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Surface energy and boundary layers
for a chain of atoms at low temperature

Sabine Jansen, Wolfgang König, Bernd Schmidt, Florian Theil

Abstract

We analyze the surface energy and boundary layers for a chain of atoms at low temperature
for an interaction potential of Lennard-Jones type. The pressure (stress) is assumed small but
positive and bounded away from zero, while the temperature β−1 goes to zero. Our main results
are: (1) As β → ∞ at fixed positive pressure p > 0, the Gibbs measures µβ and νβ for infinite
chains and semi-infinite chains satisfy path large deviations principles. The rate functions are
bulk and surface energy functionals Ebulk and Esurf . The minimizer of the surface functional
corresponds to zero temperature boundary layers. (2) The surface correction to the Gibbs free
energy converges to the zero temperature surface energy, characterized with the help of the
minimum of Esurf . (3) The bulk Gibbs measure and Gibbs free energy can be approximated by
their Gaussian counterparts. (4) Bounds on the decay of correlations are provided, some of them
uniform in β.
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1 Introduction

The purpose of the present article is to analyze the low-temperature behavior for a one-dimensional
chain of atoms that interact via a Lennard-Jones type potential. The model is atomistic and in terms of
the Gibbs measures of classical statistical mechanics. Two limiting procedures are at play: the zero-
temperature limit, for which the inverse temperature β goes to infinity, and the thermodynamic limit,
where the number of particles N and the system size go to infinity. The order of the limits matters.
When the zero-temperature limit is taken before the N → ∞ limit, the analysis of Gibbs measures
is replaced by energy minimization, leading to variational models of non-linear elasticity. We perform
instead the zero-temperature limit after the thermodynamic limit. The zero-temperature limit for infinite
systems is far from trivial, see [vER07, CGU11, CH10] and the discussion in [BRS10].

For the one-dimensional Lennard-Jones interaction, it is known that energy minimizers (ground states)
converge to a periodic lattice [GR79] (“crystallization”). For one-dimensional systems with pair poten-
tials that decay faster than 1/r2 it is well-known that, in contrast, at positive temperature, no matter
how small, there is no crystallization [BL15]. Nevertheless, some quantities can be approximated well
by their zero-temperature counterpart. For the bulk free energy this is to be expected, for other quan-
tities such as surface corrections this is already more subtle. For the decay of correlations, it is a priori
not even clear what the zero-temperature counterpart should be; we propose a natural candidate, see
Eqs (2.10) and (2.11).

At zero temperature, surface corrections and boundary layers have been studied, for example, in
order to better understand variational models of fracture, see e.g. [BC07, SSZ11] and the references
therein. Fracture might be expected for elongated chains, forced to stretch beyond their preferred
length. At small positive temperature, large interparticle distances correspond to low pressure (stress)
p = pβ → 0. We address this regime in a subsequent work and focus here on the elastic regime of
positive pressure p > 0, though the case of small pressure pβ → 0 is discussed in some comments.

Our main results come in four parts. They are listed in Sections 2.1–2.4 and proven in Sections 3–7.
At zero temperature, we extend the result on bulk periodicity from [GR79] to a more general class
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Boundary layers for a chain of atoms at low temperature 3

of potentials and positive pressure, see Theorem 2.1. We prove the existence of bounded surface
corrections, and characterize them with the help of an energy functional Esurf for semi-infinite chains
(Theorem 2.2).

At positive temperature, we prove large deviations principles for the Gibbs measures µβ and νβ on
RZ

+ and RN
+ (product topology) as β → ∞ at fixed p > 0 (Theorem 2.4). The speed is β and the

respective rate functions are energy functionals Ebulk and E surf − min E surf whose minimizers are,
respectively, the periodic bulk ground state and the zero-temperature boundary layer. The conver-
gence of positive-temperature surface corrections to their zero-temperature counterpart is addressed
in Theorem 2.5. These results are intimately related to path large deviations for Markov processes
and Hamilton-Jacobi-Bellman equations [FK06], semi-classical analysis [Hel02], and a more direct
approach to low-temperature expansions [SL17]. We remark that our results are valid for long range
interactions which in particular are not assumed to have superlinear growth at infinity. The large devi-
ations principle is complemented by a result on Gaussian approximations for the bulk Gibbs measure
and the Gibbs free energy, valid for finite interaction range m (Theorems 2.7 and 2.8).

Finally we study the temperature-dependence of correlations and informally discuss how correlations
connect with effective interactions of defects and the decay of boundary layers. Theorem 2.9 provides a
priori estimates that hold for all β, p > 0. In Theorem 2.11 we show that for finitem and small positive
pressure p, the decay of correlations is exponential with a rate of decay that stays bounded as β →
∞—the associated Markov chain has a spectral gap bounded away from zero. This uniform estimate is
proven with perturbation theory for the transfer operator. For infinite m, we provide instead a uniform
estimate for restricted Gibbs measures (Proposition 2.10), which follows from the convexity of the
energy (in a neighborhood of the periodic gound state) and techniques from the realm of Brascamp-
Lieb inequalities [Hel02]. At vanishing pressure pβ → 0 or fixed high pressure p > 0, the spectral
gap might become exponentially small because of fracture or metastable wells [BdH15] in non-convex
energy landscapes.

Bringing statistical mechanics into atomistic models of crystals and elasticity has a rich tradition [BH98,
Wei02, BCF86, Pen02]. Modern developments include: the study of gradient Gibbs measures [FS97]
with sophisticated tools such as renormalization groups and cluster expansions [AKM16], random
walk representations [BFS82], and Witten Laplacians [Hel02]; scaling limits and gradient Young-Gibbs
measures [Pre09, KL14, Run15]; the extension of approximation schemes, e.g., the quasi-continuum
method, to positive temperature [BLBLP10, TM11]. In addition, there have been some inroads into
the open problem of proving crystallization in the form of orientational order for two-dimensional mod-
els [Aum15, HMR14].

To the best of our knowledge, all of the aforementioned mathematical literature, notably on Gibbs gra-
dient measures, is limited to potentials with a superlinear growth at infinity. This is in stark contrast
with the decay to zero typically imposed in statistical mechanics of point particles [Rue69]. We work
with potentials v(r) → 0, an additional linear term pr enters because we work in the constant pres-
sure ensemble, which is the most convenient ensemble for one-dimensional systems [Rue69, Section
5.6.6]. As a consequence, the by now classical combination of Bakry-Émery estimates and Holley-
Stroock perturbation principle, see [Men14] and the references therein, becomes potentially more
delicate. We use instead estimates on energy penalties, some aspects of which might generalize to
higher-dimensional models.

Another aspect that might generalize to higher dimension concerns the large deviations principle. The
existence of a large deviations principle for the Gibbs measure as β →∞, proven using a exponential
tightness and fixed point equation for the measure, amounts to the construction of an infinite volume
energy functional that vanishes on ground states only. In higher dimension, the role of the fixed point
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equation is taken by DLR-conditions named after Dobrushin, Lanford, Ruelle [Geo11] and the proof of
a large deviations principle reduces to the investigation of a higher-dimensional analogue of a Bellman
equation. The theory of the latter, for non-unique ground states, might mirror possible intricacies of the
zero-temperature limit of Gibbs measure described in [vER07].

Finally we remark that the results of this work allow for a detailed analysis of typical atomic configura-
tions at low temperature and low density. In [JKST19] we will in particular prove that, when the density
is strictly smaller than the density of the ground state lattice, a system with N particles fills space
by alternating approximately crystalline domains (“clusters”) with empty domains (“cracks”). The num-
ber of domains is of the order of N exp(−βesurf/2) with esurf the surface energy from Theorem 2.2
below.

2 Main results

2.1 Zero temperature

Let v : (0,∞) → R be a pair potential, m ∈ N ∪ {∞} a truncation parameter and p ≥ 0
the pressure. At zero temperature we allow for p = 0, at positive temperature we impose p > 0.
The Gibbs energy at zero temperature and pressure p for a system of N particles with positions
x1 < . . . < xN and interparticle spacings zj = xj+1 − xj , j = 1, . . . , N − 1, is

EN(z1, . . . , zN−1) =
∑

1≤i<j≤N
|i−j|≤m

v(zi + · · ·+ zj−1) + p
N−1∑
j=1

zj.

The parameterm restricts the range of the interaction:m = 2 corresponds to a next-nearest neighbor
interaction. This section deals with the minimization problem

EN = inf
z1,...,zN−1>0

EN(z1, . . . , zN−1)

in the limit N →∞. Throughout we assume that the following assumption holds.

Assumption 1. The pair potential v : (0,∞) → R ∪ {+∞} is equal to +∞ on (0, rhc] for some
rhc ≥ 0 and a C2 function on (rhc,∞). There exist rhc < zmin < zmax < 2zmin and α1, α2 > 0,
s > 2 such that the following holds.

(i) Shape of v: zmax is the unique minimizer of v and satisfies v(zmax) < 0. v is decreasing on
(0, zmax) and increasing and non-positive on (zmax,∞).

(ii) Growth of v: v(z) ≥ −α1z
−s for all z > 0 and v(z) + v(zmax) − 2α1

∑∞
n=2(nz)−s > 0 for

all z < zmin.

(iii) Shape of v′′: v′′ is decreasing on [zmin, zmax] and increasing and non-positive on [2zmin,∞).

(iv) Growth of v′′: v′′(z) ≥ −α2z
−s−2 for all z > rhc and v′′(zmax) +

∑∞
n=2 n

2v′′(nzmin) > 0.

The assumption is satisfied, for example, by the Lennard-Jones potential v(r) = r−12 − r−6. As
we will see, parts (i) and (ii) of the assumption guarantee that energy minimizers at p = 0 have
interparticle spacings zj in (zmin, zmax), parts (iii) and (iv) ensure that EN is uniformly strictly convex
in (zmin, zmax)N−1; moreover the Hessian D2EN is diagonally dominant with positive diagonal entries
and negative off-diagonal entries.
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Assumption 2. The pressure p satisfies 0 ≤ p < p∗ with p∗ := |v(zmax)|
zmax

.

At positive temperature we shall assume in addition that p > 0, rhc > 0, and for some results we
need limr↘rhc v(r) = ∞. The next theorem is the adaptation of a similar result by Gardner and
Radin [GR79]. It is proven in Section 3.1.

Theorem 2.1 (Bulk properties). Let m ∈ N ∪ {∞} and p ∈ [0, p∗) as in Assumption 2.

(a) For every N ≥ 2, the map EN : RN−1
+ → R has a unique minimizer (z(N)

1 , . . . , z(N)

N−1). The
mimizer has all its spacings zj in [zmin, zmax].

(b) As j,N → ∞ along N − j → ∞, we have z(N)

j → a where a ∈ (zmin, zmax] is the unique
minimizer of R+ 3 r 7→ pr +

∑m
k=1 v(kr).

(c) The limit e0 = limN→∞(EN/N) < 0 exists and is given by

e0 = pa+
m∑
k=1

v(ka) = min
r>0

(
pr +

m∑
k=1

v(kr)
)
.

Let D0 ⊂ (rhc,∞)N be the space of sequences (zj)j∈N with none or at most finitely many elements
different from a. Define

h(z1, . . . , zm) = pz1 +
m∑
k=1

v(z1 + · · ·+ zk) (2.1)

Esurf

(
(zj)j∈N

)
=
∞∑
j=1

(
h(zj, . . . , zj+m−1)− e0

)
, (zj)j∈N ∈ D0.

When m = ∞, h((zj)j∈N) is a function of the whole sequence. Esurf is the Gibbs energy of a
semi-infinite chain, with additive constant chosen in such a way that at spacings zj ≡ a the Gibbs
energy is zero; h(z1, z2, . . .) represents the interaction of the left-most particle with everybody else.
Let D = {(zj)j∈N ∈ (rhc,∞)N |

∑∞
j=1(zj − a)2 <∞} be the space of square summable strains.

Theorem 2.2 (Surface energy). Let m ∈ N ∪ {∞} and p ∈ [0, p∗) as in Assumption 2. Equip D
with the `2-metric. Then

(a) Esurf extends to a continuous functional on D.

(b) On D ∩ [zmin, zmax]N it is strictly convex.

(c) Esurf has a unique minimizer. The minimizer lies in D ∩ [zmin, zmax]N.

(d) The limit esurf = limN→∞(EN −Ne0) exists and is given by

esurf = 2 min
D
Esurf − pa−

m∑
k=1

kv(ka).

The theorem is proven in Section 3.2. Note that −pa −
∑∞

k=1 kv(ka) is the surface energy for a
clamped chain with all spacings equal to a and Esurf encodes the effect of boundary layers. Esurf is
multiplied by 2 because finite chains have two ends. We note that min Esurf is exactly the boundary
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layer energy introduced by Braides and Cicalese [BC07]; Braides and Cicalese dealt with the special
case m = 2 of next-nearest neighbor interactions but more general potentials. For finite m ≥ 2, see
[SS18, Theorem 4.2].

For later purpose we also define a bulk functional

Ebulk

(
(zj)j∈Z

)
=

∞∑
j=−∞

(
h(zj, . . . , zj+m−1)− e0

)
=

∞∑
j=−∞

m∑
k=1

(
v(zj + · · ·+ zj+k−1)− v(ka) + δ1kp(zj − a)

)
.

It is defined, a priori, on the space D+
0 of positive bi-infinite sequences (zj)j∈Z ∈ (rhc,∞)Z that

have at most finitely many elements zj 6= a. Denoting the space of square summable strains D+ =
{(zj)j∈Z ∈ (rhc,∞)Z |

∑
j∈Z(zj − a)2 < ∞}, an analysis similar to the one for the surface

functional yields the following result.

Proposition 2.3 (Limiting bulk properties). Let m ∈ N ∪ {∞} and p ∈ [0, p∗) as in Assumption 2.
Equip D+ with the `2-metric. Then

(a) Ebulk extends to a continuous functional on D+.

(b) On D+ ∩ [zmin, zmax]N it is strictly convex.

(c) The unique minimizer of Ebulk is the constant sequence (. . . , a, a, . . .). The minimum value is
Ebulk(. . . , a, a, . . .) = 0.

(d) For every (zj)j∈Z ∈ D+ one has

Ebulk((zj)j∈Z) = Esurf(z1, z2, . . .) + Esurf(z0, z−1, . . .)

+W(· · · z−1z0 | z1z2 . . .),

whereW(· · · z−1z0 | z1z2 . . .) :=
∑

j≤0,k≥1
|k−j|≤m−1

v(zj+· · ·+zk) is the total interaction between

the left and right half-infinite chain.

2.2 Small positive temperature

Next we analyze infinite volume Gibbs measures on RN
+ and RZ

+ in the limit β → ∞. We focus on
fixed positive p ∈ (0, |v(zmax)|/zmax) but comment on vanishing p = pβ → 0 at the end of the
section. Let Q(β)

N be the probability measure on RN−1
+ defined by

Q(β)

N (A) =
1

QN(β)

∫
A

e−βEN (z1,...,zN−1)dz1 · · · dzN−1

where

QN(β) =

∫
RN−1
+

e−βEN (z1,...,zN−1)dz1 · · · dzN−1.

Standard arguments (see Section 4) show there is a uniquely defined probability measure νβ on the
product space RN

+ such that for every k ∈ N, every bounded continuous test function f ∈ Cb(Rk
+),

lim
N→∞

∫
RN−1
+

f(z1, . . . , zk)dQ(β)

N (z1, . . . , zN−1) =

∫
RN
+

f(z1, . . . , zk)dνβ((zj)j≥1). (2.2)
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Similarly, there is a uniquely defined probabilty measure µβ on RZ
+ such that for all local test functions

f as above, and all sequences iN with iN →∞ and N − iN →∞,

lim
N→∞

∫
RN−1
+

f(ziN+1, . . . , ziN+k)dQ(β)

N (z1, . . . , zN−1) =

∫
RZ
+

f(z1, . . . , zk)dµβ((zj)j≥1). (2.3)

Moreover the measure µβ is shift-invariant and mixing. The measure µβ describes the bulk behavior of
a semi-infinite chain, the measure νβ is the equilibrium measure for a semi-infinite chain and encodes
the probability distribution of boundary layers.

Our first result is a large deviations principle for the equilibrium measure νβ as β → ∞. The rate
function is a suitable extension of Esurf : define E surf : RN

+ → R ∪ {∞} by

E surf

(
(zj)j∈N

)
=

{
Esurf

(
(zj)j∈N

)
, (zj)j∈N ∈ D,

∞, else.
(2.4)

In the same way Ebulk extends to a map Ebulk from RZ
+ to R ∪ {∞}. Both RN

+ and RZ
+ are equipped

with the product topology.

Theorem 2.4. Fix p ∈ (0, p∗) and m ∈ N ∪ {∞}. Assume that rhc > 0 and limr↘rhc v(r) = ∞.
Then as β → ∞, the equilibrium measures (νβ)β>0 and (µβ)β>0 satisfy large deviations principles
with speed β and respective rate functions E surf −min Esurf and Ebulk. The rate functions are good,
i.e., lower semi-continuous with compact level sets.

The theorem is proven in Section 5.3. The large deviations principle for νβ says that for every closed
set A ⊂ RN

+ and every open set O ⊂ RN
+ (product topology)

lim sup
β→∞

1

β
log νβ(A) ≤ − inf

(zj)∈A

(
E surf

(
(zj)
)
−min

RN
+

Esurf

)
lim inf
β→∞

1

β
log νβ(O) ≥ − inf

(zj)∈O

(
E surf

(
(zj)
)
−min

RN
+

Esurf

)
.

(2.5)

It is essential that we work in the product topology. Indeed we shall later see that νβ is mixing, therefore
for every ε > 0, the measure νβ gives full mass 1 to sequences (zj)j∈N that have infinitely many
spacings |zj − a| > ε. Thus for every ball O = {(zj) ∈ RN

+ |
∑∞

j=1(zj − a)2 < δ}, we have
νβ(O) = 0 hence β−1 log νβ(O) = −∞, to be contrasted with the lower bound in Eq. (2.5).

Another consequence concerns the evaluation of the Gibbs energies of localized defects: suppose
that because of some impurity, the energy is not EN but EN + V , where V is, say, continuous in the
product topology, localized in the bulk, and bounded from below. Then by Varadhan’s lemma [DZ98],
as β →∞, the effective Gibbs energy converges to the zero temperature energy of the defect,

− 1

β
log µβ

(
e−βV

)
→ inf

D
(Ebulk + V) (β →∞).

Surface energies occur as a specific type of defect, when V cancels all interactions between two
half-infinite chains (see Proposition 4.9(a)), which leads to the following theorem. Define

g(β) = − lim
N→∞

1

βN
logQN(β), gsurf(β) = lim

N→∞

(
− 1

β
logQN(β)−Ng(β)

)
, (2.6)

the Gibbs free energy g(β) per particle in the bulk and the surface correction gsurf(β).
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Theorem 2.5. Fix p ∈ (0, p∗) and m ∈ N ∪ {∞}. The limits (2.6) exist. If in addition rhc > 0
and limr↘rhc v(r) = ∞, then the bulk and surface Gibbs energy approach their zero-temperature
counterparts when β →∞:

lim
β→∞

g(β) = e0, lim
β→∞

gsurf(β) = esurf .

This proves that the thermodynamic limit and the zero temperature limit can be exchanged, which is
non-trivial (and in fact, fails when the pressure goes to zero too fast, see below).

One last consequence of Theorem 2.4 concerns the distribution of spacings and the pressure-density
(or stress-strain) relation. The Gibbs free energy and our partition functions correspond to an ensemble
where the overall length of the system is not fixed, but instead may fluctuate with a law that depends
on the pressure—high pressures p favor compressed states. In the thermodynamic limit N → ∞,
though, the average spacing between particles becomes a well-defined quantity, given by

`(β) =

∫
RZ
+

z0dµβ((zj)j∈Z). (2.7)

By the contraction principle [DZ98, Theorem 4.2.1], the distribution of z0 under µβ satisfies a large
deviations principle with good rate function w(z) = inf{Ebulk((zj)j∈Z) | (zj)j∈Z ∈ RZ

+, z0 = z}.
The unique minimizer of w(z) is the ground state spacing a. Lemma 5.1 implies that the distribution
of spacings has exponential tails

µβ
(
{(zj)j∈Z | z0 ≥ r}

)
≤ C exp(−βpr)

for some β-independent constant C .

