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Surface energy and boundary layers

for a chain of atoms at low temperature
Sabine Jansen, Wolfgang Kénig, Bernd Schmidt, Florian Theil

Abstract

We analyze the surface energy and boundary layers for a chain of atoms at low temperature
for an interaction potential of Lennard-Jones type. The pressure (stress) is assumed small but
positive and bounded away from zero, while the temperature 5*1 goes to zero. Our main results
are: (1) As 3 — oo at fixed positive pressure p > 0, the Gibbs measures 115 and v/ for infinite
chains and semi-infinite chains satisfy path large deviations principles. The rate functions are
bulk and surface energy functionals Epuk and Esuet. The minimizer of the surface functional
corresponds to zero temperature boundary layers. (2) The surface correction to the Gibbs free
energy converges to the zero temperature surface energy, characterized with the help of the
minimum of Egurf. (3) The bulk Gibbs measure and Gibbs free energy can be approximated by
their Gaussian counterparts. (4) Bounds on the decay of correlations are provided, some of them

uniform in 3.
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1 Introduction

The purpose of the present article is to analyze the low-temperature behavior for a one-dimensional
chain of atoms that interact via a Lennard-Jones type potential. The model is atomistic and in terms of
the Gibbs measures of classical statistical mechanics. Two limiting procedures are at play: the zero-
temperature limit, for which the inverse temperature 3 goes to infinity, and the thermodynamic limit,
where the number of particles N and the system size go to infinity. The order of the limits matters.
When the zero-temperature limit is taken before the N — oo limit, the analysis of Gibbs measures
is replaced by energy minimization, leading to variational models of non-linear elasticity. We perform
instead the zero-temperature limit after the thermodynamic limit. The zero-temperature limit for infinite
systems is far from trivial, see [vERQ7, ICGU11,|CH10] and the discussion in [BRS10Q].

For the one-dimensional Lennard-Jones interaction, it is known that energy minimizers (ground states)
converge to a periodic lattice [GR79] (“crystallization”). For one-dimensional systems with pair poten-
tials that decay faster than 1/7“2 it is well-known that, in contrast, at positive temperature, no matter
how small, there is no crystallization [BL15]. Nevertheless, some quantities can be approximated well
by their zero-temperature counterpart. For the bulk free energy this is to be expected, for other quan-
tities such as surface corrections this is already more subtle. For the decay of correlations, it is a priori
not even clear what the zero-temperature counterpart should be; we propose a natural candidate, see

Egs (2.10) and (2.11).

At zero temperature, surface corrections and boundary layers have been studied, for example, in
order to better understand variational models of fracture, see e.g. [BC0O7,|SSZ11] and the references
therein. Fracture might be expected for elongated chains, forced to stretch beyond their preferred
length. At small positive temperature, large interparticle distances correspond to low pressure (stress)
p = pg — 0. We address this regime in a subsequent work and focus here on the elastic regime of
positive pressure p > 0, though the case of small pressure pg — 0 is discussed in some comments.

Our main results come in four parts. They are listed in Sections and proven in Sections
At zero temperature, we extend the result on bulk periodicity from [GR79] to a more general class
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Boundary layers for a chain of atoms at low temperature 3

of potentials and positive pressure, see Theorem We prove the existence of bounded surface
corrections, and characterize them with the help of an energy functional &,,¢ for semi-infinite chains

(Theorem[2.2).

At positive temperature, we prove large deviations principles for the Gibbs measures (i3 and /g on
RZF and Rﬁ (product topology) as 5 — oo at fiied p > O_(Theorem . The speed is [ and the
respective rate functions are energy functionals £y, and Egurf — min Eg,f Whose minimizers are,
respectively, the periodic bulk ground state and the zero-temperature boundary layer. The conver-
gence of positive-temperature surface corrections to their zero-temperature counterpart is addressed
in Theorem These results are intimately related to path large deviations for Markov processes
and Hamilton-Jacobi-Bellman equations [FK06], semi-classical analysis [Hel02], and a more direct
approach to low-temperature expansions [SL17]. We remark that our results are valid for long range
interactions which in particular are not assumed to have superlinear growth at infinity. The large devi-
ations principle is complemented by a result on Gaussian approximations for the bulk Gibbs measure
and the Gibbs free energy, valid for finite interaction range m (Theorems[2.7]and [2.8).

Finally we study the temperature-dependence of correlations and informally discuss how correlations
connect with effective interactions of defects and the decay of boundary layers. Theorem[2.9 provides a
priori estimates that hold for all 3, p > 0. In Theorem [2.11|we show that for finite 72 and small positive
pressure p, the decay of correlations is exponential with a rate of decay that stays bounded as  —
oo—the associated Markov chain has a spectral gap bounded away from zero. This uniform estimate is
proven with perturbation theory for the transfer operator. For infinite m, we provide instead a uniform
estimate for restricted Gibbs measures (Proposition [2.70), which follows from the convexity of the
energy (in a neighborhood of the periodic gound state) and techniques from the realm of Brascamp-
Lieb inequalities [Hel02]. At vanishing pressure ps — 0 or fixed high pressure p > 0, the spectral
gap might become exponentially small because of fracture or metastable wells [BdH15] in non-convex
energy landscapes.

Bringing statistical mechanics into atomistic models of crystals and elasticity has a rich tradition [BH98,
Wei02, BCF86, |Pen02]. Modern developments include: the study of gradient Gibbs measures [FS97]
with sophisticated tools such as renormalization groups and cluster expansions [AKM16], random
walk representations [BES82], and Witten Laplacians [Hel02]; scaling limits and gradient Young-Gibbs
measures [Pre09, [KL14) [Run15]; the extension of approximation schemes, e.g., the quasi-continuum
method, to positive temperature [BLBLP10, [TM11]. In addition, there have been some inroads into
the open problem of proving crystallization in the form of orientational order for two-dimensional mod-
els [Aum15] HMR14].

To the best of our knowledge, all of the aforementioned mathematical literature, notably on Gibbs gra-
dient measures, is limited to potentials with a superlinear growth at infinity. This is in stark contrast
with the decay to zero typically imposed in statistical mechanics of point particles [Rue69]. We work
with potentials v(r) — 0, an additional linear term pr enters because we work in the constant pres-
sure ensemble, which is the most convenient ensemble for one-dimensional systems [Rue69], Section
5.6.6]. As a consequence, the by now classical combination of Bakry-Emery estimates and Holley-
Stroock perturbation principle, see [Men14] and the references therein, becomes potentially more
delicate. We use instead estimates on energy penalties, some aspects of which might generalize to
higher-dimensional models.

Another aspect that might generalize to higher dimension concerns the large deviations principle. The
existence of a large deviations principle for the Gibbs measure as  — oo, proven using a exponential
tightness and fixed point equation for the measure, amounts to the construction of an infinite volume
energy functional that vanishes on ground states only. In higher dimension, the role of the fixed point
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equation is taken by DLR-conditions named after Dobrushin, Lanford, Ruelle [Geo11] and the proof of
a large deviations principle reduces to the investigation of a higher-dimensional analogue of a Bellman
equation. The theory of the latter, for non-unique ground states, might mirror possible intricacies of the
zero-temperature limit of Gibbs measure described in [vERQ7].

Finally we remark that the results of this work allow for a detailed analysis of typical atomic configura-
tions at low temperature and low density. In [JKST19] we will in particular prove that, when the density
is strictly smaller than the density of the ground state lattice, a system with /N particles fills space
by alternating approximately crystalline domains (“clusters”) with empty domains (“cracks”). The num-
ber of domains is of the order of N exp(—[fesurr/2) With gy the surface energy from Theorem
below.

2 Main resulis

2.1 Zero temperature

Let v : (0,00) — R be a pair potential, m € N U {oo} a truncation parameter and p > 0
the pressure. At zero temperature we allow for p = 0, at positive temperature we impose p > 0.
The Gibbs energy at zero temperature and pressure p for a system of /N particles with positions

x; < ... < zy and interparticle spacings z; = xj41 — 2, j = 1,...,N — 1,is
N-1
SN(Zl,...,ZN_1>: Z v(zl—l——f—zj_l)—f—psz
1Si<ISN j=1
i—jl<m

The parameter m restricts the range of the interaction: m = 2 corresponds to a next-nearest neighbor
interaction. This section deals with the minimization problem

Eyx = inf En(z1, ..oy 2n-1)
21,,2N—1>0

in the limit N — oo. Throughout we assume that the following assumption holds.

Assumption 1. The pair potential v : (0,00) — R U {400} is equal to +00 on (0, 7, for some
e > 0 and a C? function on (71, 00). There exist 'he < Zmin < Zmax < 2Zmin @and aq, ag > 0,
s > 2 such that the following holds.

(i) Shape of v: zyay is the unique minimizer of v and satisfies v(2max) < 0. v is decreasing on
(0, zmax) and increasing and non-positive on (Zyax, 00).

(i) Growth of v:v(z) > —ayz *forall z > 0and v(z) + V(zZmax) — 201 Yo (n2)~% > 0 for
all z < Zmin.

(i) Shape of v: v" is decreasing on [Zmin, Zmax] @nd increasing and non-positive on (22, 00).
(iv) Growth of v": 0" (2) > —az"5 2 forall z > rpc and V" (Zmax) + 9 e 20" (NZmin) > 0.

The assumption is satisfied, for example, by the Lennard-Jones potential v(r) = r712 — =6 As
we will see, parts (i) and (ii) of the assumption guarantee that energy minimizers at p = 0 have
interparticle spacings z; in (zmin7 zmax), parts (iii) and (iv) ensure that £y is uniformly strictly convex
in (Zmin, zmaX)N‘l; moreover the Hessian D2Ey is diagonally dominant with positive diagonal entries

and negative off-diagonal entries.
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_ [o(zma)]

Zmax

Assumption 2. The pressure p satisfies 0 < p < p* with p* :

At positive temperature we shall assume in addition that p > 0, r,. > 0, and for some results we
need lim,~,,_v(r) = oo. The next theorem is the adaptation of a similar result by Gardner and
Radin [GR79]. It is proven in Section

Theorem 2.1 (Bulk properties). Letm € NU {co} andp € [0, p*) as in Assumption|[d

(a) Forevery N > 2, the map Ey Rf‘l — R has a unique minimizer (2{",..., 2" ). The
mimizer has all its spacings z; in [Zmin, Zmax-

(b) As j,N — oo along N — j — 0o, we have 2\ — a where a € (Zmin, Zmax| iS the unique
m J
minimizer of Ry > r — pr+ 3, v(kr).

(c) The limitey = limy_,o(Ex/N) < 0 exists and is given by
ep = pa + E v(ka) = miél(pr + E v(kr)).
>
k=1 k=1

Let Dy C (rne, 00)N be the space of sequences (z;) jen with none or at most finitely many elements
different from a. Define

h(’zla"'azm):pzl+zv(zl+"'+zk) (21)
k=1
Ssurf((zj)jeN) = Z(h(Zj, ceo Zjm—1) — 60), (2j)jen € Do.
j=1

When m = oo, h((2;)jen) is a function of the whole sequence. &yt is the Gibbs energy of a
semi-infinite chain, with additive constant chosen in such a way that at spacings z; = a the Gibbs
energy is zero; h(z1, z9, . . .) represents the interaction of the left-most particle with everybody else.
Let D = {(2))jen € (rne; 00)" | 3272 (25 — a)® < oo} be the space of square summable strains.

Theorem 2.2 (Surface energy). Letm € N U {oc} and p € [0,p*) as in Assumption|d Equip D
with the (?-metric. Then

(a) Esut extends to a continuous functional on D.

(b) OnD N [Zmin, Zmax]" it is strictly convex.

(c) Esut has a unique minimizer. The minimizer lies in D N [Zmin, Zmax] -
(d) The limit eyt = limy_,oo (En — Neg) exists and is given by

Courf = 2 mgn Esurt — pa — Z kv(ka).
k=1

The theorem is proven in Section Note that —pa — > ;- kv(ka) is the surface energy for a

clamped chain with all spacings equal to a and &, encodes the effect of boundary layers. E,.¢ is
multiplied by 2 because finite chains have two ends. We note that min &t is exactly the boundary
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layer energy introduced by Braides and Cicalese [BCQ7]; Braides and Cicalese dealt with the special
case m = 2 of next-nearest neighbor interactions but more general potentials. For finite m > 2, see
[SS18l Theorem 4.2].

For later purpose we also define a bulk functional

o0

5bu1k((2j)jez) = Z (h(zj, ey Zime1) — 60)
= Z Z(v(zj + o4 zjpear) — v(ka) + Sup(z; — a)).

It is defined, a priori, on the space D of positive bi-infinite sequences (z;)jcz € (Tne, 00)” that
have at most finitely many elements z; # a. Denoting the space of square summable strains Dt =
{(z))jez € (The, )" | 32;e5(2 — @) < oo}, an analysis similar to the one for the surface
functional yields the following result.

Proposition 2.3 (Limiting bulk properties). Letm € N U {oo} andp € [0, p*) as in Assumption|[d
Equip D with the (*-metric. Then

(a) Epulc extends to a continuous functional on D .
(b) On D N [2min, Zmax]' it is strictly convex.
(c) The unique minimizer of Eyy is the constant sequence (. . ., a, a, . ..). The minimum value is
5bu1k<- Lo, a,a, .. ) =0.
(d) Forevery (2;)jcz € D' one has
Eouik((25)jez) = Esuet (21, 22, - . ) + Esurt (20, 221, - - )
+W(-- 22120 | 2122 . .),

where W(- -+ z_120 | z122...) == Z‘ 1021 v(zj+- - -+2) is the total interaction between
k—j|<m-—1

the left and right half-infinite chain.

2.2 Small positive temperature

Next we analyze infinite volume Gibbs measures on RT and Rf in the limit 5 — oo. We focus on
fixed positive p € (0, [v(2max)|/2max) but comment on vanishing p = ps — 0 at the end of the
section. Let Q% be the probability measure on RY ™" defined by

1

(B) _
A N

/ e_BgN(Zlv---vafl)dzl - dzy_
A

where

Qn(B) = /N ) e PENGL AN =Dz o day .
RN~

Standard arguments (see Section [4) show there is a uniquely defined probability measure /5 on the
product space ]Rﬂ\i such that for every k € N, every bounded continuous test function f € C’b(R’i),

lim f(zla"'7Zk>dQ§€)(Zl7"'JZN71> = f(zlu" 7Zk>dyﬁ((’z])]21) (22)
RN

N—oo RN-1
+

DOI 10.20347/WIAS.PREPRINT.2589 Berlin 2019



Boundary layers for a chain of atoms at low temperature 7

Similarly, there is a uniquely defined probabilty measure iz on R_% such that for all local test functions
f as above, and all sequences iy with iy — coand N — iy — 00,

lim f(ZiNJrl’ Ce 7Z7;N+k)d(@§$>(zl7 ey ZNfl) == f(Zl, ceey zk)dug((z])]zl) (23)
RZ

N—oo RN-1
+

Moreover the measure i is shift-invariant and mixing. The measure 113 describes the bulk behavior of
a semi-infinite chain, the measure v is the equilibrium measure for a semi-infinite chain and encodes
the probability distribution of boundary layers.

Our first result is a large deviations principle for the equilibrium measure v3 as 3 — 0. The rate
function is a suitable extension of Ey.¢: define Equt - H@i — RU{oc} by

= gsurf (Z) N/» (Z) N €D7

5surf((2j)jeN) = { ( jlie ) jlie (2.4)
00, else.

In the same way Epy i, extends to a map Epur, from RZ to R U {oo}. Both RY and RZ are equipped

with the product topology.

Theorem 2.4. Fixp € (0,p*) andm € N U {oo}. Assume that r,. > 0 and lim,~,,  v(r) = oo.
Then as 3 — oo, the equilibrium measures (VB) g>0 and ( ,ug) s>0 satisfy large deviations principles
with speed 3 and respective rate functions Esurf — min Er @and Ebulk. The rate functions are good,
i.e., lower semi-continuous with compact level sets.

The theorem is proven in Section The large deviations principle for 3 says that for every closed
set A C RT and every open set O C Rﬁ (product topology)

1 —
1' —1 A < — i f (gsur ) - i Esur)
o 5 10875(4) < = ot (Bou(2) ~ i o

(2.5)
1 _
lim inf — lo O>—'f(5 »—'5).

it 0 5(0) 2 = 5l (Fawe{(21)) ~ rgin
It is essential that we work in the product topology. Indeed we shall later see that /5 is mixing, therefore
for every € > 0, the measure /g gives full mass 1 to sequences (Zj)jeN that have infinitely many
spacings |z; — a| > e. Thus for every ball O = {(z;) € RY | 32, (2; — a)® < 4}, we have
v5(0) = 0 hence 5~ log v5(0) = —o0, to be contrasted with the lower bound in Eq. (2.5).
Another consequence concerns the evaluation of the Gibbs energies of localized defects: suppose
that because of some impurity, the energy is not £y but Ex + V), where V is, say, continuous in the

product topology, localized in the bulk, and bounded from below. Then by Varadhan’s lemma [DZ98],
as 3 — o0, the effective Gibbs energy converges to the zero temperature energy of the defect,

1
B

Surface energies occur as a specific type of defect, when V cancels all interactions between two
half-infinite chains (see Proposition [4.9(a)), which leads to the following theorem. Define

log pg(e™?Y) — iIle(gbulk +V) (B — o0).

