w) ≥
∫ t

s

TV (u(τ))dτ −
∫ t

s

(ü(τ) + ηu̇(τ), w − u(τ))dτ.

Thus, when t is a Lebesgue point of u̇, ü and TV (u), it holds that

TV (w) ≥ TV (u(t))− (ü(t) + ηu̇(t), w − u(t)),

for all w ∈ H . Since −(ü(t) + ηu̇(t)) ∈ H is bounded, by definition of subgradient we have
u(t) ∈ D(∂TV ) and

−(ü(t) + ηu̇(t)) ∈ ∂TV (u(t)) for almost every t ∈ (0,∞).

Finally we show that for all t > 0, u(t) ∈ D(∂TV ). For every t > 0, let tn → t and u(tn) ∈
D(∂TV ), and −(ü(tn) + ηu̇(tn)) ∈ ∂TV (u(tn)). Because of the uniform boundedness of both u̇
and ü, there exists v, v′ ∈ H with

u̇(tn) ⇀ v and ü(tn) ⇀ v′, weakly in H.

For every fixed w ∈ H , we have

TV (w) ≥ TV (u(tn))− (ü(tn) + ηu̇(tn), w − u(tn)).

Passing to the limit n → ∞, and due to the continuity of u and the lower semi-continuity of TV , we
arrive at

TV (w) ≥ TV (u(t))− (v′ + ηv, w − u(t)).

Let u̇(t) = v, and ü(t) = v′. Then we have shown that u(t) ∈ D(∂TV ) and −(ü(t) + ηu̇(t)) ∈
∂TV (u(t)) for all t > 0. This concludes the proof.

We remark that for the first-order TVF (8), using tools from semi-group theory, the regularity of the
initial data can be relaxed to L2(Ω) or even L1(Ω) to prove the existence and uniqueness of solutions
[6]. However, this does not seem to hold true for the second-order TVF (11) as it is a nonlinear wave
equation, and particularly the semi-group theory does not apply here. Also the initial value u̇(0) = 0
is not compulsory for the analytical results here and later, but it is a natural choice from an algorithmic
point of view. Now we continue with the uniqueness of the solution.

Theorem 2.4. The problem (11) admits a unique strong solution given the initial and boundary condi-
tion there.

Proof. Let u and ū both be solutions of (11), that satisfy both the initial and boundary conditions.
Further p and p̄ are the function forms in (9) corresponding to u and ū, respectively. For every s ∈
(0, T ], define for every function g ∈ V

φsg(t) :=

{
−
∫ s
t
g(r)dr, for t ∈ (0, s),

0, for t ≥ s.

DOI 10.20347/WIAS.PREPRINT.2591 Berlin 2019



Second-order geometric quasilinear hyperbolic PDEs 11

It is not hard to see that φsg(s) = 0, φ̇sg(t) = g(t). Let v = u− ū. Compute (11) once for u and then
for ū, subtract the two PDEs, and then test the resulting equation by φsv(t) to obtain:∫ s

0

(v̈(t) + ηv̇(t), φsv(t))dt =

∫ s

0

(div(p)− div(p̄), φsv(t))dt. (24)

Using integration by parts and the initial conditions v(0) = v̇(0) = 0, equation (24) becomes:∫ s

0

d ‖v(t)‖2

2dt
+ η ‖v(t)‖2 dt =

∫ s

0

(div(p)− div(p̄), φsv(t))dt. (25)

Then (25) is explicitly written as∫ s
0
d‖v(t)‖2

2dt
+ η ‖v(t)‖2 dt =

∫ s
0

(
div(p(t))− div(p̄(t)),

∫ s
t
v(r)dr

)
dt

=
∫ s

0
(div(p(t))− div(p̄(t)), (s− t)v(t+ hs)) dt,

(26)

with t + hs ∈ (t, s). The second equality holds thanks to the continuity of v(t) and the mean value
theorem.

In the following, we prove by contradiction that v ≡ 0 over the time domain (0, s). We first notice
that because of equation (11), if u(t) 6= ū(t) for t ∈ (0, s), and u0 6= 0, then u(t) 6= cū(t) for any
nonzero constant c. As v(0) = 0, let t = ε > 0 be the first occasion such that v(ε) 6= 0. If no such ε
exists, then we are done. In case v is non-zero immediately after t = 0, then we choose a sufficiently
small ε > 0 such that v(ε) 6= 0.

Then we have ∫ ε

0

d ‖v(t)‖2

2dt
+ η ‖v(t)‖2 dt ≥ ‖v(ε)‖2 /2 > 0.

On the other hand, using the boundary condition and relation (9) we have

(div(p(ε))− div(p̄(ε)), v(ε)) = − (p(ε)− p̄(ε),∇(u(ε)− ū(ε)))

=−
∫

Ω

(|∇ū(ε)| |∇u(ε)| − 〈∇ū(ε),∇u(ε)〉) (|∇ū(ε)|+ |∇u(ε)|)
|∇ū(ε)| |∇u(ε)|

< 0 for v(ε) 6= 0.

Note that the inequality is strict as u(t) 6= cū(t) for all t ∈ (0, s) and c 6= 0. Recall that v(t) ∈
C2([0, T ];H). Then, by continuity of v(t), there exists a neighborhood B(ε, hε) := (ε− hε, ε+ hε)
of ε such that for all t ∈ B(ε, hε), the following relation holds true:

(div(p(t))− div(p̄(t))), v(t+ h)) ≤ 0, for all |h| ≤ hε. (27)

Now we return to the right-hand side of (26) with s = ε, and find∫ ε

0

(
div(p(t))− div(p̄(t)), (ε− t)v(t+ h̄)

)
dt ≤ 0.

This implies ∫ ε

0

d ‖v(t)‖2

2dt
+ η ‖v(t)‖2 dt ≤ 0,

which yields a contradiction. Therefore v(t) ≡ 0 over t ∈ [0, ε]. Now we can repeatedly apply this
procedure to the time domains [nε, (n + 1)ε] for every n ∈ N. This shows that v(t) ≡ 0 over
t ∈ [0,∞). Thus, equation (11) admits a unique solution.
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Finally, we show a decay rate for the TV energy when applying the second-order TVF (11) as a
total variation minimizing flow. For the formulation of the results we use the Landau symbol o(·), i.e.,
limt→0

o(t)
t

= 0 for t > 0.

Proposition 2.5. Let u be the solution of the second-order TVF (11), then

TV (u(t)) = o

(
1

t

)
as t→∞.

Proof. We adopt an idea of [17]. Let us first introduce the auxiliary function

h(t) :=
η

2
‖u(t)‖2 + (u̇(t), u(t)). (28)

By elementary calculations, we derive that

ḣ(t) = η(u̇(t), u(t)) + (ü(t), u(t)) + ‖u̇(t)‖2 = ‖u̇(t)‖2 − (∂TV (u(t)), u(t)).

Then we define the entropy functional

E(t) = ‖u̇(t)‖2 /2 + TV (u(t)).

Note that Ė(t) = −η‖u̇(t)‖2 which in combination with Lemma 2.2 implies that

3

2
Ė(t) + ηE(t) + ηḣ(t) = η [TV (u(t))− (∂TV (u(t)), u(t))] = 0.