Corollary 2.6. Under the assumptions of Theorem 2.5, we have

lim
β→∞

`(β) = a = argmin
(
pr +

m∑
k=1

v(kr)
)
.

In particular, for large β, we have `(β) < a0 where a0 is the minimizer of the zero-stress Cauchy-
Born energy density

∑
k v(kr). Conversely, spacings `(β) > a0 (elongated chains) imply vanishing

pressure p = pβ → 0. This is clearly apparent for nearest neighbor interactions (m = 1, Takahashi
nearest neighbor gas [Tak42, LM66]), for which

g(β) = − 1

β
log
(∫ ∞

0

e−β[v(r)+pβr]dr
)
, `(β) =

∫∞
0
r exp(−β[v(r) + pβr])dr∫∞

0
exp(−β[v(r) + pβr])dr

. (2.8)

Comments on vanishing pressure. We add a superscript to indicate that zero-temperature quantities
are evaluated at p = 0. When p = pβ → 0 slower than any exponential, it is still true that g(β)→ e0

0.
When βpβ = exp(−βν) with ν > 0, one can show with [JKM15, Jan12] that

lim
β→∞

g(β) = min(e0
0,−ν). (2.9)

At pressures vanishing faster than exp(−β|e0
0|), the most likely configurations have very large spac-

ings (dilute gas phase, `(β)→∞) and the previous results no longer apply. For lim inf 1
β

log(βpβ) >

e0
0, we expect that large deviations principles with rate functions E0

bulk and E0

surf − min E0

surf still
hold (in fact our proofs still show weak large deviations principles). However rate functions have non-
compact level sets and exponential tightness is lost. Moreover large spacings may contribute to the
average (2.7) and Corollary 2.6 need no longer be true, thus allowing for spacings `(β)→ ` > a0.
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Boundary layers for a chain of atoms at low temperature 9

2.3 Gaussian approximation

Here we complement the large deviations result by a Gaussian approximation. This section deals with
finitem and the bulk measure µβ only. Remember d = m−1. We will see that the Hessian of Ebulk at
(. . . , a, a, . . .) is associated with a positive-definite, bounded operatorH in `2(Z). It is represented by
a doubly-infinite matrix (Hij)i,j∈Z that is diagonally dominant. Write (H−1)ij for the matrix elements
of the inverse operator and let µGauss be the uniquely defined measure on RZ, equipped with the
product topology and its associated Borel σ-algebra, such that∫

RZ
sisjdµ

Gauss
(
(sk)k∈Z

)
= (H−1)ij

for all i, j ∈ Z, and every finite-dimensional marginal of µGauss is a multi-dimensional Gaussian
distribution. Equivalently, µGauss is the distribution of a Gaussian process (Nj)j∈Z with mean zero
and covariance E[NiNj] = (H−1)ij . More concrete expressions for the probability density functions
of nd-dimensional marginals of µGauss are provided in Proposition 6.17 below.

In the following we identify the measure µβ on RZ
+ with the measure 1lRZ

+
µβ on RZ. We exclude the

trivial case m = 1.

Theorem 2.7. Assume 2 ≤ m < ∞, p ∈ (0, p∗), and rhc > 0. Then for every n ∈ N, the

n-dimensional marginals of µβ and µGauss have probability density functions ρ(β)
n and ρGauss

n , and

lim
β→∞

∫
Rn

∣∣∣β−n/2ρ(β)
n

(
a+ β−1/2s1, . . . , a+ β−1/2sn

)
− ρGauss

n (s1, . . . , sn)
∣∣∣ds1 . . . dsn = 0.

It follows that the distribution of the spacings, suitably rescaled, converges locally to the Gaussian
measure µGauss: for every bounded function f : RZ → R that depends on finitely many spacings zj
only (bounded cylinder functions), we have

lim
β→∞

∫
RZ
f
(√

β(zj − a)j∈Z
)
dµβ

(
(zj)j∈Z

)
=

∫
RZ
fdµGauss.

For example, in the limit β →∞, the distribution of a single spacing zj is approximately normal, with
mean a and variance β−1(H−1)ii. We expect that Theorem 2.7 stays true for m =∞ but a proof or
disproof is beyond the scope of this article.

The next theorem says that the Gibbs free energy is close to the Gibbs free energy of the approximate
Gaussian model.

Theorem 2.8. Assume 2 ≤ m < ∞, p ∈ (0, p∗), and rhc > 0. The Gibbs free energy satisfies, as
β →∞,

g(β) = e0 −
1

β
log

√
2π

β(detC)1/d
+ o(β−1)

where d = m− 1 and C is a d× d positive-definite matrix.

The matrix C is introduced in Eq. (6.18), see also Lemma 6.7, it is a function of the Hessian of the
energy.
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Remark (Gaussian approximation and semi-classical expansions). If v is smooth and p > 0 is fixed,
the Gibbs energy should admit an asymptotic expansion of form

g(β) = e0 −
1

β
log

√
2π

βc
+

n∑
j=1

ajβ
−j/2 +O(β−(n+1)/2) (β →∞)

to arbitrarily high order n, for some c > 0 and coefficients aj ∈ R. The first correction comes from a
Gaussian approximation of the partition function (harmonic crystal), see Section 6, with the constant
c capturing the asymptotic behavior of the determinant of the Hessian around the energy minimum.
Higher order corrections correspond to anharmonic effects. A similar expansion holds for gsurf(β).
Rigorous results for finite m are derived with semi-classical analysis [Hel02, Møl01, BM03] which
build on the analogy with the ~ → 0 limit from quantum mechanics. For m = 2 and potentials with
superlinear growth at infinity, independent results are given in [SL17].

2.4 Decay of correlations

Suppose that two defects change the energy functional from Ebulk to Ebulk + V0 + Vk, where we
assume for simplicity that V0 and Vk depend on z0 and zk alone. For large k, we may expect that the
Gibbs energies are approximately additive, i.e.,

I (β)

eff (k) = − 1

β
log µβ(e−β(V0+Vk)) +

1

β
log µβ(e−βV0) +

1

β
log µβ(e−βVk) (2.10)

should be small when the defects are far apart. I (β)

eff (k) represents an effective interaction between
the defects. In the study of systems with many defects it is important to understand how fast the
effective interaction decreases at large distances. Some intuition is gained from the zero-temperature
counterpart

I (∞)

eff (k) = inf(Ebulk + V0 + Vk)− inf(Ebulk + V0)− inf(Ebulk + Vk), (2.11)

however in general the limits β, k → ∞ cannot be interchanged and a full study of (2.10) for large k
requires techniques beyond variational calculus.

A closely related problem is about the localization of changes induced by a defect: at zero temperature,
if (zj)j∈Z is a minimizer of Ebulk + V0, how fast does zk converge to the ground state spacing a as
k → ±∞? On a similar note, how fast does zk → a for a minimizer of the surface energy Esurf

(decay of boundary layers)? At positive temperature, the question is about the speed of convergence,
for test functions f : Rk

+ → R, in

µβ(e−βV0fi)

µβ(e−βV0)
→ µβ(f), νβ(fi)→ µβ(f)

as i → ∞. Here fi((zj)j∈Z) := f(zi, . . . , zi+k−1), so that fn+i = fi ◦ τn when τ denotes the left
shift on RZ

+. These questions naturally lead to the investigation of the decay of correlations. We start
with a general result which holds for all β, p > 0.

Theorem 2.9. Assume m ∈ N ∪ {∞} and p > 0. There exist c, C > 0 such that for all β, p > 0,
k ∈ N, and bounded f, g : Rk

+ → R,∣∣µβ(f0gn)− µβ(f0)µβ(gn)
∣∣ ≤ min

q∈N:
1≤q≤n/k

(
(1− e−cβ)q + ecβ(eCβ(q/n)s−2 − 1)

)
||f ||∞||g||∞.
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When m is finite and k = m− 1, we have the stronger bound∣∣µβ(f0gn)− µβ(f0)µβ(gn)
∣∣ ≤ (1− e−cβ)n/k||f ||∞||g||∞.

The theorem is proven in Section 4.2. When m is finite, it implies exponential decay of correlations as
n→∞, however the rate− log(1− e−cβ) can be exponentially small for large β. Whenm is infinite,
Theorem 2.9 implies algebraic decay of correlations: for q = bnεc and sufficiently large n, (1−e−cβ)q

is negligible compared to β(q/n)s−2 and we find that as n→∞

∣∣µβ(f0gn)− µβ(f0)µβ(gn)
∣∣ ≤ (1 +O(1))

Cβ exp(cβ)

n(s−2)(1−ε) . (2.12)

Better bounds are available for restricted Gibbs measures. Let µ̃(N)

β be the measure Q(β)

N conditioned
on [zmin, zmax]N−1 and µ̃β the probability measure on [zmin, zmax]Z obtained from the thermodynamic
limit of µ̃(N)

β .

Proposition 2.10. Let m ∈ N ∪ {∞}. There exists c > 0 such that for all β, p > 0, smooth
f, g : R+ → R, and i 6= j,∣∣∣µ̃β(figj)− µ̃β(fi)µ̃β(gj)

∣∣∣ ≤ c

β|i− j|s
(
µ̃β(f ′i

2
)µ̃β(g′j

2
)
)1/2

.

Remark. When m is finite, the uniform algebraic decay for the restricted Gibbs measure is replaced
with uniform exponential decay exp(−γ|j − i|) with β-independent γ > 0.

The proposition is proven in Section 7. It follows from the uniform convexity of the energy (Lemma 3.3)
and known results from the realm of Brascamp-Lieb, Poincaré and Log-Sobolev inequalities. Proposi-
tion 2.10 differs from the estimate (2.12) in two ways: there is no exponentially large prefactor exp(cβ),
and the rate of algebraic decay is 1/ns instead of 1/ns−2. Exponentially large prefactors are absent
because the energy landscape has no local minimum. The improved algebraic decay 1/ns arises,
roughly, because the Gibbs measure is comparable to a Gaussian measure whose covariance is the
inverse of the energy’s Hessian near the minimum, and instead of the tails of v(r), it is the tails of
v′′(r) that count.

We suspect that for large β and small pressure, these improvements should carry over to the full Gibbs
measure µβ , but we have proofs for interactions involving finitely many neighbors only.

Theorem 2.11. Assume 2 ≤ m <∞, p ∈ (0, p∗), and rhc > 0. There exists γ > 0 such that for all
sufficiently large β, suitable C(β), all n ∈ N, and all f, g : Rd

+ → R, we have∣∣µβ(f0gn)− µβ(f0)µβ(gn)
∣∣ ≤ C(β)e−γn||f0||∞ ||gn||∞.

If m = 2, we can pick C(β) = 1.

The theorem is proven in Section 6 with perturbation theory for compact integral operators in L2(Rd).
Whenm = 2, the relevant operators are self-adjoint and spectral norms and operator norms coincide,
leading to improved statements. We conclude with a few comments.

Lagrangian vs. Eulerian point of view. The theorems above formulate decay of correlations in terms
of labelled spacings, which in the language of continuum mechanics is a Lagrangian viewpoint. On
the other hand, in statistical mechanics of point particles it is more common to deal with unlabelled
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particles (Eulerian viewpoint) and correlations are between portions of space rather than labelled
interparticle distances. The difference between the two approaches becomes quite clear for nearest
neighbor interactions (m = 1, see Eq. (2.8)), for which the spacings are i.i.d. with probability density
qβ(r) proportional to exp(−β[v(r)+pβr]). Because of the independence of spacings, correlations in
terms of spacings vanish, µβ(f0gn)− µβ(f0)µβ(gn) = 0. On the other hand, the two-point function
ρ2(0, x)1 studied in statistical mechanics of particles is a sum over the number of particles contained
in (0, x],

ρ2(0, x) =
1

`(β)

∞∑
k=1

q∗kβ (x) =
qβ(x)

`(β)
+

∫ ∞
0

qβ(y − x)ρ2(0, y)dy

with q∗kβ the n-fold convolution of qβ with itself. It is a well-known fact from renewal theory [Fel71,
Chapter XI] that

ρ2(0, x)− 1

`(β)2
→ 0 (x→∞),

but in general the difference is non-zero finite for x—in fact changing qβ the convergence as x→∞
can be arbitrarily slow, even though correlations of labelled interparticle spacings vanish identically.
One should keep this difference in mind when browsing the literature.

Path-large deviations, non-linear semi-groups, Bellman equation. For m = 2, we may view µβ as the
law of a stationary Markov chain with state space R+ and transition kernel Pβ defined in Eq. (6.6).
Theorem 2.4 is a path-large deviations result for the Markov chain. Path large deviations are often
investigated with the help of non-linear semi-groups and Hamilton-Jacobi-Bellman equations [FK06].
In our context, a natural non-linear semi-group is

V n
β f := − 1

β
log
(
P n
β e−βf

)
and for sufficiently smooth f we have a convergence of the form

lim
β→∞

Vβf(x) = −u(x) + inf
y∈R+

(
px+ v(x) + v(x+ y)− e0 + u(y) + f(y)

)
where u solves

u(x) = inf
y∈R+

(
px+ v(x) + v(x+ y)− e0 + u(y)

)
.

Similar equations, motivated by quantum mechanics and geometric optics, appear in semi-classical
analysis [Hel02, Eq. (5.4.4)]. Proposition 3.9 below provides an infinite-m ersatz and is instrumental
in the proof of Theorem 2.4.

Vanishing pressure. When βp = βpβ → 0 faster than exp(−β|e0
0|) (see (2.9)), the Gibbs measure

should no longer be comparable to a Gaussian. Instead, it should be close to the ideal gas measure,
for which spacings are i.i.d. exponentially distributed with parameter βpβ , and we may again expect
uniform exponential decay of correlations (for finite m). When βpβ → 0 at a speed comparable to
exp(−β|e0

0|), we should instead expect an exponentially small spectral gap: the Markov chain has
two metastable wells, one corresponding to the optimal spacing a and another well at infinity. The
exponentially small spectral gap is associated with the fracture of the chain of atoms, in the spirit of
“fracture as a phase transition” [Tru96].

1Intuitively, ρ2(0, x) represents the probability for having one particle at 0 and one particle at x. Rigorously,
ρ2(x1, x2) = ρ2(0, x2 − x1) and for every A,

∫
A
ρ2(x1, x2)dx1dx2 is the average number 〈NA(NA − 1)〉 of or-

dered particle pairs in A.
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3 Energy estimates

In this section we analyze the variational problems arising at zero temperature. Throughout the section
we assume that p ∈ [0, p∗) as in Assumption 2.

3.1 Bulk periodicity

Lemma 3.1. Every minimizer of EN : RN−1
+ → R lies in [zmin, zmax]N−1.

Proof. Let z1, . . . , zN−1 > 0. If zj > zmax for some j, define a new configuration by shrinking zj to
zmax, leaving all other spacings unchanged: z′i = zi for i 6= j and z′j = zmax. Since zmax is a strict
minimizer of v and r 7→ v(r) increases on [zmax,∞), shrinking the bonds decreases EN strictly and
the original configuration could not have been a minimizer.

If some interparticle spacing is smaller than zmin, we remove a particle and reattach it to one end of
the chain as follows. Assume b := min(z1, . . . , zN−1) < zmin and let j ∈ {1, . . . , N − 1} with
zj = b. Let x1 = 0 and xi = z1 + · · · + zi−1, i = 2, . . . , N be associated particle positions. Thus
xj+1 − xj = zj = b and xi+1 − xi ≥ b for all i. The interaction of xj with all other particles is

v(b) +

min{m−1,N−j−1}∑
i=1

v(zj + . . .+ zj+i) +

min{m,j−1}∑
i=1

v(zj−1 + . . .+ zj−i).

For finite m we note that, if v(zj−i + . . . + zj−i+m) > 0 for an i ∈ {1, . . . ,min{m, j − 1}}, then
v(zj−i + . . . + zj−i+m) < v(zj−i + . . . + zj−1) by Assumption 1(i). Removing the particle xj thus
leads to a configuration of N atoms whose energy has decreased by at least

∆1 = v(b) + v(zmax)− 2α1

m∑
n=2

(nb)−s ≥ v(b) + v(zmax)− 2α1

∞∑
n=2

(nb)−s > 0. (3.1)

The last inequality holds because of Assumption 1(ii) and b < zmin. We define a new configuration
by attaching the removed particle to either end of the chain at a distance r = zmax. Since v(zmax) +
pzmax < 0 by Assumption 2, this decreases EN further, so overall the new configuration has strictly
smaller energy, and the original sequence of spacings cannot be a minimizer of EN .

At zero pressure, it is a well-known fact that theN -particle energy is subadditive,EN+M ≤ EN+EM .
Indeed placing two N ,M -particle minimizers side by side with large mutual distance, because of
v(r) → 0 at r → ∞, yields an N + M -particle configuration with energy ≤ EN + EM . Positive
pressure penalizes large mutual distances between two consecutive blocks, so the construction has
to be modified.

Lemma 3.2. Let m ∈ N ∪ {∞} and p ∈ [0, p∗). Then EN+M−1 ≤ EN + EM for all N,M ∈ N,
and the limit e0 = limEN/N exists and satisfies EN ≥ (N − 1)e0 for all N ∈ N.

Proof. Let z ∈ (rhc,∞)N−1 andw ∈ (rhc,∞)M−1 be minimizers of EN and EM respectively. Define
y ∈ (rhc,∞)M+N−2 by concatenating z and w. By Lemma 3.1, all spacings are in [zmin, zmax].
Therefore interactions that involve bonds from both blocks are for spacings ≥ 2zmin > zmax, hence
negative, and

EN+M−1 ≤ EN−1(y) ≤ EN + EM .
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As a consquence, an := En+1 is subadditive. By Fekete’s subadditive lemma, the limit e0 = lim an/n =
limEn/n exists and is equal to the infimum of an/n, henceEN ≥ (N−1)e0. Notice that e0 > −∞
since

En ≥ (n− 1)
(
v(zmax) +

∞∑
j=2

v(jzmin)
)
≥ (n− 1)

(
v(zmax) + α1z

−s
min

∞∑
j=2

j−s
)
.

(In the terminology of statistical mechanics, the energy is stable [Rue69, Chapter 3.2].)

The next lemma in particular shows that EN is uniformly convex on [zmin, zmax]N−1. For later pur-
poses, we state and prove this on a slightly larger set.

Lemma 3.3. There are constants ε, η, C > 0 such that for all m,N,N1, N2 ∈ N with N1 < N2 ≤
N , and z = (z1, . . . , zN−1) ∈ [zmin,∞]N−1 with zj ≤ zmax + ε for N1 ≤ j ≤ N2− 1, the Hessian
of EN at z satisfies

η

N2−1∑
j=N1

ζ2
j ≤

N2−1∑
i,j=N1

ζiζj∂i∂jEN(z) ≤ C

N2−1∑
j=11

ζ2
j

for all ζ ∈ RN−1. Moreover, the submatrix (∂i∂jEN(z))N1≤i.j≤N2−1 of the Hessian has strictly posi-
tive diagonal entries ∂2

i EN(z) > 0 and non-positive off-diagonal entries ∂i∂jEN(z) ≤ 0. In particular,
this matrix is monotone.

Note that the Hessian is independent of the pressure p.

Proof. Let L be the collection of discrete intervals {i, . . . , j − 1} ⊂ {1, . . . , N − 1} of length
j − i ≤ m. Then for all i, j

∂i∂jEN(z) =
∑

L∈L: {i,j}⊂L

v′′
(∑
j∈L

zj

)
.

