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Low rank surrogates for polymorphic fields with application to
fuzzy-stochastic partial differential equations

Martin Eigel, Lars Grasedyck, Robert Gruhlke, Dieter Moser

Abstract

We consider a general form of fuzzy-stochastic PDEs depending on the interaction of prob-
abilistic and non-probabilistic (“possibilistic”) influences. Such a combined modelling of aleatoric
and epistemic uncertainties for instance can be applied beneficially in an engineering context for
real-world applications, where probabilistic modelling and expert knowledge has to be accounted
for. We examine existence and well-definedness of polymorphic PDEs in appropriate function
spaces. The fuzzy-stochastic dependence is described in a high-dimensional parameter space,
thus easily leading to an exponential complexity in practical computations.

To aleviate this severe obstacle in practise, a compressed low-rank approximation of the prob-
lem formulation and the solution is derived. This is based on the Hierarchical Tucker format which
is constructed with solution samples by a non-intrusive tensor reconstruction algorithm. The per-
formance of the proposed model order reduction approach is demonstrated with two examples.
One of these is the ubiquitous groundwater flow model with Karhunen-Loève coefficient field
which is generalized by a fuzzy correlation length.

1 Introduction

Mathematical models for real-world problems often depend on uncertain parameters, for instance de-
scribing material properties, forces, boundaries or the geometry of an object. The uncertainty is called
irreducible or aleatoric when it stems from an inherently random physical process. The respective
parameters are typically represented in a probabilistic framework as random variables, fields, or pro-
cesses. Opposite to this, reducible uncertainties originating in a lack of knowledge, imprecision, or
vagueness regarding the described property are called epistemic [69, 63]. These uncertainties are
quite often modelled within a non-probabilistic framework. Examples for such frameworks are the ev-
idence theory by Dempster and Shafer [77], the random set theory [58] and possibility theory [82].
Furhermore, over the last decades there have been attempts to develop a general theory of uncer-
tainty, see e.g. the theory of imprecise probabilities [79]. It is still a matter of debate in different scien-
tific communities if the probability framework is sufficient for the treatment of epistemic uncertainties
as discussed in [74, 28]. In addition to the debate about an adequate description of (different forms of)
uncertainties, another challenge in the thriving field of Uncertainty Quantification (UQ) is how to cope
with the often prohibitive computational cost in numerical simulations. It is well-known that the “curse
of dimensionality” is introduced when the number of uncertain parameters gets large, which is compli-
cated further in case that different uncertainties interact. When both probabilistic and non-probabilistic
uncertainties are present, we denote this as polymorphic uncertainties. These challenges usually lead
to the necessity to evaluate a huge number of solutions (i.e. samples) of the underlying mathematical
model. As an alternative, given sufficient regularity of the parameter to solution map, surrogate models
(exploiting regularity, sparsity or low-rank approximability) can be employed. These enable the efficient
evaluation of samples as well as quantities of interest (QoI) depending on the (parametric) solution.
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In this paper, we are concerned with a combined possibilistic-probabilistic modelling in the context of
PDEs. Prior work in this direction can be found in the fuzzy-stochastic uncertainty model presented
in [83] for a diffusion equation, which is also analysed in [66] based on pure sampling propagation of
the uncertainties. In [35] and [25], a surrogate response based on Artificial Neural Networks was used
for fuzzy and fuzzy-stochastic propagation, respectively. A sparse grid response surface for pure fuzzy
dependence was developed in [51].

As a model order reduction technique, we use the Hierarchical Tucker format in conjunction with a
sample-based reconstruction algorithm, see [45] for an introduction to tensor calculus. With this non-
intrusive approach, we investigate surrogate models based on separability properties of the mapping
from paramater space to the QoI. Let p1, . . . pd be the d parameters and imagine that the QoI ϕ is
approximated well by

ϕ̃ (p1, . . . , pd) =
d∏

k=1

fk(pk).

In this fully separated form, the computation of the absolute maximum is reduced to finding the abso-
lute maximum of the d functions {fk}k∈{1,...,d}. Similarly, under the assumption that the parameters
are independently distributed, the computation of the expectation simplifies to the multiplication of the
d means of {fk}k∈{1,...,d}. Obviously, in practice it is not always possible to find this particular separa-
bility structure. Nonetheless, other forms of separability are found in various tensor formats, e.g., the
Canonical Polyadic format [48], the Tucker format [21], the Tensor Train format [70] or the Hierarchical
Tucker format [46, 42, 41]. These types of representations are called low-rank approximations, we re-
fer to [52, 45] for a broader overview. The properties of (hierarchical) tensor formats are an active field
of research. For numerical computations, they were shown to exhibit favourable properties in different
application areas and can in particular be a viable approach to mitigate the curse of dimensionality in
high-dimensional problems. Recent examples in UQ can e.g. be found in [60, 24, 18].

This paper is structured as follows: In Section 2, a brief introduction into possibility theory is given.
Moreover, the challenge of interaction between probabilistic and possibilistic parameters is addressed
for a simple mapping. The examination is extended to (parametric) polymorphic PDEs in Section 3.
In Section 4, the hierarchicalH tensor is introduced as a main tool to circumvent the curse of dimen-
sionality for the representation of the parameter to solution map. Numerical examples illustrating the
performance of the proposed approach are presented in Section 5.