Integrating the above inequality over [0, T ] we obtain together with the non-negativity of E(t),∫ T

0

E(t)dt =
3

2η
(E(0)− E(T )) + (h(0)− h(T )) ≤

(
3

2η
E(0) + h(0)

)
− h(T ). (29)

On the other hand, by Theorem 2.3, u(t) and u̇(t) are uniformly bounded. Hence, there exists a
constant M such that |h(t)| ≤M for all t. Letting T →∞ in (29), we obtain∫ ∞

0

E(t)dt <∞. (30)

Moreover, since E(t) is non-increasing, we deduce that∫ t

t/2

E(τ)dτ ≥ t

2
E(t). (31)

Using (30), the left side of (31) tends to 0 when t→∞, which implies that

lim
t→∞

t · E(t) = 0.

Hence, we conclude limt→∞ tTV (u(t)) = 0, which yields that TV (u(t)) = o(1
t
).

This concludes our study of the second-order TVF (11). In the next section, we will study another family
of nonlinear flows which are also able to decrease the total variation of a function, albeit in a somewhat
different manner. It is motivated from the application in imaging science for correcting displacement
errors, which is different to TVFs.
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3 Mean curvature motion of level sets

Mean curvature flow of level sets of scalar functions has been analyzed first in [18, 30]. The associated
equation reads {

u̇(t) = |∇u(t)| div
(
∇u(t)
|∇u(t)|

)
, in R2 × (0,∞);

u(0) = u0, in R2 × 0.
(32)

In such a form, the flow can overcome the singularity or topological change which may be generated
during the evolution of standard hypersurface mean curvature flow. It finds many applications in sur-
face processing and also in image processing. A particular application which has become a research
focus recently is concerned with correcting displacement errors in image data [37]. Also, a connection
between the level-set MCF and a non-convex energy functional has been identified in [27].

As mentioned in the introduction, the displacement error in image data can be mathematically modeled
as follows:

ud(x) := u(x+ d(x)), for d : R2 → R2, and ‖d‖L∞ ≤M,

where ud : R2 → R is the measured image, M is some positive real number, and u is the ideal
physical acquisition of the image. Assuming that the magnitude of the error boundM is small, following
[37, 23, 24] we may consider a first-order Taylor expansion of the function u along the normal direction
of the level sets of u:

ud(x) = u(x+ d(x)) ≈ u(x) + |d(x)|
〈
∇u(x)

|∇u(x)|
,∇u(x)

〉
, (33)

assuming |∇u(x)| > 0. Then the magnitude of the displacement error can be approximated as
follows:

|d(x)| ≈ ud(x)− u(x)

|∇u(x)|
. (34)

In [37], a generalized total variation regularization is employed to recover u given ud, which leads to a
non-convex and non-smooth energy functional

E(u;ud) :=
1

2

∫
R2

(u(x)− ud(x))2

|∇u(x)|q
dx+ α

∫
R2

|∇u(x)| dx, (35)

where α > 0 is a regularization parameter. The parameter q ∈ (0, 2] is introduced in order to
simultaneously take care of the displacement error d(x) and also the intensity error δ(x) in the image
data. In the case of q = 1 we observe that the first term of E(u;ud) in (35) is a measure reflecting

both the displacement error and the intensity error by using the geometric mean of (u(x)−ud(x))2

|∇u(x)|2 and

(u(x)− ud(x))2.

Using formal calculations, e.g., the semi-group techniques of [27, 37, 44] or the semi-implicit iterative
scheme in [24] by identifying α as a discrete time step (the latter is analogous to our explanation in-
volving the ROF model and the first-order TVF in the previous section), we formally derive the following
nonlinear flows: {

u̇(t) = |∇u(t)|q div
(
∇u(t)
|∇u(t)|

)
in R2 × (0,∞),

u(0) = ud in R2 × 0.
(36)

We can see that (32) emerges for q = 1 in (36). In [37, 23, 24], it was documented that the nonlinear
flows (36) are able to correct small displacement errors and also to denoise image data where the
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discrete time step and the stopping time play the roles of regularization parameters. This motivates us
to consider a second-order damping flow based on the first-order flow, which is the equation below:{

ü(t) + ηu̇(t) = |∇u(t)| div
(
∇u(t)
|∇u(t)|

)
, in R2 × (0,∞),

u(0) = u0, u̇(0) = 0 in R2 × 0.
(37)

We refer to this new equation as the damped second-order level-set MCF.

3.1 Heuristic observation on the damped second-order level-set MCF

Suppose that each level set of the function u is a hypersurface which is well-defined in R2. In this case,
it has been verified in [30] that the level-set MCF (32) is equivalent to the gradient flow of the volume
(perimeter) functional for the hypersurface of every single level set, that is the standard hypersurface
mean curvature flow. More precisely, let Γ(t) be the immersion of the hypersurface into R2. Without
loss of generality, we consider it to be the zero level set of u(t) that is u(Γ(t), t) ≡ 0. Assume Γ(t) to
be smooth. Then the evolution of Γ(t) governed by the first-order equation (32) is in fact characterized
by the following hypersurface mean curvature flow:{

Γ̇(t) = − div (ν(t)) ν(t) ,
Γ(0) = Γ0,

(38)

where ν(t) is the unit normal vector associated to the hypersurface of the level set Γ(t). Note here
that div (ν(t)) ν(t) = ∂V(Γ(t)), where V is the volume functional, or more precisely the length of
the level lines in our case.

The mean curvature flow (38) for hypersurfaces or general manifolds has been a central topic in
geometric analysis. In the level set setting, if the spatial gradient∇u(Γ(t), t) 6= 0, the normal field of
the hypersurface of every level set can be represented by ν(t) = ∇u(Γ(t),t)

|∇u(Γ(t),t)| .

In this context, a relevant question is connected to identifying an evolutionary equation for the hyper-
surfaces given by the level sets of u(t) associated to the second-order level-set MCF (37). In the
following, we give some heuristics based on formal calculations.

Let us again take Γ(t) to be the immersion of the zero level set of the function u(t), and consider the
following equation:{

Γ̈(t) +
(
η Id +ν(t)⊗ ∇u̇(Γ(t),t)

|∇u(Γ(t),t)|

)
Γ̇(t) = − div (ν(t)) ν(t) ;

Γ̇(0) = 0, Γ(0) = Γ0,
(39)

where Id represents the 2 × 2 identity matrix, and ⊗ denotes the tensor product of vectors. While
the tensor product term may appear surprising in the context of (39) at first glance, its role will soon
become clear. First, we find that

Pτ
∇u̇(Γ(t), t)

|∇u| (Γ(t), t)
= ν̇(t),

where Pτ is the projection operator onto the tangent space of Γ(t).

Now, we look for the connection between (39) and (37) for the evolution of the level sets of the function
u. We first notice that u(Γ(t), t) ≡ 0 (or any other constant) which gives

u̇(Γ(t), t) = −〈∇u(Γ(t), t), Γ̇(t)〉. (40)
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Differentiating with respect to time on both sides of (40), we get:

ü(Γ(t), t) = −〈(∂t∇u(Γ(t), t)), Γ̇(t)〉 − 〈∇u(Γ(t), t), Γ̈(t)〉. (41)

Note here that we are not calculating the total time derivative of u but rather the partial derivative with
respect to t. Since Γ(t) now follows the trajectory given by (39), we observe that(

ν(t)⊗ ∇u̇(Γ(t), t)

|∇u(Γ(t), t)|

)
Γ̇(t) =

〈
∇u̇(Γ(t), t)

|∇u(Γ(t), t)|
, Γ̇(t)

〉
ν(t),

leading to

ü(Γ(t), t) = −〈(∂t∇u(Γ(t), t)), Γ̇(t)〉 − ηu̇(Γ(t), t) + 〈∇u(Γ(t), t), div (ν(t)) ν(t)〉

+

〈
∇u̇(Γ(t), t)

|∇u(Γ(t), t)|
, Γ̇(t)

〉
〈∇u(Γ(t), t), ν(t)〉,

(42)

where we also use (41). Using the fact that ν(t) = ∇u(Γ(t),t)
|∇u(Γ(t),t)| and |∇u(Γ(t), t)| 6= 0 we verify that〈

∇u̇(Γ(t), t)

|∇u(Γ(t), t)|
, Γ̇(t)

〉
〈∇u(Γ(t), t), ν(t)〉 = 〈∇u̇(Γ(t), t), Γ̇(t)〉 .