N—oo N—o0

(3) = = Jim 105 Qu(B). g = Jim (=508 Qu(5) — No(B)). (29

the Gibbs free energy g(/3) per particle in the bulk and the surface correction gsut(3).
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S. Jansen, W. Kdnig, B. Schmidt, F. Theil 8

Theorem 2.5. Fixp € (0,p*) and m € N U {oco}. The limits (2.6) exist. If in addition r,. > 0
and lim,~_,, . v(r) = oo, then the bulk and surface Gibbs energy approach their zero-temperature
counterparts when 3 — 00:

lim g(ﬁ) = €, lim gsurf(ﬁ) = CEsurf-

B—00 B—00

This proves that the thermodynamic limit and the zero temperature limit can be exchanged, which is
non-trivial (and in fact, fails when the pressure goes to zero too fast, see below).

One last consequence of Theorem 2.4 concerns the distribution of spacings and the pressure-density
(or stress-strain) relation. The Gibbs free energy and our partition functions correspond to an ensemble
where the overall length of the system is not fixed, but instead may fluctuate with a law that depends
on the pressure—high pressures p favor compressed states. In the thermodynamic limit N — oo,
though, the average spacing between particles becomes a well-defined quantity, given by

08) = [ , sodal(z)ez). 27)
R

By the contraction principle [DZ98, Theorem 4.2.1], the distribution of z, under 15 satisfies a large
deviations principle with good rate function w(2) = inf{Euuk((2j)jez) | (25)jez € RZ, 2o = z}.
The unique minimizer of w(z) is the ground state spacing a. Lemma implies that the distribution
of spacings has exponential tails

ps({(%)jez | 20 > 1}) < Cexp(—ppr)
for some (-independent constant C'.

Corollary 2.6. Under the assumptions of Theorem|[2.5, we have

lim ¢(3) = a = argmin (pr + Zv(kr))

—00
A k=1

In particular, for large 3, we have ¢(3) < ao where ay is the minimizer of the zero-stress Cauchy-
Born energy density >, v(kr). Conversely, spacings ¢(3) > a (elongated chains) imply vanishing
pressure p = pg — 0. This is clearly apparent for nearest neighbor interactions (m = 1, Takahashi
nearest neighbor gas [Tak42, [LM6&6]), for which

L VN A e R _ Jo rexp(=Blv(r) + pgr])dr
9(B) 51 g(/o d ) 0(B) = o (—B() T ) (2.8)

Comments on vanishing pressure. We add a superscript to indicate that zero-temperature quantities
are evaluated at p = 0. When p = pg — 0 slower than any exponential, it is still true that g(/5) — 68.
When fps = exp(—LFr) with v > 0, one can show with [JKM15|, Jan12] that

ma g(B) = min(e), —v). (2.9)

At pressures vanishing faster than exp(—ﬁ\68|), the most likely configurations have very large spac-

ings (dilute gas phase, ¢(/3) — oc) and the previous results no longer apply. For lim inf % log(Sps) >

—0 =0 . =0 .
68, we expect that large deviations principles with rate functions &, and £, — min & still

hold (in fact our proofs still show weak large deviations principles). However rate functions have non-
compact level sets and exponential tightness is lost. Moreover large spacings may contribute to the
average (2.7) and Corollaryneed no longer be true, thus allowing for spacings ¢(3) — ¢ > ay.
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Boundary layers for a chain of atoms at low temperature 9

2.3 Gaussian approximation

Here we complement the large deviations result by a Gaussian approximation. This section deals with
finite 7 and the bulk measure 115 only. Remember d = m— 1. We will see that the Hessian of &}, i at
(...,a,a,...)is associated with a positive-definite, bounded operator H in £*(Z). It is represented by
a doubly-infinite matrix (#;;); jez that is diagonally dominant. Write (H~");; for the matrix elements
of the inverse operator and let 152" be the uniquely defined measure on R?, equipped with the
product topology and its associated Borel o-algebra, such that

/ sis; A ((su)rez) = (1)
RZ

Gauss

for all 2,7 € Z, and every finite-dimensional marginal of is a multi-dimensional Gaussian
distribution. Equivalently, 1" is the distribution of a Gaussian process (N;)jez with mean zero
and covariance E[N;N,] = (H™!),;. More concrete expressions for the probability density functions
of nd-dimensional marginals of 1:“*"S are provided in Proposition below.

In the following we identify the measure y5 on R% with the measure Igz 15 on RZ. We exclude the
trivial case m = 1.

Theorem 2.7. Assume 2 < m < oo, p € (0,p*), and rn. > 0. Then for every n € N, the

n-dimensional marginals of 115 and 15" have probability density functions p\\’ and pS*', and

lim 6‘”/2p$f3) (a + 87V, a+ B_l/an) — pSMS(g L s,)|dsy ... ds, = 0.

B—ro0 R™

It follows that the distribution of the spacings, suitably rescaled, converges locally to the Gaussian
measure 115%%: for every bounded function f : R? — R that depends on finitely many spacings Zj
only (bounded cylinder functions), we have

lim [ f(V/B(z — a)jez)dps((2))jez) = /]RZ FAps,

B—ro0 RZ

For example, in the limit 3 — o0, the distribution of a single spacing z; is approximately normal, with
mean a and variance B_l(H_l)ii. We expect that Theorem stays true for m = oo but a proof or
disproof is beyond the scope of this article.

The next theorem says that the Gibbs free energy is close to the Gibbs free energy of the approximate
Gaussian model.

Theorem 2.8. Assume 2 < m < oo, p € (0,p*), and ri,. > 0. The Gibbs free energy satisfies, as
b — o0,

9(B) = eo — %bg

whered =m — 1 and C'is ad X d positive-definite matrix.

2 -
ey )

The matrix C'is introduced in Eq. (6.18), see also Lemma 6.7} it is a function of the Hessian of the
energy.
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Remark (Gaussian approximation and semi-classical expansions). If v is smooth and p > 0 is fixed,
the Gibbs energy should admit an asymptotic expansion of form

g(B) = ey — %log \/%#— Z a; 8792 + O(B~D2) (8 = o)
j=1

to arbitrarily high order n, for some ¢ > 0 and coefficients a; € R. The first correction comes from a
Gaussian approximation of the partition function (harmonic crystal), see Section [}, with the constant
¢ capturing the asymptotic behavior of the determinant of the Hessian around the energy minimum.
Higher order corrections correspond to anharmonic effects. A similar expansion holds for gsuf(/53).
Rigorous results for finite m are derived with semi-classical analysis [Hel02, [Mgl01, [BM03] which
build on the analogy with the 2~ — 0 limit from quantum mechanics. For m = 2 and potentials with
superlinear growth at infinity, independent results are given in [SL17].

2.4 Decay of correlations

Suppose that two defects change the energy functional from &, to Epue + Vo + Vi, Where we
assume for simplicity that V, and V), depend on z; and z;, alone. For large k, we may expect that the
Gibbs energies are approximately additive, i.e.,
®) 1 AVt L L —pvoy 1 BV

Ly (k) = —Bloguﬂ(e )+510guﬁ(e )+Blogua(e ) (2.10)
should be small when the defects are far apart. Z'7/ (k) represents an effective interaction between
the defects. In the study of systems with many defects it is important to understand how fast the
effective interaction decreases at large distances. Some intuition is gained from the zero-temperature
counterpart

I (k) = inf (Epuie + Vo + Vi) — inf (Epuic + Vo) — inf (Epunc + Vi), (2.11)

however in general the limits 3, kK — oo cannot be interchanged and a full study of (2.10) for large k
requires techniques beyond variational calculus.

A closely related problem is about the localization of changes induced by a defect: at zero temperature,
if (zj)jez is a minimizer of &,uic + Vo, how fast does z; converge to the ground state spacing a as
k — +00? On a similar note, how fast does z, — a for a minimizer of the surface energy Equrf
(decay of boundary layers)? At positive temperature, the question is about the speed of convergence,
for test functions f : RX — R, in

e—ﬁw)i
% = ps(f)s ve(fi) = ns(f)

as i — oo. Here f;((2;)jez) == f(zi,- .., Zitk—1), so that f,; = f; o 7" when 7 denotes the left
shift on Rf. These questions naturally lead to the investigation of the decay of correlations. We start
with a general result which holds for all 5, p > 0.

Theorem 2.9. Assume m € N U {oco} andp > 0. There exist ¢, C' > 0 such that for all 3,p > 0,
k € N, and bounded f, g : RY — R,

13 fogn) — s folmalgn)] < min (1= e )7+ e (B0 — 1)) ||l lgl |

1<q<n/k

DOI 10.20347/WIAS.PREPRINT.2589 Berlin 2019



Boundary layers for a chain of atoms at low temperature 11

When m is finite and k = m — 1, we have the stronger bound
|15 (fogn) — ms(fo)ra(gn)] < (1= e P)*|| fllsol |9l

The theorem is proven in Section[4.2l When m is finite, it implies exponential decay of correlations as
n — 0o, however the rate — log(1 — e_cﬂ) can be exponentially small for large 5. When m is infinite,
Theorem implies algebraic decay of correlations: for ¢ = |n° | and sufficiently large n, (1 —e~%)4
is negligible compared to 3(¢/n)*~2 and we find that as n — oo

CpBex
o) — ms(fols(a)| < (14 0(1) D) 212

Better bounds are available for restricted Gibbs measures. Let fi;”’ be the measure QY conditioned
ON [Zmin, Zmax]” * and fi5 the probability measure on [2min, Zmax]” obtained from the thermodynamic
A ~(N)

limit of fi5"".

Proposition 2.10. Let m € N U {oo}. There exists ¢ > 0 such that for all 3,p > 0, smooth
fig: Ry — R, andi # 7,

C
< —
Bli — j|*

Remark. When m is finite, the uniform algebraic decay for the restricted Gibbs measure is replaced
with uniform exponential decay exp(—+|j — i|) with S-independent y > 0.

(morPmata®)

fip(fig;) — s (fi)its(9;s)

The proposition is proven in Section[7] It follows from the uniform convexity of the energy (Lemma[3.3)
and known results from the realm of Brascamp-Lieb, Poincaré and Log-Sobolev inequalities. Proposi-
tiondiffers from the estimate (2.12) in two ways: there is no exponentially large prefactor exp(cf3),
and the rate of algebraic decay is 1/n° instead of 1/n5_2. Exponentially large prefactors are absent
because the energy landscape has no local minimum. The improved algebraic decay 1/n® arises,
roughly, because the Gibbs measure is comparable to a Gaussian measure whose covariance is the
inverse of the energy’s Hessian near the minimum, and instead of the tails of v(7), it is the tails of
v"(r) that count.

We suspect that for large 3 and small pressure, these improvements should carry over to the full Gibbs
measure /i3, but we have proofs for interactions involving finitely many neighbors only.

Theorem 2.11. Assume 2 < m < oo, p € (0,p*), andr,. > 0. There exists v > 0 such that for all
sufficiently large 3, suitable C'(3), alln € N, and all f, g : R? — R, we have

|15 fogn) — wa(fo)ra(gn)| < C(B)e™ || folloo ||gnl |-

Ifm = 2, we can pick C'(3) = 1.

The theorem is proven in Section|§]with perturbation theory for compact integral operators in LZ(Rd).
When m = 2, the relevant operators are self-adjoint and spectral norms and operator norms coincide,
leading to improved statements. We conclude with a few comments.

Lagrangian vs. Eulerian point of view. The theorems above formulate decay of correlations in terms
of labelled spacings, which in the language of continuum mechanics is a Lagrangian viewpoint. On
the other hand, in statistical mechanics of point particles it is more common to deal with unlabelled
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S. Jansen, W. Kdnig, B. Schmidt, F. Theil 12

particles (Eulerian viewpoint) and correlations are between portions of space rather than labelled
interparticle distances. The difference between the two approaches becomes quite clear for nearest
neighbor interactions (m = 1, see Eq. (2.8)), for which the spacings are i.i.d. with probability density
qs(r) proportional to exp(—/[v(r)+pgr|). Because of the independence of spacings, correlations in
terms of spacings vanish, 15(fog,) — 15(fo)1s(gn) = 0. On the other hand, the two-point function
p2(0, :1:) studied in statistical mechanics of particles is a sum over the number of particles contained
in (0, z],

I = . x o
0. = i L) = 3+ [y~ 00

with q}}k the n-fold convolution of g with itself. It is a well-known fact from renewal theory [Fel71,
Chapter XI] that

p2(0, ) — E(;)Q —0 (z— 0),

but in general the difference is non-zero finite for x—in fact changing g4 the convergence as ©+ — o0
can be arbitrarily slow, even though correlations of labelled interparticle spacings vanish identically.
One should keep this difference in mind when browsing the literature.

Path-large deviations, non-linear semi-groups, Bellman equation. For m = 2, we may view (g as the
law of a stationary Markov chain with state space R and transition kernel P defined in Eq. (6.6).
Theorem [2.4| is a path-large deviations result for the Markov chain. Path large deviations are often
investigated with the help of non-linear semi-groups and Hamilton-Jacobi-Bellman equations [FKQ6].
In our context, a natural non-linear semi-group is

n 1 —
and for sufficiently smooth f we have a convergence of the form
lim Vs f(z) = —u(z) + inf (pz+v(z) +v(z +y) —eo +uly) + f(v))
B—ro0 yeR

where u solves

u(r) = yi&i (pz +v(z) +v(z+y) —eo +u(y)).

Similar equations, motivated by quantum mechanics and geometric optics, appear in semi-classical
analysis [Hel02, Eq. (5.4.4)]. Proposition below provides an infinite-m ersatz and is instrumental
in the proof of Theorem [2.4

Vanishing pressure. When 3p = ps — 0 faster than exp(—0|ej)|) (see (2.9)), the Gibbs measure
should no longer be comparable to a Gaussian. Instead, it should be close to the ideal gas measure,
for which spacings are i.i.d. exponentially distributed with parameter 3pg, and we may again expect
uniform exponential decay of correlations (for finite 1m). When 8ps — 0 at a speed comparable to
exp(—6|68 ), we should instead expect an exponentially small spectral gap: the Markov chain has
two metastable wells, one corresponding to the optimal spacing a and another well at infinity. The
exponentially small spectral gap is associated with the fracture of the chain of atoms, in the spirit of
“fracture as a phase transition” [Tru9g].

intuitively, p2(0,z) represents the probability for having one particle at 0 and one particle at x. Rigorously,
p2(x1,x2) = p2(0,22 — x1) and for every A, fA p2(x1, 22)dz1dz, is the average number (N4 (N4 — 1)) of or-
dered particle pairs in A.
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Boundary layers for a chain of atoms at low temperature 13

3 Energy estimates

In this section we analyze the variational problems arising at zero temperature. Throughout the section
we assume that p € [0, p*) as in Assumption 2|

3.1 Bulk periodicity

Lemma 3.1. Every minimizer of Ex : RY ™" — R lies in [Zmin, Zmax]™ "

Proof. Let z1,...,zy_1 > 0. If Zj > Zmax fOr some j, define a new configuration by shrinking z; to
Zmax, l€aving all other spacings unchanged: z; = z;fori # j and zé = Zmax- SINCE Zmax IS A strict
minimizer of v and 7 +— v(7) increases on [zmax, 00), shrinking the bonds decreases £y strictly and
the original configuration could not have been a minimizer.