2 Polymorphic uncertainty propagation

Uncertainty encompasses all situations in which the precise prediction is not possible. This may be due
to the lack of knowledge which may be reducible by more measurements, or due to inherent properties
like in quantum mechanics, where the uncertainty is irreducible since the measurement of an object
changes the object itself. For problems in the engineering sciences, the sources of uncertainty may
stem from inexact models, vagueness in linguistic descriptions of parameters, from insufficient data
and natural phenomena such as weather.

A classical way to handle uncertainties is the probability theory build upon Kolmogorov’s axioms [53]
which define a probability measure. Assume we would like to describe the uncertainty of an parameter
p with classical probability theory. The only knowledge about this parameter is that it lies in an interval
[a, b]. Following Laplace’s principle of insufficient reason, one would model the own belief by a uniform
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distribution p ∼ U(a, b). This model of uncertainty has the advantage of an underlying mature the-
oretical and practical framework. As such it allows to determine statistical moments or to incorporate
new information via Bayesian updating [12]. Therefore, this modelling of uncertainty is advisable in
most cases und thus quite common in the engineering sciences [61, 56].

Nontheless, the uniform distribution is not an accurate model for total ignorance. If the only knowledge
are the upper and lower bounds for the parameter p, the only valid statement about the mean value
should be that it lies in this interval. In other words, any probability density bounded to the interval
should be possible. If more evidence is provided the set of possible probability densities is further
restricted. This may be achieved by e.g. applying evidence theory [22] or possibility theory [27] to
provide upper and lower probability bounds. In fact, this is not the only way to characterise the set of
admissible probability densities, see the theory of imprecise probabilities [79]. This kind of modelling
of uncertainties is also found in engineering sciences in [11, 40, 49].

In the next section, we briefly introduce possibility theory and probability theory with the focus on
uncertainty propagation.

2.1 Possibility and probability

In this section we present a type of uncertainity description based on probability or possibility the-
ory. The latter may be used to describe uncertain events that are not of stochastic nature, see [28].
We denote a mixture of possibilistic and probabilistic uncertainty descriptions and their propagation
as polymorphic uncertainty propagation. Here, the probabilistic and possibilistic frameworks will be
realised based on random variables (Section 2.2) and fuzzy sets (Section 2.3).

In the probabilistic framework we consider some complete probability space (Ω,Σ,P) with sample
domain Ω, sigma algebra Σ ⊂ P(Ω) and probability measure P : Σ → [0, 1] that satisfies the
probability axioms

1 P(∅) = 0, P(Ω) = 1

2 P(∪iAi) =
∑
i

P(Ai) for mutually disjoint Ai ∈ Σ for i ∈ N.

In the possibilistic framework we consider a possibility space (Z,A,Pos). Here, Z 6= ∅ is the uni-
versal set, A = A(Z) ⊂ P(Z) is an ample field [19], in particular A is closed under arbitrary
unions and intersections and under complementation in Z and Pos: A → [0, 1] is called a (normal)
possibility measure satisfying the possibility axioms

1 Pos(∅) = 0, Pos(Z) = 1

2 Pos(∪iZi) = supi Pos(Zi) for (uncountable many) Zi ∈ A.

The second condition marks a main difference of both concepts and results in several consequences.
E.g. opposite to the probability measure in general, the possiblity measure is not self-dual since it only
holds that

Pos(A) + Pos(Z \ A) ≥ 1, for all A ∈ A,
P(A) + P(Ω \ A) = 1, for all A ∈ Σ.

(2.1)

DOI 10.20347/WIAS.PREPRINT.2580 Berlin 2019



M. Eigel, L. Grasedyck, R. Gruhlke, D. Moser 4

A dual measure Nec: A → [0, 1] called necessity is defined as Nec(·) := 1 − Pos(Z \ ·). This
definition for example implies

Nec(A) + Nec(Z \ A) ≤ 1 and Pos(A) + Pos(Z \ A) ≥ 1,

instead ofP (A)+P (Z\A) = 1 in the probability framework. General concepts of possibility measure
und necessity measures can be found in [26]. In [54] a self-dual measure called credibility measure
Cred(·) := 1/2(Pos(·) + Nec(·)) was introduced and used for fuzzy optimization.

The possibility and necessity can be viewed as bounds for imprecise probabilities, see e.g. [27, 20].
Let Σ ⊂ A be a sigma algebra andA be an ample field. Then given a possibility measure Pos: A →
[0, 1], a set of measuresM on Σ can be defined as

M := {P | ∀A ∈ Σ : Nec(A) ≤ P(A) ≤ Pos(A)}. (2.2)

Conversely, given a setM1 of probability measures on a sigma algebra Σ and a setM2 of possibility
measures on an ample fieldA s.t. Σ ⊂ A, then

{Pos | ∀A ∈ Σ : Pos(A) = sup
P∈M1

P(A)} (2.3)

defines a non-empty subset of possibility measures inM2. The connection of possibility theory and
the subsequent fuzzy arithmetic is stated in (2.8).