For i 6= j and i, j ∈ L we have
∑

j∈L zj ≥ 2zmin hence v′′(
∑

L zj) ≤ 0; it follows that the off-
diagonal entries of the Hessian are non-positive. Next we show that the row-sums are bounded from
below by some constant η > 0 if N1 ≤ i ≤ N2 − 1.

N∑
j=1

∂i∂jEN(z) = ∂2
i EN(z) +

∑
j:j 6=i

∂j∂iEN(z)

= v′′(zi) +
∑

L3i,#L≥2

v′′
(∑
j∈L

zj

)
+
∑
j:j 6=i

∑
L⊃{i,j}

v′′
(∑
j∈L

zj

)
≥ v′′(zi) +

m∑
n=2

v′′(nzmin)
∑

L3i,#L=n

(
1 +

∑
j∈L,j 6=i

1
)

≥ v′′(zi)− v′′(zmax) + v′′(zmax) +
∞∑
n=2

n2v′′(nzmin) = η.

Assumption 1 guarantees that η > 0 for ε > 0 sufficiently small. Thus row sums are positive, off-
diagonal matrix elements non-positive, and consequently diagonal elements positive. Moreover, with
C = 2 max{v′′(r) | r ∈ [zmin, zmax + ε]} the diagonal elements are bounded from above by
C
2

. The proof of the lemma is then completed with the help of standard arguments, for example ev-
ery eigenvalue of (∂i∂jEN(z))N1≤i.j≤N2−1 lies in a Gershgorin circle with center ∂2

i EN and radius∑
j 6=i |∂i∂jEN |. In particular, (∂i∂jEN(z))N1≤i,j≤N2−1 is an M-matrix and thus monotone.
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Proof of Theorem 2.1. (a) By Lemma 3.1 minimizers lie in the compact set [zmin, zmax]N−1. On that
set the Hessian of EN is positive definite because of Lemma 3.3, so EN is strictly convex and the
minimzer is unique.

(b) The convergence z(N)

j → a as j,N → ∞ along N − j → ∞, where a ∈ [zmin, zmax] is the
unique minimizer of R+ 3 r 7→ pr +

∑m
k=1 v(kr), with the help of Lemma 3.3 is a straightforward

adaptation of the corresponding proof in [GR79] and will be omitted. By Assumption 1(ii) we even
have a > zmin. We remark that the proof in [GR79] also shows that max{z(N+1)

j , z(N+1)

j+1 } ≤ z(N)

j for
j = 1, . . . , N − 1. This in turn implies that the convergence is in fact uniform away from a boundary
layer of vanishing volume fraction.

(c) This observation in combination with Lemma 3.2 yields (c). Note that e0 < 0 since e0 ≤ pzmax +∑∞
k=1 v(kzmax) ≤ pzmax + v(zmax) < 0 by Assumptions 1 and 2.

Notice that also a < zmax except for the exceptional cases in which only nearest neighbors interact,
i.e. m = 1 or v(z) = 0 for z ≥ 2zmax, and the pressure vanishes.

3.2 Surface energy

Proposition 3.4. Let m ∈ N ∪ {∞} and p ≥ 0. Then

lim
N→∞

(EN −Ne0) = esurf = 2 inf
D0

Esurf − pa−
m∑
k=1

kv(ka).

Proof. For simplicity we write down the proof for m = ∞; the proof when m ∈ N is completely
analogous. Fix k ≥ 2 and ε > 0. Let n1, n2 ∈ N with n2 ≥ k and N = n1 + n2 + 1. Let
z = (z−n1 , . . . , zn2−1) ∈ [zmin, zmax]n1+n2 be the spacings of the N -particle ground state, labelled
by j = −n1, . . . , n2−1 rather than 1, . . . , N−1. Choosing n1 and n2 large enough we may assume∑k−1

j=0 |zj−a|2 ≤ ε. Since the Hessian has matrix norm uniformly bounded from above (Lemma 3.3),
changing the spacings z0, . . . , zk−1 to a increases the energy by Cε at most thus

EN ≥ EN(z−n1 , . . . , z−1, a, . . . , a, zk, . . . , zn2−1)− Cε.

We decompose the energy of the modified configuration as AN +BN + CN +DN where

AN = En1+1(z−n1 , . . . , z−1) +W(z−n1 , . . . , z−1; a, . . . , a),

BN = Ek+1(a, . . . , a)

CN =W(a, . . . , a; zk, . . . , zn2−1) + En2−k+1(zk, . . . , zn2−1)

DN =
−1∑

i=−n1

n2∑
j=k

v(zi + · · ·+ z−1 + ka+ zk + · · ·+ zj)

whereW gathers interactions that involve bonds from two consecutive blocks. The term DN repre-
sents the interactions between the left and right blocks. It satisfies

0 ≥ DN ≥
∞∑
n=k

(n− k)v(nzmin) ≥ −α1

∞∑
n=k

n− k
(nzmin)s

≥ − α1

zsmin

∞∑
n=k

1

ns−1
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which goes to zero as k → ∞. Next we subtract Ne0 from EN and distribute it as Ne0 = n1e0 +
(k + 1)e0 + (n2 − k)e0 over the first three sums. The middle block contributes

BN − (k + 1)e0 =
k∑

n=1

(k − n+ 1)v(na) + kpa− (k + 1)pa− (k + 1)
∞∑
n=1

v(na)

= −pa−
k∑

n=1

nv(na)− (k + 1)
∞∑

n=k+1

v(na)→ −
∞∑
n=1

nv(na)

as k →∞. For the first block, we notice that

AN − n1e0 ≥ Esurf(z−n1 , . . . , z−1, a, a, . . .) ≥ inf
D0

Esurf .

Indeed the only missing piece are negative interactions between the left block and the right tail of a
semi-infinite chain. The contribution of the right block CN is estimated in a similar way. We combine
the estimates and let first n1, n2 →∞, then k →∞, and finally ε→ 0 and find

lim inf
N→∞

(
EN −Ne0

)
≥ 2 inf

D0

Esurf − pa−
∞∑
n=1

nv(na).

For the upper bound, we take approximate minimizers of Esurf and glue them together to anN -particle
configuration by assigning them to the left and right boundaries, with spacings a in between. This yields
an N -particle configuration with energy EN(z)−Ne0 ≤ 2 infD0 Esurf −

∑∞
n=1 nv(na) +O(ε), and

the required upper bound follows.

Next we extend Esurf to the space D ⊂ (rhc,∞)N of sequences with
∑∞

j=1(zj − a)2 <∞.

Lemma 3.5. Let m ∈ N ∪ {∞}. Let βj =
∑m

k=j+1(k − j)v′(ka), j = 1, . . . ,m − 1. Then for all
(zj)j∈N ∈ D0, we have

Esurf((zj)j∈N) = −
m−1∑
j=1

βj(zj−a)+
∞∑
j=1

m∑
k=1

[
v
(j+k−1∑

i=j

zi

)
−v(ka)−v′(ka)

j+k−1∑
i=j

(zi−a)
]
. (3.2)

The right-hand side is absolutely convergent for all (zj)j∈N ∈ D.

Proof. Let γj = zj − a. Using e0 =
∑m

k=1 v(ka), we have

Esurf((zj)j∈N) =
∞∑
j=1

[
p(zj − a) +

m∑
k=1

(
v(ka+ γj + · · ·+ γj+k−1)− v(ka)

)]
.

The equilibrium condition p+
∑m

k=1 kv
′(ka) = 0 yields

∞∑
j=1

m∑
k=1

v′(ka)(γj + · · ·+ γj+k−1)

=
∞∑
i=1

γi

m∑
k=1

v′(ka)#{j ≥ 1 | j ≤ i ≤ j + k − 1}

=
∞∑
i=1

γi

m∑
k=1

v′(ka) min(i, k)

= −
m−1∑
i=1

γi

m∑
k=i+1

(k − i)v′(ka) = −
m−1∑
i=1

βiγi −
∞∑
i=1

pγi
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Boundary layers for a chain of atoms at low temperature 17

and the alternate expression for Esurf follows. Next consider (γj) ∈ `2(N) with γj > rhc − a for all
j ∈ N. Under Assumption 1 the derivatives behave as v′′(r) = O(r−s−2) and v′(r) = O(r−s−1) as
r → ∞ with s > 2. It follows that εj :=

∑∞
k=1 kv

′(ka) decays like
∫∞
ja
r × r−s−1dr = O(j−s+1)

so that
∑∞

j=1 ε
2
j <∞. The Cauchy-Schwarz inequality then shows

m−1∑
j=1

∣∣βjγj∣∣ ≤ c
( ∞∑
j=1

γ2
j

)1/2

for some suitable m-independent constant c. In particular, when m = ∞ the sum
∑

j βjγj is abso-
lutely convergent. In order to show that the double sum over k and j in Eq. (3.2) is absolutely conver-
gent, we proceed with estimates analogous to Lemma 3.3. Assume first that all spacings zj = γj + a
are larger than zmin. Set supr≥zmin

|v′′(r)| = c1 and note that, by Assumption 1(iii) for all k ≥ 2,
supr≥kzmin

|v′′(r)| ≤ |v′′(kzmin)|. Hence

2
∞∑
j=1

m∑
k=1

∣∣v(ka+ γj + · · ·+ γj+k−1)− v(ka)− v′(ka)(γj + · · ·+ γj+k−1)
∣∣

≤ c1

∞∑
j=1

γ2
j +

∞∑
j=1

m∑
k=2

|v′′(kzmin)| (γj + · · ·+ γj+k−1

)2

≤ c1

∞∑
j=1

γ2
j +

∞∑
j=1

m∑
k=2

k|v′′(kzmin)| (γ2
j + · · ·+ γ2

j+k−1

)
≤
(
c1 +

m∑
k=1

k2|v′′(kzmin)|
) ∞∑
j=1

γ2
j .

More generally, if (γj) ∈ `2(N) ∩ (rhc − a,∞)N, then γj → 0 and because of a > zmin, there
is an i ∈ N such that zj ≥ zmin for all j ≥ i. Let ε = min{|zj| | j = 1, . . . , i}. Summands with
j ≥ i can be estimated as before. For j ≤ i and k ≥ i + 2, we proceed as before as well, except
that we replace v′′(kzmin) by v′′((k − i)zmin + iε). This leaves a finite sum over j ≤ i, k ≤ i + 2
and overall, the sum is absolutely convergent.

Lemma 3.6. The map D → R, (zj) 7→ Esurf

(
(zj)j∈N

)
defined by (3.2) is continuous.

Proof. Let z, z(1), z(2), . . . be sequences inD such that z(n)−z → 0 in `2(N). As limi→∞
∑

j≥i(γ
(n)

j )2 =
0 uniformly in n, the estimates above show that for every ε > 0, we can find i ∈ N such that the sum
over {(j, k) | j ≥ i or k ≥ i} contributes to Esurf(γ

(n)) and Esurf(γ) an amount bounded by ε. In the
remaining finite sum the continuity of v(r) allows us to pass to the limit. The proof is easily concluded
with an ε/3 argument.

Lemma 3.7. The restriction of Esurf to D ∩ [zmin, zmax + ε]N is strictly convex and satisfies

Esurf

(
(zj)j∈N

)
≥ c1

∞∑
j=1

(zj − a)2 − c2

for suitable m-independent constants ε, c1, c2 > 0.

Proof. The proof of the convexity is similar to Lemma 3.3 and therefore omitted. For the coercivity,
consider first m = ∞. Let γj = zj − a, γ(n)

j = γj1l{j≤n} the truncated strain, and z(n)

j = a + γ(n)

j .
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Then

Esurf(z
(n)) =

n∑
j=1

(
h(z(n)

j , z(n)

j+1, . . .)− e0)

= En+1(z1, . . . , zn)− ne0 +
n∑
j=1

∞∑
k=1

v(zj + · · ·+ zn + ka)

thus
En+1(z1, . . . , zn)− ne0 ≤ Esurf(z

(n)) + C

where C = −
∑∞

k,`=1 v(`zmin + ka) <∞. Next we cut and paste (z1, . . . , zn) into the middle of a

large ground state chain: let k1, k2 ∈ N with k2 ≥ n+ 1, N = k2 + k1 + 1 and (z(N)

−k1+1, . . . , z
(N)

k2
)

the spacings of the N -particle ground state. Let z′ = (z(N)

−k1+1, . . . , z
(N)

0 , z1, . . . , zn, z
(N)

n+1, . . . , z
(N)

k2
).

A Taylor expansion of EN around the minmizer z(N) together with Lemma 3.3 and Theorem 2.1 yields

EN(z′)− EN(z(N)) ≥ η

2

n∑
j=1

(zj − z(N)

j )2 → η

2

n∑
j=1

(zj − a)2 (k1, k2 →∞). (3.3)

On the other hand, let C1 =
∑∞

`=2 `|v(`zmin)| be a bound for interactions between blocks and
remember Ek ≥ ke0 by Lemma 3.2 and e0 ≤ 0. Then

EN(z′)− EN(z(N)) ≤ 2C1 + Ek1+1(z(N)

−k1+1, . . . , z
(N)

0 ) + En+1(z1, . . . , zn)

+ Ek2−n+1(z(N)

n+1, . . . , z
(N)

k2
)− EN

≤ 4C1 + En+1(z1, . . . , zn)− En+1(z(N)

1 , . . . , z(N)

n )

≤ 4C1 + En+1(z1, . . . , zn)− (n+ 1)e0

≤ 4C1 − e0 + C + Esurf(z
(n)) = C2 + Esurf(z

(n)).

We combine with Eq. (3.3) and let first k1, k2 → ∞, then n → ∞, and conclude that η
2

∑∞
j=1 γ

2
j ≤

Esurf(z) + C2 with the help of Lemma 3.6. This proves the coercivity in the case m = ∞. The proof
for finite m is similar.

Lemma 3.8. The surface energy Esurf has a unique minimizer inD. The minimizer is inD∩[zmin, zmax]N.

Proof. We proceed as in Section 3.1. Let (zj)j∈N ∈ D. If one of the zj ’s is larger than zmax, we
can define a new configuration by shrinking this spacing to zmax, leaving all other configurations un-
changed. This decreases Esurf . If one of the zj ’s is smaller than zmin, let b be the smallest among
them, and j ∈ N with b = zj . Then we can define a new configuration by removing a partic-
ipating particle and possibly shrinking a bond, i.e., (z1, z2, . . .) 7→ (z1, z2, . . . , zj−1,min(zj +
zj+1, zmax), zj+2, . . .). Since e0 ≤ 0, just as in Lemma 3.1, we see that this decreases the en-
ergy. Repeating these steps if necessary, the initial configuration is mapped to a new one that has
strictly lower energy and all spacings in [zmin, zmax].

The existence of a minimizer now follows from the coercivity proven in Lemma 3.7, the compactness
of [zmin, zmax]N ∩ D with respect to the weak `2-convergence (shifted by (a, a, . . .)) and the weak
lower semicontinuity of Esurf on that set due to Lemmas 3.6 and 3.7. The minimizer is unique because
of the strict convexity from Lemma 3.7.

Proof of Theorem 2.2. Clear from Lemmas 3.6, 3.7, 3.8 and Proposition 3.4.
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Proof of Proposition 2.3. In complete analogy to Lemma 3.5 we obtain

Ebulk((zj)j∈Z) =
∞∑

j=−∞

m∑
k=1

[
v
(j+k−1∑

i=j

zi

)
− v(ka)− v′(ka)

j+k−1∑
i=j

(zi − a)
]
. (3.4)

for all (zj)j∈Z ∈ D+
0 , and as in Lemma 3.6, we see that (3.4) defines a continuous mapD+ → R. The

proof of strict convexity, even on [zmin, zmax+ε]Z∩D+ for some ε > 0, is again similar to Lemma 3.3.
As in Lemma 3.8 we have that Ebulk has a unique minimizer in D, which lies in D ∩ [zmin, zmax]N.
Since a ∈ (zmin, zmax] and ∂iEbulk((zj)j∈Z) = 0 for every i ∈ Z by (3.4), the minimizer of Ebulk

is (. . . , a, a, . . .). Clearly, Ebulk(. . . , a, a, . . .) = 0. Finally, the formula connecting Ebulk and Esurf is
clear on D+

0 and follows on D+ by approximation.

3.3 A fixed point equation

In the following we assume that v has a hard core:

Assumption 3. rhc > 0 and v(r)→∞ as r ↘ rhc.

We extend h, defined by (2.1) on (rhc,∞)N, to RN
+ by setting

h(z) =∞ if zj ≤ rhc for some j. (3.5)

Our main aim in this subsection is to obtain the following characterisation of E surf , cf. (2.4).

Proposition 3.9. Let I = E surf − min Esurf . Then I is the unique lower semi-continuous solution
(product topology) of the equation

I(z1, z2, . . .) = h(z1, z2, . . .)− e0 + I(z2, z3, . . .) (3.6)

such that min I = 0 and I =∞ if zj ≤ rhc for one of the zj ’s.

Note that, by induction, (3.6) is equivalent to

I(z) =
k∑
j=1

(
h(zj, zj+1, . . .)− e0

)
+ I(zk+1, zk+2, . . .) (3.7)

for all k ∈ N and z = (zj)j∈N ∈ RN
+. (Observe that h(z) > −∞ for all z ∈ RN

+ by the decay
assumption on v and rhc > 0.)

We begin with a technical auxiliary result.

Lemma 3.10. If z1, z2, . . . > 0 and c̄ <∞ are such that

sup
k∈N

k∑
i=1

(
h(zi, . . . , zm+i−1)− e0

)
≤ c̄,

then z = (zj)j∈N ∈ D. Moreover, any z ∈ D satisfies

lim
k→∞

k∑
j=1

(
h(zj, . . . , zj+m−1)− e0

)
= Esurf(z).
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Proof. Let ε0 < min(a− zmin, zmax − a). The partial sum
∑k

j=1 h(zj, . . . , zj+m−1) is equal to the
energy Ek+1(z1, . . . , zk) plus an interaction

k∑
j=1

m+j−1∑
i=k+1

v(zj + . . .+ zi),

(the inner sum being 0 if m+ j − 1 < k + 1) which is bounded from below by

−α1

k∑
j=1

∞∑
i=k+1

(
(i− j + 1)rhc

)−s ≥ −C k∑
j=1

(k − j + 1)−s+1

≥ −C
∞∑
i=1

i−s+1 =: −C1 > −∞.

By adding n1 and n2 spacings a to the left and right respectively, we may view z as a block of spacings
in anN -particle configuration whereN = n1 +n2 +k+1. Let ẑ = (a, . . . , a, z1, . . . , zk, a, . . . , a).
The new configuration satisfies

EN(ẑ) ≤ Ek+1(z1, . . . , zk) + 2C1 + En1+1(a, . . . , a) + En2+1(a, . . . , a)

≤ C +Ne0

for some suitable constant C that depends on rhc, c̄ and v only. Let z(N) be the N -particle ground
state with spacings labelled by j = −n1 +1, . . . , k+n2 rather than 1, . . . , N−1. Since EN(z(N)) =
EN ≥ Ne0 by Lemma 3.2 and e0 ≤ 0, we get

EN(ẑ)− EN(z(N)) ≤ C.

Suppose that all spacings zj are in [zmin, zmax]. We use a Taylor approximation around the minimizer
z(N), apply Lemma 3.3 and Theorem 2.1, and obtain.

C ≥ η

2

k∑
j=1

(zj − z(N)

j )2 → η

2

k∑
j=1

(zj − a)2 (n1, n2 →∞). (3.8)

Letting k → ∞ we obtain an upper bound for the `2-norm of (zj − a)j∈N. If there are zj with
zj < zmin or zj > zmax, we modify the configuration z1, . . . , zk without increasing its energy as in
the proof of Lemma 3.1 to obtain z′1, . . . , z

′
k. When we shrink bonds zj > zmax to z′j = zmax, leaving

all other spacings unchanged, both z′j and zj are strictly larger than ε0 so the truncated `2-norm∑k
j=1 min

(
(zj − a)2, ε2

0) is unaffected.