If some interparticle spacing is smaller than z,,;,, we remove a particle and reattach it to one end of
the chain as follows. Assume b := min(2y,...,2y-1) < Zmn andletj € {1,..., N — 1} with
zj=>b.Letoy =0andz; = 2 +---+ 21,2 = 2,..., N be associated particle positions. Thus
Tj41 —xj; = z; = band x;;1 — x; > b for all <. The interaction of ; with all other particles is

min{m—1,N—j—1} min{m,j—1}

v(b) + Z v(z;+ ..+ zjpi) + Z v(zjo1+ .+ zjmi).

i=1 =1

For finite m we note that, if v(z;_; + ... + 2j_itm) > Oforani € {1,...,min{m,j — 1}}, then
v(zj—i + .+ Zj—ivm) < 0(2j—i + ...+ 2zj_1) by Assumption i). Removing the particle z; thus
leads to a configuration of NV atoms whose energy has decreased by at least

Ap = 0(b) + V(Zmax) — 201 Y (D)7 > 0(b) + 0(zmax) — 200 »_(nb) " >0.  (3.1)
n=2 n=2

The last inequality holds because of Assumption ii) and b < zpi,. We define a new configuration
by attaching the removed particle to either end of the chain at a distance r = zax. Since v(zZmax) +
Pzmax < 0 by Assumption [2] this decreases &y further, so overall the new configuration has strictly
smaller energy, and the original sequence of spacings cannot be a minimizer of £y . O

At zero pressure, it is a well-known fact that the N -particle energy is subadditive, En .y < En+E)y.
Indeed placing two NV, M -particle minimizers side by side with large mutual distance, because of
v(r) — 0atr — oo, yields an N + M-particle configuration with energy < FEy + FE),. Positive
pressure penalizes large mutual distances between two consecutive blocks, so the construction has
to be modified.

Lemma 3.2. Letm € NU {oc} andp € [0,p*). Then Enxip—1 < En + Ep forall N, M € N,
and the limit eq = lim Ey /N exists and satisfies Exy > (N — 1)eq forall N € N.
Proof. Letz € (rpe,00)V " tandw € (rye, 00)™ 1 be minimizers of £y and £, respectively. Define
Y € (rpe, 00)M*TN=2 py concatenating z and w. By Lemma all spacings are in [Zmin, Zmax|-
Therefore interactions that involve bonds from both blocks are for spacings > 2z,in > Zmax, h€nce
negative, and

Enim-1 <Ena(y) < En + En.
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As a consquence, a,, := F), 1 is subadditive. By Fekete’s subadditive lemma, the limit ey = lim an/n
lim F,, /n exists and is equal to the infimum of a,, /n, hence Ey > (NN — 1)eq. Notice that eg > —o0
since

Eu > (1= 1) (00ee) + 3007 2 (0~ ) (0(am) + a1 35).

Jj=2 Jj=

(In the terminology of statistical mechanics, the energy is stable [Rue69, Chapter 3.2].) O

The next lemma in particular shows that £y is uniformly convex on [zmin, zmaX]Nfl. For later pur-
poses, we state and prove this on a slightly larger set.

Lemma 3.3. There are constants €,n, C' > 0 such that for all m, N, N1, Ny € N with Ny < Ny <
N,andz = (21,...,2N-1) € [Zmin, 00| "t with 2; < zpax + € for N1 < j < Ny — 1, the Hessian
of En at z satisfies

No—1 Na—1 No—1
Ny C< D GGdEN(R) S C Y ¢
J=N1 4,j=N1 Jj=h

for all € RN=1. Moreover, the submatrix (0;0;En(2)) n,<ij<n,—1 Of the Hessian has strictly posi-
tive diagonal entries 02Ex(2) > 0 and non-positive off-diagonal entries 9;0,En(z) < 0. In particular,
this matrix is monotone.

Note that the Hessian is independent of the pressure p.

Proof. Let L be the collection of discrete intervals {i,...,7 — 1} C {1,..., N — 1} of length
j —1 < m.Thenforall,j

81(9]8]\[(2’) = Z U”(ZZj).
Lel:{ij}CL jeL

Fori # jandi,j € L we have ZjGL 2j > 22min hence v (D, z;) < 0; it follows that the off-
diagonal entries of the Hessian are non-positive. Next we show that the row-sums are bounded from
below by some constantp > 0if Ny <7 < Ny — 1.

N
D 0:0,En(2) = 07En(2) + Y | 9;0iEn(2)
Jj=1

Jig#

e Y (N Y (X s)

L4, #L>2 jeL j:i#i Lofi,5} jeL

v”(zi)%—iv”(nzmm) Z (1+ Z 1>

L3i#L=n jEL,j#i

A\

oo
> 0"(2) — V" (Zmax) + V" (Zmax) + Z 20" (N2min) = 1.

n=2
Assumption [1| guarantees that 7 > 0 for ¢ > 0 sufficiently small. Thus row sums are positive, off-
diagonal matrix elements non-positive, and consequently diagonal elements positive. Moreover, with
C' = 2max{v"(r) | 7 € [Zmin, Zmax + €|} the diagonal elements are bounded from above by
%. The proof of the lemma is then completed with the help of standard arguments, for example ev-
ery eigenvalue of (9;0;En(2))n, <ij<n,—1 lies in a Gershgorin circle with center 92Ey and radius
> i |0:0;Ex|. In particular, (9;0;En(2)) Ny <i,j<n,—1 is an M-matrix and thus monotone. O
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Proof of Theorem[2_1l (a) By Lemma minimizers lie in the compact set [2min, Zmax|” *. On that
set the Hessian of £y is positive definite because of Lemma so &y is strictly convex and the
minimzer is unique.

(b) The convergence z( ) > aas JjyN — oo along N — j — 00, where a € [Zmin, Zmax] is the

unique minimizer of ]R+ S r = pr+ Y . v(kr), with the help of Lemma is a straightforward
adaptation of the corresponding proof in [GR79] and will be omitted. By Assumption [{]ii) we even
have a > znin. We remark that the proof in [GR79] also shows that max{zw“), ;ﬁl } < z(m for
7 =1,..., N — 1. This in turn implies that the convergence is in fact uniform away from a boundary
layer of vanishing volume fraction.

(c) This observation in combination with Lemma [3.2] yields (c). Note that ¢y < 0 since ey < pPzmax +
> r 1 V(kzZmax) < PZmax + U(Zmax) < 0 by Assumptions|[1]and
O

Notice that also a < znax €xcept for the exceptional cases in which only nearest neighbors interact,
i.e.m = 1lorv(z) =0for z > 22,.x, and the pressure vanishes.

3.2 Surface energy

Proposition 3.4. Letm € N U {oo} andp > 0. Then

lim (Ex — Neg) = esut = 21nf Esuet — pa — Z kv(ka).

N—oo

Proof. For simplicity we write down the proof for m = oo; the proof when m € N is completely
analogous. Fix £k > 2and e > 0. Let ny,ny € N withny > kand N = ny + ny + 1. Let
2= (Znyy- > %np-1) € [Zmin, Zmax]™ "2 be the spacings of the N-particle ground state, labelled
by j = —nq,...,ng—1lratherthan 1,..., N —1. Choosing n; and n, large enough we may assume
Zf;é |zj —a|? < e. Since the Hessian has matrix norm uniformly bounded from above (Lemma,
changing the spacings zo, . . ., 2,_1 to a increases the energy by C'c at most thus

En>EN(z nyy o oy 221,0, 00,0 2k ooy Zny1) — Ce.
We decompose the energy of the modified configuration as Ay + By + Cx + Dy where

Av=Env1(zny, ooy 221) ¥ Wz, ooy 20154, ..., a),
By = &rala,. .., a)
Cn=W(a,...,a;2k, - Zny-1) + Eng—ts1(Zky -+ 5 Znp—1)

DN:ZZU(ZH- ozt ka+ 2+ -+ 25)

where W gathers interactions that involve bonds from two consecutive blocks. The term Dy repre-
sents the interactions between the left and right blocks. It satisfies

2 Z Z n-= In’Zmln Z Z nzmln - Z ns— 1
n=k

mln —
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which goes to zero as k — oo. Next we subtract Neg from £y and distribute it as Neg = nieg +
(k + 1)eg + (ny — k)eg over the first three sums. The middle block contributes

k )
By — (k+1)eg = > (k—n+ )v(na) + kpa — (k+ 1)pa — (k+1) Y _v(na)
n=1 n=1
= —pa — Zm} na) — (k+1) Z v(na) — — va(na)
n=k+1 n=1
as k — oo. For the first block, we notice that
AN — N1€o Z Ssurf(z—np ceeyR-1,0,a, . ) Z l,ZI)lf gsurf-
0

Indeed the only missing piece are negative interactions between the left block and the right tail of a
semi-infinite chain. The contribution of the right block C'y is estimated in a similar way. We combine
the estimates and let first n, no — 00, then k — oo, and finally ¢ — 0 and find

li f(Exy — N > 21 fé’ — pa — .
INHigé ( N eo) inf Equr — pa Z nv(na)
For the upper bound, we take approximate minimizers of £+ and glue them together to an N-particle
configuration by assigning them to the left and right boundaries, with spacings a in between. This yields
an N-particle configuration with energy En(2) — Neg < 2infp, Eque — e, nv(na) + O(e), and
the required upper bound follows. O

Next we extend ;s to the space D C (7, 00)" of sequences with Y~ (z; — a)* < oo.

Lemma 3.5. Letm € NU {oo}. Let 3; = Z?:j+1(k — )(ka), j = 1,....m — 1. Then foral
(2j)jen € Dy, we have

Eaurs ((2))jen) = — %L_lﬁj(zj—@”i i[ <]+i1 zz) —'(ka) szl(zi—@)] (32)

The right-hand side is absolutely convergent for all (2;) jen € D.

Proof. Let~y; = z; —a.Using ey = Y -, v(ka), we have

o m

Eaut((27)jen) = Z [P(Zj —a)+ Y (v(ka+y;+ - + Y1) — U(ka))}

The equilibrium condition p + >, | kv'(ka) = 0 yields

U/(ka) ('7] + o A Yk 1)

Vika)#{j>1]j<i<j+k—1}

= i vi Y v'(ka)min(i, k)
=1 k=1
m—1 m m—1 )
==Y > (k=i)(ka) == Bvi— Y pu
=1 k=i+1 i=1 i=1

DOI 10.20347/WIAS.PREPRINT.2589 Berlin 2019



Boundary layers for a chain of atoms at low temperature 17

and the alternate expression for E,,t follows. Next consider (;) € ¢*(N) with v; > 7, — a for all
j € N. Under Assumption [i]the derivatives behave as v” (1) = O(r~*=2) and v'(r) = O(r—*7!) as
r — oo with s > 2. It follows that €; := 3.7 kv'(ka) decays like ["r x r=*~'dr = O(j=°*1)
so that Z;; 5? < 00. The Cauchy-Schwarz inequality then shows

m—1 o)
> Joral < e(327)
j=1 i=1

for some suitable m-independent constant c. In particular, when m = oo the sum Zj B;7; is abso-
lutely convergent. In order to show that the double sum over k and j in Eq. is absolutely conver-
gent, we proceed with estimates analogous to Lemma Assume first that all spacings z; = v, +a
are larger than zyi,. Set sup,~,  [v”(r)| = c; and note that, by Assumption iii) for all k > 2,
sup, >, [V"(r)] < [v"(k2min)|. Hence

2 Z Z|U(k’a + 4 A ko) — v(ka) — V' (ka) (v + -+ Yire1)|

j=1 k=1
< (&1 Z fyj + Z Z |U” kzmln 7] o+ 7j+k71>2
=1 k=2
< Z Vi + Z Z k" (kzmin)] (V2 + -+ +Vph1)
=1 k=2

< (01 - Z k2|v”(kzmin)|> ZVJQ
k=1 Jj=1

More generally, if (7;) € ¢*(N) N (rhe — a,00)Y, then v; — 0 and because of a >z, there
isan i € N such that z; > 2z, for all j > 4. Lete = min{|z;| | j = 1,...,4}. Summands with
J > 1 can be estimated as before. For j < ¢ and k > 7 + 2, we proceed as before as well, except
that we replace v” (kzyin) by v ((k — ) 2min + i€). This leaves a finite sum over j < i,k < i+ 2

and overall, the sum is absolutely convergent. O

Lemma 3.6. The map D — R, (2;) + Eque ((27)jen) defined by is continuous.

Proof. Letz, 2", 2, ... besequencesin D suchthat 2V —z — 0in >(N). As lim; 00 Y ;-,(7)"”)? =
0 uniformly in n, the estimates above show that for every ¢ > 0, we can find ¢ € N such that the sum
over {(j, k) | j > iork > i} contributes to Egue (7)) and Esure(y) @an amount bounded by ¢. In the
remaining finite sum the continuity of v(r) allows us to pass to the limit. The proof is easily concluded
with an €/3 argument. O

Lemma 3.7. The restriction of Eqyps to D N [zmm, Zmax + 5}N is strictly convex and satisfies
o0
Ssurf( Zj ]EN > &1 Z
7j=1

for suitable m-independent constants , ¢y, co > 0.

Proof. The proof of the convexity is similar to Lemma [3.3] and therefore omitted. For the coercivity,

consider first m = oo. Lety; = z; — a, fy](- = 7;j1{j<n the truncated strain, and z< W=aqa+ fy(”).
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Then
n
N () (n)
Eaut(27) =Y (h(=", 2y, ) — €o)
=1
n (0.)
=&n1(21,- .., 2n) —neg—i-ZZv(zj + -+ 2, + ka)
=1 k=1
thus
gn—l—l(Zb cee 7Zn) — ney S gsurf(z(n)) + O
where C' = — Zz}:l V(Lzmin + ka) < oo. Next we cut and paste (z1, . . ., 2, ) into the middle of a
large ground state chain: let k1, ks € Nwithky > n+1, N = ky 4+ k1 +1and (29 1, ..., 2 )
the spacings of the N-particle ground state. Let 2’ = (2% 1, ..., 28", 21, .., 20, 200, -, 20 )

A Taylor expansion of £y around the minmizer 2™ together with Lemma [3.3|and Theorem [2.1]yields
AN AN

En(Z) — En(z™M) > £ Z;(zj — 2?2 2 ;(zj —a)? (kp,ky —00).  (3.3)
J= J=

On the other hand, let C; = Y2, {|v({zmin)| be a bound for interactions between blocks and
remember E, > key by Lemmal3.2and ey < 0. Then

En(Z) = En(z™) <201 + Epr (29 1s - 287) + Ena (21, -, 20)
+ Erynt1 (2500, - - ,z,(g)) — EN
<AC + Envi(z1y oy 2n) = Ena (A7, ., 20)
<AC) + Eni(z1, -y 2n) — (R4 1eg
<40 —eg+ C + Equt(2™) = Oy + Equet (2™).

We combine with Eq. (3.3) and let first k1, ko — o0, then n — o0, and conclude that 121 Z;’;l 732 <
Esurt(2) + Cy with the help of Lemma This proves the coercivity in the case m = o0. The proof
for finite m is similar. O

Lemma 3.8. The surface energy Es.¢ has a unique minimizer in D. The minimizer is in D[ Zmin zmaX]N .

Proof. We proceed as in Section Let (2;)jen € D. If one of the z;'s is larger than zp,.x, we
can define a new configuration by shrinking this spacing to z,.x, leaving all other configurations un-
changed. This decreases ... If one of the zj's is smaller than z,;,, let b be the smallest among
them, and j € N with b = z;. Then we can define a new configuration by removing a partic-
ipating particle and possibly shrinking a bond, i.e., (21, 22,...) — (21, 22,...,2j—1, min(z; +
Zj+1, Zmax), Zj+2, - - -). Since g < 0, just as in Lemma we see that this decreases the en-
ergy. Repeating these steps if necessary, the initial configuration is mapped to a new one that has
strictly lower energy and all spacings in [Zmin, Zmax-

The existence of a minimizer now follows from the coercivity proven in Lemma the compactness
of [Zmin, Zmax] M D with respect to the weak ¢?-convergence (shifted by (a, a, . ..)) and the weak
lower semicontinuity of &, on that set due to Lemmas|[3.6/and[3.7} The minimizer is unique because

of the strict convexity from Lemma|[3.7] O
Proof of Theorem[2.2 Clear from Lemmas 3.6} and Proposition [3.4 O
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Proof of Proposition[2.3 In complete analogy to Lemma[3.5/we obtain

j+k—1 j+k—1

Evuik((25) jez) Z Z[ <Z zz) —v(ka) —v'(ka) Z ( i—a)] (3.4)

j=—o00 k=1 =7

forall (2;)jez € Dy, and as in Lemma(3.6] we see that defines a continuous map D™ — R. The
proof of strict convexity, even on [zmin, zmax—i—s]ZﬂD+ for some € > 0, is again similar to Lemma
As in Lemmawe have that &, has a unique minimizer in D, which lies in D N [zmin, zmaX]N.
Since @ € (Zmins Zmax] and 0;Epuik((2j)jez) = 0 for every i € Z by (3.4), the minimizer of Epyi
is(...,a,a,...).Clearly, Epu(. . ., a, a,...) = 0. Finally, the formula connecting Epux and Egyyr is
clear on D(J{ and follows on D by approximation. O

3.3 Afixed point equation

In the following we assume that v has a hard core:

Assumption 3. 1, > 0 and v(r) — coas r \ .

We extend h, defined by @) on (rhe, 00)™, to RY by setting
h(z) = oo if z; < 1y, for some j. (3.5)
Our main aim in this subsection is to obtain the following characterisation of Esurt, Cf. 2.4).