2.2 Random variables

Based on the complete probability space (Ω,Σ,P) in the probabilistic framework, uncertainties may
be described by some abstract random variable

ξ : Ω 7→ (E,B(E)) (2.4)

with measurable space (E,B(E)) with the special case E = RM≤∞. Furthermore define Γ :=
img ξ, which we will utilize in the framework of parametric random PDEs in Section 3.2. Denote by
µ := ξ#P the push-forward probability measure w.r.t. ξ. Instead of the abstract probability space
(Ω,Σ,P) we work in the image space (Γ,B(Γ), µ) and identity ξ(ω) with y = ξ(ω) ∈ Γ. In the
case that ξ = (ξi) consists of stochastic independent random variables ξi with Γi := img ξi and
push-forward measure µi w.r.t. ξi, we can rewrite the image space based on

Γ =
M×
i=1

Γi, µ =
M⊗
i=1

µi. (2.5)

Then the propagation of ξ under a measurable map f : Γ → V for some set V defines a V -valued
random variable fV (ω) = f(ξ(ω)) in a P-a.e pathwise manner. If in addition V ⊂ RN for N ∈ N,
we may characterise the propagation by means of the cumulative distribution function (CDF) of fV ,
see Figure 1.

2.3 Fuzzy sets

We now introduce a possibilistic framework based on fuzzy sets, e.g. [81] or more recently [65, 62,
64]. This section will give an overview of the basic definitions of fuzzy sets and their propagation in
Theorems 2.4 and 2.5.
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Γ = R

f1

P(ξ ≤ ·)

1

P(f(ξ) ≤ ·)

V = R

Figure 1: CDF propagation of a random variable.

Definition 2.1. (Fuzzy set/variable, α-cuts and interactivity)
Let Z 6= ∅ be a set and µz̃ : Z 7→ [0, 1] be a map s.t. there exists z ∈ Z with µz̃(z) = 1. The map
µz̃ is called (normalized) membership function. We define a (normalised) fuzzy set z̃ on Z by

z̃ := {(z, µz̃(z)) | z ∈ Z}. (2.6)

If µz̃(Z) = {0, 1} with uniqe z∗ ∈ Z with µZ(z∗) = 1 then z̃ is called a crisp set. Furthermore,
we denote by F(Z) the set of all fuzzy sets on Z . Thus, we simply write z̃ ∈ F(Z). If Z ⊂ Rn for
n ∈ N we call z̃ ∈ F(Z) a fuzzy variable (n = 1) or vectorial fuzzy variable (n > 1) described by a
(joint) membership function µz̃(n > 1). Let α ∈ [0, 1] then the α-cut Cα of µz̃ is defined as

Cα[z̃] := {z ∈ Z : µz̃(z) ≥ α}. (2.7)

The 0-cut C0[z̃] defines the so-called support of µz̃. Let z̃i ∈ F(Zi) for sets Zi with i = 1, . . . ,M <

∞, Z :=×M

i=1
Zi and z̃ = (z̃i)i. If the joint membership function associated with z̃ has the form

µz̃ = mini µz̃i then z̃ is called non-interactive and interactive otherwise.

Given a membership function µz̃, a possibility measure can be derived via

Pos(A) := sup
z∈A

µz̃(z), ∀A ∈ A = A(Z). (2.8)

This lays the grounds of possibility in terms of fuzzy sets in the spirit of [82].

For the numerical treatment of fuzzy sets it is convenient to require some properties which lead to a
beneficial algebraic structure. We denote a function µ as quasi-concave on Z if for all z1, z2 ∈ Z and
all λ ∈ [0, 1] s.t. λz1 + (1− λ)z2 ∈ Z it holds

µ(λz1 + (1− λ)z2) ≥ min(µ(z1), µ(z2)). (2.9)

Moreover, we call a function µ : Z → [0, 1] to be upper semicontinuous if

lim sup
z 7→z0

≤ µ(z0), ∀z0 ∈ Z. (2.10)

Definition 2.2. (Fuzzy number/vector/interval/area)
Let z̃ ∈ F(Z) withZ ⊂ Rn for some n ∈ N s.t.Z is bounded and convex and the (joint) membership
function µz̃ is semi-upper continuous and quasi-concave. If there exists a unique z∗ ∈ Z s.t. µz̃(z∗) =
1 then we call z̃ a fuzzy number resp. fuzzy vector for n = 1 resp. n > 1. Otherwise, z̃ is called a
fuzzy interval resp. fuzzy area for n = 1 resp. n > 1 if there exists more than one z ∈ Z s.t.
µz̃(z) = 1.

For most practical cases a restriction to these particular fuzzy sets does not represent an impairment
in modelling the epistemic uncertainties. We point out the nestedness property of α-cuts of the fuzzy
structures from Definition 2.2, that is

Cα[z̃] ⊂ Cβ[z̃], ∀α ≥ β. (2.11)
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This property is beneficial for the computation of propagation of these fuzzy structures, see Theorem
2.5.