On the other hand suppose zi = min(zj) < zmin. Then we remove the particle xi, reattach it a
distance zmax to the left of the k-particle block. This effects the change

(zi−1 − a)2 + (zi − a)2 → (zmax − a)2 + ((zi−1 + zi)− a)2

on the `2-norm. Both |zi − a| and |zmax − a| are larger than ε0, moreover

min((zi−1 + zi − a)2, ε2
0)−min((zi−1 − a)2, ε2

0) ≤ ε2
0.

So the truncated `2-norm increases by at most ε2
0. Let n be the number of times this step has to be

performed. Iterating we arrive at a configuration z′′1 , . . . , z
′′
k ∈ [zmin, zmax] with

k∑
j=1

min(ε2
0, (z

′′
j − a)2) ≤ nε2

0 +
k∑
j=1

min((zj − a)2, ε2
0)
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and Ek+1(z′′) ≤ Ek+1(z) − nδ for some δ > 0, cf. (3.1). Making ε0 smaller if necessary we may
assume ε2

0 < δ. We combine with Eq. (3.8) for ẑ′′ and C ′′ = C − nδ and obtain

k∑
j=1

min((zj − a)2, ε2
0) ≤ C − nδ + nε2

0 ≤ C.

We let k →∞ and find that the truncated `2-norm of (zj)j∈N is finite. It follows in particular that there
are only finitely many spacings |zj − a| ≥ ε0, and (zj − a)j∈N is square summable. This establishes
the first assertion.

In order to show the convergence of the partial sums to Esurf , first observe that Esurf satisfies (3.7)
for I = Esurf . This is clear for z ∈ D0 and follows for general z ∈ D by continuity. If z ∈ D, the
sequence of shifts ((zj)j≥k)k∈N converges to (. . . , a, a, . . .) strongly and thus

k∑
j=1

(
h(zj, zj+1, . . .)− e0

)
= Esurf(z)− Esurf(zk+1, zk+2, . . .)

→ Esurf(z)− Esurf(. . . , a, a, . . .) = Esurf(z).

as k →∞.

We have actually proven the following: for sufficiently small ε0 > 0, suitable c1, c2 > 0, and all
(zj)j∈N ∈ RN

+,

E surf

(
(zj)
)
≥ c1

∞∑
j=1

min((zj − a)2, ε2
0)− c2. (3.9)

Proof of Proposition 3.9. Let I = E surf − min Esurf . Observe that I satisfies (3.6). This is clear for
z ∈ D0 and for z /∈ D. For the remaining z it follows from Lemma 3.6. We now show that I is lower
semi-continuous with respect to pointwise convergence. Without loss we suppose that z(n) ∈ D con-
verges to z ∈ [rhc,∞)N pointwise with I(z(n)) ≤ c̄ <∞ for some constant c̄ > 0. Passing to a sub-
sequence (not relabelled) we may furthermore assume that lim infn→∞ I(z(n)) = limn→∞ I(z(n)).
Fix an ε > 0 such that the estimate in Lemma 3.7 is satisfied. By (3.9)

max
n∈N

#{j | z(n)

j /∈ [zmin, zmax + ε]} ≤ C

for some uniform constant C > 0 since zmin < a ≤ zmax. For given N ∈ N we denote by jn the
first index j ≥ N , if existent, with z(n)

j /∈ [zmin, zmax + ε]. Passing to a further subsequence (not
relabelled) and choosing N sufficiently large we may achieve that either such indices do not exist or
that jn → ∞ as n → ∞. In both cases we get that zj ∈ [zmin, zmax + ε] for j ≥ N . In particular,
zj > rhc for j ≥ N .

In the second case we define new configurations z̃(n) by applying the procedure detailed in the proof of
Lemma 3.8 to the tails (z(n)

j )j≥N shrinking the bonds z(n)

j > zmax + ε, j ≥ N , and deleting particles
x(n)

j+1 if z(n)

j < zmin, j ≥ N , so that

Esurf((z̃
(n)

j )j≥N) ≤ Esurf((z
(n)

j )j≥N).

In the first case we simply set z̃(n) = z(n). Since jn →∞ in the second case, we still have z̃(n) → z
pointwise.
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By (3.7) with k = N − 1 we have

I(z(n)) ≥
N−1∑
j=1

(
h(z(n)

j , z(n)

j+1, . . .)− e0

)
+ I(z̃(n)

N , z̃(n)

N+1, . . .).

From the decay properties of v and z(n)

j ≥ rhc > 0 it is easy to see that, for any j ∈ N, h(z(n)

j , z(n)

j+1, . . .)
converges to h(zj, zj+1, . . .). Since I(z(n)) ≤ c̄ and I ≥ 0, from Assumption 3 we also get zj > rhc

for j = 1, . . . , N − 1. So

N−1∑
j=1

(
h(z(n)

j , z(n)

j+1, . . .)− e0

)
→

N−1∑
j=1

(
h(zj, zj+1, . . .)− e0

)
.

In particular, I((z̃(n)

j )j≥N) ≤ C and so Lemma 3.7 implies that z ∈ D and z̃(n) − z ⇀ 0 in `2 by
coercivity and hence that

lim inf
n→∞

I((z̃(n)

j )j≥N) ≥ I((zj)j≥N)

by convexity. Summarizing we obtain

lim inf
n→∞

I(z(n)) ≥
N−1∑
j=1

(
h(zj, zj+1, . . .)− e0

)
+ I(zN , zN+1, . . .) = I(z).

Suppose, conversely, that a lower semi-continuous I : RN
+ → R∪{+∞} satisfies (3.6) with min I =

0 and I(z) = ∞ if zj ≤ rhc for some j. We first note that, since I ≥ 0, for any z with I(z) < ∞
one has

sup
k∈N

k∑
j=1

(
h(zj, zj+1, . . .)− e0

)
<∞

by (3.7) and so z ∈ D by Lemma 3.10. It thus suffices to show that

I(z) = Esurf(z) + I(a, a, . . .) (3.10)

for all z ∈ D.

If z ∈ D, then Esurf(z) is indeed finite by Lemma 3.5. We have limk→∞
∑k

j=1

(
h(zj, . . . , zj+m−1)−

e0

)
= Esurf(z) by Lemma 3.10. Since the sequence of shifts ((zj)j≥k)k∈N converges to (a, a, . . .)

pointwise as k →∞, taking the lim inf in (3.7) yields

I(z) = lim
k→∞

k∑
j=1

(
h(zj, zj+1, . . .)− e0

)
+ lim inf

k→∞
I(zk+1, zk+2, . . .) ≥ Esurf(z) + I(a, a, . . .).

Note that, as I 6≡ ∞, this inequality also shows that I(a, a, . . .) <∞.

For the reverse inequality, by choosing k large enough in (3.7) we first see that (3.10) holds true for all
z ∈ D0. We denote by z(N) the truncation with z(N)

j = zj for j ≤ N and z(N)
j = a for j ≥ N + 1.

Since z(N) → z pointwise and z(N)− z → 0 in `2 asN →∞, lower semi-continuity of I and strong
continuity of Esurf (see Lemma 3.6) give

I(z) ≤ lim inf
N→∞

I(z(N)) = lim inf
N→∞

Esurf(z
(N)) + I(a, a, . . .) = Esurf(z) + I(a, a, . . .),

where we have used that z(N) ∈ D0 for all N .
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We now restrict to the case m <∞. Let d = m− 1. By (3.7) with k = d we have

Esurf((zj)j∈N) =
d∑
j=1

(
h(zj, . . . , zj+d)− e0

)
+ Esurf(zd+1, zd+2, . . .)

= Ed+1(z1, . . . , zd)− de0 +W (z1, . . . , zd; zd+1, . . . , z2d)

+ Esurf((zj)j≥d+1),

(3.11)

for any (zj)j∈N ∈ D, where

W (z1, . . . , zd; zd+1, . . . , z2d) =
∑

1≤i≤d<j≤2d
j−i≤d

v(zi + . . .+ zj).

Taking the infimum over (zj)j∈N ∈ D0, with fixed z1, . . . , zd and setting

u(x) = inf
{
Esurf((zj)j∈N) | (zj)j∈N ∈ D0, (z1, . . . , zd) = x

}
= inf

{
Esurf((zj)j∈N) | (zj)j∈N ∈ D, (z1, . . . , zd) = x

}
(recall Lemma 3.6) leads to

u(x) = inf
y∈Rd+

(
Ed+1(x) +W (x; y)− de0 + u(y)

)
.

In Chapter 6 we will need the following estimate.

Lemma 3.11. Set Aε = [zmin, zmax + ε]d and Bε = Rd
+ \ Aε. Then, for any ε > 0 there exists a

δ > 0 such that
inf
y∈Bε

(
Ed+1(x) +W (x; y)− de0 + u(y)

)
≥ u(x) + δ

for all x ∈ Aε.

Proof. Suppose (zj)j∈N ∈ D0 is such that (z1, . . . , zd) ∈ Aε, in particular, zj ≥ zmin for j =
1, . . . , d. If (zd+1, zd+2, . . .) /∈ [zmin, zmax + ε]N we construct a new configuration (z′j)j∈N ∈ D0

without changing the first d spacings similarly as in the proofs of Lemma 3.1 and 3.8.

If zi > zmax + ε, we define (z′j)j∈N by setting z′j = zj for j 6= i and z′i = zmax. Then

Esurf((z
′
j)j∈N) ≤ Esurf((zj)j∈N) + v(zmax)− v(zmax + ε). (3.12)

Now assume b = min{zd+1, zd+2, . . .} < zmin. We choose an i ≥ d + 1 with zi = b and define
(z′j)j∈N by setting z′j = zj for j < i, z′i = min{zi + zi+1, zmax} and z′j = zj+1 for j > i. As in
Lemmas 3.1 and 3.8 (in particular using that e0 ≤ 0), we see that

Esurf((z
′
j)j∈N) ≤ Esurf((zj)j∈N)−

(
v(b) + v(zmax)− 2α1

m∑
n=2

(nb)−s
)

≤ Esurf((zj)j∈N)− 2α1

∞∑
n=m+1

(nzmin)−s.

(3.13)

The estimates (3.12) and (3.13) show that, for any (zj)j∈N ∈ D0 with (z1, . . . , zd) ∈ Aε and
(zd+1, . . . , z2d) ∈ Bε there is a (z′j)j∈N ∈ D0 with (z′1, . . . , z

′
d) = (z1, . . . , zd) such that

Esurf((z
′
j)j∈N) ≤ Esurf((zj)j∈N)− δ,
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where δ = min
{
v(zmax + ε)− v(zmax), 2α1

∑∞
n=m+1(nzmin)−s

}
> 0. Using (3.11) we arrive at

u(z1, . . . , zd) + δ ≤ Ed+1(z1, . . . , zd)− de0 +W (z1, . . . , zd; zd+1, . . . , z2d) + Esurf((zj)j≥d+1).

The claim now follows by taking the infimum over (zj)j∈N with fixed (z1, . . . , zd) conditioned on
(zd+1, . . . , z2d) ∈ Bε.

A simpler proof gives the following estimate that will also be needed in Chapter 6.

Lemma 3.12. For any ε > 0 there exists a δ > 0 such that Ebulk(z) ≥ δ for all z ∈ D+\[zmin, zmax+
ε]Z.

Proof. By continuity we may assume that z = (zj)j∈Z ∈ D+
0 \ [zmin, zmax + ε]Z. If zi > zmax + ε,

we define z′ = (z′j)j∈Z by setting z′j = zj for j 6= i and z′i = zmax. Then

0 ≤ Ebulk(z′) ≤ Ebulk(z) + v(zmax)− v(zmax + ε).

If b = min{zj : j ∈ Z} < zmin. We choose the smallest i with zi = b and define z = (z′j)j∈N by
setting z′j = zj for j < i, z′i = min{zi + zi+1, zmax} and z′j = zj+1 for j > i. As in (3.13) we get

0 ≤ Ebulk(z′) ≤ Ebulk(z)− 2α1

∞∑
n=m+1

(nzmin)−s.

This concludes the proof.

4 Gibbs measures for the infinite and semi-infinite chains

Here we prove the existence of νβ , µβ , g(β), gsurf(β) and check that µβ is shift-invariant and mixing,
hence ergodic; the results and methods are fairly standard. In addition, we provide an a priori estimate
on the decay of correlations with explicit analysis of the β-dependence (Theorem 4.4) which to the
best of our knowledge is new. The results from this section need only very little on the pair potential:
we only use that v has a hard core and that v(r) = O(1/rs), for large r, with s > 2. The technical
assumption of a hard core frees us from superstability estimates [LP76, Rue76]. The decay of the
potential ensures that the infinite volume Gibbs measure is unique, see e.g. [Geo11, Chapter 8.3]
and [Pap84a, Pap84b, Kle85].

We follow the classical treatment of one-dimensional systems with transfer operators. For compactly
supported pair potentials with a hard core (or, in our case, when m is chosen finite), the transfer
operators are integral operators in L2(Rm−1

+ , dx) [Rue69, Chapter 5.6], see Section 6. For long-
range interactions, the transfer operator (also known as Ruelle operator or Ruelle-Perron-Frobenius
operator ) acts instead from the left on functions of infinitely many variables, and from the right on
measures [Rue68, GMS70, Rue78]. The formalism of transfer operators keeps being developed in the
context of dynamical systems and ergodic theory [Bal00b, Bal00a].

For the decay of correlations, we adapt [Pol00] to the present context of continuous unbounded spins
and carefully track the β-dependence in the bounds. In Section 5.3, transfer operators will also help
us investigate the large deviations behavior of the Gibbs measures; notably the eigenvalue equation
from Lemma 4.1 translates into a fixed point equation for the rate function (see Lemma 5.4).

The results of this section hold for all m ∈ N∪ {∞} and β, p > 0; the additional condition p < p∗ is
not needed.
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4.1 Transfer operator

For j ∈ Z and zj, zj+1, . . . > 0 we abbreviate hj = h(zj, zj+1, . . .), cf. (2.1) and (3.5). The transfer
operator acts on functions as

Lβf(z1, z2, . . .) =

∫ ∞
0

dz0 e−βh0f(z0, z1, . . .).

The dual action on measures is defined by (L∗βν)(f) = ν(Lβf) and is given by

L∗βν(dz1dz2...) = e−βh1 dz1ν(dz2dz3...).

Lemma 4.1. There exist λ0(β) > 0 and a probability measure νβ on RN
+ such that

L∗βνβ = λ0(β)νβ.

Moreover νβ((rhc,∞)N) = 1 and the pair (νβ, λ0(β)) is unique.

We will show in Proposition 4.9 that νβ is the measure satisfying (2.2). The non-compactness of
(rhc,∞)N forms an obstacle to the application of a Schauder-Tychonoff fixed point theorem for the
map ν 7→ L∗βν/ν(Lβ1), see e.g. [Rue68, Proposition 2]. It might be possible to remove the obstacle
using tightness estimates, but we prefer to follow a different route and exploit the known uniqueness
of infinite volume Gibbs measures [Geo11, Chapter 8.3] instead.

Proof. Let ν be a probability measure on RN
+, λ := ν(Lβ1), and ν̃ := 1

λ
L∗βν. We show that if ν

is a Gibbs measure, then ν̃ is a Gibbs measure as well. Let us first introduce the kernels needed
to formulate that ν is a Gibbs measure. By [Geo11, Theorem 1.33] it is enough to look at one-point
kernels. Pick k ∈ N. For z′k > 0 and z = (zj)j∈N ∈ RN

+, let

Hk(z
′
k | z) = pz′k +

∑
J⊂N, J3k

v
(
z′k +

∑
j∈J\{k}

zj

)
where sum runs over discrete intervals J = {i, . . . , `− 1} ⊂ N. Further define the kernel

γk
(
z, A

)
=

1

Nk(z)

∫ ∞
0

1lA
(
. . . , zk−1, z

′
k, zk+1, . . .)e

−βHk(z′k|z)dz′k

where A ⊂ RN
+ and Nk(z) =

∫∞
0

e−βHk(z′k|z)dz′k. The kernel acts on functions and measures in the
usual way, in particular (γk1lA)(z) = γk(z, A). Notice that γ2

kf = γkf for all f . Indeed γkf yields
a function where zk-dependence has been integrated out, and integrating it against the probability
measure γk(z, ·) does not change its value. ReplacingNwithN0, we define in a completely analogous
fashion conditional energies H0

k and kernels γ0
k

(
(zj)j∈N0 , B

)
.

Suppose that ν is a Gibbs measure, i.e., νγk = ν for all k ∈ N. Let f : RN0
+ → R+ be a measurable

test function. Treat ν̃ = λ−1L∗βν as a measure on RN0
+ . We check that ν̃(γ0

kf) = ν̃(f) for all k ∈ N0.
For k ∈ N, this property is inherited from the Gibbsianness of ν: we have

ν̃(f) =
1

λ

∫ ∞
0

ν
(
f(z0, ·)e−βh(z0,·)

)
dz0 =

1

λ

∫ ∞
0

νγk

(
f(z0, ·)e−βh(z0,·)

)
dz0.

DOI 10.20347/WIAS.PREPRINT.2589 Berlin 2019



S. Jansen, W. König, B. Schmidt, F. Theil 26

Set f̃ := γ0
kf . Note f̃ = (γ0

k)f̃ . Therefore

γk

(
f(z0, ·)e−βh(z0,·)

)
(z) = (γ0

kf)(z0, z)× (γke
−βh(z0,·))(z)

= γk

(
f̃(z0, ·)e−βh(z0,·)

)
(z)

hence ν̃(f) = ν̃(f̃) = ν̃(γ0
kf). For k = 0, the required property follows from the definition of ν̃.

Notice H0
0 = h0 and

(γ0
0f)
(
(zj)j∈N0

)
=

∫∞
0
f(z′0, z1, z2, . . .)e

−βh(z′0,z1,...)dz′0∫∞
0

e−βh(z′0,z1,...)dz′0
.

Let f̃ = γ0
0f . Then

ν̃(f) =
1

λ
ν
(∫ ∞

0

f(z0, ·)e−βh(z0,·)dz0

)
=

1

λ
ν
(∫ ∞

0

f̃(z0, ·)e−βh(z0,·)dz0

)
= ν̃(f̃) = ν̃(γ0

0f).

The previous identities hold for all non-negative test functions f , consequently ν̃γ0
k = ν̃ for all k ∈ N0

and ν̃ is a Gibbs measure as well.

By [Geo11, Theorem 8.39], the Gibbs measure ν exists and is unique. Treating ν and ν̃ both as
measures on RN

+, we must therefore have ν = ν̃, i.e., the unique Gibbs measure is an eigenmeasure
ofL∗β and in particular, there exists an eigenmeasure. Conversely, let ν = 1

λ
L∗βν be an eigenmeasure.

Arguments similar to the investigation of ν̃ given above, based on the iterated fixed point equation
ν = 1

λk
L∗βkν, show that νγj = ν for all j = 1, . . . , k and all k, hence for all j. Every eigenmeasure

is a Gibbs measure. Since the latter is unique, the eigenmeasure is unique as well. Finally, since
v(zj) = ∞ for zj ≤ rhc, the eigenmeasure ν = 1

λk
L∗βkν must satisfy ν(∃j ∈ {1, . . . , k} : zj ≤

rhc) = 0. This holds for all k ∈ N, hence ν((rhc,∞)N) = 1.