Assuming for the moment that u has sufficient regularity and interchanging the order of the time and
spatial derivatives in the first term of the right hand side of (42), that is ∇̇u(Γ(t), t) = (∂t∇u(Γ(t), t)),
equation (42) turns into (37) restricted to the level set Γ(t), i.e.,

ü(Γ(t), t) + ηu̇(Γ(t), t) = |∇u(Γ(t), t)| div

(
∇u(Γ(t), t)

|∇u(Γ(t), t)|

)
.

This indicates that every smooth level set Γ(t) of the solution of (37) evolves according to equation
(39). Basically, (39) is a vectorial form of second-order dynamics for the mean curvature flow of hy-
persurfaces. However, the damping coefficient has a matrix form and involves the external function u.
This shows that (39) is not an independent geometric PDE. Rather it needs to be coupled to (37). This
is further expanded in the following remark.

Remark 3.1. Consider the following second-order geometric flow for general smooth hypersurfaces of
some immersion function Γ(t):

Γ̈(t) + (η Id +ν(t)⊗ ν̇(t)) Γ̇(t) = − div (ν(t)) ν(t). (43)

Define an entropy (Lyapunov function) for (43) through

M(t) :=
1

2

∥∥∥〈ν(t), Γ̇(t)〉
∥∥∥2

+ V(Γ(t)), (44)

where V(Γ(t)) presents the volume functional of the hypersurface, and ν(t) is the unit normal field
(or also called Gauss map) of the hypersurface. Since

dM(t)

dt
=
(
〈ν(t), Γ̇(t)〉, (〈ν̇(t), Γ̇(t)〉+ 〈ν(t), Γ̈(t)〉)

)
+
(

div(ν(t))ν(t), Γ̇(t)
)
,

taking into account (43) and by direct calculations, we deduce that

dM(t)

dt
= −η

∥∥∥〈ν(t), Γ̇(t)〉
∥∥∥2

≤ 0.

DOI 10.20347/WIAS.PREPRINT.2591 Berlin 2019



G. Dong, M. Hintermüller, Y. Zhang 16

This shows that the entropyM(t) is monotonically decreasing following the trajectory of the flow (43).
Now assume Γ(t) again to be the hypersurfaces of the level sets of a scalar function u. Isolating the
term Γ̈ in (43) and inserting it into (41), and also taking into account (40) we derive a new equation
corresponding to (43) as follows:

ü(Γ(t), t) +

(
η − 〈∇u,∇u̇〉(Γ(t), t)

|∇u|2 (Γ(t), t)

)
u̇(Γ(t), t) = |∇u(Γ(t), t)| div

(
∇u(Γ(t), t)

|∇u(Γ(t), t)|

)
.

Formally, for∇u 6= 0, this suggests the following equation for the scalar function u

ü+

(
η − 1

2
∂t log(|∇u|2)

)
u̇ = |∇u| div

(
∇u
|∇u|

)
. (45)

Equations (45) and (43) appear novel and they seem to be geometrically meaningful to study. Hy-
perbolic mean curvature flow for hypersurfaces has been studied in [36, 33], even though no damping
term has been involved, not to mention the setting of level sets of functions. However, the new equation
(45) looks rather more complicated than (37). Since our motivation here is to develop algorithms for
image applications, we will skip detailed discussions on the equations (45) and (43), but rather focus
on (37) in this paper.

Using the entropy (44) and following the orbit of the equation (39), we infer

dM(t)

dt
= −η

∥∥∥〈ν(t), Γ̇(t)〉
∥∥∥2

−
(
〈ν(t), Γ̇(t)〉, 〈Pν

∇u̇(Γ(t), t)

|∇u(Γ(t), t)|
, Γ̇(t)〉

)
= −η

∥∥∥〈ν(t), Γ̇(t)〉
∥∥∥2

− 1

2

(
∂t log(|∇u(Γ(t), t)|2)〈ν(t), Γ̇(t)〉, 〈ν(t), Γ̇(t)〉

)
,

where Pν is the normal projection operator onto the hypersurface Γ(t). The last term makes the
monotonicity of M unclear. It implies that large η are preferred for monotonicity, a practical point
which we pick up in Section 4 along with the algorithmic development.

3.2 On the solvability of the damped second-order level-set MCF

In order to study the solvability of the equation (37), we rewrite it to obtain the following explicit form
(note that∇u(t) = (ux1(t), ux2(t))>):{

ü(t) + ηu̇(t) =
∑

i,j

(
δij −

uxi (t)uxj (t)

|∇u(t)|2

)
uxixj(t), in R2 × (0,∞),

u̇(0) = 0, u(0) = u0, in R2 × 0,
(46)

where δij is the Kronecker delta function, i.e., δij = 1 for i = j, and δij = 0 for i 6= j. For this
problem, because of its geometric meaning, it is natural to study the flow in the domain R2 × (0,∞)
instead of Ω × (0,∞) as in the TVF case with bounded Ω. For the latter, that is u0 is compactly
supported in R2, the results developed below will still hold by imposing Neumann boundary conditions
on the boundary ∂Ω for ∂Ω sufficiently regular. As the right hand sides of (37) and (46), respectively,
are not related to gradient (or subgradient) of a convex functional, the standard techniques using test
functions are not applicable. Thus our previous approach to the second-order TVF is not suitable for
this problem. Also, the concept of the viscosity solution, which has been developed for the first-order
level-set MCF [30], is not applicable either because of the degenerate hyperbolic structure of the
equation (46). Moreover, it can be checked that the nonlinear coefficients in (46), namely for |p| > 0,

āi,j(p) :=

(
δij −

pipj

|p|2

)
, pi := uxi ,
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satisfy
∑

i,j āi,j(p)ζiζj ≥ 0 for almost all ζ = (ζ1, ζ2)> ∈ R2. Therefore (46) is a fully degenerate
hyperbolic equation (some times also referred to as weakly hyperbolic) in the domain R2 × (0,∞).

The singularity of āi,j at p = 0 is another issue which has to be considered. For the purpose of avoid-
ing singularities and also to eliminate the degeneracy in the equation (46), we construct a regularized
version which is quasilinear but strictly hyperbolic. This is also motivated by the numerical realization
of (46) from a practical algorithmic point of view.

3.3 Solution of a regularized equation

We concentrate on the following quasilinear but strictly hyperbolic equation as an approximation of
(46): {

üε(t) + ηu̇ε(t) =
∑

i,j

(
δij −

uεxi (t)u
ε
xj

(t)

|∇uε(t)|2+ε2

)
uεxixj(t), in R2 × (0,∞),

u̇ε(0) = 0, uε(0) = u0, in R2 × 0,
(47)

where 0 < ε� 1 is fixed.