Example 2.3. A particular class of fuzzy numbers is given by so called LR-fuzzy numbers z̃ forming
a subset of F(Z) with Z ⊂ R. Here the membership function µz̃ is described by two upper semicon-
tinous functions fL : (−∞, 0] → [0, 1] and fR : [0,∞) → [0, 1] with fL(0) = fR(0) = 1 with fL
(fR) being monotonously increasing (decreasing) and limz→−∞ fL(z) = 0 (limz→∞ fR(z) = 0) s.t.
there exists z∗ ∈ Z with

µz̃(z) =

{
fL(z∗ − z), z ≤ z∗,
fR(z − z∗), z ≥ z∗,

(2.12)

and µz̃(z∗) = 1. The most popular LR-fuzzy number is the triangle fuzzy number z̃ = 〈l, z∗, r〉
specified by left and right limit l, r and peak position z∗, see Figure 2.

C0[z̃]
Z0

1

α
Cα[z̃]

l r

µz̃

z̃ =< l, z∗, r >

z∗

f : Z → V

V
C0[f̃ ]

Cα[f̃ ]

µz̃(f−1(v))

v

µf̃

sample based
envelope reconstruction

{(vk, µz̃(zk)}k

0

α

1

v∗

f(z̃)

Figure 2: Fuzzy propagation via α-cuts or full-sampling and membership recon-
struction with vk = f(zk), for Z = V = R.

The propagation of fuzzy sets through mappings can be realised with ZADEH’s extension principle.

Theorem 2.4. ( ZADEH’s extension principle [81])
Consider a function f : Z 7→ V with a non-empty set V . Let z̃ ∈ F(Z) with membership function
µz̃. Define

f̃ := f(z̃) := {(f(z), µf̃ (f(z)) ∈ V × [0, 1], z ∈ Z} (2.13)

with membership function µf̃ defined as

µf̃ (v) :=

 sup
z∈f−1(v)

µz̃(z) f−1(v) 6= ∅,

0 f−1 = ∅,
for all v ∈ V. (2.14)

Then f̃ ∈ F(V ) with membership function µf̃ .

Within this framework the function f can be interpreted as map f : F(Z) 7→ F(V ). If more underly-
ing structure is assumed, the extension principle can be equivalently formulated based on constrained
optimization of the map f itself. This approach follows from the following theorem.

Theorem 2.5. (α-cut propagation [67])
Let f : Z 7→ V be continuous between metric spaces (Z, d1) and (V, d2). Let z̃ ∈ F(Z) with
support C0[z̃] ⊂ K ⊂ Z for a compact set K with convex Z . Furthermore, let the membership
function µz̃ be quasi-concave and semi-upper continous. Then, µf̃ can be characterised via α-cuts as

Cα[f̃ ] = f(Cα[z̃]). (2.15)
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Moreover, if V = R then

Cα[f̃ ] =

[
min
z∈Cα[z̃]

f(z), max
z∈Cα[z̃]

f(z)

]
. (2.16)

We note that (2.15) follows from the assumption that Cα[z̃] is closed and consequently compact as it
is a closed subset of a compact set K in a metric space. Since f is assumed to be continous, then
compact sets are mapped to compact sets.

The optimization required due to the extension principle in (2.14) easily becomes a computationally
involved task. In this work three main concepts to realise the propagation are considered:

� Semi sampling in V : Directly solve the constrained optimization problem with a global optimizer.
For a given sequence (vk)k ⊂ V , compute the supremum over Zk := {z ∈ Z : f(z) = vk},
see red line in Figure 2.

� Full sampling approach: Choose a sequence (zk)k ⊂ Z and compute (fk)k = [f(zk)]k and
(µk)k = [µz̃(zk)]k. Use the data sample pairs (vk, µk) and reconstruct µf̃ , e.g. by convex hull
or an envelope approach, see orange/purple graphics in Figure 2.

� α-cut optimization: Based on (2.16) in Theorem 2.5 with V = R for a given discretization
α ∈ {α1, . . . , αl} ⊂ [0, 1], compute Cα[f̃ ] and build µf̃ based on interpolation between the
obtained points, see blue graphics in Figure 2.

Each of these approaches may still be challenging, e.g. if f is a complex function with high evaluation
cost, which is e.g. the case if the evaluation of f depends on a finite element solution of a complex
physical model. It becomes mandatory to construct a less costly surrogate fh ≈ f which is then used
to perform the propagation. In this work, the hierachical tensor decompositions introduced in Section
4 are employed for this.

2.4 Polymorphic parametric maps

When both different kinds of uncertainty are present we denote this as polymorphy. In this section the
potential interactions of possibility (via fuzzy sets) and probability are investigated from a parameteric
view. For this, we separate the data parameters into random and fuzzy parameters. For a more gen-
eral scenario involving fuzzy-fuzzy or random-random dependence we refer to Remark 2.11. The goal
of this section is to define a fuzzy random variable denoted as p̃ with realizations both in fuzzy and
random coordinate space denoted as p.