Let ν−β be the probability measure on R{...,−1,0}
+ obtained by flipping ν+

β = νβ , i.e., ν−β is the image
of ν+

β = νβ under the map (zk)k∈N 7→ (z1−`)`≤0. The measures ν±β represent equilibrium measures
for the left and right half-infinite chains. Let

W0 =W(· · · z−1z0 | z1z2 . . .) :=
∑

j≤0,k≥1
|k−j|≤m−1

v(zj + · · ·+ zk)

be the total interaction between left and right half-infinite chains, cf. Proposition 2.3(d). We abbreviate
the shifted versions asW` =W(· · · z` | z`+1 · · · ). Define ϕβ(z1, z2, . . .) by

ϕβ(z1, z2, . . .) =
ν−β (exp(−βW0))

ν−β ⊗ ν
+
β (exp(−βW0))

. (4.1)

Thus ϕβ(z1, z2, . . .) represents an averaged contribution to the Boltzmann weight from the left half-
infinite chain.

Lemma 4.2. We have Lβϕβ = λ0(β)ϕβ and νβ(ϕβ) = 1.
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Proof. The normalization is obvious, for the eigenvalue equation let cβ = ν−β ⊗ ν+
β (exp(−βW0))

and use the eigenvalue equation for ν±β

ϕβ(z1, z2, . . .)

=
1

cβ

∫
e−βW(···z0|z1··· )dν−β

(
(zj)j≤0

)
=

1

cβλ0(β)

∫
e−βW(···z0|z1··· )e−β(pz0+v(z0)+v(z0+z−1)+··· )dz0dν−β

(
(zj)j≤−1

)
=

1

cβλ0(β)

∫
e−βW(···z−1|z0z1··· )e−β(pz0+v(z0)+v(z0+z1)+··· )dz0dν−β

(
(zj)j≤−1

)
=

1

λ0(β)

∫
e−βh0ϕβ(z0, z1, . . .)dz0

=
1

λ0(β)
(Lβϕβ)(z1, z2, . . .).

See also [Rue78, Section 5.12].

Define the operator

Sβf :=
1

λ0(β)ϕβ
Lβ(ϕβf)

so that Sβ1 = 1 and S∗β(ϕβν
+
β ) = ϕβν

+
β . Let µβ be the probability measure on RZ

+ given by

dµβ
dν−β ⊗ ν

+
β

=
1

cβ
e−βW0 , cβ = ν−β ⊗ ν

+
β (e−βW0). (4.2)

We will show in Proposition 4.9 that µβ is the measure satisfying (2.3). Notice that for every bounded
measurable function f that depends on right-chain variables z1, z2, . . . only,

µβ(f) = ν+
β (fϕβ), ν+

β (f) =
µβ(eβW0f)

µβ(eβW0)
. (4.3)

Let τ : RZ
+ → RZ

+ be the shift (τz)j = zj+1.

Lemma 4.3.

(a) µβ is shift-invariant.

(b) For all f, g : RN
+ → R+ and all n ∈ N, we have µβ(f(g ◦ τn)) = µβ((Snβ f)g).

The proof is standard [Rue78] and therefore omitted. The lemma can be rephrased as follows: let
(Zn)n∈Z be a stochastic process with law µβ , defined on some probability space (Ω,F ,P). Then
(Zn)n∈Z is stationary, and(

Snβ f
)
(Zn+1, Zn+2, . . .) = E

[
f(Z1, Z2, . . .)

∣∣∣Zn+1, Zn+2, . . .
]

a.s.

Our next task is to show that the process is not only stationary but in fact ergodic and to estimate the
decay of correlations.
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4.2 Ergodicity

Bounds on correlations are most conveniently expressed with the help of variations, semi-norms
that quantify how much a function depends on faraway variables. Notice that νβ((rhc,∞)N) =
µβ((rhc,∞)Z) = 1. Let f : RN

+ → R be a function and n ∈ N. The nth variation of f on (rhc,∞)N

is

varn(f) := sup{|f(z)− f(z′)| : z, z′ ∈ (rhc,∞)N such that z1 = z′1, . . . , zn = z′n}.

When n = 0 the constraint on initial values is empty, var0(f) is sometimes called the oscillation of
f [Geo11, Eq. (8.2)]. The oscillation vanishes if and only f is constant. Notice that vark(h) decays
algebraically: for k ∈ N, as v(r) = O(r−s),

vark(h) ≤ 2 sup
z

∣∣∣ ∞∑
j=k+1

v(z1 + · · ·+ zj)
∣∣∣ = O

( 1

ks−1

)
.

It follows that the variation is summable,
∑∞

k=1 vark(h) <∞. Set

Cq :=
∞∑

k=q+1

vark(h) = O
( 1

qs−2

)
.

Notice that for all q ∈ N0, Cq is independent of β and p. In fact the pressure only enters the oscillation
var0(h). By a slight abuse of notation we identify a function f : RN

+ → R with the function f1 :
RZ

+ → R+, (zj)j∈Z 7→ f((zj)j∈N) and write µβ(f) instead of µβ(f1). The results of this subsection
hold for all p > 0.

Theorem 4.4. Let m ∈ N ∪ {∞} and p > 0. The measure µβ is mixing with respect to shifts,
i.e., µβ(f(g ◦ τn)) → µβ(f)µβ(g) as n → ∞, for all f, g ∈ L1(RZ

+, µβ). Moreover for γ(β) =
exp(−3βC0) and all bounded f, g : RN

+ → R, q, n ∈ N, N ≥ qn,

∣∣µβ(f(g ◦ τN)
)
− µβ(f)µβ(g)

∣∣ ≤ ((1− γ(β))q +
1

γ(β)
(e3βCn − 1)

)
||g||∞||f ||∞

+
1

γ(β)
||g||∞ varn(f).

We prove Theorem 4.4 with Pollicott’s method of conditional expectations [Pol00]. For alternative ap-
proaches, see [Sar02] and the references therein. The principal idea is the following: for n ∈ N,
f ∈ L1(RN

+, ϕβνβ) let Πnf be the projection

(
Πnf

)
(z1, . . . , zn) =

∫
RN
+
ϕβ(z1, . . .)f(z1, . . .)e

−β(h1+...+hn)νβ(dzn+1 . . .)∫
RN
+
ϕβ(z1, . . .)e−β(h1+...+hn)νβ(dzn+1 . . .)

onto the subspace of functions that depend on the first n coordinates only, i.e., varn(f) = 0. In terms
of the stationary process (Zn)n∈Z with law µβ ,(

Πnf
)
(Z1, . . . , Zn) = E

[
f((Zj)j≥1)

∣∣Z1, . . . , Zn
]

a.s.

Notice that
||Πnf − f ||1 ≤ ||Πnf − f ||∞ ≤ varn(f) (4.4)
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where || · ||1 is the L1(RN
+, ϕβνβ) norm. Let q, n ∈ N. Then

Sqnβ =
(
Sqnβ − (SnβΠn)q

)
+ (SnβΠn)q.

The difference enclosed in parentheses represents a truncation error; it is made small by choosing n
large. On the subspace of mean-zero functions, the truncated operator SnΠn satisfies a contraction
property uniformly in n (Lemma 4.7), and (SnβΠn)q goes to zero exponentially fast as q →∞.

Lemma 4.5. We have varq(logϕβ) ≤ βCq for all q ∈ N0 and β, p > 0.

Proof. Let q ∈ N0, (zj)j∈Z, (z
′
j)j∈Z ∈ (rhc,∞)Z such that zj = z′j for all j ≤ q. Then

|W0(z)−W0(z′)| = |
∞∑
j=0

(
h−j(z)− h−j(z′)

)
| ≤

∞∑
j=0

varq+1+j(h) = Cq

and ν−β (exp(−βW0)) ≤ exp(βCq)ν
−
β (exp(−βW ′0)). The claim then follows from the definition (4.1)

of the invariant function.

Lemma 4.6. Let f : RN
+ → R be a bounded function. Then n, k ∈ N0,

vark(Snβ f) ≤ varn+k(f) + ||f ||∞(e3βCk − 1).

Proof. Let g =
∑n

j=1 hj − β−1 log[λn0 (β)ϕβ] + β−1 logϕβ ◦ τn on (rhc,∞)N and g ≡ ∞ on

RN
+ \ (rhc,∞)N so that

Snβ f(zn+1, zn+2, . . .) =

∫
Rn+

e−βg(z1,z2,...)f(z1, z2, . . .)dz1 . . . dzn.

Pick z, z′ ∈ (rhc,∞)N so that zj = z′j for j = 1, . . . , n+ k. Then∣∣e−βg(z)f(z)− e−βg(z
′)f(z′)

∣∣ ≤ e−βg(z)
∣∣f(z)− f(z′)

∣∣+
∣∣f(z′)

∣∣∣∣e−βg(z) − e−βg(z
′)
∣∣

≤ e−βg(z)
(

varn+k(f) + ||f ||∞
(
eβ varn+k(g) − 1

))
.

We integrate out z1, . . . , zn, observe
∫

exp(−βg)dz1 · · · dzn = Snβ1 = 1, and deduce

vark(Snf) ≤ varn+k(f) + ||f ||∞
(
eβ varn+k(g) − 1

)
.

To conclude, we note

vark+n(g) ≤
n−1∑
j=0

varn+k−j(h) +
1

β

(
varn+k(logϕ) + vark(logϕ)

)
≤ Ck + Cn+k + Ck ≤ 3Ck. (4.5)

Lemma 4.7. Let f ∈ L1(RN
+, ϕβνβ) such that νβ(fϕβ) = 0. Then for all n ≥ 1 and γ(β) =

exp(−3βC0)
||SnβΠnf ||1 ≤ (1− γ(β)

)
||f ||1.
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Proof. We adapt [Rue68, Proposition 3]. Consider first a non-negative function f that depends on
z1, . . . , zn only, i.e., varn(f) = 0. Let k ≥ 0 z, z′ such that zj = z′j for j = 1, . . . , n and
g(z1, z2, . . .) as in the proof of Lemma 4.6. Then

(Snβ f)(zn+1, zn+2, . . .) =

∫
e−βg(z1,...)f(z1, . . . , zn)dz1 · · · dzn

≤ eβ varn(g)

∫
e−βg(z

′
1,...)f(z′1, . . . , z

′
n)dz′1 · · · dz′n

= eβ varn(g)(Snβ f)(z′n+1, z
′
n+2, . . .).

By Inequality (4.5) with k = 0 we have varn(g) ≤ 3C0, uniformly in n. ThusSnβ f(z) ≤ exp(−3βC0)(Snβ f)(z′)

for all z, z′ ∈ (rhc,∞)N. For non-negative f with f = Πnf we have by Lemma 4.3

inf Snβ f ≥ γ(β) supSnβ f ≥ γ(β)µβ(Snβ f) = γ(β)µβ(|f |).

Next let f with varn(f) = 0 and µβ(f) = 0. Then µβ(f+) = µβ(f−) and

|Snβ f | ≤
(
Snβ f+ − γ(β)µβ(f+)

)
+
(
Snβ f− − γ(β)µβ(f−)

)
= Snβ (f+ + f−)− γ(β)µβ(f+ + f−) = Snβ |f | − γ(β)µβ(|f |).

We integrate against µβ , use µβ(Snβ |f |) = µβ(|f |) = ||f ||1, and find ||Snβ f ||1 ≤ (1− γ(β))||f ||1.
This holds for every local function varn(f) = 0 with µβ(f) = 0. For general f , we may apply the
bound to Πnf and use µβ(Πnf) = µβ(f) = 0 and µβ(|Πnf |) ≤ µβ(|f |), and we are done.

Lemma 4.8. Let f ∈ L1(RN
+, ϕβνβ) be a bounded map with νβ(fϕβ) = 0. Then for all q, n ∈ N,

||Snqβ f − (SnβΠn)qf ||1 ≤
1

γ(β)
(e3βCn − 1)||f ||∞ +

1

γ(β)
varn(f).

Proof. A telescope summation, the triangle inequality, and Lemma 4.7 yield

||Snqβ f − (SnβΠn)qf ||1 ≤
q−1∑
k=0

||(SnβΠn)k
(
SnβΠn − Snβ

)
(Snβ )q−k−1f ||1

≤
q−1∑
k=0

(1− γ(β))k||
(
SnβΠn − Snβ

)
(Snβ )q−k−1f ||1

≤
q−1∑
k=0

(1− γ(β))k||
(
Πn − id

)
(Snβ )q−k−1f ||1,

where in the second step we use that νβ((SnβΠn)i
(
SnβΠn−Snβ

)
(Snβ )q−k−1fϕβ) = νβ(fϕβ) = 0 for

i = 1, . . . , k by Lemma 4.3 and the third step follows from |Snβ
(
Πn− id

)
(Snβ )q−k−1f | ≤ Snβ |

(
Πn−

id
)
(Snβ )q−k−1f | and Lemma 4.3. By Eq. (4.4) and Lemma 4.6, this can be further estimated as

q−1∑
k=0

(1− γ(β))k varn(Sn(q−k−1)
β f)

≤
q−1∑
k=0

(1− γ(β))k
(

(e3βCn − 1)||f ||∞ + varn(q−k)(f)
)

≤ 1

γ(β)
(e3βCn − 1)||f ||∞ +

1

γ(β)
varn(f).
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Proof of Theorem 4.4. Let f, g : RN
+ → R be bounded functions and q, n ∈ N, N ≥ qn. Using

Eq. (4.2) and Lemmas 4.7 and 4.8, we get∣∣µβ(f(g ◦ τN)
)
− µβ(f)µβ(g)

∣∣ =
∣∣µβ((SNβ f)g

)
− µβ(f)µβ(g)

∣∣
≤ µβ

(
|g|
∣∣SNβ (f − µβ(f)1)

∣∣) ≤ ||g||∞ ||SNβ (f − µβ(f)1)||1
≤ ||g||∞ ||Sqnβ (f − µβ(f)1)||1

≤
(

(1− γ(β))q +
1

γ(β)
(e3βCn − 1)

)
||g||∞||f − µβ(f)||∞ +

1

γ(β)
||g||∞ varn(f)

since ||Sβ||1 ≤ 1. The explicit estimate on the decay of correlations follows. That µβ is mixing then
follows from standard approximation arguments.

Proof of Theorem 2.9. The estimate for infinite m is an immediate consequence of Theorem 2.9. For
finite m and n = m − 1, the truncation error in Lemma 4.8 for a function f : Rn

+ → R actually
vanishes since varn(f) = 0 and Cn = 0. The bound simplifies accordingly.

4.3 Thermodynamic limit

Proposition 4.9. Let m ∈ N ∪ {∞} and p > 0.

(a) The Gibbs free energy and its surface correction defined by the limits (2.6) exist and are given
by

g(β) = − 1

β
log λ0(β), gsurf(β) = −g(β)− 1

β
log µβ(eβW0).

(b) Eqs. (2.2) and (2.3) hold true.

Proof. We compute

νβ
(
eβW(z1···zn|zn+1··· )

)
=
( 1

λ0(β)n
L∗β

nνβ
)(

eβW(z1···zn|zn+1··· )
)

=
1

λ0(β)n

∫
eβW(z1···zn|zn+1··· )e−β

∑n
j=1 hjdz1 · · · dzndνβ(zn+1zn+2 . . .)

=
1

λ0(β)n

∫
e−βEn+1(z1,...,zn)dz1 · · · dzndνβ(zn+1zn+2 . . .)

=
1

λ0(β)n
Qn+1(β).

(4.6)

LetW0n =
∑

j≤0

∑
k≥n+1 v(zj + · · ·+ zk). We note

W(z1 · · · zn | zn+1 · · · ) =Wn −W0n.

and with (4.3) deduce

1

λ0(β)n
Qn+1(β) = νβ(eβW(z1···zn|zn+1··· )) =

µβ(exp(β[W0 +Wn −W0n]))

µβ(exp(βW0))
.

NowW0n = O(n−(s−2))→ 0 uniformly on (rhc,∞)Z. By Theorem 4.4, µβ(exp(β[W0 +Wn])) =
µβ(f(f ◦ τn))→ µβ(f)2 where f = exp(βW0). Consequently as n→∞

logQn+1(β) = (n+ 1) log λ0(β)− log λ0(β) + log µβ(eβW0) + o(1),
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from which part (a) of the lemma follows. A computation analogous to Eq. (4.6) shows that for every
local test function f ∈ Cb(Rk

+),

Q(β)

n+1(f) =
µβ(f exp(β[W0 +Wn −W0n])

µβ(exp(β[W0 +Wn −W0n])
.

Part (b) of the lemma then follows from Theorem 4.4.

5 Large deviations as β →∞

Here we analyze the behavior of the bulk and surface Gibbs measures µβ and νβ and of the energies
g(β) and gsurf(β). The large deviations result for the surface measure νβ is a consequence of the
eigenvalue equation from Lemma 4.1, exponential tightness, and the uniqueness of the solution to the
fixed point equation in Proposition 3.9. Since the bulk measure is absolutely continuous with respect to
the product measure of two independent half-infinite chains (Eq. (4.2) and Proposition 4.9(b)), we may
go from the surface to the bulk measure with the help of Varadhan’s integral lemma [DZ98, Chapter
4.3]. The asymptotic behavior of esurf(β) is based on the representation from Proposition 4.9(a).

5.1 A tightness estimate

The following estimate will help us prove that the infinite-volume measure νβ is exponentially tight (see
the proof of Lemma 5.3) which enters the proof of Theorem 2.4.

Lemma 5.1. For all β, p > 0, N ∈ N, k ∈ {1, . . . , N − 1}, and r ≥ 0, we have

Q(β)

N ({z ∈ RN−1
+ | zk ≥ zmax + r}) ≤ exp(−βpr).

Proof. Fix k ∈ N and r ≥ 0. For z = (z1, . . . , zN−1) ∈ RN−1
+ with zk ≥ zmax + r we define a new

configuration z′ by setting z′k = zk− r and leaving all other spacings unchanged. This decreases the
Gibbs energy by an amount at least

EN(z)− EN(z′) ≥ pz′k − pzk = pr.

A change of variables thus yields

Q(β)

N ({z | zk ≥ zmax + r}) =
1

QN(β)

∫
RN−1
+

e−βEN (z)1[zmax+r,∞)(zk)dz

≤ 1

QN(β)

∫
RN−1
+

e−βpre−βEN (z′)1[zmax,∞)(z
′
k)dz

′

≤ e−βpr,

and the proof of the lemma is easily concluded.

5.2 Gibbs free energy in the bulk

Lemma 5.2. Let β →∞ at fixed p. Then

g(β) = − 1

β
log λ0(β) = e0 +O(β−1 log β).
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Proof of Lemma 5.2. The relation between g(β) and λ0(β) has been proven in Proposition 4.9. We
proceed with an upper bound for QN(β) and λ0(β). For z = (z1, . . . , zN−1), define z′ by z′j =
min(zmax, zj). Revisiting the proof of Lemma 3.1, we see that

EN(z) ≥ EN(z′) +
N−1∑
j=1

min(p(zj − zmax), 0) ≥ EN +
N−1∑
j=1

pmin((zj − zmax), 0).

It follows that

QN(β) ≤ e−βEN
N−1∏
j=1

(
zmax +

∫ ∞
zmax

e−βp(zj−zmax)dzj
)

and

log λ0(β) ≤ −βe0 + log
(
zmax +

1

βp

)
,

whence β−1 log λ0(β) ≤ −e0 + O(β−1). For a lower bound, we let z̄ ∈ [zmin, zmax]N−1 be the
minimizer of EN and choose 0 < ε < a− zmin so small that by Lemma 3.3

EN(z) ≤ EN + C
N−1∑
j=1

(zj − z̄j)2.

for every z ∈ ×N−1
j=1 [z̄j − ε, z̄j + ε]. We get

QN(β) ≥ e−βEN
N−1∏
j=1

∫ z̄j+ε

z̄j−ε
e−Cβ(zj−z̄j)2dzj

)
= e−βEN

(∫ ε

−ε
e−Cβs

2

ds
)N−1

.

This yields

log λ0(β) ≥ −βe0 + log
(∫ ε

−ε
e−Cβs

2

ds
)

= −βe0 − log

√
Cβ

π
+ log

(
1−

√
2

π

∫ ∞
ε
√

2Cβ

e−x
2/2dx

)
.

and β−1 log λ0(β) ≥ −e0 +O(β−1 log β).