Proposition 3.9. Let [ = gsurf — min E,t. Then I is the unique lower semi-continuous solution
(product topology) of the equation

I(Zl, 29y .. ) = h(Zl,ZQ, .. ) — € —+ [(22723, - ) (36)

such thatmin I = 0 and I = oo if z; < 1y for one of the z;’s.

Note that, by induction, (3.6) is equivalent to

I
.Fjw

h(Zj, Zj+1, .. ) — 60) + I(Zk+1, Zk4-2y - - ) (37)
7j=1

forall k € Nand z = (z;)jen € RY. (Observe that h(z) > —oo for all z € RY by the decay
assumption on v and 7, > 0.)

We begin with a technical auxiliary result.

Lemma 3.10. /fz1, 25,... > 0 and ¢ < oo are such that
k

Supz (h(zza 7Zm+z—l) - 60) S c,

keN =
then z = (z;)jen € D. Moreover, any z € D satisfies

k
kh_)rgo (h(Zj, ce >Zj+m71) — 60) = Ssurf(Z).
j=1

DOI 10.20347/WIAS.PREPRINT.2589 Berlin 2019



S. Jansen, W. Kdnig, B. Schmidt, F. Theil 20

Proof. Letecg < min(a — Zmin, Zmax — @)- The partial sum Z?Zl h(zj, ..., %j+m—1) is equal to the
energy Exr1(21, - - ., 2x) plus an interaction
k m+j—1
Z Z v(zj+ ...+ 2z),
j=1 i=k+1

(the inner sum being 0 if m + 7 — 1 < k + 1) which is bounded from below by

k
—mZ Z (i—j+Dme) " >=C> (k—j+1)~"

j=1 i=k+1 j=1

o0
> —CZZ'_SH =: - > —o0.

By adding 111 and ny spacings a to the left and right respectively, we may view z as a block of spacings
in an N-particle configuration where N = ny +no+k+1.LetZ = (a,...,a,21,..., 2, G, ..., Q).
The new configuration satisfies

EN(2) < Eppr(z, .oy zi) +2C1 + Ea(a, .. a) + Epypala, ... a)
S C‘I— N€0

for some suitable constant C' that depends on 7, ¢ and v only. Let 2™ be the N-particle ground
state with spacings labelled by j = —n,+1, ..., k+ngratherthan 1,..., N —1.Since Ex(z™) =
Enx > Negy by Lemmalf3.2]and ey < 0, we get

En(3) — Ex(z™M) < C.

Suppose that all spacings z; are in [zmin, Zmax)- We use a Taylor approximation around the minimizer
2™ apply Lemma|3.3]and Theorem[2.1] and obtain.

k k
C > 22% (N) gz —a)®  (n1,ny — 00). (3:8)

j=1

Letting k — oo we obtain an upper bound for the ¢?-norm of (zj — a)jeN. If there are z; with

Zj < Zmin OF Zj > Zmax, We modify the configuration 21, ..., z; without increasing its energy as in
the proof of Lemmato obtain 2}, ..., z;. When we shrink bonds 2; > Ziax 10 25 = Znax, leaving

all other spacings unchanged, both z; and z; are strictly larger than £, so the truncated /?-norm
Ele min((z; — a)?, €3) is unaffected.

On the other hand suppose z; = min(zj) < Zmin- Then we remove the particle x;, reattach it a
distance 2.« to the left of the k-particle block. This effects the change

(zicy —a)? + (zi — a)® = (Zmax — @)* + ((zi1 + 21) — a)?
on the ¢2-norm. Both |z; — a| and | 2.y — a| are larger than €, moreover
min((z_1 + 2z — a)?, ) — min((z;_1 — a)?,7) < 5.

So the truncated #?-norm increases by at most 5(2). Let nn be the number of times this step has to be

performed. Iterating we arrive at a configuration 2/, ..., 2 € [Zmin, Zmax] With
k k
: 2 " 2 2 : 2 2
E min(eg, (2§ —a)”) < neg + E min((z; — a)®, eg)
=1 j=1
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and Ey1(2") < Ey1(2) — nd for some § > 0, cf. (3:7). Making €q smaller if necessary we may
assume €2 < §. We combine with Eq. (3.8) for 2/ and C”" = C' — nd and obtain

k
Zmin((zj —a)? ) <C —nd+ney <C.
j=1

We let k — oo and find that the truncated ¢2-norm of (z;) jen is finite. It follows in particular that there
are only finitely many spacings |z; — a| > €¢, and (z; — a) jen is square summable. This establishes
the first assertion.

In order to show the convergence of the partial sums to &, first observe that &, satisfies (3.7)
for I = &gt This is clear for z € Dy and follows for general z € D by continuity. If z € D, the
sequence of shifts ((z;)j>x)ken convergesto (..., a,a,...) strongly and thus

k
Z (h(zj7 Zjtls -+ ) - 60) = gsurf(z) - gsurf(zk—i-la Bk425 - - )

J=1

— gsurf('z) - Ssurf(- ces A,y ) = gsurf(z)-

as k — oo. O

We have actually proven the following: for sufficiently small £ > 0, suitable ¢;,co > 0, and all
(2)jen € RY,

Esut((27)) = @1 Z min((z; — a)?, &) — ca. (3.9)

J=1

Proof of Proposition[3.9 Let I = Eount — min Eyyp. Observe that I satisfies (3.6). This is clear for
z € Dy and for z ¢ D. For the remaining z it follows from Lemma 3.6} We now show that I is lower
semi-continuous with respect to pointwise convergence. Without loss we suppose that 2™ € D con-
verges to 2 € [rye, 00)N pointwise with I(2™) < ¢ < oo for some constant ¢ > 0. Passing to a sub-
sequence (not relabelled) we may furthermore assume that lim inf,, ., 7(2™) = lim,, o 1(2"™).
Fix an € > 0 such that the estimate in Lemma|[3.7]is satisfied. By

max #{j | 2" & [zmin, 2max + €]} < C
neN

for some uniform constant C' > 0 since 2y < @ < Zmax. For given N € N we denote by j,, the
first index 7 > N, if existent, with zj(-") ¢ [Zmin, Zmax + €|. Passing to a further subsequence (not
relabelled) and choosing N sufficiently large we may achieve that either such indices do not exist or
that j, — 0o as m — 00. In both cases we get that z; € [Zmin, Zmax + €] for j > N. In particular,
2j > 1pe forj > N.

In the second case we define new configurations Z™ by applying the procedure detailed in the proof of
Lemmato the tails (2") ;> shrinking the bonds z;-") > Zmax + €, § > N, and deleting particles

J
}’21 " < Zmin, J = N, so that

) if Z;
Eourt ((7)j2n) < Eurt((2]")j2n).

In the first case we simply set 2™ = 2™, Since j,, — oo in the second case, we still have 2™ — z
pointwise.
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By (3.7) with £ = N — 1 we have

N-1
1) > 3" (b=, 50, = eo) + T 2, ).
j=1
From the decay properties of v and z{" > rp,. > Oitis easy to see that, forany j € N, h(z;", 27, . ..
; J Jj+1

converges to (z;, zj11, . . .). Since I(2) < ¢and I > 0, from Assumption[3|we also get z; > 7.
fory=1,...,N—1.S0

N-1 N-1
Z (h(Z;n), Zj(‘j-)l? .. ) — 60) — (h(Z], Zi4ls - - ) — 60).
j=1 j=1

In particular, 1((Z;");>~) < C and so Lemmaimplies that 2 € Dand 2™ — z — 0in % by

coercivity and hence that
liminf 7((2]");5n5) > 1((2))j>n)

n—o0

by convexity. Summarizing we obtain

N-1
liminf I(2"™) > Z (h(2j, 2j11,---) — €0) + I(zn, 2n41, .- .) = I(2).

n—o00 -
7=1

Suppose, conversely, that a lower semi-continuous [ : ]RI}Tr — RU{+o0} satisfies (3-6) with min [ =
0and I(z) = oo if z; < 1} for some j. We first note that, since I > 0, for any z with 1(z) < oo
one has

k
supz (h(2j, 2j41, - - .) — €0) < 00

keN S
by (3.7) and so z € D by Lemma It thus suffices to show that
I(2) = Eue(2) + 1(a,a,...) (3.10)

forall z € D.

If z € D, then Egue(2) is indeed finite by Lemma We have limy,_, o ij:l (h(zj, ey Zjme1) —
€0) = Esurt(2) by Lemma Since the sequence of shifts ((2;);>k)kren converges to (a,a, . ..)
pointwise as k — 00, taking the lim inf in yields

k
I(z) = lim (h(zj, Zjt1y...) — eo) + li}gn inf I(2ks1, 2k42s -+ -) = Eaut(2) + 1 (a,a,. . .).
—00

k—o0
=1

Note that, as I # oo, this inequality also shows that I(a, a, . ..) < oo.

For the reverse inequality, by choosing & large enough in we first see that holds true for all
z € Dy. We denote by 2V) the truncation with zj(-N) = z; for 7 < N and zj(.N) =afor; > N+ 1.
Since 2NV — 2 pointwise and 2N) — 2 5 0inl%as N — oo, lower semi-continuity of / and strong
continuity of &t (see Lemma give

I(z) <liminf I(z™) = liminf Egue(2M)) + I(a, a, . ..) = Eque(2) + I(a,a,. . .),
N—o0 N—oo

where we have used that z(™) € D, for all N. O
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We now restrict to the case m < oco. Letd = m — 1. By (3.7) with £ = d we have

d
gsurf((zj)jEN) = Z (h'(zja ceey Zj—i—d) - 60) + gsurf(zd—‘rl) Zd+2; - - )

=1 (3.11)
= Ear1(21, -+, 24) —deg + W (21, ..., 2d; Zat1, - - -5 224)
+ Eount ((25)j2d+1),

for any (2;)jen € D, where

W21, oy 2d; Zdsts - - -5 22d) = E v(z + ...+ z).
1<i<d<j<2d
j—i<d

Taking the infimum over (z;);en € Do, with fixed 21, . . ., z4 and setting

u(z) = inf {Esurf((Zj)j€N> | (2j)jen € Do, (21,...,24) = x}
= inf {Eur((2))jen) | (2))jen € D, (21, ..., 20) =}

(recall Lemma|[3.6) leads to

u(z) = inf (Eqpr(z) + W(zsy) — deg + u(y)).

d
y€R+

In Chapter[6|we will need the following estimate.

Lemma 3.11. Set A, = [Zmin, Zmax + €]* and B. = R \ A.. Then, for any e > 0 there exists a
6 > 0 such that
inf (Egi1(z) + Wz y) — deg +u(y)) > u(x) +6

yEB:
forallx € A..

Proof. Suppose (z;)jen € Dy is such that (21,...,24) € A., in particular, z; > 2z, for j =
L., d I (2401, Zdra, - --) € [Zmin, 2max + €] we construct a new configuration (27)jen € Do
without changing the first d spacings similarly as in the proofs of Lemma[3.1]and (3.8

If 2; > Zmax + €, we define (2]) jen by setting 2% = z; for j # i and 2] = zyax. Then
gsurf((Z;>j€N) S gsurf((zj>j€N) + U(Zmax) — U(Zmax + 5)- (312)

Now assume b = min{zg1, 2442, - - -} < Zmin- We choose an ¢ > d + 1 with z; = b and define
(z§~)j€N by setting 2} = z; for j < i, z; = min{z; + 2i11, Zmax} and z; = zj1 for j > d. Asin
Lemmas [3.1]and [3.8|(in particular using that ¢y < 0), we see that

Ennt(2)ex) < Esune((z)jen) = (0() + V(zmar) — 200 Y (mb) ™)
. =2 (3.13)
< Eant((27)jen) =200 > (Nzmin) ™.

The estimates (3:12) and (3:13) show that, for any (z;)jen € Do with (21,...,24) € A. and
(2441, - -+, 22a) € B: thereis a (2})jen € Do with (21, ..., z5) = (21, .. ., 24) such that

gsurf((Z})jEN) S gsurf((zj)jEN) - 57
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where § = min {U(Zmax + &) — v(Zmax), 2011 Zf;mﬂ(nzmin)*s} > (. Using we arrive at
U(Zh ey Zd) + ) S gd+1(21, ey Zd) — deo + W(Zl, ey Rds Ry Z2d) + gsurf((zj>j2d+1)-

The claim now follows by taking the infimum over (z;);en with fixed (21, ..., 24) conditioned on
(Zd+1, e ng) € B.. U

A simpler proof gives the following estimate that will also be needed in Chapter [6|

Lemma 3.12. Foranye > 0 there exists ad > 0 such that Eyui(2) > 6 forall z € D1\ [2min, Zmax+
g2

Proof. By continuity we may assume that 2 = (z;)jez € Dy \ [2min, Zmax + |7 I 2; > Zimax + €,
we define 2’ = (2});cz by setting 2 = z; for j # i and 2] = Zyax. Then

0 S gbulk(zl) S gbulk(fz) + U(zmax> - U(Zmax + 5)-

If b = min{z; : j € Z} < Zpin. We choose the smallest i with z; = b and define z = (zg)]-eN by
setting 2} = z; for j <4, 2; = min{z; + ziy1, Zmax } and zj = ;11 for j > 7. As in 3.13) we get

o0

0 < &u(2) < Epu(2) — 20 Z (n2min) "

n=m+1

This concludes the proof. O

4 Gibbs measures for the infinite and semi-infinite chains

Here we prove the existence of v, 113, (), gsut () and check that ju4 is shift-invariant and mixing,
hence ergodic; the results and methods are fairly standard. In addition, we provide an a priori estimate
on the decay of correlations with explicit analysis of the -dependence (Theorem which to the
best of our knowledge is new. The results from this section need only very little on the pair potential:
we only use that v has a hard core and that v(r) = O(1/r?®), for large r, with s > 2. The technical
assumption of a hard core frees us from superstability estimates [LP76l [Rue76]. The decay of the
potential ensures that the infinite volume Gibbs measure is unique, see e.g. [Geo11, Chapter 8.3]
and [Pap84al, |Pap84b), [Kle85].

We follow the classical treatment of one-dimensional systems with transfer operators. For compactly
supported pair potentials with a hard core (or, in our case, when m is chosen finite), the transfer
operators are integral operators in LQ(RT_l,dx) [RueB9, Chapter 5.6], see Section @ For long-
range interactions, the transfer operator (also known as Ruelle operator or Ruelle-Perron-Frobenius
operator) acts instead from the left on functions of infinitely many variables, and from the right on
measures [Rue68,|(GMS70, [Rue78]. The formalism of transfer operators keeps being developed in the
context of dynamical systems and ergodic theory [Bal00b, [Bal00al.

For the decay of correlations, we adapt [Pol00] to the present context of continuous unbounded spins
and carefully track the [3-dependence in the bounds. In Section transfer operators will also help
us investigate the large deviations behavior of the Gibbs measures; notably the eigenvalue equation
from Lemma4.1]translates into a fixed point equation for the rate function (see Lemma/5.4).

The results of this section hold for all m € NU {oc} and /3, p > 0; the additional condition p < p* is
not needed.
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4.1 Transfer operator

Forj € Zand zj, zj11, ... > 0 we abbreviate h; = h(zj, zj11, . ..), cf. (21) and (B:5). The transfer
operator acts on functions as

Lsf(z1,22,...) = /000 dzge P f(zg, 21, ...).
The dual action on measures is defined by (Lv)(f) = v(Ls f) and is given by
Liv(dzdzs...) = e Ph dzv(dzodzs...).
Lemma 4.1. There exist A\o(3) > 0 and a probability measure vz on Rﬂ\l such that
Livs = Xo(P)vs

Moreover vs((rye, 00)N) = 1 and the pair (v, Ao(3)) is unique.

We will show in Proposition that /5 is the measure satisfying (2.2). The non-compactness of
(The, oo)N forms an obstacle to the application of a Schauder-Tychonoff fixed point theorem for the
map v — Egy/y(ﬁﬁl), see e.g. [Rueb8| Proposition 2]. It might be possible to remove the obstacle
using tightness estimates, but we prefer to follow a different route and exploit the known uniqueness
of infinite volume Gibbs measures [Geo11, Chapter 8.3] instead.