Let Z = Z1 × Z2 with Zi ⊂ RNi , N = N1 +N2 and a fuzzy vector

z̃ = [z̃1, z̃2] ∈ F(Z), µz̃ = min(µz̃1 , µz̃2). (2.17)

In particular, we assume a non-interacting structure of z̃1 and z̃2. For M ∈ N with M = M1 + M2,
consider a (realisation of a) fuzzy random variable of the form

ξ(z, ·) = [ξ1(·), ξ2(z2, ·)] : (Ω,Σ,P)→ (E,B(E)), E = RM , (2.18)
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pathwise to be a random variable for z = [z1, z2] ∈ C0[z̃] ⊂ Z . We assume ξ1 and ξ(z2) to be
independent for all z2 ∈ Z2. Then the pathwise image of ξ(z) is given by Γ(z) := Γ1×Γ2(z2) with

Γ1 := img ξ1 ⊂ RM1 , Γ2(z2) := img ξ2(z2) ⊂ RM2 , ∀z2 ∈ C0[z̃2], (2.19)

yielding an image identification y(z) = [y1,y2(z2)] = ξ(z, ω). We define an overall image Γ2 and
a graph W as

Γ2 :=
⋃

z2∈C0[z̃2]

Γ2(z2), (2.20)

W := {(y2(z2), z2) | z2 ∈ Z2} ⊂ W# := Γ2 × C0[z̃2]. (2.21)

With this, either p = [y1,y2(z2), z1] ∈ Γ1 × Γ2 × Z2 or p = [y1, (y2(z2), z2), z1] ∈ Γ1 ×
W × Z2 ⊂ Γ1 ×W# × Z2. Either structure yields the definition of a slightly different polymorphic
dependence map.

Definition 2.6. (V -valued fuzzy-random fields, Γ2-case)
For a set V and measurable mapping

f : Γ1 × Γ2 × Z1 → V, (y1,y2, z1) 7→ f(y1,y2, z1), (2.22)

a V -valued polymorphic field g : Ω×F(Z)→ F(V ) can be defined as

g(ω, z̃) = f(ξ1(ω), ξ2(z̃2, ω), z̃1). (2.23)

Definition 2.7. (V -valued fuzzy-random fields, W -case)
For a set V and measurable mapping

fW : Γ1 ×W × Z1 → V, (y1,w, z1) 7→ fW (y1,w, z1), (2.24)

a V -valued polymorphic field g : Ω×F(Z)→ F(V ) can be defined as

g(ω, z̃) = f(ξ1(ω), (ξ2(z̃2, ω), z̃2), z̃1). (2.25)

Note that Definition 2.6 is a special case of Definition 2.7, considering a substructure given by a map
h : W 7→ Γ2, such that fW (y1,w, z1) = f(y1, h(w), z1).

Remark 2.8. In the spirit of the pure fuzzy case we can also interpret h(z̃) = g(·, z̃) as a fuzzy set
in F(V Ω).

Both dependency structures require their own surrogate design of the mapping f . In the Γ2 case we
can define the respective parameter independent of z2. However, there is a more involved parameter
dependence in the W -case, see Figure 3 for an illustration of both cases. Additionally, the geometry
of W can be arbitrarily complex.

In view of the embedding of W into the tensor domain W#, we may also consider a measurable map

f# : Γ1 × Γ2 × Z2 × Z1 → V, (y1,y2, z2, z1) 7→ f#(y1,y2, z2, z1), (2.26)

such that

f ≡ f#, in Γ1 ×W × Z2. (2.27)

Instead of generating a surrogate of f with respect toW , if possible it might be easier to construct f#

in the tensor domain instead. A special case occurs if W is a tensor domain, i.e. W = W#, as in the
case for random variables with unbounded image, like normal or lognormal distributed fuzzy-random
variables, see Figure 3.

An important class of fuzzy dependent random variables as in (2.18) is given in Example 2.9.
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Low rank surrogates for polymorphic fields 9

Example 2.9. Let a random vector ξ2 for a given parameter z2 be distributed as ξ ∼ D(z2). Such
a random vector may be characterised by a density ρ, which itself depends on a parameter z2 ∈
Z2 ⊂ RK for K ∈ N. Let z̃2 be a fuzzy set pathwise given as z2 ∈ C0[z̃2]. Then ξ2 = ξ2(z̃2) is
a fuzzy random vector of the form (2.18). In Figure 3 two particular examples of a (bounded) uniform
and lognormal scalar fuzzy random variable are illustrated.

y2

z2

Γ2

WW#

Γ2(z2)
C0[z̃2]

y2

z2

Γ2 = R+

W = W#

Figure 3: RVs with fuzzy dependence z2 ∈ C0[z̃2] = [0, 1]. Left: non-tensor image range for ξ2 ∼
U(−z2

2 , z
2
2), Right: tensor domain image range for ξ2 ∼ LN (z2, 1)

In the case of N2 = M2 = 0 and recalling the special case that ξ1 = (ξ1,i)i are independent
with images Γ1,i and z̃1 = (z̃1,j)j are non-interacting with supports in Z1,j for i = 1, . . . ,M1,
j = 1, . . . , N1, we are in the full tensor scenario

f :

(
M1×
i=1

Γ1,i

)
×

(
N1×
j=1

Z1,j

)
→ V. (2.28)

Example 2.10. Let z̃ ∈ F(Z) with Z ⊂ Rn be a fuzzy vector and D(z) ⊂ Rd be a domain indexed
with z ∈ C0 ⊂ Z . Then D(z̃) defines a fuzzy set denoted as fuzzy domain, via ZADEH’s extension
principle (2.14).