5.3 Large deviations principles for νβ and µβ

Here we prove Theorem 2.4.

Lemma 5.3. Every sequence βj → ∞ has a subsequence along which (νβj)j∈N satisfies a large
deviations principle with speed βj and some good rate function.

Remark. If p = pβ → 0, we lose exponential tightness and only know that every sequence (νβj) has
a subsequence along which it satisfies a weak large deviations principle [DZ98, Lemma 4.1.23], which
means that the upper bound in (2.5) is required to hold for compact sets rather than closed sets.

Proof. The lemma is a consequence of exponential tightness. Let n ∈ N0. DefineKn = ×∞j=1[0, zmax+
n+ j]. Kn is compact in the product topology. Passing to the limit N →∞ in Lemma 5.1, we find

νβ({z ∈ RN
+ | zk ≥ zmax + r}) ≤ e−βpr
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for all k ∈ N and r ≥ 0. Therefore

νβ(Kc
n) ≤

∞∑
k=1

νβ({z ∈ RN
+ | zk > zmax + k + n})

≤
∞∑
k=1

e−βp(k+n) =
exp(−βp(n+ 1))

1− exp(−βp)
.

It follows that the family of measures (νβ)β≥1 is exponentially tight, i.e., for every M > 0, we can
find a compact subset K ⊂ RN

+ such that lim supβ→∞
1
β

log νβ(Kc) ≤ −M . RN
+ endowed with

the product topology is separable and metrizable and therefore has a countable base. Lemma 4.1.23
in [DZ98] applies and yields the claim.

Lemma 5.4. Suppose that Assumption 3 holds true and assume that along some subsequence (βj)
the measure νβj satisfies a large deviations principle with good rate function I(z1, z2, . . .). Then I
satisfies

I(z1, z2, . . .) =
(
h(z1, z2, . . .)− e0

)
+ I(z2, z3, . . .).

on RN
+. In particular, I((zj)j∈N) =∞ if zj ≤ rhc for some j ∈ N.

Proof. Write β instead of βj . We will see that the fixed point equation for I follows from the eigen-
value equation in Lemma 4.1 and the asymptotics of the principal eigenvalue provided in Lemma 5.2.
According to these,

dνβ(z1z2 . . .) = e−β[h1+...+hn−ne0+o(1)]dz1 . . . zndνβ(zn+1 . . .) (5.1)

for any n ∈ N where the o(1)-term comes from log λn0 (β) = −β[ne0 + o(1)] and is independent of
(zj)j∈N.

We first show that I can only be finite on (rhc,∞)N. Fix n ∈ N and for ε > 0 consider the open set
Oε = {z ∈ RN | 0 < zn < rhc + ε}. A repeated application of Lemma 4.1 and Lemma 5.2 give

νβ(Oε) =

∫
Oε∩(rhc,∞)N

e−β[h1+...+hn−ne0+o(1)]dz1 . . . dzndνβ(zn+1 . . .).

Let −C be a lower bound for −e0 + v(zmax) +
∑∞

k=2 v(z1 + · · ·+ zk) on (rhc,∞)N. Then

νβ(Oε) ≤
∫

(rhc,∞)n−1

e−β[p(z1+...+zn−1)−C(n−1)+o(1)]dz1 . . . dzn−1

×
∫

(rhc,rhc+ε)

e−β[pzn+v(zn)−C]dzn

and

log νβ(Oε) ≤ β(C + o(1))(n− 1) + log ε− β inf
s∈(rhc,rhc+ε]

(ps+ v(s)).

Hence
− inf

Oε
I ≤ C(n− 1)− inf

s∈(rhc,rhc+ε]
(ps+ v(s)) =: −f(ε)

It follows that
inf{I(z) | zn ≤ rhc} ≥ lim

ε→0
f(ε) =∞.
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Since n was arbitrary we have shown that I ≡ ∞ on RN
+ \ (rhc,∞)N. In particular, as νβ satisfies

a large deviations principle on RN
+ with rate function I , the same large deviations principle holds on

(rhc,∞)N.

We now establish another (weak) large deviations principle on (rhc,∞)N. Let K ⊂ (rhc,∞)N be a
(relatively) closed set and [α, b] ⊂ (rhc,∞) a compact interval. Then (5.1) with n = 1 yields

νβ([α, b]×K) =

∫ b

α

(∫
K

e−β[h(z1,z2,...)−e0+o(1)]dνβ(z2, z3, . . .)
)

dz1.

Write fβ(z1;K) for the inner integral. As h is bounded from below and for every fixed z1 > rhc,
(z2, z3, . . .) 7→ h(z1, z2, . . .) is continuous n (rhc,∞)N with respect to the product topology, we
deduce from Varadhan’s lemma [DZ98, Chapter 4.3] that

lim sup
β→∞

1

β
log fβ(z1;K) ≤ − inf

(zj)j≥2∈K

(
h(z1, z2, . . .)− e0 + I(z2, z3, . . .)

)
. (5.2)

for all z1 ∈ [α, b]. Next we note that for all (zj)j∈N ∈ (rhc,∞)N, z′1 > rhc, and suitable C > 0,

|h(z1, z2, . . .)− h(z′1, z2, . . .)| ≤ |v(z1)− v(z′1)|+ C|z1 − z′1|.

For z1, z
′
1 bounded away from rhc we may exploit that the derivative of v is bounded and drop the first

term, making C larger if need be. Plugging these estimates into the definition of fβ(z1, K), we find
that for some Cα > 0 and all β > 0,∣∣∣ 1

β
log fβ(z1;K)− 1

β
log fβ(z′1;K)

∣∣∣ ≤ Cα|z1 − z′1| (z1, z
′
1 > α > rhc).

It follows that the upper bound (5.2) is uniform on compact subsets of (rhc,∞) and

lim sup
β→∞

1

β
log νβ([α, b]×K) ≤ − inf

z∈[α,b]×K

(
h(z1, z2, . . .)− e0 + I(z2, z3, . . .)

)
. (5.3)

A similar argument shows that for all b > α > rhc and all (relatively) open subsets O ⊂ (rhc,∞)N,

lim inf
β→∞

1

β
log νβ((α, b)×O) ≥ − inf

z∈(α,b)×O

(
h(z1, z2, . . .)− e0 + I(z2, z3, . . .)

)
. (5.4)

Taking monotone limits, the latter inequality is seen to extend to α = rhc and b = ∞. It follows that
(νβ), as a family of probability measures on (rhc,∞)N, satisfies a weak large deviations principle with
rate function J = h1− e0 + I(z2, . . .). (It is indeed sufficient to consider product sets. This is easy to
see for the lower bound: If U ⊂ (rhc,∞)N is open, then for any ε > 0 one finds z̄ ∈ (α, b)×O ⊂ U
with h(z̄1, z̄2, . . .) − e0 + I(z̄2, z̄3, . . .) − ε ≤ infz∈U

(
h(z1, z2, . . .) − e0 + I(z2, z3, . . .)

)
, from

which it follows that (5.4) holds for U instead of (α, b) × O. The upper bound for a general compact
V ⊂ (rhc,∞)N is obtained by covering, for given ε > 0, V ⊂

⋃Nε
i=1(αxi , bxi) × Bδ(xi)(xi), where

for each x ∈ V , bx > αx > rhc and δ(x) > 0 are chosen such that h(x1, x2, . . .) − e0 +
I(x2, x3, . . .)− ε ≤ infz∈(αx,bx)×Bδ(x)(x)

(
h(z1, z2, . . .)− e0 + I(z2, z3, . . .)

)
. This is possible since

I is lower semicontinuous. With the help of (5.3) we can now deduce that (5.3) holds for V instead of
[α, b]×K .)

Since (rhc,∞)N is a Polish space, the rate function in a weak large deviations principle is uniquely
defined [DZ98, Chapter 4.1], hence J = I on (rhc,∞)N. To finish the proof it remains to observe that
also J = I on RN

+ \ (rhc,∞)N because both I and h are equal to∞ on that set.
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Proof of Theorem 2.4. The large deviations principle for νβ with good rate function E surf −min Esurf

is an immediate consequence of Lemmas 5.3 and 5.4 and Proposition 3.9. As a consequence, ν−β ⊗ν
+
β

satisfies a deviations principle with good rate function (zj)j∈Z 7→ E surf(z1, z2, . . .)+E surf(z0, z−1, . . .)−
2 min Esurf on RZ

+ and on [rhc,∞)Z, The large deviations principle for µβ thus follows from Eq. (4.2),
Lemmas 4.3.4 and 4.3.6 in [DZ98], min Ebulk = 0 and

Ebulk(z1, z2, . . .) = E surf(z1, z2, . . .) + E surf(z0, z−1, . . .) +W0(· · · z0 | z1 · · · )

by Proposition 2.3, and the observation thatW0 is continuous on [rhc,∞)Z.

5.4 Surface corrections to the Gibbs free energy

Proof of Theorem 2.5. The statements about g(β) have already been proven in Lemma 5.2. For
gsurf(β), we start from the formula in Proposition 4.9(a), to which we apply Lemma 5.2, Theorem 2.4
and Varadhan’s lemma. This yields

lim
β→∞

gsurf(β) = −e0 + inf
(
Ebulk −W0

)
.

But now for (zj) with
∑

j∈Z(zj − a)2 <∞

Ebulk −W0 =
∑
j∈Z

m∑
k=1

(
v(zj + · · ·+ zj+k−1)− v(ka) + δ1kp(zj − a)

)
−

∑
j≤0,`≥1
|`−j|≤m−1

(
v(zj + · · ·+ z`)− v((`− j + 1)a)

)
−

m∑
k=1

(k − 1) v(ka)

= Esurf(z1, z2, . . .) + Esurf(z0, z−1, . . .) + eclamp + e0

with eclamp = −pa−
∞∑
k=1

k v(ka). So

inf(Ebulk −W)− e0 = 2 inf Esurf + eclamp = esurf .

6 Gaussian approximation

Here we prove Theorems 2.7 and 2.8 on the Gaussian approximation to the bulk measure µβ whenm
is finite. We start from a standard idea, namely perturbation theory for transfer operators [Hel02], how-
ever we need to put some work into a good choice of transfer operator as the standard symmetrized
choice (6.2) does not work well. This aspect is explained in more detail in Section 6.1. Throughout this
section m satisfies 2 ≤ m <∞. Remember d = m− 1.

6.1 Decomposition of the energy. Choice of transfer operator

For finite m, the treatment with transfer operators from Section 4.1 can be considerably simplified: in-
stead of an operator that acts on functions of infinitely many variables, the transfer operator becomes
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an integral operator in L2(Rd) (L2 space with respect to Lebesgue measure). There are several pos-
sible choices, corresponding each to an additive decomposition of the energy. Let V (z1, . . . , zd) :=
Em(z1, . . . , zd) and

W (z1, . . . , zd; zd+1, . . . , z2d) =
∑

1≤i≤d<j≤2d
|i−j|≤d

v(zi + · · ·+ zj).

Let us block variables as xj = (zdj+1, . . . , zdj+d). Then for (zj)j∈Z ∈ D+
0 we have

Ebulk((zj)j∈Z) =
∑
j∈Z

(
V (xj) +W (xj, xj+1)− de0

)
(6.1)

with only finitely many non-zero summands. By Proposition 2.3 the sum extends to D+ by continu-
ity. The transfer operator associated with the representation (6.1) is the integral operator with kernel
exp(−β[V (x) + W (x; y)]); it is clearly related to the d-th power of the transfer operator Lβ from
Section 4.1. The analysis is simpler for a symmetrized operator with kernel

Tβ(x, y) = 1l(rhc,∞)d(x) exp
(
−β
[

1
2
V (x) +W (x; y) + 1

2
V (y)

])
1l(rhc,∞)d(y). (6.2)

which has the advantage of being Hilbert-Schmidt: The pressure term present in V (x) and V (y)
ensures that Tβ(x, y) decays exponentially fast when |x|+ |y| → ∞ so that

∫
R2d Tβ(x, y)2dxdy <

∞. The transfer operator Tβ corresponds to a rewriting of (6.1),

Ebulk((zj)j∈Z) =
∑
j∈Z

(
1
2
V (xj) +W (xj, xj+1) + 1

2
V (xj+1)− de0

)
.

For the analysis of the limit β → ∞, we would like to have a transfer operator that concentrates in
some sense around the optimal spacings so that we may approximate it with a Gaussian operator.
When m ≥ 3, unfortunately, the function (x, y) 7→ 1

2
V (x) + W (x; y) + 1

2
V (y) need not have its

minimum at (x, y) = (a,a), with a = (a, . . . , a) ∈ Rd. Therefore we introduce yet another variant
of the transfer operator: we look for a function Ĥ(x, y) such that

Ebulk((zj)j∈Z) =
∑
j∈Z

Ĥ(xj, xj+1)

and Ĥ(x, y) ≥ Ĥ(a,a) = 0, and work with the kernel

Kβ(x, y) := 1l(rhc,∞)d(x) exp
(
−βĤ(x, y)

)
1l(rhc,∞)d(y).

By a slight abuse of notation we use the same letter for the integral operator

(Kβf)(x) =

∫
Rd
Kβ(x, y)f(y)dy.

in L2(Rd). The function Ĥ is defined as follows. Set

H(x, y) := inf
{
Ebulk

(
(zj)j∈Z

)
| (zj)j∈Z ∈ (rhc,∞)Z : (z1, . . . , z2d) = (x, y)

}
,

w(x) := inf
{
Ebulk

(
(zj)j∈Z

)
| (zj)j∈Z ∈ (rhc,∞)Z : (z1, . . . , zd) = x

}
.

and
Ĥ(x, y) := H(x, y)− 1

2
w(x)− 1

2
w(y).

Remember

u(x) = inf{Esurf

(
(zj)j∈N

)
| (zj)j∈Z ∈ (rhc,∞)N : (z1, . . . , zd) = x}.
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Lemma 6.1. Assume 2 ≤ m <∞, p ∈ [0, p∗), and rhc > 0. Then:

(a) For all x, y ∈ (rhc,∞)d, we have Ĥ(x, y) ≥ Ĥ(a,a) = 0.

(b) The function g(x) := 1
2
[u(x)− u(σx)] is bounded, and we have

Ĥ(x, y) = −g(x) +
(

1
2
V (x) +W (x, y) + 1

2
V (y)− de0

)
+ g(y).

(c) Ĥ(x, y) = Ĥ(σy, σx) for all x, y ∈ (rhc,∞)d.

Proof. One easily checks

w(x) = inf
y∈(rhc,∞)d

H(x, y), w(y) = inf
x∈(rhc,∞)d

H(x, y)

which yields

H(x, y)− 1
2
w(x)− 1

2
w(y) = 1

2
[H(x, y)− w(x)] + 1

2
[H(x, y)− w(y)] ≥ 0. (6.3)

For x = y = a, we have H(a,a) = w(a) hence Ĥ(a,a) = 0. This proves part (a) of the lemma.
The symmetry in part (c) is immediate from the reversal symmetry of Ebulk. For (b), we note that

H(x, y) = u(σx) +W (x, y) + u(y), w(x) = u(σx) + u(x)− V (x) + de0,

the formula for Ĥ follows. Because of

u(x) = inf
y

(
V (x) +W (x, y)− de0 + u(y)),

and V (σx) = V (x), C := sup(x,y)∈(rhc,∞)2d |W (x, y)−W (σx, y)| <∞, we have

u(x) ≤ inf
y

(
V (σx) +W (σx, y) + C − de0 + u(y)

)
= u(σx) + C.

The roles of x and σx can be exchanged, hence u(x)− u(σx) is bounded.

6.2 Some properties of the transfer operator

Lemma 6.2. Assume 2 ≤ m <∞, p ∈ (0, p∗), and and rhc > 0. Then:

(a) The kernels Kβ and Tβ are related as follows:

Kβ(x, y) = eβde0+
1
2
β[u(x)−u(σx)]Tβ(x, y)e−

1
2
β[u(y)−u(σy)].

(b) The operator Kβ is a Hilbert-Schmidt operator in L2(Rd), and the kernel has the symmetry
Kβ(x, y) = Kβ(σy, σx).
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The lemma follows from Lemma 6.1, the elementary proofs are omitted.

By the Krein-Rutman theorem [KR48], [Dei85, Chapter 6], the operator norm ||Kβ|| =: Λ0(β)
is a simple eigenvalue of Kβ , the associated eigenfunction φβ can be chosen strictly positive on
(rhc,∞)d, and the other eigenvalues of Kβ have absolute value strictly smaller than Λ0(β), i.e.,

Λ1(β) = sup{|λ| : λ eigenvalue of Kβ, λ 6= Λ0(β)} < Λ0(β).

By Lemma 6.2(b), the function φβ ◦ σ is a left eigenfunction of Kβ :∫
Rd
φβ(σx)Kβ(x, y)dx = Λ0(β)φβ(σy).

Let Πβ be the rank-one projection in L2(Rd) given by

Πβf :=
〈f, φβ ◦ σ〉
〈φβ, φβ ◦ σ〉

φβ.

Then KβΠβ = Λ0(β)Πβ = ΠβKβ and an induction over n ∈ N shows

1

Λ0(β)n
Kn
β − Πβ =

( 1

Λ0(β)
Kβ − Πβ

)n
. (6.4)

Since Λ1(β) is nothing else but the spectral radius of Kβ − Λ0(β)Πβ , it follows that

lim sup
n→∞

||Λ0(β)−nKn
β − Πβ||1/n =

Λ1(β)

Λ0(β)
< 1. (6.5)

The spectral properties of Kβ are related to the Gibbs free energy and the Gibbs measure as follows.

Lemma 6.3. Assume 2 ≤ m <∞, p ∈ (0, p∗), and rhc > 0. Then:

(a) The Gibbs free energy is given by g(β) = e0 − 1
βd

log Λ0(β).

(b) The nd-dimensional marginals of the bulk Gibbs measure µβ have probability density function

1

c
φβ(σx1)

(
n−1∏
i=1

1

Λ0(β)
Kβ(xi, xi+1)

)
φβ(xn)

with c = 〈φβ, φβ ◦ σ〉.

(c) For all ε > 0 and all bounded f, g : Rd → R, writing f0

(
(zj)j∈Z

)
:= f(z0, . . . , zd−1) and

gn
(
(zj)j∈Z

)
:= g(znj, . . . , znj+d−1), we have

∣∣µβ(f0gn)− µβ(f0)µβ(gn)
∣∣ ≤ Cε(β)

(Λ1(β)

Λ0(β)

)(1−ε)n
||f ||∞||g||∞

with some constant Cε(β) that does not depend on f , g, or n. If m = 2, we can pick ε = 0
and C0 = 1.
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Proof of Lemma 6.3. For N = nd+ 1, the partition function QN(β) is given by

Qnd+1(β) = 〈e−βV/2, T n−1
β e−βV/2〉 = e−(n−1)βde0〈e−βV/2−β[u−u◦σ]/2, Kn−1

β e−βV/2+β[u−u◦σ]/2〉.

For the second identity we have used Lemma 6.2(a). The function u−u◦σ is bounded by Lemma 6.1(b)
and exp(−βV ) is integrable because V (z1, . . . , zd) = Em(z1, . . . , zd) grows linearly when |zj| →
∞. Therefore Fβ := exp(−βV/2− β[u− u ◦ σ]/2) and Fβ ◦ σ are in L2(Rd), and as n→∞,

〈Fβ, Kn−1
β Fβ ◦ σ〉 = Λ0(β)n−1〈Fβ, φβ〉2 +O(Λ1(β)n−1).