The approximation (47) can be interpreted as follows. Consider the function vε(y, t) := uε(x, t)−εx3,
where y = (x, x3) ∈ R3. Since |∇vε|2 = |∇uε|2 + ε2, the equation in (47) becomes{

v̈ε(t) + ηv̇ε(t) =
∑

i,j

(
δij −

vεyi (t)v
ε
yj

(t)

|∇vε(t)|2

)
vεxixj(t), in R3 × (0,∞),

v̇ε(0) = 0, vε(0) = vε0, in R3 × 0,

where vε0(y) = u0(x)− εx3. A geometric meaning for this approximation of first-order level-set MCF
has been given in [30]. There, it is depicted that vε is a function defined on a higher dimensional
domain, whose zero-level set is a graph given by: Γε(t) = {y = (x, x3)|x3 = uε(x, t)/ε}. Then it is
argued that the complicated and possibly singular evolution of the level sets Γ(t) of u is approximated
by a family of well behaved smooth evolutions of the level sets Γε(t) of a function vε from a higher
dimensional space, in the sense that Γε(t) ' Γ(t) × R for sufficiently small ε at given t > 0. We
adopt the same geometric intuition for the solution of (47) as [30] did for the first-order level-set MCF.
This observation justifies the use of such a regularization properly approximating the original solution
when ε is small.

To study the existence and uniqueness of solutions to (47), we rely on the results on linear hyperbolic
equations as, for instance [35]. In particular, we consider the following equation{

ζ̈(t) + ηζ̇(t)−
∑

i,j ai,j(∇w(t))ζxixj(t) = f(t), in R2 × (0,∞),

ζ̇(0) = ζ1, ζ(0) = ζ0, in R2 × 0,
(48)

where w(t) is a given function.

To simplify notations, we write Hk := W k,2(R2) for k ∈ N, and use Dk to represent all derivatives
with respect to temporal and spatial variables of differential orders between [0, k]. In the following we
summarize assumptions for existence results on linear hyperbolic PDEs.

Assumption 3.2. (i) The functions ai,j are smooth and satisfy ai,j = aj,i for i, j = 1, 2. Moreover
there exists a continuous function a(p) > 0 such that a(p) |q|2 ≤

∑
i,j ai,j(p)qiqj ≤ σ1 |q|2

for all p ∈ R2 and q ∈ R2, for some constant σ1 > 0.

(ii) w ∈ C0([0,∞);Hk), and the initial data are properly bounded, i.e.
∥∥Dkζ(0)

∥∥
L2 ≤ M0, for

some M0 > 0.
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The first assumption implies that, for all bounded p ∈ R2 with ‖p‖ ≤ P0, there exists a fixed σ > 0
such that a(p) |q|2 ≥ σ |q|2 for all q ∈ R2. Note that ζ0 ∈ Hk and ζ1 ∈ Hk−1 have been integrated
into Dkζ(0) because of the second assumption. The existence and uniqueness of the solution for
linear hyperbolic equations of type (48) have been established in [22, Chapter 5]. One may also refer
to [35, 29] for more results. We summarize the existence, uniqueness and energy estimate here:

Theorem 3.3. Given Assumption 3.2, and supposing that f ∈ Cs([0,∞);Hk−s−1) for k ∈ N and
s ∈ [0, k − 1] ( k ≥ s + 1 ≥ 1), the linear hyperbolic equation (48) admits a unique solution
ζ ∈ C0((0,∞);Hk) ∩ Cs((0,∞);Hk−s) and the following estimate holds true:∥∥Dlζ(t)

∥∥2

L2 ≤ e(t)

(∥∥Dlζ(0)
∥∥2

L2 +
∥∥Dl−2f(0)

∥∥2

L2 +

∫ t

0

∥∥Dl−1f(τ)
∥∥2

L2 dτ

)
for all t ∈ (0,∞)

(49)
and every integer l ∈ [1, s+1], where the case l = 1 applies if f(0) ≡ 0. Here e(t) is an exponential
function of t. In particular, if f ≡ 0, then there exists some positive constant t̄0 > 0 and c0 < 1, such
that for ‖ζ(0)‖Hk ≤ c0M , it holds that

‖ζ(t)‖Hk ≤M for all t ∈ (0, t̄0]. (50)

Connecting to equation (47), where ai,j(p) = δij − pipj

|p|2+ε2
, we have a(p) = ε2

|p|2+ε2
. Moreover, it is

not hard to verify that all the assumptions on ai,j are fulfilled for this choice. Also it can be checked
that a(p) |q|2 ≥ σ |q|2 for some σ > 0 as soon as |p| (or in another words the norm ‖uε(t)‖Hk )
is uniformly bounded from above for t ∈ (0, t̄0]. With this preparation, we establish now a local
(short time) existence and uniqueness of solutions of (47). To simplify the presentation, we omit the
superscript ε in the following theorem as it is a fixed parameter anyhow.

Theorem 3.4. For every fixed ε ∈ (0, 1), given u0 ∈ H4, a constant 0 < c0 < 1, and ‖u0‖H4 ≤
c0M , there exists t0 > 0 such that equation (47) admits a unique solution u ∈

⋂2
s=0C

s((0, t0];H4−s).
Moreover, ‖u(t)‖H4 ≤M holds for all t ∈ (0, t0].

Proof. The main idea is borrowed from the proof of [39, Theorem 4]. We first define a differential
operator of the following form:

Lwu(t) := ü(t) + ηu̇(t)−
∑
i,j

(
δij −

wyi(t)wyj(t)

|∇w(t)|2 + ε2

)
uxixj(t). (51)

Then , we construct some initial function u0(t) ∈
⋂3
s=0C

s((0, t̄0];H4−s) which satisfies u0(0) = u0,
u̇0(0) = 0, and

D4
xu

0(0) = D4
xu0, c0

∥∥u0(t)
∥∥
H4 ≤ ‖u0‖H4 for all t ∈ (0, t̄0].

Here Dx denotes the spatial derivative. Next, for m ≥ 1, we consider the following equation recur-
sively: {

Lum−1(um) = 0,
um(0) = u0, u̇m(0) = 0.

(52)

Using Theorem 3.3 with f ≡ 0, we find that um ∈
⋂3
s=0C

s((0, t̄0];H4−s) for all m ≥ 0, and
‖um(t)‖H4 ≤M for all t ∈ (0, t̄0]. As Lum(um+1) = 0, Lum(um+1 − um) = −Lum(um) and

üm + ηu̇m =
∑
i,j

(
δij −

um−1
yi

um−1
yj

|∇um−1|2 + ε2

)
umxixj
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we arrive at the following equation:

Lum(um+1 − um) =
∑
i,j

(
um−1
xi

um−1
xj

|∇um−1|2 + ε2
−

umxiu
m
xj

|∇um|2 + ε2

)
umxixj =: Am(um − um−1).

Let f(t) := Am(um(t) − um−1(t)). Using Sobolev embedding (see, e.g., [29]) it is not hard to
check that f ∈ C1((0,∞);H1), as both um, um−1 ∈ C(0,∞);H4)

⋂
C1((0,∞);H3), and

H4, H3, H2 ↪→ L∞(R2). Using the estimate (49) from Theorem 3.3 again for the above equation
(note f(0) ≡ 0), we have in particular the following estimate:

∥∥D(um+1(t)− um(t))
∥∥2

L2 ≤ e(t)

∫ t

0

∥∥Am(um(τ)− um−1(τ))
∥∥2

L2 dτ.