Proof. Let v be a probability measure on RY, \ := v(L£31), and 0 := %ﬁ;y. We show that if v
is a Gibbs measure, then  is a Gibbs measure as well. Let us first introduce the kernels needed
to formulate that v is a Gibbs measure. By [Geo11, Theorem 1.33] it is enough to look at one-point
kernels. Pick k& € N. For z;, > 0 and z = (z;)en € RY, let

Hy(z. | 2) = pz). + Z v<2k+ Z z]>

JCN, J3k jeI\{k}
where sum runs over discrete intervals J = {i,...,{ — 1} C N. Further define the kernel
L[~ BH (4 )
—BH (2, |z /
Yi(z, A) = / Da(. .., 201, 24 2hat, -2 )e DB d 2
(:4) Ni(2) Jo ( g g

where A C RY and Ni(2) = [ e ##:(12)d2] . The kernel acts on functions and measures in the
usual way, in particular (7;14)(2) = (2, A). Notice that 72 f = ~.f for all f. Indeed ~; [ yields
a function where z;-dependence has been integrated out, and integrating it against the probability
measure Vi (z, -) does not change its value. Replacing N with Ny, we define in a completely analogous
fashion conditional energies H}, and kernels 7 ((2;) jen,, B)-

Suppose that v is a Gibbs measure, i.e., vy, = vforall k € N. Let f : RTD — R, be a measurable
test function. Treat 7 = A~' L% as a measure on RY°. We check that (70 f) = &(f) forall k € Ny,.
For k € N, this property is inherited from the Gibbsianness of v/: we have

(D=5 [ v(fose )z = 5 [ om(sta, e )z
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Set f :=~2f. Note f = (72) f. Therefore

(£ )00 (2) = (4) 2, 2) x (e 09) )
= (f(zm ')e_ﬁh(zo’.)> (2)

hence o(f) = v(f) = v(yPf). For k = 0, the required property follows from the definition of .
Notice H = hg and

(0P (25)yen) = T TG 212 e Phleb-)d )
Yo j)j€No) — fooo e—ﬁh(zé,zl,.‘.)dz(/)

Let f = ~70f. Then

o) = (| o e00az0) = ([ Pl
= 5(f) = 90F).

The previous identities hold for all non-negative test functions f, consequently 572 =vforallk € Ny
and v is a Gibbs measure as well.

By [Geol11l, Theorem 8.39], the Gibbs measure v exists and is unique. Treating v and v both as
measures on Ri\[, we must therefore have v = 7, i.e., the unique Gibbs measure is an eigenmeasure
of Eg and in particular, there exists an eigenmeasure. Conversely, let v = %ﬁ;y be an eigenmeasure.
Arguments similar to the investigation of v given above, based on the iterated fixed point equation

= A—I,CE;}’“V, show that vy; = vforall j = 1,...,k and all , hence for all j. Every eigenmeasure
is a Gibbs measure. Since the latter is unique, the eigenmeasure is unique as well. Finally, since
v(z;) = oo for z; < 1y, the eigenmeasure v = ;—kﬁgkzj must satisfy (35 € {1,....k} : z; <
The) = 0. This holds for all & € N, hence v((ry, 00)Y) = 1. O

Let /5 be the probability measure on R{-~10

of 1/5L = v under the map (2x)ken — (21-¢)e<0- The measures l/g: represent equilibrium measures
for the left and right half-infinite chains. Let

obtained by flipping V;{ = vg, i.e., I/ﬁ_ is the image

WO:W("'Z—IZO|Z122"') = Z U(zj++zk)

J<0,k>1
[k—jl<m—1

be the total interaction between left and right half-infinite chains, cf. Proposition [2.3|d). We abbreviate
the shifted versions as Wy = W(- -~ 2, | zg41 - - - ). Define @g(21, 22, . . .) by

v (exp(=Wo))
vy ® vg (exp(—fWy))

wp(z1,29,...) = (4.1)

Thus @g(z1, 22, . . .) represents an averaged contribution to the Boltzmann weight from the left half-
infinite chain.

Lemma 4.2. We have Lsps = \o(B)s and vs(pg) = 1.
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Proof. The normalization is obvious, for the eigenvalue equation let ¢z = v ® v (exp(—AWy))

and use the eigenvalue equation for z/g[
wp(21,22,...)
= = [ (5
= m /e_5W('--Zo|z1-")e_B(on+v(zo)+v(zo+z1)+"')dzodyﬁ((zj)jg_l>
— m /e—5W(..~z_1|Zoz1-~)e_ﬁ(pzo-i-v(Zo)-i-v(zo-‘rzl)+.A.)dzodyg((Zj)j<_1)

— /\015) /e_ﬁhog%(zo,zl, .. )dzo
1
= m(ﬁﬁ@g)(zl, 29y« )

See also [Rue78| Section 5.12]. O

Define the operator
1

Xo(B)es
so that Sp1 = 1 and Sj(psry ) = @sv; - Let g be the probability measure on R given by

Spf = Ls(epf)

dpug le_ﬁw(),

dv, @ vy c¢s cg =vg ® Vg (e, (4.2)
B B

We will show in Proposition that 43 is the measure satisfying (2.3). Notice that for every bounded
measurable function f that depends on right-chain variables 21, zs, . . . only,

_ mp(e™0f)

ns(f) =vg(fes), vi(f) ()

(4.3)

Let 7 : RZ — RY be the shift (72); = z;11.
Lemma 4.3.

(a) g is shift-invariant.

(b) Forall f,g:RY — Ry andalln € N, we have jig(f(go 1)) = ns((S§f)g).
The proof is standard [Rue78|] and therefore omitted. The lemma can be rephrased as follows: let

n)n [ [ H [ ) ) -
(Zy)nez be a stochastic process with law 1143, defined on some probability space (€2, F,P). Then
(Zy)nez is stationary, and

(S2F) (Znsr, Zngar ) =Bl (21, Zs, ) Zn+1,Zn+2,...] as.

Our next task is to show that the process is not only stationary but in fact ergodic and to estimate the
decay of correlations.

DOI 10.20347/WIAS.PREPRINT.2589 Berlin 2019



S. Jansen, W. Kdnig, B. Schmidt, F. Theil 28

4.2 Ergodicity

Bounds on correlations are most conveniently expressed with the help of variations, semi-norms
that quantify how much a function depends on faraway variables. Notice that vs((rpe, 00)Y) =
115((1he, 00)%) = 1. Let f : RY — R be a function and n € N. The nth variation of f on (e, o)
is

var, (f) = sup{|f(z) — f(2)] : 2,2" € (rpe,0)" suchthat z; = 2},...,2, = 2. }.

When n = 0 the constraint on initial values is empty, vary(f) is sometimes called the oscillation of
f [Geod1l Eq. (8.2)]. The oscillation vanishes if and only f is constant. Notice that vary(h) decays
algebraically: for k € N, as v(r) = O(r~*),
1
=0(==).

Notice that for all ¢ € Ny, C, is independent of 3 and p. In fact the pressure only enters the oscillation
varg(h). By a slight abuse of notation we identify a function f : RT_ — R with the function f; :
RZ — Ry, (2;)jez — [((2));en) and write pg(f) instead of ps(f1). The results of this subsection
hold for all p > 0.

Theorem 4.4. Let m € N U {oo} andp > 0. The measure jiz is mixing with respect to shifts,

ie, us(f(got™)) — us(fus(g) asn — oo, forall f,g € L*(R%, ug). Moreover for () =
exp(—36Co) and all bounded f, g : RY — R, ¢,n € N, N > ¢n,

15 (790 7)) = ma(Pis(9)] < (1 =1(BNT+ == (% = 1)) lglloll 1

v(8)

1
+ Tm"guoovarn(f)'

We prove Theorem [4.4 with Pollicott’s method of conditional expectations [Pol00]. For alternative ap-
proaches, see [Sar02] and the references therein. The principal idea is the following: for n € N,
f € LY(RY, ¢prp) let IL, f be the projection
fRi ws(z1,...)f(z1, .. .)e_ﬂ(hﬁ“*h”)l//g(dznﬂ o)

fﬂ@i sz, .. Je Bt tha)yg(dz, .. )

(an)(21,...,zn) =

onto the subspace of functions that depend on the first . coordinates only, i.e., var,,(f) = 0. In terms
of the stationary process (Z,,)nez With law 1z,

(I f)(Z1, ..., Zy) =E[f(Z))j>1) | Z1, ..., Za] as.

Notice that
Han - le < Han - f”oo < Varn(f) (4.4)
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where || - ||1 is the L*(RY, ps143) norm. Let ¢, n € N. Then
SI = (83" = (SETL)T) + (SBTL,)".
The difference enclosed in parentheses represents a truncation error; it is made small by choosing n

large. On the subspace of mean-zero functions, the truncated operator S™I1,, satisfies a contraction
property uniformly in n (Lemma, and (S311,,)? goes to zero exponentially fast as ¢ — oc.

Lemma 4.5. We have var,(log pg) < BC, for allq € Ny and 3,p > 0.

Proof. Let q € No, (2j)jez, (#})jez € (The, 00)” such that z; = 2/ for all j < . Then

[Wo(z) = Wa(2)| = | Z(h—j(z) —h_j())] < Zvarq+1+j(h) =G

and v (exp(—BWy)) < exp(8C,)v; (exp(—[BW)). The claim then follows from the definition (4.7)
of the invariant function. O

Lemma 4.6. Let f : RY — R be a bounded function. Thenn, k € Ny,
varg (S5 f) < vary g () + || fl]oo (€7 = 1).

Proof. Let g = " h; — B~ 1og[A\;(B)ws] + B~ logps o 7" on (r4,00)" and g = oo on
RY \ (rhe, 00)N so that

ng(ZnJrla Zntas-..) = / efﬁg(zl’zm'")f(zla 2g,...)dz1 ... dzy,.
R

n
Pick z, 2" € (ne, 00)" sothat z; = zf for j = 1,...,n + k. Then

|e_ﬁg(z)f(z) _ e—ﬁg(z/)f(zf)‘ < e_ﬁg(z)‘f(z) _ f(z')| + ‘f(z')”e_ﬁg(z) _ e—ﬁg(Z’)’
< 0 (var, () + |l (7040~ 1) ).

We integrate out z1, . . . , 2, observe [ exp(—£g)dz; ---dz, = S51 =1, and deduce

varg(S™ f) < varn ik (f) + [1f]loo (749 — 1),

To conclude, we note

n—1
1
vargin(g) < Z var,x—i(h) + 3 (var,.k(log ) + varg(log ¢))
=0

< Ok + Chgp + Cp < 3C. (4.5)

Lemma 4.7. Let f € L'(RY, psvs) such that vs(fypz) = 0. Then for alln > 1 and v(3) =
exp(—356Ch)
1S5 fIl < (1= ~5(B) I/l
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Proof. We adapt [Rue68, Proposition 3]. Consider first a non-negative function f that depends on
215, %, only, ie., var,(f) = 0. Let k > 0 2,2" such that z; = 2 for j = 1,...,n and
g(z1, z2, .. .) as in the proof of Lemma Then

(ng)(2n+1, An+2; - - ) = /6_59(217'..).][‘('217 cee >Zn>d21 e dZn

n

S eﬁvarn(g) /egg(Z/l’.“)f(Zi, . 721/1>dzi v dZI
_ eﬂvarn(g)(Sg )(ZL+1>ZZ+27--->-

By Inequality with k = 0 we have var,,(g) < 3Cj, uniformly in n. Thus S f(2) < exp(—=38Co) (S5 f)(2')
forall 2, 2’ € (rye, 00)™. For non-negative f with f = II,, f we have by Lemmal4.3]

inf S5 f > ~v(8)sup Sz f > v(B)ps(S5f) = v(B)us(| f])-
Next let f with var,(f) = 0and pg(f) = 0. Then pg(f+) = pp(f-) and
SEfI < (Spfs = v(Bus(f4) + (Shf- = v(B)us(f-))
=S5(f+ + [2) =B us(fr + f2) = S5 f1 = v(B)us(If])-

We integrate against 11, use 11g(Sp| f|) = pa(|f]) = [|f]|1, and find [|S5 f|[1 < (1 —~v(B))[|f[]r.
This holds for every local function var,(f) = 0 with ug(f) = 0. For general f, we may apply the

bound to IL,, f and use 5(1L, f) = ps(f) = 0 and pa(|IL, f|) < ps(]f|), and we are done. O

Lemma 4.8. Let f € L'(RY, wsz13) be a bounded map with vg(feg) = 0. Then forallg,n € N,
+>¥BYB B\J ¥p

10 _ .
7(5)< 1)Hf!|oo+7(ﬁ) n(f)-

Proof. A telescope summation, the triangle inequality, and Lemma[4.7]yield

1857 f — (S5TL.) " fllh <

1S57f — (SEIL) fIh < > I(SEIL)" (SEIL, — S5) (S5)* |y

(=}
—_

i
= o

(]

(1= (BN (S5, — S5) (S fllx

i
= o

< ) (=BT = id) (S5 fI]L,

Bl
o

where in the second step we use that v ((SEI1,)" (S511, —S5) (S5)7 "' fop) = va(fes) = Ofor
i=1,...,kby Lemmaand the third step follows from |S7 (IL,, —id) (S5)™*~ f| < S| (I, —
id) (85)4*' f| and Lemma By Eq. and Lemma this can be further estimated as

1
36Cn _ ———var, .
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Proof of Theoremd4 Let f,g : RY — R be bounded functions and ¢,n € N, N > gn. Using
Eq. (4.2) and Lemmas[4.7]and[4.8] we get

s (flgor™)) — uﬁ(f)ua(g)} = |us((SF F)g) — ns(f)us(9)]

< 15(191|S5' (f = (D)) < llglloo 1185 (f — () 1)1
< [lglloe IS5 (f — Mﬁ( )DL
1
< (1= 78D + == = 1) llgllaollf = 1(Nlloe + —=lglloo vara()
( ) 7(8)
since ||Sg||1 < 1. The explicit estimate on the decay of correlations follows. That 14 is mixing then
follows from standard approximation arguments. O

Proof of Theorem[2.9 The estimate for infinite m is an immediate consequence of Theorem For
finite m and n = m — 1, the truncation error in Lemma for a function f : Ri — R actually
vanishes since var,(f) = 0 and C,, = 0. The bound simplifies accordingly. O

4.3 Thermodynamic limit
Proposition 4.9. Letm € N U {oo} andp > 0.

(a) The Gibbs free energy and its surface correction defined by the limits (2.6) exist and are given

by
1

9(8) = =5 108 N(B).  gas(8) = —0(6) - %mg (),

(b) Egs. (2.2) and (2.3) hold true.
Proof. We compute

BW(z1+zn|zn41- )) L nVB) (eﬁW(zl---zn\zn+1-~- ))

1
(AOW ’

W1 znlanti) g=B3j By dzy -+ - dzdvg(znt12n42 - - -)

1/5 (e

e Pt zrzn) g L ~dzpdvg(zng12ng2 - - -)

= WQnJrl(ﬁ)

Let Won = D _jc0 D kons1 V(%) + - + 2;). We note
Wz zn | Zna10) = Wu — Won.

and with (4.3) deduce

; =y eﬁW(z1~~zn|zn+1~~) _ Mﬂ(exp(ﬁ[wo + Wn - WOTL]))
M) Qi) = vl ) pslop (W)

Now W, = O(n~2) — 0 uniformly on (7., 00)%. By Theorem , pa(exp(BWo + W) =
ps(f(for™) — ug(f) where f = exp(8W,). Consequently as n — 0o

log Qni1(8) = (n+1)1og Ao(B8) — log Xo(B) + log (™) + o(1),
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from which part (a) of the lemma follows. A computation analogous to Eq. (4.6) shows that for every
local test function f € Cy,(R%),

(8) (f) _ ,U,B(f exp(ﬁ[WO + Wn - WOn])
H ps(exp(BWo + Wi, — Wonl)

Part (b) of the lemma then follows from Theorem |4.4 O

5 Large deviations as 3 — o0

Here we analyze the behavior of the bulk and surface Gibbs measures i3 and /5 and of the energies
9(B) and gsurt(B). The large deviations result for the surface measure v; is a consequence of the
eigenvalue equation from Lemma[4.1] exponential tightness, and the uniqueness of the solution to the
fixed point equation in Proposition[3.9] Since the bulk measure is absolutely continuous with respect to
the product measure of two independent half-infinite chains (Eq. and Proposition[4.9|b)), we may
go from the surface to the bulk measure with the help of Varadhan’s integral lemma [DZ98, Chapter
4.3]. The asymptotic behavior of eq,¢(/3) is based on the representation from Proposition a).

5.1 A tightness estimate

The following estimate will help us prove that the infinite-volume measure 15 is exponentially tight (see
the proof of Lemma/[5.3) which enters the proof of Theorem

Lemma5.1. Forall5,p >0, N e N,k € {l,...,N — 1}, andr > 0, we have

Gz e RYT | 20 > 2max + 1)) < exp(—Bpr).

Proof. Fixk € Nandr > 0.Forz = (z1,...,2y_1) € Rf‘l with 2, > zZmax + 7 We define a new
configuration z’ by setting 2}, = z;, —  and leaving all other spacings unchanged. This decreases the
Gibbs energy by an amount at least

En(2) — En(Z) > pzp, — pzi = pr.