It follows that

g(β) = − lim
n→∞

1

β(nd+ 1)
logQnd+1(β) = e0 −

1

βd
log Λ0(β),

which proves part (a) of the lemma. The standard proof of part (b) is omitted (compare [Hel02, Chapter
4]). For (c), we use the formula for the (n+ 1)d- dimensional marginal provided by (b). Let us choose
multiplicative constants in such a way that c = 〈φβ, φβ ◦ σ〉 = 1. Then

µβ(f0gn)− µβ(f0)µβ(gn) = 〈f(φβ ◦ σ),
1

Λ0(β)n
Kn
β (gφβ)〉 − 〈f(φβ ◦ σ), φβ〉〈φβ ◦ σ, gφβ〉

= 〈f(φβ ◦ σ),
( 1

Λ0(β)n
Kn
β − Πβ

)
(gφβ)〉.

Eq. (6.4) yields∣∣µβ(f0gn)− µβ(f0)µβ(gn)
∣∣ ≤ ||( 1

Λ0(β)
Kβ − Πβ

)n
|| ||f(φβ ◦ σ)|| ||gφβ||

where || · || refers to the L2-norm for functions and the operator norm for the operator. We further
bound ||gφβ|| ≤ ||g||∞||φβ|| and ||f(φβ ◦ σ)|| ≤ ||f ||∞||φβ|| and conclude with (6.5). If m = 2,
the operators are symmetric, hence the operator norm is the same as the spectral radius and the
estimates simplify accordingly.

Remark (Associated Markov chain). Define the kernel

Pβ(x, dy) :=
1

Λ0(β)φβ(x)
Kβ(x, y)φβ(y)dy (6.6)

on (rhc,∞)d. Then Pβ is a Markov kernel with invariant measure ρβ(x)dx where

ρβ(x) =
1

c
φβ(σx)φβ(x).

If in the bulk Gibbs measure µβ we group spacing in blocks as xn = (zdn, . . . , zdn+d−1), we obtain a
probability measure on (rhc,∞)d. This measure is exactly the distribution of the two-sided stationary
Markov chain (Xj)j∈Z with state space Rd, transition kernel Pβ , and initial law L(X0) = ρβ(x)dx.

6.3 Gaussian transfer operator

Here we introduce the Gaussian counterpart to the transfer operatorKβ and study its spectral proper-
ties. We start from the quadratic approximation to the bulk energy Ebulk. The differentiability of Ebulk in

DOI 10.20347/WIAS.PREPRINT.2589 Berlin 2019



Boundary layers for a chain of atoms at low temperature 41

a neighborhood of the constant sequence zj ≡ a is checked in Lemma 6.11 below, for the definition of
the Gaussian transfer operator we only need the infinite matrix of partial derivatives at (. . . , a, a, . . .).

In the following we block variables as xj = (zdj, . . . , zdj+d−1) for z = (zj)j∈Z and ξj = (ζdj, . . . , ζdj+d−1)
for ζ = (ζj)j∈Z. Remember the decomposition (6.1). Set a = (a, . . . , a) ∈ Rd and define the d× d
matrices

A := Wyy(a,a) + Vxx(a) +Wxx(a,a), B := −Wxy(a,a). (6.7)

We note the following relations:

Wyy(a) = σWxx(a)σ, BT = σBσ, σAσ = A. (6.8)

The Hessian D2Ebulk at (. . . , a, a, . . .) is a doubly infinite, band-diagonal matrix with block form
. . . . . . . . .
−BT A −B

−BT A −B
. . . . . . . . .

 . (6.9)

Note that Lemma 3.3 implies that D2Ebulk(. . . , a, a, . . .) is positive definite. We look for a quadratic
formQ(x, y) on R2d that is positive-definite and satisfies

Ebulk

(
(zj)j∈Z

)
= 1

2

∑
j∈Z

Q(xj − a, xj+1 − a) + o
(∑
j∈Z

|xj − a|2
)
.

One candidate choice could be

Q(x, y) := 1
2
〈x,Ax〉 − 2〈x,By′〉+ 1

2
〈y, Ay〉 (x′, y′ ∈ Rd),

but it is not easily related to Ĥ(x, y). We make a different choice which mimicks the definition of
Ĥ(x, y) and show later that this amounts to picking the Hessian of Ĥ(x, y) (see Lemma 6.12 below).

We introduce the quadratic counterparts to the functions H(x, y), w(x), and Ĥ(x, y) from Sec-
tion 6.2. Remember the bulk Hessian from (6.9). Since it is positive-definite, there exist uniquely de-
fined positive-definite matrices M ∈ R2d×2d and N ∈ Rd×d such that

〈
(
x
y

)
,M

(
x
y

)
〉 = inf{〈z,D2Ebulk(a, a, . . .)z〉 | z ∈ `2(Z), (z1, . . . , z2d) = (x, y)} (6.10)

〈x,Nx〉 = inf{〈z,D2Ebulk(a, a, . . .)z〉 | z ∈ `2(Z), (z1, . . . , zd) = x} (6.11)

for all x, y ∈ Rd. The quadratic forms associated with M and N are the Gaussian counterparts to
the functions H(x, y) and w(x), respectively. Finally set

M̂ := M −
(

1
2
N 0
0 1

2
N

)
. (6.12)

and

Q̂(x, y) :=
〈(x
y

)
, M̂

(
x
y

)〉
.

We will see in the proof of Lemma 6.12 that M , N and M̂ are the Hessians of H at (a,a), w at a
and Ĥ at (a,a), respectively. The relation between Q and Q̂(x, y) is clarified in Lemma 6.7 below.
We are going to work with the kernel

Gβ(x, y) := exp
(
−1

2
βQ̂(x− a, y − a)

)
(x, y ∈ Rd)
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and the associated integral operator (Gβf)(x) =
∫
Rd Gβ(x, y)f(y)dy. In Section 6.4 we show that

Gβ is a good approximation for Kβ , here we study the operator Gβ on its own. Clearly it is enough to
understand the integral operator G with kernel

G(x, y) := exp(−1
2
Q̂(x, y)),

since G and Gβ are related by the change of variables x 7→
√
β(x− a), see Eq. (6.21) below.

Lemma 6.4. Assume 2 ≤ m < ∞, p ∈ [0, p∗). Then the quadratic form Q̂ is positive-definite:
Q̂(x, y) ≥ ε(|x|2 + |y|2) for some ε > 0 and all (x, y) ∈ R2d.

Proof. First we show that M̂ is positive semi-definite, by an argument similar to Lemma 6.2(a). Define

F (x, y) := 〈
(
x
y

)
,M

(
x
y

)
〉.

Clearly
〈x,Nx〉 = inf

y∈Rd
F (x, y) 〈y,Ny〉 = inf

x∈Rd
F (x, y),

hence

〈
(
x
y

)
, M̂

(
x
y

)
〉 =

1

2

(
F (x, y)− 〈x,Nx〉

)
+

1

2

(
F (x, y)− 〈y,Ny〉

)
≥ 0 (6.13)

for all (x, y) ∈ Rd × Rd and M̂ is positive semi-definite. Next let (x0, y0) ∈ Rd × Rd be a zero of

the quadratic form associated with M̂ . Then by (6.13), the function y 7→ F (x0, y) must be minimal at
y = y0, hence ∇yF (x0, y) = 0. Similarly, the function y 7→ F (x, y0) must be minimal at x = x0,
hence ∇xF (x0, y0) = 0. Thus (x0, y0) is a critical point of F . But F is strictly convex because
M is positive-definite, therefore the critical point (x0, y0) is a global minimizer of F which yields

(x0, y0) = 0. It follows that M̂ is positive-definite.

It follows from Lemma 6.4 that
∫
R2d G(x, y)2dxdy <∞, henceG is Hilbert-Schmidt with strictly pos-

itive integral kernel and Krein-Rutman theorem is applicable. So we may ask for its principal eigenvalue
and eigenvector and its spectral gap. It is natural to look for a Gaussian eigenfunction.

Lemma 6.5. Let F be a positive-definite, symmetric d× d matrix. Then the following two statements
are equivalent:

(i) φ(x) := exp(−1
2
〈x, Fx〉) is an eigenfunction of G.

(ii) The function x 7→ 〈x, Fx〉 satisfies the quadratic Bellman equation

〈x, Fx〉 = inf
y∈Rd

(
Q̂(x, y) + 〈y, Fy〉

)
. (6.14)

Proof. The proof is by a straightforward completion of squares: write

M̂ =

(
M̂1 M̂2

M̂T
2 M̂3

)
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with d×d -matrices M̂j . The diagonal blocks M̂1 and M̂3 are positive-definite because M̂ is positive-

definite, therefore M̂3 + F is positive-definite as well. Then

Q̂(x, y) + 〈y, Fy〉 = 〈x, M̂1x〉+ 2〈x, M̂2y〉+ 〈y, (M̂3 + F )y〉
= 〈x, M̂1x〉+ 〈y + (M̂3 + F )−1M̂T

2 x, (M̂3 + F )(y + (M̂3 + F )−1M̂T
2 x)〉

− 〈x, M̂2(M̂3 + F )−1M̂T
2 x〉.

It follows that

inf
y∈Rd

(
Q̂(x, y) + 〈y, Fy〉

)
= 〈x, (M̂1 − M̂2(M̂3 + F )−1M̂T

2 )x〉

and

(Gφ)(x) =

√
(2π)d

det(M̂3 + F )
exp
(
−1

2
〈x, (M̂1 − M̂2(M̂3 + F )−1M̂T

2 )x〉
)
. (6.15)

Therefore (i) and (ii) hold true if and only if F solves

F = M̂1 − M̂2(M̂3 + F )−1M̂T
2 .

In particular, (i) and (ii) are equivalent.

In Lemma 6.7 below we check that M is of the form

M =

(
σCσ −B
−BT C

)
(6.16)

for some positive-definite d× d matrix C .

Lemma 6.6. The principal eigenvalue of G is
√

(2π)d/ detC and the principal eigenfunction is
exp(−1

2
〈x, 1

2
Nx〉) (up to scalar multiples).

Proof. A close look at our definitions shows that F := 1
2
N solves (6.14) (it is positive-definite because

N is). Indeed, by the definition of Q̂, M̂ , we have

inf
y∈Rd

(
Q̂(x, y) + 〈y, 1

2
Ny〉

)
= −〈x, 1

2
Nx〉+ inf

y∈Rd
〈
(
x
y

)
,M

(
x
y

)
〉 = 〈x, 1

2
Nx〉.

Therefore, by Lemma 6.5, the function φ(x) = exp(−1
4
〈x,Nx〉) is an eigenfunction ofG. The matrix

M̂3 + F in (6.15) is equal to (C − 1
2
N) + F = C , and we find that the principal eigenvalue of G is√

(2π)d/ detC .

In order to identify the block C in (6.16), we introduce the quadratic analogue to the function u(x).
Let A and B be the d × d matrices from (6.7) and A1 := Vxx(a) + Wxx(a,a). The infinite matrix
(∂i∂jEsurf(a, a, . . .))i,j∈N is band-diagonal with block structure

D2Esurf(a, a, . . .) =


A1 −B 0 · · ·
−BT A −B 0 · · ·

0 −BT A −B 0
...

. . . . . . . . . . . . . . .

 .
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The matrix differs from the bulk Hessian (6.9) by the upper left corner A1: we have

A = A1 +Wyy(a,a). (6.17)

By a reasoning similar to Lemma 3.3, the Hessian of Esurf is positive-definite. Therefore there is a
uniquely defined positive-definite d× d-matrix D such that

〈x,Dx〉 = inf{〈z,D2Esurf(a, a, . . .)z〉 | z ∈ `2(N), (z1, . . . , zd) = x}

for all x ∈ Rd. (Analogous arguments as in the proof of Lemma 6.12 show that D is the Hessian of u
at a.) Set

C := D +Wyy(a,a) (6.18)

and
J := D +Wyy(a,a)− σDσ −Wxx(a,a) = C − σCσ

(remember the symmetries (6.8)).

Lemma 6.7. The matrix C solves
C = A−BC−1BT

and Eq. (6.16) holds true. Moreover

Q̂(x, y) = −〈x, Jx〉+Q(x, y) + 〈y, Jy〉.

Proof. Clearly

〈x,Dx〉 = inf
y∈Rd

(
〈x,A1x〉 − 〈x,By〉 − 〈BTx, y〉+ 〈y, (Wyy(a,a) +D)y〉

)
hence

D = A1 −B(Wyy(a,a) +D)−1BT . (6.19)

by a completion of squares similar to the proof of Lemma 6.5. We add Wyy(a,a) to both sides,
remember (6.17), and obtain the equation for C . It is easy to see that

M =

(
σDσ +Wxx(a,a) −B

−BT Wyy(a,a) +D

)
=

(
σCσ −B
−BT C

)
which proves (6.16). Furthermore,

〈x,Nx〉 = inf
y∈Rd
〈
(
x
y

)
,M

(
x
y

)
〉, 〈y,Ny〉 = inf

x∈Rd
〈
(
x
y

)
,M

(
x
y

)
〉,

hence,
N = σCσ −BC−1BT , N = C −BT (σCσ)−1B.

Let us check that the two expressions for N are indeed identical, and that σNσ = N . Combining
with (6.17) and (6.19), the two expressions for N become

N = σDσ +Wxx(a,a)−
(
A−Wyy(a,a)−D

)
= D + σDσ +Wxx(a,a) +Wyy(a,a)−A

and

N = D+Wyy(a,a)− σ
(
A−Wyy(a,a)−D

)
σ = D+ σDσ +Wxx(a,a) +Wyy(a,a)−A.
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The two expressions are indeed equal, and from the end formula and (6.8) we read off that σNσ = N .
Actually

N = D + σDσ − Vxx(a),

which is the analogue of w(x) = u(x) + u(σx)− V (x).

Now we compute M̂ . The off-diagonal blocks of M̂ are the same as those of M . The upper left
diagonal block is

M1 − 1
2
N = σDσ +Wxx(a,a)− 1

2

(
D + σDσ +Wxx(a,a) +Wyy(a,a)− A

)
= 1

2
A+ 1

2

(
σDσ +Wxx(a,a)

)
− 1

2

(
D +Wyy(a,a)

)
.

A similar computation yields the lower right block. Altogether we find

M̂ =

(
1
2
(A− J) −B
−BT 1

2
(A+ J)

)
and the lemma follows.

Finally we come back to the β-dependent operator Gβ .

Proposition 6.8. Assume 2 ≤ m <∞ and p ∈ [0, p∗). The principal eigenvalue of Gβ is

ΛGauss
0 (β) =

√
(2π)d

βd detC

and the normalized, positive principal eigenfunction is

φGauss
β (x) =

(βd det(1
2
N)

πd

)1/4

exp
(
−1

2
β〈x− a, 1

2
N (x− a)〉

)
.

Proof. Let Uβ : L2(Rd)→ L2(Rd) be the unitary operator given by

(Uβf)(x′) = β−d/4f(a + β−1/2x′). (6.20)

We have(
UβGβf

)
(x′) = β−d/4(Gβf)(a + β−1/2x′)

= β−d/4
∫
Rd
Gβ(a + β−1/2x′,a + β−1/2y′)f(a + β−1/2y′)β−d/2dy′

= β−d/2
∫
Rd
G(x′, y′)(Uβf)(y′)dy′

hence
Gβ = β−d/2U∗βGUβ (6.21)

and the principal eigenvalue and eigenfunction of Gβ are obtained from those of G in Lemma 6.6 by
straightforward transformations.

Remark. When m = 2, all eigenvalues and eigenfunctions of G (hence Gβ) can be computed explic-
itly, and the eigenfunctions are expressed with Hermite polynomials. See [Hel02, Section 5.2] on the
harmonic Kac operator.
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6.4 Perturbation theory

Remember the unitary operator Uβ from (6.20) and the relation Gβ = β−d/2U∗βGUβ . The main
technical result of this section is the following.

Proposition 6.9. Assume 2 ≤ m < ∞, p ∈ (0, p∗), and rhc > 0. We have ||βd/2(Kβ − Gβ)|| =
||G− βd/2UβKβU

∗
β || → 0 as β →∞.

Before we come to the proof of the proposition, we state a corollary on the principal eigenvalue and
eigenfunction. Remember the quantities Λ0(β), Λ1(β), φβ defined before Lemma 6.3. We choose
multiplicative constants so that ||φβ|| = 1. Let λGauss

j , j ∈ N0, be an enumeration of the eigenvalues
of G with λGauss

0 = ||G|| and

γGauss = max
j 6=0

|λGauss
j |
λGauss

0

.

Corollary 6.10. Under the assumptions of Proposition 6.9: Let ΛGauss
0 (β) and φGauss

β (x) be as in
Proposition 6.8. Then as β →∞,

Λ0(β) =
(
1 + o(1)

)
ΛGauss

0 (β),

∫
Rd
|φβ(x)− φGauss

β (x)|2dx→ 0,

and

lim
β→∞

Λ1(β)

Λ0(β)
= γGauss < 1.

The corollary follows from Proposition 6.9 and standard perturbation theory for compact operators [RS78].
The proof of Proposition 6.9 builds on several lemmas. First we show that Ebulk is C2 in a neighbor-
hood of its global minimizer.

Lemma 6.11. The mapping Ebulk is C2 in some open neighborhood in D+ of the constant sequence
(. . . , a, a, . . .).

Proof. Note that

V (z1, . . . , zd) +W (z1, . . . , zd, zd+1, . . . , z2d)− de0 =
d∑
i=1

h(zi, . . . , zd+i)

defines a C2 function in a neighborhood of (a, . . . , a) ∈ Rd×Rd which vanishes for (z1, . . . , z2d) =
(a, . . . , a). Moreover, using that (. . . , a, a, . . .) minimizes Ebulk onD+

0 and so ∂xjEbulk(. . . , a, a, . . .) =
0, we see that also

Vx(a, . . . , a) +Wx(a, . . . , a) +Wy(a, . . . , a) = 0.

For all z ∈ D+
0 the derivative of Ebulk at z is given by

DEbulk(z)ζ =
∑
j∈Z

(
Vx(xj) +Wx(xj, xj+1) +Wy(xj−1, xj)

)
ξj,

for all ζ ∈ `2(Z) with ζj = 0 for all but finitely many j. So

DEbulk(z) =
(
Vx(xj) +Wx(xj, xj+1) +Wy(xj−1, xj)

)
j∈Z. (6.22)
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Since∑
j∈Z

|Vx(xj) +Wx(xj, xj+1) +Wy(xj−1, xj)− Vx(x′j)−Wx(x
′
j, x
′
j+1)−Wy(x

′
j−1, x

′
j)|2

≤ C
∑
j∈Z

|(xj−1, xj, xj+1)− (x′j−1, x
′
j, x
′
j+1)|2 ≤ C||z − z′||`2

for z, z′ ∈ D+ in a neighborhood of (. . . , a, a, . . .) with a uniform constant C , the right hand side of
(6.22) extends to a uniformly continuous function there. Writing

Ebulk(z + ζ) = Ebulk(z) +

∫ 1

0

DEbulk(z + tζ)ζ dt

for z, z′ ∈ D+
0 , a standard approximation argument shows that indeed Ebulk is C1 in a neighborhood

of (. . . , a, a, . . .) also inD+ with DEbulk given by (6.22). In fact, Ebulk is even C2 on a neighborhood
of (. . . , a, a, . . .) in D+ and

D2Ebulk(z)ζ =
(
(Vxx(xj) +Wxx(xj, xj+1) +Wyy(xj−1, xj))ξj

+Wxy(xj, xj+1)ξj+1 +Wxy(xj−1, xj)ξj−1

)
j∈Z.

(6.23)

This follows similarly as above by extending the derivative of DEbulk, where we now use that the
mappingsRd×Rd×Rd → R, (x, x′, x′′) 7→ Vxx(x

′)+Wxx(x
′, x′′)+Wyy(x, x

′) andRd×Rd → R,
(x, x′) 7→ Wxy(x, x

′) are uniformly continuous in a neighborhood of x = x′ = x′′ = (a, . . . , a) and
so D2Ebulk extends to a continuous mapping from a neighborhood of (. . . , a, a, . . .) to L(`2(Z)) (the
space of bounded linear operators on `2(Z)) given by (6.23).