Note that um(t) ∈ H4 is uniformly bounded for t ∈ (0, t̄0]. We also have umxi(t) ∈ H
3 and umxixj(t) ∈

H2, and the fact that H2, H3 ↪→ L∞(R2) . Then using the following relation

Am(um − um−1) =
∑
i,j

(
um−1
xi

um−1
xj

|∇um−1|2 + ε2
−

umxiu
m
xj

|∇um|2 + ε2

)
umxixj

=
∑
i,j

um−1
xi

um−1
xj
− umxiu

m
xj

|∇um−1|2 + ε2
umxixj +

∑
i,j

umxiu
m
xj

(
|∇um|2 − |∇um−1|2

)
(|∇um|2 + ε2)(|∇um−1|2 + ε2)

umxixj

=
∑
i,j

um−1
xi

(um−1
xj
− umxj)

|∇um−1|2 + ε2
umxixj +

(um−1
xi
− umxi)u

m
xj

|∇um−1|2 + ε2
umxixj

+
∑
i,j

umxiu
m
xj

(|∇um|+ |∇um−1|) (|∇um| − |∇um−1|)
(|∇um|2 + ε2)(|∇um−1|2 + ε2)

umxixj ,

and applying the triangle inequality, we conclude that∥∥Am(um(τ)− um−1(τ))
∥∥2

L2 ≤ Cm
∥∥D(um(τ)− um−1(τ))

∥∥
L2 for τ ∈ (0, t̄0]. (53)

Here Cm is a constant depending on semi-norms of um and um−1, but not on their difference. Since
both ‖um−1(t)‖H4 , ‖um(t)‖H4 are uniformly bounded by M for all t ∈ (0, t̄0), there exists a
constant c independent of m such that∥∥D(um+1(t)− um(t))

∥∥2

L2 ≤ c

∫ t

0

∥∥D(um(τ)− um−1(τ))
∥∥2

L2 dτ for all m ≥ 1.

As c is a fixed constant for all m > 1, and ‖um(t)‖H4 ≤ M for all t ∈ [0, t̄0], there exists a
sufficiently small t0 ∈ (0, t̄0] such that the right hand side is always strictly smaller than 1. A recursive
application of this technique then shows that

lim
m→∞

∥∥D(um+1(t)− um(t))
∥∥2

L2 → 0 for all t ∈ (0, t0].

Because um ∈
⋂3
s=0 C

s((0, t0];H4−s) ↪→ L∞((0, t0];H1) for all m, and the latter is a Banach
space, there exists a function u(t) ∈ L∞((0, t0];H1) such that limm→∞∇um(t) = ∇u(t) for t ∈
(0, t0]. That is um → u strongly in L∞((0, t0];H1). When we return to (51) with ∇w(t) = ∇u(t),
we see that it actually constructs a weakly convergent sequence (um)m∈N ∈ L∞((0, t0];H4) to
u ∈ L∞((0, t0];H4) which is a solution of the nonlinear equation (47). Now we show that u satisfies
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the regularity as stated. We use the estimate (49) for every um of the equation (52), and consider
l = 2, 3 there. Then we get the sequence (u̇m)m∈N and (ü)m∈N are uniformly bounded over [0, t0]
for all m ≥ 0, respectively, and in particular they are equicontinuous. This allows us to apply the
Arzelá-Ascoli theorem to show that there are subsequences of (um)m∈N, still denoted by (um)m∈N,
so that u̇m → u̇ in C1((0, t0];H3), and üm → ü in C0((0, t0];H2), respectively, and the spatial
derives D2

xum → D2
xu in C0((0, t0];H2), as well. This yields that u ∈

⋂2
s=0 C

s((0, t0];H4−s) is a
strong solution to (47).

The argument for uniqueness is rather similar. If there exists another solution ū, then let um−1 = ū,
um = u in (52). Using the estimate in (53) we find then

‖D(u(t)− ū(t))‖L2 = 0.

Taking into account the initial and boundary conditions, we conclude that ‖u(t)− ū(t)‖L2 = 0 for
t ∈ (0, t0]. Therefore the solution is unique over (0, t0].

We point out that the H4 regularity of the initial value u0 seems necessary for using our current
strategy of proof. Particularly, this regularity is required in order to have the estimate (53).

Remark 3.5. Based on the short time solution, we now comment on how to achieve a global solution
of (47) for arbitrary T ∈ (0,∞) of the domain (0, T ] by assuming a sufficiently regular initial value.
The idea is to make sure that for arbitrary T > 0, one has the estimate

‖u(t)‖H4 ≤ c0M for all t ∈ (0, T ], (54)

which is an assumption on the the initial data in Theorem 3.4. If this is fulfilled, we see that u(t0)
satisfies the requirement for the initial data of Theorem 3.4. Let u(t0) again be the initial data. Then
one can derive the solution for the time domain (t0, 2t0] using the same technique as in Theorem
3.4 and (54). The procedure can be repeated for the whole time domain ((n − 1)t0, nt0] for every
n ∈ N and n ≤ T/t0. This idea has been realized in [39] where more general equations have been
considered. It is proven in [39, Lemma 6] that for sufficiently regular initial data, that is ‖u0‖H4 ≤ ε for
some ε > 0 depending on M in (50) sufficiently small, if (47) has the solution u ∈ C((0, T ], H4) for
arbitrary T > 0, and if in addition the estimation ‖u(t)‖H4 ≤ M holds true over the whole temporal
domain [0, T ], then (54) holds true. Note that ε does depend on M , but not on T .

We mention that for problems with higher spatial dimension, i.e. x ∈ Rd (d ≥ 3) there are energy
estimates of general quasilinear strictly hyperbolic equations available in [19].

In order to study the solution of the original equation (46), there are certain restrictions using the
current framework. First we cannot pass ε→ 0 as there is no uniform estimate on the approximating
solutions. Second, when ε = 0, it is a degenerated hyperbolic equation in the entire domain R2 ×
(0,∞). Using the current procedure needs some energy estimates for the corresponding degenerated
linear hyperbolic PDEs. However, the literature appears very sparse on such and related issues. There
is some work in this direction for degenerate linear hyperbolic equations, such as, e.g., [20, 7], but
definitely further efforts, or maybe even completely new concepts are required in order to successfully
solve the nonlinear problem. We leave this for future work.

4 Algorithms and numerical results

In this section, we consider the numerical aspect of the two proposed damped second-order nonlinear
flows. In particular, we focus on applications in image denoising and correcting displacement errors
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in image data that motivate this study. We first introduce a discretization of the damped second-order
flows and provide a numerical algorithm. The convergence analysis of the algorithm is deferred to the
appendix. Finally, we present some simulation results on the behavior of solutions. Comparisons of
the numerical results obtained by second-order flows and by first-order flows are also provided.

4.1 An algorithm

Considering the evolutionary PDEs as regularization methods, the stopping time is important as it
plays the role of the regularization parameter. In principle, the stopping criterion for image problems
typically depends on the noise level and the initial data, just as in standard regularization theory [28],
the regularization parameters are chosen according to the magnitude of noise. We provide here an
automatic stopping rule based on thresholds on the high frequency in Fourier space.

Discrete images consist of pixels and are stored as matrices. For the convenience of theoretical analy-
sis of the algorithm, we represent the matrices by column vectors in the following. However, in practice
coding, direct matrix operations can be correspondingly figured out and they are preferable in terms
of computational efficiency, particularly in MATLABTM.