A change of variables thus yields

VU 52 b ) = g [ €PN ()
< QN;(@ /Rfl e_BpTe_ﬂgN(z')l[zmxjoo)(z,;)dz'
<e
and the proof of the lemma is easily concluded. O
5.2 Gibbs free energy in the bulk
Lemma 5.2. Let 5 — oo at fixed p. Then
9(8) = =5 108 Xa(8) = co + O3 0g ).
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Proof of Lemmal5.2 The relation between g(3) and \o(/3) has been proven in Proposition We
proceed with an upper bound for Q () and Ao(3). For z = (z1,...,2y-1), define 2’ by 2} =
min(zmax, 2j). Revisiting the proof of Lemma|3.1] we see that

N-1 N-1
EN(’Z) 2 gN(Z/) + Z mln(p(z] - Zmax)a O) > EN + mell’l Zmax) O)
j=1 j=1
It follows that
N-1 .
DRl | (O ™)
j:1 Zmax

and
1
< — —
IOg /\0(5) i 660 + log (Zmax + ﬁp>7

whence 871 log A\g(8) < —eg + O(B71). For a lower bound, we let Z € [Zmin, Zmax) * be the

minimizer of £y and choose 0 < ¢ < a — zZyi, SO small that by Lemma

N-1
Env(z) SEN+C ) (25— 7)™

j=1

for every z € ><N: [Z; — €, Zj + €]. We get

On(B) > e PEv H / e OB ,) = e—ﬂEN</

Zj —€ —&

Zj+e € N—1

e_Cﬁsts)

This yields

log A\o(8) > —Bep + log(/ e_0552d3>

2 [ 2
= —fey — log % + log<1 — \/j/ e’ /2dx>.
™ T Je/2CB
)

and 3~ log Ao((8) > —eq + O(8~" log 8).

5.3 Large deviations principles for 15 and i3

Here we prove Theorem[2.4]

Lemma 5.3. Every sequence [3; — oo has a subsequence along which (ng) jeN satisfies a large
deviations principle with speed [3; and some good rate function.

Remark. If p = pg — 0, we lose exponential tightness and only know that every sequence (1/5],) has
a subsequence along which it satisfies a weak large deviations principle [DZ98, Lemma 4.1.23], which
means that the upper bound in (2.5) is required to hold for compact sets rather than closed sets.

Proof. The lemma is a consequence of exponential tightness. Letn € Ny. Define K,, = X2, [0, Zymax+
n + j|. K, is compact in the product topology. Passing to the limit N' — oo in Lemma we find

vs({z € RY | 21, > 2imax +7}) <777
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forall k € N and r > 0. Therefore

va(K7) < vp({z € RY | 2 > zmax + ki + 1))
k=1

= —Bp(k+n) _ exp(—,@p(n+ 1))
< e = )

It follows that the family of measures (v5)3>1 is exponentially tight, i.e., for every M > 0, we can
find a compact subset &' C R such that limsup,_, %log va(K¢) < —M. RY endowed with
the product topology is separable and metrizable and therefore has a countable base. Lemma 4.1.23
in [DZ98] applies and yields the claim. O

Lemma 5.4. Suppose that Assumption@ holds true and assume that along some subsequence ( ﬂj)
the measure v, satisfies a large deviations principle with good rate function I(z1, z2, . ..). Then I
satisfies

[(Zl, 29y .- ) = (h(Zl, 29y .. ) — 60) + [(2’2, 23,y .- )
onRY. In particular, I((z})jen) = 00 if zj < T for some j € N.
Proof. Write [3 instead of /3;. We will see that the fixed point equation for I follows from the eigen-

value equation in Lemma[4.1]and the asymptotics of the principal eigenvalue provided in Lemma[5.2]
According to these,

dvg(z12y...) = e Ptectha=neotoMlq, o dug(z4q...) (5.1)

for any n € N where the o(1)-term comes from log A} (5) = —[ney + o(1)] and is independent of

(27)jen-

We first show that I can only be finite on (7., 00)Y. Fix n € N and for ¢ > 0 consider the open set
c={2€RY|0< 2, <y + ¢} Arepeated application of Lemma [4.1|and Lemma |5.2| give

v(0,) = / e Al thn—neoto(lq, dz,dvg(zpsn - - ).
OcN(rpe,00)N
Let —C be a lower bound for —eg + v(Zmax) + D peg V(21 + =+ + 2) 0N (Phe, 00)N. Then

Vﬁ(Os) S [ - eiﬁ[p(zl+"'+Z"_1)7C(n71)+0(1)}le . dzn,1
The,00)™ ™

X / e Plpzntolzn)=Clq,
(Thchhc""E)

and

logvg(O;) < B(C+o0(1))(n—1)+1loge —F inf  (ps+v(s)).

s€ (Thc sThe +€]

Hence
—igf[ <Cn—-1)— inf (ps+uv(s)) =:—f(e)

s€ (rhc sThe +5]

It follows that
inf{7(z) | zn < rpect > lirré f(e) = 0.
E—r
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Since n was arbitrary we have shown that I = oo on RY \ (ry, 00)™. In particular, as v satisfies
a large deviations principle on Ri with rate function /, the same large deviations principle holds on
(The, 00N,

We now establish another (weak) large deviations principle on (7., 00). Let K C (71, 00)Y be a
(relatively) closed set and [a, b] C (7, 00) a compact interval. Then (5.7) with n = 1 yields

b
vg([a, b x K) = / (/K e A2z ) —eotolqy (5 25 .))dzl.

«

Write f5(z1; K) for the inner integral. As h is bounded from below and for every fixed z; > 7y,
(22, 23,...) = h(z1, 29,...) is continuous n (., c0)Y with respect to the product topology, we
deduce from Varadhan’s lemma [DZ98| Chapter 4.3] that

1
lim sup B log f3(z1; K) < —  inf (h(zl, Zoy...) — e+ I(22, 23, .. )) (5.2)

B—ro00 (25)j>2€K
for all z; € [, b]. Next we note that for all (2;)jen € (The, 00)N, 2] > 71¢, and suitable C' > 0,
|h(z1, 29, ...) — h(2], 22, .. )| < |v(z1) —v(2))] + Clz1 — 2.

For z1, 21 bounded away from 7}, we may exploit that the derivative of v is bounded and drop the first
term, making C' larger if need be. Plugging these estimates into the definition of f3(z1, K'), we find
that for some C', > O and all 3 > 0,

1 1
Elog fa(z1; K) — Blogfﬁ(zi;K)‘ < Culzr — 21 (21,27 > a > ).
It follows that the upper bound (5.2) is uniform on compact subsets of (77,., o0) and
1
limsup —logvs(jo, b)) x K) < —  inf  (h(z1,20,...) — €g + I (22, 23, .. .)). (5.3)
B—00 B z€[a,b|x K

A similar argument shows that for all b > « > r},. and all (relatively) open subsets O C (Thc, oo)N,

1
3 logvs((a,b) x O) > — ze(£%€x0<h(zl’ z9,...) —eo+ I(22,23,...)). (5.4)

lim inf
B—00

Taking monotone limits, the latter inequality is seen to extend to o = 7y, and b = oo. It follows that
(U5), as a family of probability measures on (7}, oo)N, satisfies a weak large deviations principle with
rate function J = hy —eq+ I(z2, .. .). (It is indeed sufficient to consider product sets. This is easy to
see for the lower bound: If U C (7}, 00)" is open, then for any ¢ > 0 one finds z € (a,b) x O C U
with h(él, 22, .. ) — €9 + [(22, Z3, .. ) — & S ianeU(h(zl, 29y . ) — €9 + I(Zg, 23y .- )), from
which it follows that holds for U instead of (cv,b) x O. The upper bound for a general compact
V' C (rhe,00)" is obtained by covering, for given & > 0, V' C U, (v, ba,) X Bs(z)(x:), where
foreach z € V, b, > «a, > ry. and §(z) > 0 are chosen such that h(xy,22,...) — ey +
I(xg,x3,...)—e < INf.e(ay be)x By (2) (h(zl, 29, ...)—eg+1(29, 23, . . )) This is possible since
I is lower semicontinuous. With the help of we can now deduce that holds for V" instead of
[, b] x K.)

Since (7, oo)N is a Polish space, the rate function in a weak large deviations principle is uniquely
defined [DZ98, Chapter 4.1], hence J = I on (7, oo)N. To finish the proof it remains to observe that
also J = I onRY \ (., 00)N because both I and h are equal to oo on that set. O
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Proof of Theorem|[2.4. The large deviations principle for Vg with good rate function Esurf — min Eyr
is an immediate consequence of Lemmasandand Proposition As a consequence, Vg ®y5r
satisfies a deviations principle with good rate function (2;)jez + Esurt(21, 22, - - ) +Esut (20, 2-1, - - ) —
2 min Egy,f ON R% and on [y, oo)Z, Thglarge deviations principle for 115 thus follows from Eq. (4.2),
Lemmas 4.3.4 and 4.3.6 in [DZ98], min £y, = 0 and

zbulk(zla 22y .- ) = zsurf(?il, 22y .- ) + gsurf(z()a Z—1y.- ) + Wo(' © 20 | z1 )

by Proposition and the observation that VV, is continuous on [rhc, oo)Z. O

5.4 Surface corrections to the Gibbs free energy

Proof of Theorem[2.5. The statements about g(3) have already been proven in Lemma For
gsmt (), we start from the formula in Proposition [4.9(a), to which we apply Lemma 5.2, Theorem
and Varadhan’s lemma. This yields

Bll—>rgo gsurf(ﬁ) = —ep + inf(gbulk - WO) .

But now for (z;) with >~ (2; — a)* < oo

otk = Wo =D Y (0(z5 + - + zj-1) — v(ka) + 6ip(z; — a))

— Y (gt z) = (U= j+1)a)) = Y (k—1)v(ka)
S

= Eurt (21, 22, . .) + Esut (20, 221, - - ) + €clamp + €0
x
With €clamp = —pa — >, kv(ka). So
k=1

inf(gbulk - W) — €y = 2inf gsurf + €clamp = Csurf- O

6 Gaussian approximation

Here we prove Theoremsand on the Gaussian approximation to the bulk measure (153 when m
is finite. We start from a standard idea, namely perturbation theory for transfer operators [Hel02], how-
ever we need to put some work into a good choice of transfer operator as the standard symmetrized
choice does not work well. This aspect is explained in more detail in Section[6.1] Throughout this
section m satisfies 2 < m < oo. Rememberd = m — 1.

6.1 Decomposition of the energy. Choice of transfer operator

For finite m, the treatment with transfer operators from Section[4.1]can be considerably simplified: in-
stead of an operator that acts on functions of infinitely many variables, the transfer operator becomes
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an integral operator in LQ(R‘Z) (L? space with respect to Lebesgue measure). There are several pos-

sible choices, corresponding each to an additive decomposition of the energy. Let V (21, ..., z4) :=
Em(z1, ..., 24) and
W21,y 2d; Zdats - - - 22d) = Z v(zi+ -+ 25).
1<i<d<j<2d
li—j|<d

Let us block variables as z; = (zgj+1, - - - , 2¢j+d). Thenfor (2;) ez € Dy we have

Eour((2))jez) = Y (V(;) + W), 2541) — de) (6.1)

JEL

with only finitely many non-zero summands. By Proposition the sum extends to D by continu-
ity. The transfer operator associated with the representation is the integral operator with kernel
exp(—B[V (z) + W(z;y)]); it is clearly related to the d-th power of the transfer operator L3 from
Section The analysis is simpler for a symmetrized operator with kernel

Ty(,) = Ly e (@) exp (B[ 2V (@) + W(a59) + 3V )| ) U oel): 62

which has the advantage of being Hilbert-Schmidt: The pressure term present in V' (x) and V (y)
ensures that T3(x, y) decays exponentially fast when |x| 4 |y| — oo so that [, Ts(, y)*dedy <
00. The transfer operator 73 corresponds to a rewriting of (6.1),

Evunc((2)jez) = Y 3V (25) + W), zj51) + 2V (2)1) — dey).
JEL
For the analysis of the limit 5 — oo, we would like to have a transfer operator that concentrates in
some sense around the optimal spacings so that we may approximate it with a Gaussian operator.
When m > 3, unfortunately, the function (z,y) — 1V (z) + W (z;y) + 1V (y) need not have its
minimum at (x,y) = (a,a), witha = (a, ...,a) € R% Therefore we introduce yet another variant
of the transfer operator: we look for a function ﬁ(m, y) such that

Ebulk Z] ]eZ E H %a%ﬂ
JEL

and H(z,y) > H(a,a) = 0, and work with the kernel

Kg(z,y) := 1y, o0)a(x) exp (—ﬁf[(m, y)) L0 (1)

By a slight abuse of notation we use the same letter for the integral operator

(Ksf)(x) = | Kps(z,y)f(y)dy.

]Rd
in L2(IR?). The function H is defined as follows. Set
H(z,y) == inf {Eunc((25)jez) | (25)jez € (Phe, 00)% ¢ (215 -+, 200) = (z,y) }
w(z) := inf {5bu1k((2j)jez) | (25)jez € (The, 00 (21, .., 24) = x} )

and N
Remember

u(z) = inf{Ssurf((zj)jeN) | (2j)jez € (The, 00)N ¢ (21, ..., 24) = 7}
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Lemma 6.1. Assume2 < m < oo, p € [0,p*), andry. > 0. Then:

(@) Forallz,y € (rye,00)?, we have H(z,y) > H(a,a) = 0.

(b) The function g(z) := 1[u(z) — u(ox)] is bounded, and we have

H(z,y) = —glx) + ($V(2) + W(2,p) + 1V (y) — deo) + g(y).

(©) H(z,y) = H(oy, o) forallz,y € (rpe, 00)°.

Proof. One easily checks

w(z)= inf H(z,y), w(y)= inf H(z,y)

YE(rhe,00)4 2€(rhe,00)

which yields
H(x,y) — sw(x) — w(y) = 3[H(z,y) — w(z)] + 3[H(z,y) —w(y)] = 0. (63)

For z = y = a, we have H(a,a) = w(a) hence H(a, a) = 0. This proves part (a) of the lemma.
The symmetry in part (c) is immediate from the reversal symmetry of &,1. For (b), we note that

H(x,y) = u(ox) + W(z,y) +uly), w(r)=u(or)+u(r)—V(r)+ de,
the formula for }AI follows. Because of

u(z) = inf(V(z) + W(z,y) — dey + u(y)),

Y

and V(ox) = V(z), C = sup soy2a | W(z,y) — W(ow,y)| < oo, we have

x:y)e(rhcz

u(z) < irylf(V(ax) + W(oz,y) + C — deg + u(y)) = u(oz) + C.

The roles of = and oz can be exchanged, hence u(x) — u(ox) is bounded. O

6.2 Some properties of the transfer operator

Lemma 6.2. Assume?2 < m < oo, p € (0,p*), and andry,. > 0. Then:
(a) The kernels K and I’z are related as follows:

L 1
KB(SC, y) = eﬁdeoJrgﬁ[U(:v)*u(az)}Tﬁ (, y)efiﬁ[u(y)fu(ay)}.

(b) The operator Kz is a Hilbert-Schmidt operator in L?(R%), and the kernel has the symmetry
Kg(z,y) = Kg(oy,oz).
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The lemma follows from Lemmal6.1] the elementary proofs are omitted.

By the Krein-Rutman theorem [KR48]|, [Dei85, Chapter 6], the operator norm || Kpz|| =: Ag(f)
is a simple eigenvalue of K, the associated eigenfunction ¢z can be chosen strictly positive on
(The, oo)d, and the other eigenvalues of K3 have absolute value strictly smaller than Ay(/5), i.e.,

A1 (B) = sup{|A| : Aeigenvalue of Kg, A\ # Ao(B)} < Ao(5).

By Lemma6.2(b), the function ¢4 o ¢ is a left eigenfunction of K :
B B

g pp(ox) Ks(z,y)dz = No(B)ds(oy).

Let 15 be the rank-one projection in L(R?) given by

- <f7¢,300>
sl <¢57¢ﬁ00>¢6'

Then K3l = A¢(5)Ilg = 113K 3 and an induction over n € N shows

1 1

Since A1 (/3) is nothing else but the spectral radius of K3 — Ag(3)I1g, it follows that

A
tim sup [[Ao((3)" KCf — Ths| /" = Aiggi

< 1. (6.5)

The spectral properties of K 5 are related to the Gibbs free energy and the Gibbs measure as follows.

Lemma 6.3. Assume2 < m < oo, p € (0,p*), andry. > 0. Then:

(a) The Gibbs free energy is given by g(f3) = eg — % log Ao(3).

(b) The nd-dimensional marginals of the bulk Gibbs measure j.5 have probability density function

%%(fml) (1:[ ﬁf(ﬁ(% xm)) 95(2n)

with ¢ = <¢g,gf)g o O'>.