Next we show that M̂ is in fact the Hessian of Ĥ .

Lemma 6.12. Assume 2 ≤ m < ∞, p ∈ [0, p∗), and rhc > 0. We have Ĥ(x, y) ≥ Ĥ(a,a) = 0
for all x, y ∈ Rd

+, moreover as x, y → a,

Ĥ(x, y) = 1
2
Q̂(x− a, y − a) + o(|x− a|2 + |y − a|2).

The lemma leaves open whether (a,a) is the unique global minimizer of Ĥ .

Proof. The first part of the lemma has already been proven in Lemma 6.2(a). With M ∈ R2d×2d,
N ∈ Rd×d as in (6.10) and (6.11) we let M̂ as in (6.12). It remains to show that D2Ĥ(a,a) = M̂ .
Since, for a suitable ε > 0, Ebulk is convex onD+∩[zmin, zmax+ε]Z, see (the proof of) Proposition 2.3,
Lemma 3.12 shows that there is a unique function on a neighborhood of (a,a) in Rd×Rd with values
in R−N × RN, (x, y) 7→ z̃ = (z−, z+) = (z−(x, y), z+(x, y)) such that

H(x, y) = Ebulk(z−(x, y), x, y, z+(x, y)).

As D2Ebulk(. . . , a, a, . . .) is positive definite, the implicit function theorem shows that this mapping is
C1 and satisfies

Dz̃Ebulk(z−, ·, ·, z+) = 0

as well as

D(x,y)z̃ =
(
D2
z̃Ebulk(z−, ·, ·, z+)

)−1
D(x,y)Dz̃Ebulk(z−, ·, ·, z+).
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The latter identity implies
D(x,y)H = D(x,y)Ebulk(z−, ·, ·, z+),

so that H is indeed C2 near (. . . , a, a, . . .) and

D2
(x,y)H =

[
D2

(x,y)Ebulk −D(x,y)z̃Ebulk

(
D2
z̃Ebulk

)−1
D(x,y)z̃Ebulk

]
(z−, ·, ·, z+).

In particular, since z̃(a,a) = (. . . , a, a, . . .),

D2H(a,a) =
[
D2

(x,y)Ebulk −D(x,y)z̃Ebulk

(
D2
z̃Ebulk

)−1
D(x,y)z̃Ebulk

]
(. . . , a, a, . . .).

The same analysis applied to the quadratic approximation `2(Z)→ R, z 7→ 1
2
〈z,D2Ebulk(. . . , a, a, . . .)z〉

leads to

M =
[
D2

(x,y)Ebulk −D(x,y)z̃Ebulk

(
D2
z̃Ebulk

)−1
D(x,y)z̃Ebulk

]
(. . . , a, a, . . .),

too. So we have D2H(a,a) = M . A completely analogous reasoning gives D2w(a, . . . , a) = N

and it follows that D2Ĥ(a,a) = M̂ .

Lemma 6.13. Assume 2 ≤ m <∞. For some c2 > 0 and all (z1, . . . , z2d) ∈ (rhc,∞)2d,

Ĥ
(
(z1, . . . , zd), (zd+1, . . . , z2d)

)
≥ 1

2
p

2d∑
i=1

zi − c2.

Proof. Since the pair potential v is bounded from below, we have for some constant c > 0

V (z1, . . . , zd) = p
d∑
i=1

zj − c, inf
R2d

W (x; y) ≥ −c.

In combination with Lemma 6.1 this yields the claim.

In order to estimate ||Kβ − Gβ||, we split the configuration space into a neighborhood A ⊃ Bδ(a)
of a and its complement B = Rd \ A and treat blocks separately. For U ⊂ Rd, we write 1U for the
multiplication operator with the indicator function 1lU .

Lemma 6.14. Suppose that A ⊂ Rd is compact, contains an open neighborhood of a, and is such
that Ĥ(x, y) > 0 for all (x, y) ∈ A×A \ {(a,a)}. Then

lim
β→∞

||1A βd/2(Kβ −Gβ)1A|| = 0.

Proof. By Lemma 6.12, for every ε > 0, there is a δ > 0 such that for all s, t ∈ Rd with |s| ≤ δ and
|t| ≤ δ, we have

1
2
(1− ε)Q̂(s, t) ≤ Ĥ(a + s,a + t) ≤ 1

2
(1 + ε)Q̂(s, t)

Choosing δ > 0 small enough we may assume without loss of generality that Bδ(a) ⊂ A. We
estimate∫
Bδ(a)2

βd|Kβ(x, y)−Gβ(x, y)|2dxdy ≤
∫
Bδ(0)2

βd
(
eβεQ̂(s,t) − 1

)2
e−βQ̂(s,t)dsdt

≤
∫
Rd
βd
(
e−β(1−2ε)Q̂(s,t) − 2e−β(1−ε)Q̂(s,t) + e−βQ̂(s,t)

)
dsdt

=
( 1

(1− 2ε)d
− 2

(1− ε)d
+ 1
) (2π)d√

det M̂
≤ kε
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for some k > 0. OnA2 \Bδ(a)2, the function Ĥ stays bounded away from 0, therefore∫
A2\Bδ(a)2

βd|Kβ(x, y)|2dxdy ≤ e−cεβ.

A similar estimate clearly holds true for Gβ as well. Hence

lim sup
β→∞

∫
A2

βd|Kβ(x, y)−Gβ(x, y)|2dxdy ≤ kε.

This holds true for every ε > 0, so the left-hand side converges to zero. Since operator norms are
bounded by Hilbert-Schmidt norms, the lemma follows.

Lemma 6.15. Assume that B ⊂ Rd is such that dist(a,B) > 0 and B is invariant under reversals,
σ(B) = B. Then ||1BKβ1B|| = O(e−βδ)→ 0.

Proof. We may view KBβ = 1BKβ1B as an operator in L2(B, dx). The Krein-Rutman theorem is
applicable and shows that λ = ||KBβ || is a simple eigenvalue and there exists an eigenfunction ψ that

is strictly positive on B ∩ (rhc,∞)d. Because of the symmetry Ĥ(σy, σx) = Ĥ(x, y), the function
ψ ◦ σ is a left eigenfunction. Moreover for all f, g ∈ L2(B, dx), we have

lim
n→∞

1

λn
〈f, (KBβ )ng〉 = 〈f, ψ〉〈ψ ◦ σ, g〉

so for all strictly positive functions f, g ∈ L2(B, dx),

λ = lim
n→∞

(
〈f, (KBβ )ng〉

)1/n

.

We choose f(y) = exp(−βĤ(a, y)) and g(x) = exp(−βĤ(x,a)). The scalar product becomes

〈f, (KBβ )ng〉 =

∫
Bn

e−β
∑n+1
i=0 Ĥ(xi,xi+1)dx1 · · · dxn+1

with x0 = xn+2 = a. By Lemma 6.1(b) , remembering u(a) = 0, we have

n+1∑
i=0

Ĥ(xi−1, xi) = −(n+ 2)de0 − V (a) +
n+1∑
i=0

V (xi) +
n∑
i=1

W (xi, xi+1).

Define (z1, . . . , z(n+1)d) = (x1, . . . , xn+1) and for j ∈ Z \ {1, . . . , (n + 1)d}, zj = a. Then we
recognize

n+1∑
i=0

Ĥ(xi−1, xi) = Ebulk

(
(zj)j∈Z

)
+ const

where the constant depends on e0, d, and V (a) alone. As z1, . . . , z(n+1)d stay bounded away from
a, we obtain

n+1∑
i=0

Ĥ(xi−1, xi) ≥ δ(n+ 1)d− c

for some δ, c > 0 and all n ∈ N and x1, . . . , xn+1 ∈ B. It follows that ||KBβ || = λ ≤ e−βδ.
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Lemma 6.16. Suppose thatA ⊂ Rd and B = Rd \ A are such that

V (x) +W (x, y)− de0 + u(y) ≥ u(x) + δ (6.24)

for some δ > 0 and all x ∈ A, y ∈ B. Assume also that A is invariant under reversals, σ(A) = A.
Then

lim
β→∞

βd/2
(
||1AKβ1B||+ ||1BKβ1A||

)
= 0.

Proof. Revisiting the proof of Lemma 6.1, we see that

H(x, y)− w(x) = V (x) +W (x, y)− de0 + u(y)− u(x). (6.25)

Eqs. (6.25), (6.3) and (6.24) show that Ĥ(x, y) ≥ δ/2 for all x ∈ A and y ∈ B. This estimate
together with the growth estimate from Lemma 6.13 shows

lim sup
β→∞

1

β
log
(∫
A×B
|Kβ(x, y)|2dxdy

)
≤ −1

2
δ < 0

hence ||1AKβ1B|| → 0. The estimate on ||1BKβ1A|| follows from the symmetry Kβ(σy, σx) =
Kβ(x, y).

Proof of Proposition 6.9. Let ε > 0,Aε := [zmin, zmax +ε]d, and B = Rd\A. The setsA and B are
clearly invariant under reversals, moreover zmin < a ≤ zmax by Theorem 2.1(b), so a is in the interior
of A and bounded away from B. Thus A and B satisfy the assumptions of Lemmas 6.14 and 6.15.
By Lemma 3.11, they also satisfy the condition (6.24) from Lemma 6.16. By the triangle inequality,

||Kβ −Gβ|| ≤ ||1A(Kβ −Gβ)1A||+ ||Kβ − 1AKβ1A||+ ||Gβ − 1AGβ1A||.

The first term on the right-hand side, multiplied by βd/2, goes to zero by Lemma 6.14. For the second
term, we estimate

||Kβ − 1AKβ1A|| ≤ ||1BKβ1B||+
(
||1AKβ1B||+ ||1BKβ1A||

)
and conclude from Lemmas 6.15 and 6.16 that d βd/2||Kβ − 1AKβ1A|| → 0. Bounding Hilbert-
Schmidt norms, it is straightforward to check that ||βd/2(Gβ−1AGβ1A)|| → 0 as well, and the proof
is complete.

6.5 Proof of Theorems 2.7, 2.8 and 2.11

Proof of Theorem 2.8. Combining Lemma 6.3(a) and Corollary 6.10, we obtain

g(β, p) = e0 −
1

β
log

√
2π

β(detC)1/d
+ o(β−1).

Proof of Theorem 2.11. The theorem is an immediate consequence of Lemma 6.3(c) and Corol-
lary 6.10.

For the proof of Theorem 2.7, we first express the marginals of µGauss in terms of the matrices A and
B from Eq. (6.7) and the matrix C from (6.18). We group variables in blocks xj ∈ Rd as usual and
view µGauss as a measure on (Rd)Z.
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Proposition 6.17. Under the assumptions of Theorem 2.7, the distributions of x0 = (z0, . . . , zd−1),
(x0, x1), and (x0, . . . , xn) (n ≥ 2) under µGauss have probability density functions proportional to

(a) exp(−1
2
β〈x0, (σCσ −BC−1BT )x0〉),

(b) exp(−1
2
β[〈σx0, Cσx0〉 − 2〈x0, Bx1〉+ 〈x1, Cx1〉]),

(c) exp(−1
2
(〈σx0, (C − 1

2
A)σx0〉+

∑n−1
i=0 Q(xi, xi+1) + 〈xn−1, (C − 1

2
A)xn−1〉))

respectively.

Proof. We recall a standard fact on marginals of multivariate Gaussians and Schur complements.
Suppose we are given a positive-definite (n+ k)× (n+ k)-matrix in block form

H =

(
H1 H2

HT
2 H3

)
where H1,H2,H3 are n × n, n × k and k × k matrices, respectively. Think of H as the Hessian
of the energy. Consider the Gaussian measure on Rn+k with covariance matrix H−1 and probability
density function

ρ(x, y) =

√
detH

(2π)(n+k)
exp
(
−1

2
〈
(
x
y

)
,H
(
x
y

)
〉
)

(x ∈ Rn, y ∈ Rk).

Then for all x ∈ Rn, ∫
Rk
ρ(x, y)dy =

√
detM
(2π)n

exp
(
−1

2
〈x,Mx〉

)
(6.26)

withM = H1 − H2H−1
3 HT

2 the Schur complement of H3 in H. The inverseM−1 is equal to the
upper left block of H−1. Another characterization is provided by a completion of squares, similar to
the proof of Lemma 6.5: we have

〈x,Mx〉 = inf
y∈Rk
〈
(
x
y

)
,H
(
x
y

)
〉.

Now let H = (Hij)i,j∈Z be the Hessian of Ebulk at (. . . , a, a, . . .). By definition of µGauss, the
distribution of (z1, . . . , zn) is Gaussian with mean zero and covariance matrix (H−1)i,j=1,...,n. Let
M = (Mij)0≤i,j≤n−1 be the n × n-matrix defined by M−1 = (H−1)0≤i,j≤n−1. It is not diffi-
cult to check that the considerations above generalize to the infinite matrices at hand, hence for all
z0, . . . , zn−1 ∈ R,

n−1∑
i,j=0

Mijzizj = inf
{∑
i,j∈Z

Hijz
′
iz
′
j

∣∣∣ (z′j)j∈Z ∈ `2(Z) : z′0 = z0, . . . , z
′
n−1 = zn−1

}
. (6.27)

Eq. (6.27) provides a variational description of the covariance matrix M−1 of the n-dimensional
marginal of µGauss. For n = 2d = 2(m − 1), with x0 = (z0, . . . , zd−1) and x1 = (zd, . . . , z2d−1),
Eq. (6.27) showsM = M , by the definition (6.10) of M . Combining with (6.16) we get

M =

(
σCσ −B
−BT C

)
= M.

This proves part (b) of the lemma. The proof of (c) is similar. Part (a) follows from (b) and a relation
similar to (6.26).
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Proof of Theorem 2.7. It is enough to treat the nd-dimensional marginals with n ≥ 2. Let φβ be
the principal eigenfunction of Kβ , with multiplicative constant chosen so that 〈φβ ◦ σ, φβ〉 = 1. Set
φ̃β(x) := Uβφβ(x) = β−1/4φβ(a + β−1/2x) and

K̃β(x, y) :=
1

Λ0(β)

(
UβKβU

∗
β

)
(x, y) =

1

Λ0(β)
Kβ(a + β−1/2x,a + β−1/2y)

By Lemma 6.3, the probability density ρ(β)

nd for (x1, . . . , xn) ∈ Rnd satisfies

ρ̃
(β)
nd (x1, . . . , xn) = β−nd/2ρ(β)

nd(a+β−1/2x1, . . . ,a+β−1/2xn) = φ̃β(σx1)

(
n−1∏
i=1

K̃β(xi, xi+1)

)
φ̃β(xn).

By Proposition 6.17, the analogous representation for the Gaussian density ρGauss
nd is

ρGauss
nd (x1, . . . , xn) = φGauss(σx1)

(
n−1∏
i=1

G̃(xi, xi+1)

)
φGauss(xn)

with G̃(x, y) = (λGauss
0 )G(x, y) and φGauss(x) ∝ exp(−1

2
〈x, 1

2
Nx〉) the principal eigenfunction of

G, normalized so that 〈φGauss ◦ σ, φGauss〉 = 1. It follows that∫
Rnd

∣∣ρ̃(β)
nd (x1, . . . , xn)− ρGauss

nd (x1, . . . , xn)
∣∣dx1 . . . dxn

≤
∣∣〈φ̃β ◦ σ − φGauss ◦ σ, K̃n−1

β φ̃β〉
∣∣+

n−1∑
i=1

∣∣〈φGauss ◦ σ, G̃i(K̃β − G̃)K̃n−i−2
β φ̃β〉

∣∣
+
∣∣〈φGauss ◦ σ, G̃n−1(φ̃β − φGauss〉

∣∣.
Using K̃βφ̃β = φ̃β and G̃∗(φGauss ◦ σ) = φGauss ◦ σ, we get

||ρ(β)
(n+1)d − ρ

Gauss
(n+1)d||L1 ≤

(
||φ̃β||L2 + ||φGauss||L2

)
||φ̃β − φGauss||L2 + ||K̃β − G̃||

which goes to zero by Proposition 6.9 (see also Corollary 6.10).

7 A Brascamp-Lieb type covariance estimate for m =∞

Here we prove Proposition 2.10. Key to the proof is a matrix lower bound A for the Hessian of EN .
For Gaussian measures with probability density proportional to exp(−β

2
〈z, Az〉) and test functions

fi = zi, gj = zj , we end up estimating the covariance Cij = ([βA]−1)ij . We follow [Men14], see
also [OR07].

Proof of Proposition 2.10. Revisiting the proof of Lemma 3.3, we obtain bounds on matrix elements
of the Hessian. Let N ∈ N, z ∈ [zmin, zmax]N−1. For 1 ≤ i < j ≤ N − 1 we have

0 ≥ ∂i∂jEN(z) =
∑

L⊃{i,j}

v′′(
∑
k∈L

zk) ≥
N−1∑

n=j−i+1

v′′(nzmin)#{L | #L = n, L ⊃ {i, j}}

≥
∞∑

n=j−i+1

(n− j + i)v′′(nzmin) =: −κj−i
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with

0 ≤ κj−i ≤
∞∑

n=j−i+1

α2n

(nzmin)s+2
≤ α2

szs+2
min (j − i)s

(7.1)

For 1 ≤ i ≤ N − 1 we also have

∂2
i EN(z) =

∑
L3i

v′′(
∑
k∈L

zk) ≥ v′′(zmax)−
∞∑
n=2

n
∣∣v′′(nzmin)

∣∣ =: ρ > 0

by Assumption 1(iv). Moreover

η := ρ− 2
∞∑
`=1

κ` = v′′(zmax)−
∞∑
n=2

n2|v′′(nzmin)| > 0

again by Assumption 1(iv). LetAN be the (N −1)× (N −1)-matrix with diagonal ρ and off-diagonal
entries −κ|j−i|; notice that η, κj−i, ρ do not depend on N . AN is symmetric and positive-definite.

The previous estimates together with [Men14, Remark 2.6] show that the energy EN satisfies the
assumptions of [Men14, Theorem 2.3 and Proposition 3.5]. It follows that for all smooth f, g : R+ →
R, ∣∣∣µ̃(N)

β (figj)− µ̃(N)

β (fi)µ̃
(N)

β (gj)
∣∣∣ ≤ 1

β
(A−1

N )ij

(
µ̃(N)

β

(
f ′i

2)
µ̃(N)

β

(
g′j

2))1/2

.

Let X1, X2, . . . be i.i.d. random variables with law

P(Xi = `) =
κ|`|
ρ− η

, ` ∈ Z \ {0}, P(Xi = `) = 0

and Sn = X1 + · · · + Xn. We may decompose AN as ρId plus an off-diagonal matrix, write a
Neumann series for the inverse, and find that for i < j

(A−1
N )ij ≤

1

ρ

∞∑
k=1

(
1− η

ρ

)kP(Sk = j − i). (7.2)

Clearly

P(Sk = j − i) ≤
k∑
r=1

P(Xr ≥ (j − i)/k, Sk = j − i). (7.3)

By (7.1), we have P(Xr = `) ≤ C/|`|s for some constant C > 0. Following [Men14, Proposition
3.5] we may estimate, for each m ∈ N,

P(X2 ≥ m, Sk = j − i) ≤
∞∑
`=m

P(X2 = `)P(X1 +X3 + · · ·+Xn = j − i− `)

≤ sup
`≥m

P(X2 = `) ≤ C

ms
.

Similar estimates apply to other r. Combining with (7.3) we find

P(Sk = j − i) ≤ C ks+1

|j − i|s
.

It follows that

(A−1
N )ij ≤

C

ρ|i− j|s
∞∑
k=1

ks+1
(
1− η

ρ

)k
Notice that the series is convergent. The bound is plugged into the estimate (7.2) and the proposition
follows by passing to the limit N →∞.
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