Definition 4.1. Given a matrix u ∈ RM × RN , one can obtain a vector ~u ∈ RMN by stacking the
columns of u. This defines a linear operator vec : RM × RN → RMN ,

vec(u) = (u1,1,u2,1, · · ·,uM,1,u1,2,u2,2, · · ·,uM,2, · · ·,u1,N ,u2,N , · · ·,uM,N)>

~u = vec(u), ~uq = ui,j, q = (i− 1)M + j.

Note that vec(u) corresponds to a lexicographical column ordering of the components in the matrix
u. The symbol array denotes the inverse of the vec operator, i.e.,

array(vec(u)) = u, vec(array(~u)) = ~u,

whenever u ∈ RM × RN and ~u ∈ RMN .

Denote by uk the reconstructed image at iteration k. Then, based on the above definition and the
discretization formula (55) in the appendix, the right-hand side of our damped second-order flows, i.e.,

∣∣∇uk∣∣ div

(
∇uk

|∇uk|+ ε

)
or div

(
∇uk

|∇uk|+ ε

)
,

can be rewritten in an abstract matrix form as Fk~uk, where the matrix Fk depends on ~uk. The precise
form ofFk is given in (56) in the appendix, where its spectral properties and their usage in convergence
considerations are discussed.

In order to set up our stopping rule, we adopt a frequency domain threshold method based on the
fact that noise is usually represented by high frequencies in the frequency domain [32, Chapter 4]. An
associated high frequency energy is defined by

EN0(u) =
∑

(i,j)∈N0

|F(u)(i, j)| ,

where F(u) denotes a 2D discrete Fourier transform of an image u, and N0 presents a selected
set which contains high frequency indices. For instance, if one uses the Matlab function fft2 as the
discrete Fourier transform operator F , then the high frequency coefficients will be the central part of
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the matrix, and we take N0 := [bρMc,M − bρMc]× [bρNc, N − bρNc], where ρ ∈ (0, 0.5) and
b·c denotes the floor function which is sufficient in our examples. We define a function called relative
denoising efficiency (RDE) as follows:

RDE(k) = EN0(uk))/max
i,j

∣∣F(uk)(i, j)
∣∣ .

Then, the value of RDE at every iteration can be used in a stopping criterion. Based on the above
preparation, we propose the following algorithm.

Algorithm 1. A symplectic type algorithm for discretizing damped second-order dynamics.

Input: Image data uδ0. Parameters η > 0 and ε > 0. Tolerance tol > 0.

Initialization: ~u0 ← vec(u0), ~v0 ← 0, ∆t0 > 0, RDE(0)← EN0(u0), k ← 0.

While: RDE(k) > tol

i. ~vk+1 ← (1− η∆tk)~v
k + ∆tkF

k~uk;

ii. ~uk+1 ← ~uk + ∆tk~vk+1;

iii. Updating ∆tk according to (59) 1;

iv. k ← k + 1;

v. RDE(k)← EN0(uk))/maxi,j
∣∣F(uk)(i, j)

∣∣.
Output: A corrected image û← array(~uk).

The estimate in (59) gives a theoretical bound on the length of ∆tk for the convergence analysis of
the algorithm. If we look deeper into the iterations of the algorithm, then we find

~uk+1 = ~uk + ∆tk
(
(1− η∆tk)~v

k + ∆tkF
k~uk
)
.

As ~vk = ~uk−~uk−1

∆tk−1
, this turns out to be

~uk+1 = ~uk +
∆tk

∆tk−1

(1− η∆tk)(~u
k − ~uk−1) + (∆tk)

2Fk~uk.

Note that if we use a uniform time step, that is ∆tk ≡ ∆t0 , and choose η = 1
∆t0

, then the algorithm

is equivalent to the steepest descent method with step size (∆t0)2 whenever Fk~uk can be interpreted
as the negative gradient direction for an associated energy. On the other hand, we can see that the
term ∆tk

∆tk−1
(1 − η∆tk)(~u

k − ~uk−1) plays a similar role as the correction step in Nesterov’s scheme
[40], by which it is supposed to accelerate the steepest descent method. In the following examples,
in order to draw comparisons, we will always implement the first-order method using Algorithm 1 by
setting η ≡ 1

∆t
. In this sense, we will find that Algorithm 1 by the second-order flows also has an

acceleration and be favoured over the first-order flows for the applications. One may note that the time
step of the first-order method and the second-order method are not equal, as the former is (∆t)2,
but the latter is ∆t. However, we should be aware that for the discretization of evolutionary PDEs, the
Courant–Friedrichs–Levy (CFL) condition needs to be taken into account for explicit time discretiza-
tions. This puts restrictions on the length of the discrete time steps to the numerical implementations,
e.g. for 2D linear equations, second-order flows can have ∆t ∼ hx while first-order flows usually have
∆t ∼ h2

x. Here hx is the discretization mesh size of spatial variables. In this sense, we argue that
discrete time steps of order (∆t)2 for first-order flows and ∆t for second-order ones are justified.

1In practice we can also use uniform time step, then this updating step can be ignored. However the criteria in (59) (see
Appendix) of chosen step size is a kind of guideline for stable convergence of the algorithm.
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4.2 Numerical results

Evolution of a characteristic function

In order to study some fundamental effects of our PDEs on contour and scale of images, in the first
example we test with an image resulting from a characteristic function. We start with the image which
is a scaled indicator function of a square Q ⊂ Ω (left image in Figure 1)

u0 = 255 · IQ =

{
255, x ∈ Q;
0, x ∈ Ω/Q.

It is well-known that the first-order TVF will decrease the intensity value of the region Q, but intends
to preserve its shape, while the first-order level-set MCF will shrink the square Q slowly to a circular
shape, thus reducing the perimeter of boundary of the squareQ, but it will preserve the intensity value.
In Figure 1, we present the simulations on the evolution of the second-order flows (11) and (37). We
use a square of size 205×205, and fix the domain Ω = (0, 1)×(0, 1); therefore the spatial step size
is ∆x = ∆y = 1/205. We use uniform step size for time discretization, and choose ∆t1 = 0.001,
and η = 1

50∆t1
for the TVF methods, and choose ∆t2 = 0.0001, and η = 1

20∆t2
for the level-set

MCF methods. For both we run 50000 iterations. From Figure 1, we find that the damped second-order
dynamics present exactly the same behavior as their first-order counterparts. In the three images in
Figure 1, we take the same pixel at the position (106, 100): The intensity value is 255 in the original
square which is the initial value, it is decreased to 242.2 in the image evolved with respect to the
damped second-order TVF, but remains the same in the image evolved according to the damped
second-order level-set MCF. On the other hand, the shape of the square is almost not changed by the
damped second-order TVF except the sharp corners, but has been shrunk to a circle by the damped
second-order level-set MCF. Note here and also in the other examples that we take ε = 10−16 which
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Figure 1: An example that distinguishes the damped second-order MCF and the damped second-order
TVF. From left to right: the square image; the result of damped second-order TVF (middle) and the
result of damped second-order MCF (right).

is already much smaller then the temporal and spatial mesh sizes, respectively. However, it seems
sufficient for the numerical examples we considered. Numerical diffusion is observed in the second
and third images in Figure 1, and the effect grows as time step and iteration numbers get larger.
However, in our following image applications, only a small number of iterations is needed, and thus
we will not investigate this issue here further since it is out of the scope of our current paper. Rather
we refer to existing methods in the setting of total variation minimization and beyond, such as, e.g.,
[14, 34].
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Image de-noising

Our second set of examples are on image de-noising. Due to the previous discussion on the charac-
teristic image, we will test with both the TVFs and the level-set MCFs. For the reason of comparing
the results, we will always consider uniform time steps ∆tk = ∆t for all the four kinds of discretized
flows. The image we tested here are of pixel size 400 × 400, and we fix it to be in the domain
Ω = (0, 1)× (0, 1); therefore the spatial step size is ∆x = ∆y = 1/400. We choose ∆t1 = 0.003,
and η = 1

50∆t1
for the TVF methods, and choose ∆t2 = 0.0001, and η = 1

10∆t2
for the level-set MCF

methods. Using the η ≡ 1
∆t

in Algorithm 1 for the first-order flows, the first-order TVF and first-order
MCF has a step size (∆ti)

2 for i = 1, 2. For setting the stopping criteria of the algorithm we choose
ρ = 0.2, and tol = 1 in this example. We simulate the noise by a Gaussian distribution of mean 0 and
standard deviation 20, and add it to the pepper image, which results in an image with approximately
15 percentage of noise.