(c) Foralle > 0 and all bounded f,g : RY — R, writing fo((z;);ez) = f(0,...,24-1) and
gn((zj)jez) = g(%Znjs - - - » Znj+d—1), We have

atogn) = matematon)] < CA8) () el

with some constant C..([3) that does not depend on f, g, or n. If m = 2, we can pick ¢ = 0
and Cy = 1.
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Proof of Lemmal6.3 For N = nd + 1, the partition function Q x () is given by

Qnd—l—l(ﬁ) _ <e—ﬂV/2,T/§z—le—,8V/2> _ e—(n—l)ﬁdeo <e—BV/2—,8[u—uoa]/27Kg—le—EV/2+B[u—uoa]/2>'

For the second identity we have used Lemmal6.2|a). The function u—uoo is bounded by Lemmal6.T|b)
and exp(—fV) is integrable because V' (21, ..., zq) = En(21, . .., zq4) grows linearly when |z;| —
0. Therefore Fjg := exp(—3V/2 — Blu — u o 0]/2) and F o o are in L*(R?), and as n — oo,

(Fg, Ky~ Fgoo) = No(B)" " (Fs, 93)° + O(M(B)" 7).

It follows that

10g Qs (B) = €0 — —— log Ao( ).

Bd

which proves part (a) of the lemma. The standard proof of part (b) is omitted (compare [Hel02, Chapter
4]). For (c), we use the formula for the (n + 1)d- dimensional marginal provided by (b). Let us choose
multiplicative constants in such a way that ¢ = (¢, ¢35 0 o) = 1. Then

_ 1
908) = = lim 200

1 (fogn) — pa(fo)is(gn) = (f(dp 0 o), Ao(lﬁ)nKE(Wﬂ)) —(f(¢po00),¢5)(ds00,905)
= (65 0). (50775 — o) ()

Eq. yields

\116(fogn) — pa(fo)ra(gn)| < || (@Kﬁ - Hﬂ)nH [ f(ds 0 o)l |lgosll

where || - || refers to the L?-norm for functions and the operator norm for the operator. We further

bound [|g@s|| < |[glll|@sl| and [|f(ds 0 )| < || f]ls||ds]| and conclude with €.5). If m = 2,
the operators are symmetric, hence the operator norm is the same as the spectral radius and the

estimates simplify accordingly. O

Remark (Associated Markov chain). Define the kernel
Pali, dy) 1= o K(, )0 (y)d 9
g\T, dYy) = =5 H LY y)ay .
Mo(B)és () ’
on (rpe, 00)% Then P is a Markov kernel with invariant measure ps(x)dx where

ps(x) = ~65(0w)5().

If in the bulk Gibbs measure 1153 we group spacing in blocks as x,, = (zdn, e zdn+d_1), we obtain a
probability measure on (7., oo)d. This measure is exactly the distribution of the two-sided stationary
Markov chain (X) ez with state space R, transition kernel P, and initial law £(X) = ps(z)dz.

6.3 Gaussian transfer operator

Here we introduce the Gaussian counterpart to the transfer operator /'3 and study its spectral proper-
ties. We start from the quadratic approximation to the bulk energy &ui. The differentiability of £,y in

DOI 10.20347/WIAS.PREPRINT.2589 Berlin 2019



Boundary layers for a chain of atoms at low temperature 41

a neighborhood of the constant sequence z; = a is checked in Lemma below, for the definition of
the Gaussian transfer operator we only need the infinite matrix of partial derivatives at (. . . , a, a, . . .).

In the following we block variables as z; = (24, . - . , Zgj+a—1) for z = (2;)jezand &; = (Cyj, - - -, Cajrd—1)
for ¢ = ((;),ez. Remember the decomposition (6.7). Seta = (a, ..., a) € R and define the d x d
matrices

A=Wy(a,a)+ Vy(a)+We(a,a), B:=-W,(a, a). (6.7)

We note the following relations:
Wy, (a) = oW, (a)o, B" =cBo, ocAoc=A. (6.8)

The Hessian DQSbulk at ( L, a,a, .. ) is a doubly infinite, band-diagonal matrix with block form

-BT A -B

_BT A _B (6.9)

Note that Lemma implies that DQSbulk(. ..,a,a,...) is positive definite. We look for a quadratic
form Q(z,y) on R?? that is positive-definite and satisfies

Evun((21)se) = 3 D Qe; = a,wysn —a) +o( Y |y —al?).
JEZ JEZ
One candidate choice could be

Qx.y) = jir, Ar) —2(x, By) +5(y. Ay) («',y/ €RY),

but it is not easily related to H(z,y). We make a different choice which mimicks the definition of
H (z,y) and show later that this amounts to picking the Hessian of H (x,y) (see LemmaMbelow).

We introduce the quadratic counterparts to the functions H (z, ), w(z), and H(z,y) from Sec-
tion Remember the bulk Hessian from (6.9). Since it is positive-definite, there exist uniquely de-
fined positive-definite matrices M € R?¥24 and N € R%*? such that

<(Z) M (‘”5)) = inf{(z, D% Epunc(a, a, .. )2) | 2 € (X(Z), (21, ..., 200) = (z,y)}  (6.10)

(x, Nz) = inf{{z, D*Epun(a, a, .. .)2) | z € (*(Z), (z1,...,24) = x} (6.11)

for all z,y € R%. The quadratic forms associated with // and NV are the Gaussian counterparts to
the functions H (z,y) and w(x), respectively. Finally set

—~ 1IN 0
R 2
M:=M ( 0 in) (6.12)

Qw,y) = <(z> 1‘7(5>>

We will see in the proof of Lemma that M, N and M are the Hessians of H at (a,a),wata
and H at (a, a), respectively. The relation between Q and Q(x, y) is clarified in Lemma|6.7| below.
We are going to work with the kernel

Goly) = exp(~180(r —a,y—a))  (n,y € RY)

and
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and the associated integral operator (G3f)(z) = [za Gs(,y)f(y)dy. In Section we show that
G is a good approximation for K g, here we study the operator G/g on its own. Clearly it is enough to
understand the integral operator G with kernel

G((L’, y) = eXp(—%Q(x, y))7
since G and G4 are related by the change of variables = — /3(z — a), see Eq. below.

Lemma 6.4. Assume 2 < m < oo, p € [0,p*). Then the quadratic form @ is positive-definite:
Q(z,y) > e(|z|? + |y|?) for some e > 0 and all (x,y) € R*?.

Proof. Firstwe show that M is positive semi-definite, by an argument similar to Lemma a). Define

Pl = () 01 ()

(z,Nz) = inf F(z,y) (y,Ny)= inf F(z,y),
zeR

y€ERd

Clearly

hence

(5) 7 (0)) =5 (Fem - wova) 4 5 (Fen) - i) 20 19

Y Y

for all (z,y) € R? x R? and M is positive semi-definite. Next let (70,70) € R? x R be a zero of
the quadratic form associated with M. Then by (6.73), the function y — F'(z0,y) must be minimal at
y = yo, hence V,F(zo,y) = 0. Similarly, the function y — F'(x, yo) must be minimal at z = z,
hence V. F (xo,y0) = 0. Thus (z¢, o) is a critical point of F'. But F is strictly convex because
M is positive-definite, therefore the critical point (¢, o) is a global minimizer of F’ which yields

(0, yo) = 0. It follows that M is positive-definite. O

It follows from Lemmathat Jgoa G(z, y)*dady < oo, hence G is Hilbert-Schmidt with strictly pos-
itive integral kernel and Krein-Rutman theorem is applicable. So we may ask for its principal eigenvalue
and eigenvector and its spectral gap. It is natural to look for a Gaussian eigenfunction.

Lemma 6.5. Let F' be a positive-definite, symmetric d X d matrix. Then the following two statements
are equivalent:

(i) ¢(z) := exp(—3(z, Fx)) is an eigenfunction of G.

(i) The function x — (x, F'z) satisfies the quadratic Bellman equation

(z, Fx) = inf (Q(z,y) + (y, Fy)). (6.14)

y€ERd

Proof. The proof is by a straightforward completion of squares: write
— (M, M
M=|= =
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with d X d -matrices ]\/4\3 The diagonal blocks ]\71 and ]\/4\3 are positive-definite because M\is positive-
definite, therefore M3 + [ is positive-definite as well. Then

~

O(x,y) + (y, Fy) = (x, Myz) + 2(z, Moy) + (y, (Ms + F)y)
— (z, Myz) + (y + (Ms + F)"'MIz,(Ms + F)(y + (Ms + F) " M{'z))
— (z, My(Ms + F) "M ).
It follows that

inf (Q(z,y) + (y., Fy)) = (x, (My — My(Ms + F) ™' M3 )a)

yeRd
and

(2m)

ey _1 AT AT (AT -177T
det(]\//Tg iy exp( 2<x, (My — My(M;3 + F)~" M, )a:>> (6.15)

(Go)(z) =

Therefore (i) and (ii) hold true if and only if F' solves
F:]/\/I\l—]/\I\Q(]\//E,#—F)_l]/\/TQT
In particular, (i) and (ii) are equivalent. O

In Lemma6.7|below we check that M is of the form
cCo —B
M= <—BT o ) (6.16)
for some positive-definite d x d matrix C'.

Lemma 6.6. The principal eigenvalue of G is \/(2m)?/det C' and the principal eigenfunction is
exp(—3(z, Nz)) (up to scalar multiples).

Proof. A close look at our definitions shows that F' := %N solves (6.14) (it is positive-definite because
N is). Indeed, by the definition of Q, M, we have

~ T T
inf z,y) + (y,iNy)) = —(z, 1 Nz) + inf M = (z,1Nz).
nf (o) + o 18) =~ 4Va) + it () 01 (1)) = (o v
Therefore, by Lemma the function ¢(x) = exp(—3(x, Nx)) is an eigenfunction of G. The matrix
Mz + Fin is equal to (C'— 1N) + F = C, and we find that the principal eigenvalue of G is

/@) det C. 0

In order to identify the block C' in (6.76), we introduce the quadratic analogue to the function u(x).
Let A and B be the d x d matrices from and A, := V,,(a) + W..(a, a). The infinite matrix
(0;0;Esmt(a, a, . . .))i jen is band-diagonal with block structure

A -B 0 -
, _BT A - B 0
D gsurf(aaav"'> = 0 —BT A -B 0
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The matrix differs from the bulk Hessian by the upper left corner A;: we have
A=A +Wy(a,a). (6.17)

By a reasoning similar to Lemma [3.3] the Hessian of &, is positive-definite. Therefore there is a
uniquely defined positive-definite d x d-matrix DD such that

(x,Dz) = inf{(z,D*Eut(a,a,...)2) | 2 € A(N), (21,...,24) = 7}

for all z € R?. (Analogous arguments as in the proof of Lemma show that D is the Hessian of
at a.) Set
C:=D+Wy,(a,a) (6.18)

and
J:=D+Wy(a,a)—ocDo— W, (a,a)=C—0cCo

(remember the symmetries (6.8)).

Lemma 6.7. The matrix C' solves
C=A-BC BT

and Eq. (6.16) holds true. Moreover

-~

Proof. Clearly

(z, Dz) = inf ((z, Ajz) — (z, By) — (BT2,y) + (y, (Wyy(a,a) + D)y))

y€Rd

hence
D= A, — B(W,,(a,a)+ D) 'B". (6.19)

by a completion of squares similar to the proof of Lemma We add Wyy(a, a) to both sides,
remember (6.17), and obtain the equation for C'. It is easy to see that

M- oDo +W,.(a,a) —-B _ (oCo —-B
N —BT Wy (a,a)+ D)  \-BT C

which proves (6.16). Furthermore,

ooy = nt (7)o (3] o) = it (3) 00 (),

N =0Co— BC'BY, N=C-B"(cCo)'B.

hence,

Let us check that the two expressions for N are indeed identical, and that c No = N. Combining
with (6.17) and (6.19), the two expressions for /N become

N =o0Do + Wy(a,a) — (A—Wy(a,a) — D) =D+ ocDo + Wy,(a,a) + Wyy(a,a) — A
and

N =D+ Wyl(a,a)—0o(A-Wy(a,a)— D)o =D+oDo+ W,(a,a)+ Wy (a,a)— A
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The two expressions are indeed equal, and from the end formula and we read offthatc No = V.
Actually
N =D+ 0oDo — V. (a),

which is the analogue of w(x) = u(z) + u(ox) — V().

Now we compute M. The off-diagonal blocks of M are the same as those of M. The upper left
diagonal block is

My —iN =0Do + Wy(a,a) — (D + oDo + Wy,(a,a) + Wyy(a,a) — A)
= %A + %(O’DO’ + Wee(a, a)) — %(D + Wy (a, a)).

A similar computation yields the lower right block. Altogether we find

7= (il

and the lemma follows. O

Finally we come back to the 3-dependent operator G 3.
Proposition 6.8. Assume2 < m < oo andp € [0, p*). The principal eigenvalue of G is

AGauss(ﬁ) — (27T)d
0 B4 det C
and the normalized, positive principal eigenfunction is

B det(iN)

d

cbg’a“ss(:v) = ( )1/4 exp(—% (r — a, %N (x — a)>>.

Proof. Let Ug : L*(R%) — L?(IR?) be the unitary operator given by

Usf)(2') = B~ fla+p7122)). (6.20)

We have
(UsGsf)(a') = B~V (Gsf)(a+ 5"
_ /B_d/4/ Gﬂ(a+6_1/2x,,a+/8_1/2y/)f(az+B_1/2y/)6_d/2dy,
Rd

=5 [ Gl U

hence

Gy = B~*UsGUs (6.21)
and the principal eigenvalue and eigenfunction of GG3 are obtained from those of GG in Lemmaby
straightforward transformations. O

Remark. When m = 2, all eigenvalues and eigenfunctions of G (hence G3) can be computed explic-
itly, and the eigenfunctions are expressed with Hermite polynomials. See [Hel02, Section 5.2] on the
harmonic Kac operator.
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6.4 Perturbation theory

Remember the unitary operator U from (6.20) and the relation Gz = B*d/zUEGUB. The main
technical result of this section is the following.

Proposition 6.9. Assume 2 < m < oo, p € (0,p*), and 1, > 0. We have ||3¥?(Kz — Gp)|| =
|G — BY2Us KUl — 0 as  — oo.

Before we come to the proof of the proposition, we state a corollary on the principal eigenvalue and
eigenfunction. Remember the quantities A (53), A1(5), ¢ defined before Lemma We choose
multiplicative constants so that ||¢s|| = 1. Let AF*", j € N, be an enumeration of the eigenvalues

of G with A§®"* = ||7|| and
|)\Gauss|

Gauss __

];?OX )\Gauss :

Corollary 6.10. Under the assumptions of Proposition . Let A§*"() and ¢5*"(x) be as in
Proposition[6.8 Then as 3 — oo,

MafB) = (1 oIAF(3), [ [onta) = 6§ (@)de 0.

and

. Al(ﬁ) _ _Gauss
A Ro(B) <1

The corollary follows from Proposition[6.9]and standard perturbation theory for compact operators [RS78].
The proof of Proposition builds on several lemmas. First we show that &k is C%?ina neighbor-
hood of its global minimizer.

Lemma 6.11. The mapping Epux is C* in some open neighborhood in D of the constant sequence

(...,a,a,...).

Proof. Note that
V(Zl,...,zd)—|—W(Zl,...,Zd,Zd+1,...,sz deo Zh Zu---;zd-i-i)

defines a C? function in a neighborhood of (a, . .., a) € R? x R? which vanishes for (21, . . ., 204) =
(a,...,a).Moreover, usingthat (..., a,a,...) minimizes &, on D and so Oz, Epuik(- - -, a,0a,...) =
0, we see that also

Vela,...,a) +We(a,...,a) + Wy(a,...,a) =0.