Remark 2.11. We note that the general case of fuzzy sets depending on {random variables, fuzzy
sets} and random variables depending on {random variables} is not discussed. The latter may occur
in maximum-likelihood parameter estimations of random variables in a Bayesian framework. In this
general case, let θ̃ = [θΩ, θ̃F , c] be an array of random vector θΩ, fuzzy set θ̃F and crisp parameter
c with pathwise realisation denoted as θ. Then, in the spirit of (2.21) we may write

f : W → V, w = (y(θ), z(θ),θ) ∈ W. (2.29)

This describes the pathwise image y(θ) = ξ(θ, ω) with θ-dependent random variable ξ and a
pathwise realisation z(θ) of a θ-dependent random set z̃(θ). The definition of W is essential due
to the different propagation structure introduced by possibilistic and probabilistic arithmetic. Since W
can exhibit an arbitrary structure, a pathwise approach might be the only viable option. In particular,
the construction of surrogates is not straightforward.

3 Polymorphic partial differential equations on polymorphic do-
mains

We now apply the polymorphic framework developed in the preceding section to the modelling of un-
certain data in differential equations. As common in the field of Uncertainty Quantification, we focus on
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PDEs with uncertain data as the most relevant setting for engineering problems. While PDEs depend-
ing on a countable (infinite) sequence of random variables have been examined extensively, mainly
due to the popular representation of random fields in terms of the Karhunen-Loève expansion, more
general models such as polymorphic uncertainties are encountered far more scarcely. A recent work
on fuzzy-stochastic PDEs is [66]. Polymorphic uncertainty models with many examples of practical
interest were also described in [73, 25, 83]. A complementing discussion of PDEs with fuzzyness can
be found in [17].

In what follows, we first define an abstract setting of parametric PDEs. Different possible settings with
(a combination of) random variables and fuzzy sets are developed subsequently, leading to a rather
generic notion of polymorphic PDEs.

3.1 Abstract parameteric partial differential equation model

In this section we present parametric PDEs as the foundation of polymorphic PDEs. Starting from an
abstract equation (3.2) with pathwise solution u(p), we successively assume more structure w.r.t. to
the parameter itself and the parameter dependence of the operator, right-hand side, domain and so-
lution space. This allows for an interpretation of a solution map p→ u(p) in fuzzy sets on BOCHNER

spaces.

Let either P := Γ1×W×Z1 or P := Γ1×Γ2×Z2 be the parameter domain used for a polymorphic
input description motivated by Section 2.4. Fix p = p(y(z), z) ∈ P ,

p = [y1, (y2(z2), z2), z1] or p = [y1,y2(z2), z1)], (3.1)

in its image representing a realisation of [ξ1, (ξ2(z2), z2), z1] or [ξ1, ξ2(z2), z1]. By this identification
and an abuse of notation, we henceforth let p be both the parameter and a z-dependent random vec-
tor. In cases of either no dependence on z or ξ, that is p = ξ1 or p = z2, we neglect the subindices
and write p = ξ or p = z.

Let D(p) ⊂ Rd be a LIPSCHITZ domain with d ∈ N. We consider parameter dependent PDEs which
are pathwise of the form

L(p)u(p) = f(p), in V(p)∗, (3.2)

for an bijective linear operator L(p) : V(p)→ V(p)∗ with BANACH space V(p) = V(D(p),p) and
its dual V(p)∗ such that f ∈ V(p)∗. In the special case V(p) = H(p) is a HILBERT space, it is
assumed that

(w, v)L(p) := 〈L(p)w, v〉H(p)∗,H(p) (3.3)

defines a scalar product on H(p) such that the LAX-MILGRAM Theorem [1] can be applied to ensure
existence und uniqueness of the solution u(p) ∈ H(p) of (3.2). It in particular is the solution of the
variational problem: Seek u(p) ∈ H(p) such that

(u(p), v)L(p) = 〈f(p), v〉H(p)∗,H(p), ∀v ∈ H(p).

This is the concept of pathwise solutions.
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Example 3.1. The SOBOLEV spaceH1
Γ0(p)(D(p)) with a parameter dependent DIRICHLET boundary

segment Γ0(p) is an example for the space H(p) = H(D(p),p).

Since we assume pathwise that the solution space itself can be parameter dependent, a non-pathwise
solution concept in terms of BOCHNER type solution spaces might not be straightforward. The case
of pure random dependence is rather well understood, e.g. [55] and references in the subsequent
sections. We recall some results from an abstract prespective. This allows us to define a solution
concept on fuzzy sets.