Figure 2: Comparison of denoising for pepper image using the algorithms by TVFs and also level-set
MCFs. From left to right: The first column: the noisy image; the noise-free image; the second column:
the result of first-order TVF, the result of second-order TVF; the third column: the result of first-order
level-set MCF, the result of second-order level-set MCF.

The results in Figure 2 indicate that all four methods yield competitive results for denoising, while there
is a big difference between the first-order flows and the damped second-order flows in terms of CPU
time. Note that this has been reflected in the different iteration times to reach the stopping rule. For the
first-order TVF and the second-order one, it is 17969 vs. 349 iterations, while for the first-order level-
set MCF and the second-order one, it is 4018 vs. 348 iterations. Each scheme is run on a computer
with Intel 3687U CPU, 2.10GHz×4, 15.5GB RAM, and using Matlab 2017b. One may notice that the
algorithm by level-set MCFs is capable of denoising almost as good as the TVFs.
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Displacement error correction

Now, we show the results of correcting displacement errors in Figure 3. We again consider the pepper
image of pixel size 400×400 to be in the domain Ω = (0, 1)×(0, 1). We degrade the image by some
displacement error yielding a jittered pepper image. We choose the parameters to be ∆t1 = 0.003,
and η = 1

50∆t1
for the damped second-order TVF, and the parameters ∆t2 = 0.0001, and η = 1

30∆t2
for the damped second-order level-set MCF. For setting the stopping rule of the algorithm, we set
ρ = 0.2, tol = 0.25. We notice that the iteration numbers are again different between the algorithms
due to the first-order flows and the second-order flows, in order to reach the stopping criteria. The
number of iterations of first-order TVF vs. second-order TVF is 63556 : 1211, and the number of
iterations of first-order level-set MCF vs. second-order level-set MCF is 6625 : 268. We are aware
that the results of the TVFs and level-set MCFs turn out to be quite different in this example. This
is not surprising, as we have observed from Figure 1 that the second-order TVF has very limited
effect in changing the curvature of the level lines in comparison with second-order level-set MCF. The
algorithm with TVFs takes larger efforts to correct the jitter error at the price of sacrificing the contrast
of the images as we can see clearly from Figure 3.

Figure 3: Dejittering of pepper image. Above: from left to right: the jittered image; the result of first-
order TVF and the result of first-order level-set MCF. Below: from left to right: the ground truth; the
result of second-order TVF and the result of second-order level-set MCF.

Simultaneous denosing and correcting displacement errors

In Figure 4, we show the results on dejittering and denoising simultaneously using the algorithm by
the damped second-order level-set MCF and comparing it with the results from the damped second-
order TVF. We use the jittered pepper image from the last example and then add the same amount
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of Gaussian noise as we did in the denoising example (appr. 15 percentage of noise), and also we
select the same disretization parameters as before. We do not show the results given by the first-order
flows as they are similar to the second-order ones but requiring larger iteration times. From Figure 4,
we see that, upto the stopping threshold with (ρ = 0.2, tol = 0.5), the second-order level-set MCF
performs better in correcting the displacement error than the second-order TVF, while the latter does
better for denoising than the former. Overall, the algorithm by second-order level-set MCF outperforms
in this example as both the noise and the jitter are significantly reduced simultaneously. The observed
iteration times are 581 for the second-order TVF and 241 for second-order level-set MCF, respectively.

Figure 4: Dejittering and denoising of pepper image simultaneously. From left to right: the jittered and
noisy image; the result of second-order TVF and the result of second-order level-set MCF.

Remark 4.1. Notice that a smaller value of η in Algorithm 1 usually results in better efficiency (less
number of iterations to achieve the same outcome with respect to the same discrete time step size) in
both denoising and dejittering tasks for both the second-order flows. However, there is a trade off as
too small η causes unstable evolution. This is particularly relevant for the second-order level-set MCF
algorithm as explained in Section 3.1. There we have argued that η needs to be sufficiently large to
provide an energy decay with respect to the level sets evolution.

5 Concluding remarks

This paper has studied two geometric quasilinear hyperbolic partial differential equations, namely
the second-order total variation flow and the second-order level set mean curvature flow. For the
former equation, we have a relatively complete result on its well-posedness, which is attributed to
the convexity of the total variational functional. However, for the latter, we have only obtained a very
preliminary result on its well-posedness by considering a regularized version. The main difficulty there
comes from the degeneracy of the hyperbolic structure of the equation. Particularly, different to the
former problem, there has no associated convex functional been found out for the latter one. Instead,
we identified some novel geometric PDEs evolving hypersurfaces to understand the behavior of the
solution of the second-order level-set MCF. From an application point of view, we have observed that
both second-order flows are able to generate efficient numerical algorithms for the motivating tasks
in imaging sciences. The two types of flows have different behaviors, and this has been verified by
numerical examples. As a consequence, they have different strengths in our imaging applications.
The TVFs are able to remove additive noise efficiently, but cannot properly treat displacement errors,
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while the MCFs seem to simultaneously deal with these two tasks, at least to some extent. Based
on the above observation, several interesting theoretical problems have been identified. For instance,
the well-posedness of the original second-order level-set MCF (37), the asymptotic analysis on the
solutions of both the second-order flows and their generalizations to higher dimensional spaces in
RN (N ≥ 3) are worthwhile to be further pursued. On the other hand, it would also be interesting
to conduct a systematic investigation of the newly derived geometric PDE and its corresponding level
sets equation pointed out in equations (43) and (45), respectively.
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A Convergence analysis of Algorithm 1

For the sake of simplicity and clarity of statements, let us consider a uniform grid ΩMN = {(xi, yj)}M,N
i,j=1,

discretizing Ω with the uniform step size h = xi+1−xi = yj+1−yj . Define u(t) = [u(xi, yj, t)]
M,N
i,j=1,

and denote by uk the projection of u(x, y, t) onto the spatial grid ΩMN and time point t = tk.

Denote by cε,ki,j (uk) = 1/
(
ε+ 1

h

√
(uki+1,j − uki,j)

2 + (uki,j+1 − uki,j)
2
)

. Using forward-backward

differences, we obtain[
div
(
cε,k(uk)∇uk

)]
i,j

=

1
h2

{
cε,ki−1,ju

k
i−1,j + cε,ki,j−1u

k
i,j−1 −

(
2cε,ki,j + cε,ki−1,j + cε,ki,j−1

)
uki,j + cε,ki,ju

k
i,j+1 + cε,ki,ju

k
i+1,j

}
.