Forall z € Dy the derivative of i at 2 is given by

ngulk C Z :L’] + W (xjaxj—&-l) + W, (:L’] 1,:L‘]))f],

JEZ
for all ¢ € ¢%(Z) with ¢; = 0 for all but finitely many 5. So

Déu(2) = (Va(;) + W, 2j41) + Wy (-1, 25)) (6.22)

jez’
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Since
D WValay) + Walwj, wi) + Wy, 25) = Vi) = Walaly, 2)4,) = Wy (@, )
JEZ
<O (wjor m, i) — (@, 2, 2P < Cllz = 2o

JEZ.

for z, 2/ € D" in a neighborhood of (..., a, a, .. .) with a uniform constant C, the right hand side of
(6.22) extends to a uniformly continuous function there. Writing

1
Ev(z + ) = Ena(2) + / D& + 1)C dt
0

for z, 2/ € D, a standard approximation argument shows that indeed & is C'! in a neighborhood
of (..., a,a,...)alsoin D with D&, given by (6.22). In fact, £y is even C on a neighborhood
of (...,a,a,...)in D" and

D?Epuik(2)¢ = (Ve () + Wae (5, 541) + Wy (21, 25))§;

(6.23)
+ Way(25, 2j51)E5401 + Way (-1, 7;)&-1)

jez’
This follows similarly as above by extending the derivative of D&, where we now use that the
mappings RIxRIXR? — R, (2,2, 2") > Vou (2/)+ Wow (2, 2")+ Wy, (z, 2') and RIXR? — R,

(x,2") = Wy, (x, x") are uniformly continuous in a neighborhood of z = 2’ = 2" = (a, ... ,a) and
s0 D2&,,.1 extends to a continuous mapping from a neighborhood of (. . ., a, a, . ..) to L(¢{*(Z)) (the
space of bounded linear operators on ¢*(Z)) given by (6.23). O

Next we show that ]\7 is in fact the Hessian of FAI

Lemma 6.12. Assume2 < m < oo, p € [0, p*), and e > 0. We have H(z,y) > H(a,a) = 0
forall z,y € RY, moreover as z,y — a,

H(z,y) = 3Q(z — a,y — a) + oz — a]* + |y — a]’).
The lemma leaves open whether (a, a) is the unique global minimizer of H.

Proof. The first part of the Iemma has already been proven in Lemma a). With M € RQd“d
N € R%d as in (&:70) and E-17) we let M as in (6:12). It remains to show that DH(a, a) = M.
Since, for a suitable ¢ > 0, gbulk is convexon D ﬂ[zmm, zmax—i-z’:‘] , see (the proof of) Proposmon
Lemmalm'shows that there is a unique function on a neighborhood of (a, a) in R? x R with values
inR™N xRN, (z,y) = Z = (2_,z4) = (2_(x,y), 24 (x,y)) such that

H({L‘,y) = gbulk(z—(xay)vxaya Z+(:E7y))'

As D?Epu(. . ., a, a,...) is positive definite, the implicit function theorem shows that this mapping is
C'! and satisfies

D,%gbulk(zfa ) Z+) =0
as well as

~ —1
D(m,y)z - (Dggbulk(zfa R ZJr)) D(m,y)DZSbulk(Zfa T Z+).
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The latter identity implies
Dy H = Dz Epuc(2—, -5 5 24),

so that H is indeed C? near (..., a,a,...) and
1
D%w,y)H = [D?m,y)gbulk — D(2.4)E0utk (D2Evuik) D)z Eputic] (2=, -, -, 24).
In particular, since Z(a,a) = (..., a,a,...),
-1
DQH(CL, a) = [D%x,y)gbulk - D(x,y)ngulk (Dggbulk) D(;v,y)égbulk} ( cey A, Q. )

The same analysis applied to the quadratic approximation (*(Z) — R, z — 1(z, D*Epu(. . ., a, a, .. .)z)
leads to

—1
M = [D(Qw)gbulk — D(2)2E0utk (D2Ebutk) D y)zEpuid] (- - - a,a, .. ),

too. So we have D>H (a,a) = M. A completely analogous reasoning gives D*w(a, ...,a) = N
O

~

and it follows that D*H (a,a) = M.

Lemma 6.13. Assume 2 < m < co. Forsome cy > 0 and all (z1,. . ., 20q) € (T'he, 00)%,

2d
H((Zh ety Zd)7 (Zd+17 ey Z2d>) Z %pzzz — Ca.
i=1

Proof. Since the pair potential v is bounded from below, we have for some constant ¢ > 0

d
V(z,..2a) =pY 2 —¢ inf W(z;y) 2 —c.
i=1
In combination with Lemma [6.1]this yields the claim. O

In order to estimate || K3 — G|, we split the configuration space into a neighborhood A O Bs(a)
of @ and its complement B = R? \ A and treat blocks separately. For U C R?, we write 1;; for the
multiplication operator with the indicator function 1.

Lemma 6.14. Suppose that A C R? js compact, contains an open neighborhood of a, and is such
that H(z,y) > 0 forall (x,y) € A x A\ {(a,a)}. Then

lim [[14 87K — Gs)1al| = 0.
B—00
Proof. By Lemmal.12] for every e > 0, thereis a § > 0 such that for all s,¢ € R? with |s| < § and

|t| < 4, we have
L(1—2)8(s,1) < Ala+s,a+1) < 3(1+2)8(s,1)

Choosing 6 > 0 small enough we may assume without loss of generality that Bs(a) C A. We
estimate

/ B K5, y) — Gl y)Pdudy < / BY(e7900 — 1) P00 dsat
Bs(a)? B5(0)2
< / B (U290 _ 9o-801-203058) 4 =50 dodt
]Rd

B 1 2 (2m)4 .
N ((1—25)01 (1—¢e)d H) /idetﬁgk
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for some k > 0. 0On A? \ B;(a)?, the function H stays bounded away from 0, therefore

| By Pdedy < e
A2\ Bs(a)?

A similar estimate clearly holds true for G/ as well. Hence

lim sup 5d]K5(x,y) — Gz, y)]2dxdy < ke.
B—oo  J A2

This holds true for every € > 0, so the left-hand side converges to zero. Since operator norms are
bounded by Hilbert-Schmidt norms, the lemma follows. O

Lemma 6.15. Assume that B C RY is such that dist(a, B) > 0 and B is invariant under reversals,
o(B) = B. Then ||15K315|| = O(e #%) — 0.

Proof. We may view KE = 13K315 as an operator in L?(B3,dx). The Krein-Rutman theorem is
applicable and shows that A = || K§ || is a simple eigenvalue and there exists an eigenfunction ¢/ that

~

is strictly positive on B N (rye, 00)?. Because of the symmetry H(oy, ox) = H(x,y), the function
1) o 0 is a left eigenfunction. Moreover for all f, g € L*(B, dx), we have

lim (£, (KB)"g) = (f, ) (6 0 0, 3)

n—oo \"

so for all strictly positive functions f, g € L?(B,dx),

y= tim (17 (%)) "

n—o0

We choose f(y) = exp(—3H (a,y)) and g(z) = exp(—BH(z, a)). The scalar product becomes

B85 Bz 2.
(f, (Kg)ng> :/ e PEEy Heiwi) qg . da, g

n

with 9 = 2,42 = a. By Lemmal6.1(b) , remembering u(a) = 0, we have

n+1 n+1 n
Y H(ziy, ) = —(n+2)deg — V(a) + > Vi(w) + > Wi(a,zip).
=0 =0 =1

Define (21, ..., 2(mt1)d) = (@1,...,%pq1) andfor j € Z\ {1,...,(n + 1)d}, z; = a. Then we
recognize

n+1
Z H(zi-1,2;) = Epu((25)jez) + const
i=0
where the constant depends on e, d, and V' (a) alone. As 2y, ... , Z(n+1)a Stay bounded away from
a, we obtain
n+1
Z H(zi_1,2;) > d(n+1)d—c
i=0
for some §,¢ > Oandalln € Nand 21, ..., 2,11 € B. It follows that || K5 || = A < e . O
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Lemma 6.16. Suppose that A C R? and B = R? \ A are such that
V(z)+ W(zx,y) —dey + u(y) > u(z) + 4 (6.24)

forsome d > 0 and allx € A,y € B. Assume also that A is invariant under reversals, o(A) = A.
Then
[}Lﬂgoﬁdﬂ(!\lAKﬁlsH +[1sK514]]) = 0.

Proof. Revisiting the proof of Lemmal6.1] we see that
H(z,y) —w(x) = V() + W(z,y) - deo +uly) — u(z). (6.25)

Egs. (6.25), (6.3) and (6.24) show that }AI(x,y) > §/2foralx € Aandy € B. This estimate
together with the growth estimate from Lemma shows

1
limsupglog</A . |K5($ay)|2dxdy> < —30<0

B—00
hence ||14K31g5|| — 0. The estimate on ||15/K31 4] follows from the symmetry Ks(oy, ox) =
Ks(z,y). O

Proof of Proposition[6.9. Lete > 0, A, := [Zmin, Zmax +¢]% and B = R4\ A. The sets .A and BB are
clearly invariant under reversals, moreover zp,in < @ < Zmax by Theorem b), so a is in the interior
of A and bounded away from 5. Thus A and B satisfy the assumptions of Lemmas and
By Lemma[3.11] they also satisfy the condition from Lemma(6.76] By the triangle inequality,

[[Ks — Gpl| < |[1a(Kp — Gp)lal| + || Kp — 1aKplal| + |[Gs — 1aG 1 4]].

The first term on the right-hand side, multiplied by 6d/2, goes to zero by Lemma For the second
term, we estimate

|Ks — 14Kp1 4| < |[15Kps15|| + (|[1aKs1p|| + [[15Ks14]))

and conclude from Lemmas and that d 3%/2||K5 — 14Ks1.4|| — 0. Bounding Hilbert-
Schmidt norms, it is straightforward to check that ||3%/%(G 5 — 1.4Gs1.4)|| — 0 as well, and the proof
is complete. O

6.5 Proof of Theorems 2.7, 2.8/and [2.11

Proof of Theorem[2.8 Combining Lemmal6.3(a) and Corollary[6.10] we obtain

1 2
9(B,p) = €0 — Elog B(Tg)”d +o(B7). O

Proof of Theorem[2.11l The theorem is an immediate consequence of Lemma [6.3(c) and Corol-

lary[6.10} 0

For the proof of Theorem we first express the marginals of /%% in terms of the matrices A and
B from Eq. (6.7) and the matrix C' from (6.18). We group variables in blocks z; € R as usual and
view 11985 a5 a measure on (R%)Z.
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Proposition 6.17. Under the assumptions of Theorem the distributions of zo = (2o, .. ., 24-1),
(w0, 1), and (xg, . . ., Tn) (n > 2) under 1525 have probability density functions proportional to

(2) exp(—LB (o, (0Co — BC1BT)ay)),

(b) exp(—306[(cxy, Coxo) — 2(xo, Bx1) + (x1, Cx1)]),

(©) exp(—3({o0, (C = §A)ox0) + 31=) Q@i xi41) + (X1, (C = 3A)T, 1))
respectively,

Proof. We recall a standard fact on marginals of multivariate Gaussians and Schur complements.
Suppose we are given a positive-definite (n + k) X (n + k)-matrix in block form

H, Ho
H =
(’HQT My
where Hi, Ho, Hs are n X n, n X k and k X k matrices, respectively. Think of H as the Hessian

of the energy. Consider the Gaussian measure on R™** with covariance matrix 7' and probability
density function

pla,y) = % eXp(—%<(z) H (§>>) (r € R",y € R").

Then for all x € R”,

det M 1
/Rk p(z,y)dy = @n)" exp(—§<x,/\4w>) (6.26)

with M = H; — HoHz HE the Schur complement of Hs in #. The inverse M ™! is equal to the
upper left block of 7{~!. Another characterization is provided by a completion of squares, similar to
the proof of Lemma6.5; we have

(x, Mz) = yiélﬂgk<(z> M (z>>

Now let H = (Hi;)i ez be the Hessian of Epyy at (..., a,a,...). By definition of u“, the
distribution of (z1, ..., 2,) is Gaussian with mean zero and covariance matrix (H'); j—1__,. Let
M = (M;)o<ij<n—1 be the n x n-matrix defined by M~ = (H ')o<;ij<n_1. It is not diffi-
cult to check that the considerations above generalize to the infinite matrices at hand, hence for all
20y -y 2n-1 € R,

n—1
. ! !
E M;jziz;y = mf{ E Hijziz;

4,j=0 ijEZ

(#)ien € (T) : 2= 20,2, = zn,l}. (6.27)

Eq. (6.27) provides a variational description of the covariance matrix M ™! of the n-dimensional
marginal of %25, For n = 2d = 2(m — 1), with 79 = (20, ...,2q-1) and 21 = (24, .. ., Z2d-1),
Eq. (6.27) shows M = M, by the definition (6.70) of M. Combining with (6.76) we get

cCo —B
- (S 2 m
This proves part (b) of the lemma. The proof of (c) is similar. Part (a) follows from (b) and a relation
similar to (6.26). O
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Proof of Theorem[2.Z It is enough to treat the nd-dimensional marginals with n > 2. Let ¢ be
the principal eigenfunction of K 5, with multiplicative constant chosen so that (¢ o 0, ¢5) = 1. Set

ps(x) = Uss(x) = B~ *ps(a + B~'/*x) and

Ks(z,y) = (UsK5U3) (2, ) = Kola+ 5% a+ 5-Y2%)

1 1
No(B) Ao(B)
By Lemmal6.3] the probability density p) for (21, ..., z,) € R" satisfies

n—1
ﬁ;ﬂd)(xla ce 7=Tn) - B nd/2 (B)(a—i_ﬁ 1/2$1, R a—l—ﬁ_lﬂxn) - (ﬁg(O‘l’l) (H Kﬂ(xia xi—l—l)) ¢5(In)
=1

By Proposition[6.17] the analogous representation for the Gaussian density pG3" is
o

n—1

PS;HSS( Ly ) = ¢Gauss(0$1) (H G(Iu $¢+1)> (/5Gauss($n)
i=1

with G(z,y) = (A\§*°)G(z,y) and ¢S (z) o exp(—3(z, 1 Nz)) the principal eigenfunction of
G, normalized so that (¢%3U° o g, p“2Us5) = 1. It follows that

/ ’ﬁgg)(xl, ey X)) — ijuss( Tyono ,xn)‘dxl ...dx,
Rnd
< |(pgoo— ¢ o0, Ki  dg)| + Z|<¢Gauss 00, G'(Ks — G)Kj " 2¢3)|
i—1
+ ‘<¢Gauss oo, én—l(éﬁ _ ¢Gauss>|‘
Using K505 = ¢ and G*(¢92" o g) = ¢ o o, we get
10,10 = PG o < (11Ballze + 1165112 1ds — 652|112 + |5 — G|

which goes to zero by Proposition[6.9] (see also Corollary [6.10). 0O

7 A Brascamp-Lieb type covariance estimate for m = oo

Here we prove Proposition Key to the proof is a matrix lower bound A for the Hessian of .
For Gaussian measures with probability density proportional to exp(—§<z7 Az)) and test functions
fi = zi, gj = zj, we end up estimating the covariance C;; = ([3A]™');;. We follow [Men14], see
also [ORO7].

Proof of Proposition[2.70. Revisiting the proof of Lemma we obtain bounds on matrix elements
of the Hessian. Let N € N, z € [z, zmaX]Nfl. Forl <i<j <N —1wehave

N-
0> 0,0:En(2) = > V'O m) > Z "(n2min)#{L | #L =n, L D {i,j}}
Lo{i,j} kel n=j—
> Z (n =+ )V (Nzmn) = —Kj—;
n=j—i+1
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with -
QAT (0%)]
0<k;_; < < (7.1)
a n¥;;;+1(nzmnﬂs+2 sz — 0)°
Forl <:< N — 1 we also have
o
DPEN(2) = ZUH(Z 2k) > V" (Zmax) — Zn|v”(n2min)| =p>0
L>i kel n=2

by Assumption [{]iv). Moreover

ni=p—2 Z ke = V" (Zmax) — Zn2|vﬁ(nzmin)| >0

=1 n=2
again by Assumption([i]iv). Let A be the (N — 1) x (N — 1)-matrix with diagonal p and off-diagonal
entries —k;_;|; notice that 7, ;_;, p do not depend on V. A is symmetric and positive-definite.

The previous estimates together with [Men14, Remark 2.6] show that the energy £y satisfies the
assumptions of [Men14] Theorem 2.3 and Proposition 3.5]. It follows that for all smooth f, g : R, —

R,
75 - 900 )| < %(ANl)"J'(“%N)(f )i (6) "

Let X1, X5, ... bei.i.d. random variables with law

P(Xizé):%, rezZ\{0}, P(Xi=0)=0

and S,, = X; + --- + X,,. We may decompose Ay as pld plus an off-diagonal matrix, write a
Neumann series for the inverse, and find that for © < j

1
(A <=> (1- Ty*p(S), = j — ). (7.2)
p = p
Clearly
k
P(Sy = j — i) sz (Xo = (j —9)/k, Sk =j —1). (7.3)

By (7-1), we have P(X, = /) < C/|€| for some constant C' > 0. Following [Meni4, Proposition
3.5] we may estimate, for each m € N,

o

P(Xo>m, Sp=j—i) < Z (Xo=OP(X1+ Xz +-+ X, =j—i—F)

C
<supP(Xp=/() < —.
>m m?®

Similar estimates apply to other 7. Combining with (7.3) we find
C ks—i—l

P(Sp=j—i) < ———.

lj — il

It follows that
C > N\ k
(A_l)i‘ S S ks-i—l 12
mo pl@—Jls,; =7

Notice that the series is convergent. The bound is plugged into the estimate (7.2) and the proposition
follows by passing to the limit N — oc. O
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