3.1.1 Pure random case

Based on the notation in section 2.2 let p = ξ(ω) be a random vector with image Γ and push-
forward measure µ = ξ#P of P under ξ. We define the (image) probability space LP (Γ, µ) :=
LP (Γ,B(Γ), µ) with norm ‖.‖LP (Γ,µ),

‖v‖2
LP (Γ,µ) :=

∫
Γ

|v(y)|Pdµ(y) =

∫
Ω

|v(ξ(ω))|PdP.

Assume that D 6= D(p) ⊂ Rd
1 and also the HILBERT space H = H(D) 6= H(p) be independent

of p with the norm ‖.‖H . The operator L(p) is assumed to have the form

L(p) = L(C[ ](·, ξ(ω))), (3.4)

with an array of random fields C[ ] = [C1, . . . , CK ] for K ∈ N, see Example 3.2.

Example 3.2.

1 C[ ] = [A, c] with random field diffusion matrix A and reaction field c, the operator L can be
written as

〈L(C[ ](·, ξ(ω))])w, v〉 =

∫
D

A(x, ξ(ω))∇w∇v + c(x, ξ(ω))wv dx,

describing a random reaction-diffusion problem with d2 = 1.

2 C[ ] = [C] with random field tensor C describing an anisotropic random material (such as a
composite material) in linear elasticity for d2 = 2, 3. Here, L takes the form

〈L(C[ ](·, ξ(ω)))w, v〉 =

∫
D

C(x, ξ(ω))ε(w) : ε(v) dx,

with ε(w) = ∇symw = 1/2(∇w +∇Tw), see e.g. [14] for the deterministc case.

Given the operator in (3.4), the abstract equation (3.2) becomes

L(C[ ](·, ξ(ω)))u(ξ(ω)) = f(ξ(ω)), in H(D)∗. (3.5)
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An analytical framework for this type of problem may be stated in a BOCHNER space LP (Γ, µ;H),
e.g. [38, 75, 78, 10, 29] and references therein with

‖v‖LP (Γ,µ;H) :=


∫
Γ

‖v(y)‖PHdµ(y) P ∈ [1,∞),

ess sup
y∈Γ
‖v(y)‖H P =∞.

With the identification y = ξ(ω) for some P ≥ 1, it can be shown that

y → u(y) ∈ LP (Γ, µ;H),

assuming enough regularity with f ∈ LQ(Γ, µ;H∗) and Ck ∈ LSk(Γ, µ;Lk) with Lk ⊂ H l for
some l ∈ N and Q,Sk ≥ 1, k = 1, . . . , K . See e.g. [10, 29] for the case H = H1

0 (D) and
C[ ] = [C1] with C1 = A ∈ L1 = L∞(D)d×d for the diffusion problem with c ≡ 0 from Example 3.2.

An important special case is the HILBERTian case P = 2 in the space V := L2(Γ, µ;H), see e.g.
[38, 3, 4, 59, 33] and the references therein, enabling the framework of GALERKIN projections based
on a weak formulation: seek u ∈ L2(Γ, µ;H)

a(u, v) :=

∫
Γ

(u(y), v(y))L(y) dµ =

∫
Γ

〈f(y), v(y)〉H(p)∗,H(p)dµ := `(v). (3.6)

Existence and uniqueness may be shown in the framework of the LAX-MILGRAM theorem based on
the bilinear form a : V × V → R and the linear form ` : V → R.

3.1.2 Probability spaces of Bochner type and parameteric domains

As before, let p ∈ P of the form (3.1) and consider the case

D = D(p), H(p) = H(D(p)).

This means that we only consider a parameteric domain but no additional parametric description of
the pathwise solution space. Within this framework in order to remain in a BOCHNER setting pathwise
in z = [z1, z2], one can utilise a parameter domain mapping approach. We refer to [47, 72] and
references therein for the random domain mapping approach.

Recall Z = Z1 × Z2 and z = [z1, z2] ∈ Z and the idenfication of p in (3.1). We now consider two
types of reference mappings, either completly mapping to a non-parameter dependend domain Dref

or keeping the parameter z inDref(z). We will restrict the discussion to the first case, the second one
is sketched in Remark 3.3. Assume there exists a sufficiently smooth invertible map

Φ: Dref × Z × Ω→ Rd1 , Φ(Dref , z, ω) = Φ(Dref ,p) = D(p),

that transforms the problem given pathwise as

L(p)u(p) = f(p) in H(D(p))

to

Lref(p)uref(p) = f ref(p) in H(Dref). (3.7)
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Note that the mapping Φ shifts the parameter dependence of the domain into the transformed op-
erator. Now again assume bijectivity of the operator Lref(p) : H(Dref) → H(Dref)∗. If L(p) =
L(C[ ](·,p)) with an array of parameter dependent fields analogue to (3.4), then Lref(p) again might
become of the form Lref(Cref

[ ] (·,p)) with a transformed array of parameter dependent fields. This
change might be based on an associated integral based weak formulation, such that Φ acts as a
change of variables in a weak sense. We observe that in this situation, (3.7) is pointwise (i.e. for fixed
z) of type (3.5). For fixed z the parameter p only depends on (the image of) a random vector

ξ(z) := [ξ1, ξ2(z2)], Γ(z) := img ξ(z),

only keeping the full parameter dependence of u on p from (3.1). For fixed z, let µ(z) = ξ(z)#P
denote the push-forward measure of P under ξ(z). We define the z-dependent BOCHNER space
LP (Γ(z), µ(z);H(D)) as a solution space such that, for fixed z,

y(z) 7→ u(p(y(z), z)) ∈ LP (Γ(z), µ(z);H(D)), (3.8)

with the image identification ξ(z, ω) = y(z) given z ∈ Z using the notation u(p(y(z), z)) to em-
phasise the additional dependence of u on z.