(55)
To put TVFs and MCFs under a common umbrella, we use b(uk)div

(
cε,k(uk)∇uk

)
to represent the

nonlinear part of the equations: b(uk) ≡ 1 for TVFs, and

b(uk) =
∣∣∇uk∣∣ =

([
1

2h

√
(uki+1,j − uki−1,j)

2 + (uki,j+1 − uki,j−1)2

]
i,j

)
for MCFs. By applying lexicographical column ordering of uki,j and assuming the Neumann boundary
condition, we obtain the matrix representation of b(uk)div

(
c(uε,k)∇uk

)
, denoted as Fk~uk, where

Fk = BkGk, Bk = diag(bk1,1, b
k
2,1, · · · , bkM,1, b

k
1,2, · · · , bkM,N), (56)

and Gk is the MN ×MN matrix with N ×N block entries given by

Gk =



Lk1 Ik1 0 · · · 0 0

Ik1 Lk2 Ik2 0
. . . 0

0 Ik2 Lk3 Ik3 0
...

...
. . . . . . . . .

0
. . . 0 IkN−2 LkN−1 IkN−1

0 0 · · · 0 IkN−1 LkN


. (57)
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Here Ikj is the M ×M diagonal matrix Ikj = diag
(
cε,k1,j, · · · , c

ε,k
M,j

)
, 0 represents the M ×M zero

matrix, and Lkj is the M ×M matrix of the form

Lkj =
1

h2



−c̃ε,k1,j cε,k1,j 0 · · · 0 0

cε,k1,j −c̃ε,k2,j cε,k2,j 0
. . . 0

0 cε,k2,j −c̃ε,k3,j cε,k3,j 0
...

...
. . . . . . . . .

0
. . . 0 cε,kM−2,j −c̃

ε,k
M−1,j cε,kM−1,j

0 0 · · · 0 cε,kM−1,j −c̃ε,kM,j


,

where c̃ε,ki,j := 2cε,ki,j + cε,ki−1,j + cε,ki,j−1.

Proposition A.1. All eigenvalues of Gk (for all k ∈ N) are non-positive.

Proof. By the definition of Gk, i.e. (57), it is not difficult to show that Gk is a symmetric and diagonally
dominant matrix. Then, all eigenvalues of Gk (for all k ∈ N) are real and, by Gershgorin’s circle
theorem [31], for each eigenvalue λ there exists an index ν such that

λ ∈

[
[Gk]ν,ν −

MN∑
ı 6=ν

|[Gk]ν,ı|, [Gk]ν,ν +
MN∑
ı 6=ν

|[Gk]ν,ı|

]
,

which implies, by definition of the diagonal dominance, λ ≤ 0. Here, [Gk]ν,ı denotes the element of
the matrix Gk at the position (ν, ı).

Denote ~vk = d~uk

dt
, and recall Algorithm 1 where the symplectic Euler scheme is applied to discretize

the second-order flow (11) or (37), i.e.,
~vk+1 = (1−∆tkη)~vk + ∆tkF

k~uk,
~uk+1 = ~uk + ∆tk~v

k+1,
~u0 = ~ud, ~v0 = 0,

(58)

where ~ud = vec(ud) and ud is the project of ud(x) onto the grid ΩMN .

Now, we are in a position to give a numerical analysis for the scheme (58) in Algorithm 1.

Theorem A.2. Let η > 0 be a fixed damping parameter. If the step size is chosen to fulfill

∆tk ≤ min

(
1

η
,

1√
bkmaxλ

k
max

)
, (59)

where λkmax is the maximal eigenvalue of −Fk, and bkmax := maxM,N
i,j=1 b

k
i,j , then the scheme (58) is

convergent.

Proof. Denote zk = (vk;uk), and rewrite equation (58) by

zk+1 = Akzk, (60)

where

Ak =

(
In + ∆t2kF

k ∆tk (1−∆tkη) In
∆tkF

k (1−∆tkη) In

)
.
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It is well-known that a sufficient condition for the convergence of the iteration scheme (60) is that Ak
is a contractive operator, i.e., ‖Ak‖2 < 1.

By the elementary calculation and the decomposition −Gk = QΛkQ> with Λk = diag(λki ), λ
k
i ≥

0, i = 1, ...,MN , we derive that the eigenvalues of Ak are

µki,± = 1− ∆tk
2

[(
∆tkb

k
i λ

k
i + η

)
±
√(

∆tkbki λ
k
i + η

)2 − 4bki λ
k
i

]
i = 1, 2, · · · ,MN, (61)

where bki ≥ 0 represents the i-th element in the diagonal of matrix Bk. Hence, in order to prove
‖Ak‖2 ≤ 1, it is sufficient to show that for all i = 1, ...,MN : |µki,±| ≤ 1 for the time step size ∆tk,
defined in (59).

For each fixed i, there are three possible cases: the overdamped case
(
∆tkb

k
i λ

k
i + η

)2
> 4bki λ

k
i ,

the underdamped case
(
∆tkb

k
i λ

k
i + η

)2
< 4bki λ

k
i , and the critical damping case

(
∆tkb

k
i λ

k
i + η

)2
=

4bki λ
k
i . We consider each case separately.

For the overdamped case, define a :=
η+∆tkb

k
i λ
k
i

2
√
bki λ

k
i

(a > 1). Then,

µki,± = 1−∆tk

√
bki λ

k
i (a±

√
a2 − 1).

Obviously, µki,± < 1 by noting the positivity of the second term on the right-hand side of the equation
above. Now, let us show the inequality µki,± > −1. By the choice of the time step size ∆tk in (59),
we know that η∆tk < 1 and bkmaxλ

k
max∆t

2
k < 1, which implies that η∆tk + bkmaxλ

k
max∆t

2
k ≤ 2.

Therefore, we have
2

η + bkmaxλ
k
max∆tk

≥ ∆tk. (62)

Since a = η

2
√
bki λ

k
i

+ ∆tk
2

√
bki λ

k
i , using inequality (62), we deduce that

2√
bki λ

k
i (a±

√
a2−1)

≥ 2√
bki λ

k
i (a+

√
a2−1)

> 1√
bki λ

k
i a

= 1
√
bki λ

k
i

(
η

2

√
bk
i
λk
i

+
∆tk

2

√
bki λ

k
i

)
= 2

η+bki λ
k
i ∆tk
≥ 2

η+bkmaxλ
k
max∆tk

≥ ∆tk,

which implies that

µki,± = 1−∆tk

√
bki λ

k
i (a±

√
a2 − 1) > −1.

Therefore, we conclude that |µki,±| ≤ 1 for the overdamped case.

Now, consider the underdamped case. In this case, since
(
∆tkb

k
i λ

k
i + η

)2
< 4bki λ

k
i , we have

|µki,±| =
∣∣∣∣1− ∆tk

2

(
∆tkb

k
i λ

k
i + η

)
± i∆tk

2

√
4bki λ

k
i −

(
∆tkbki λ

k
i + η

)2

∣∣∣∣ =
√

1− η∆tk. (63)

which implies |µki,±| < 1 for any fixed pair (η,∆tk) satisfying (59).

Finally, consider the critical damping case. In this case, the eigenvalue for µki,± is simply given by

|µki,±| = |1−∆tk

√
bki λ

k
i | =

√
1− η∆tk, (64)

which yields the desired result according to the argument in the critical damping case. In conclusion,
all the eigenvalues of matrixAk are smaller or equal than 1, therefore it is a contractive operator. Then
the scheme (58) is convergent.
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