Remark 3.3. Due to the pathwise concept in z one might consider a transformation Φ[z] with

Φ[z] : Dref(z)× Ω→ Rd1 , Φ[z](Dref(z), ω) = Φ[z](Dref(z), ξ1(ω), ξ2(z2(ω))) = D(p).

The underlying solution space then is a parameterized BOCHNER spaceLP
(
Γ(z), µ(z);H(Dref(z)

)
.

As in (3.6) in the HILBERTian case P = 2 for the space V [z] := L2(Γ(z), µ(z);H) with H =
H(D) or H = H(Dref(z)), we consider a weak formulation pathwise in z ∈ Z : seek u(z) ∈ V [z]
such that

a[z](u(z), v) = `(v) ∀v ∈ V [z], (3.9)

with

a[z](w, v) :=

∫
Γ(z)

(w(y(z), v(y(z)))L(y(z) dµ(z),

`[z](v) :=

∫
Γ(z)

〈f(y(z)), v(y(z))〉H(p)∗,H(p)dµ(z).

Existence and uniqueness follow pathwise in z by the LAX-MILGRAM theorem applied to the bilinear
form a[z] : V [z]× V [z]→ R and the linear form `[z] : V [z]→ R.

3.1.3 Pure fuzzy case

In this setting, assume that p = z ∈ Z with z ∈ C0[z̃]. We then remain in the pathwise setting and
u(z) ∈ H(D(z), z).
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3.1.4 Fully separated case

We now assume the simpler structure p = (ξ(ω), z) = (y, z) ∈ Γ×Z . This setting was discussed
in [66] for the diffusion problem. Furthermore, let D 6= D(p) and H = H(D) be non-parametric.
Recalling (3.5), the abstract equation (3.2) has the form

L
(
C[ ](·, ξ(ω), z)

)
u(ξ(ω), z) = f(ξ(ω), z), in H(D)∗.

Analogously to Section 3.1.1 and in particular with (3.6) and the scalar product (·, ·)L(y,z) from (3.3),
assume that

a[z](u, v) :=

∫
Γ

(u(y), v(y))L(y,z) dµ(y), (3.10)

`[z](v) :=

∫
Γ

〈f(y, z), v(y)〉H∗,Hdµ(y) (3.11)

define a V -elliptic bilinear form a[z] : V × V → R and a continuous linear form `[z] : V → R
with V = L2(Γ, µ;H). Here again, µ is the push-forward of P under ξ and Γ = img ξ. Existence
and uniqueness of a u(z) ∈ V are ensured by the LAX-MILGRAM theorem. Note that V is defined
independently of z opposite to the setting in Section 3.1.2. Hence, we can write

u = u(x,y, z), x ∈ D,y ∈ Γ, z ∈ Z. (3.12)

We now consider the setting of (2.5) with ξ = (ξi)i consisting of independent random variables ξi
with image Γi and push-forwards measure µi for i = 1, . . . ,M ≤ ∞. Let H be separabel, then one
can indentify V with a tensor space, such that

V = LP (Γ, µ,H) = LP (Γ, µ)⊗H =

(
M⊗
i=1

LP (Γi, µi)

)
⊗H. (3.13)

This structure of a tensorised solution space is discussed in many works, see e.g. [75, 15, 6, 5]
including a regularity analysis allowing for tensor based approximation schemes like sparse grid inter-
polation [68, 36], polynomial chaos expansions [80, 33], stochastic collocation [2] and low rank format
representation in tensor train format [23, 32, 31].

Remark 3.4. In the case H = H(Dref(z), one works with V = V [z] = L2(Γ, µ;H(Dref(z)) in a
pathwise manner.

3.2 Polymorphic PDEs

With the pathwise interpretation of z ∈ C0[z̃] being an element of the support of a fuzzy number
z̃, we can transfer the results of Section 3.1 to fuzzy sets. To summarise the preceding section, we
arrived at several solution space concepts,

V [z] ∈
{
H(p), LP (Γ(z), µ(z);H(D(z))), (full pathwise)

LP (Γ(z), µ(z);H(D)), LP (Γ, µ;H(Dref(z)), (semi pathwise)

LP (Γ, µ;H(D))
}
, (constant pathwise)
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each assuming more substructure. All these concepts lift to fuzzy sets in different manner. For ease
of presentation we will discuss the fuzzy set interpretation for only one of the 3 structured concepts of
full, semi and constant pathwise design.

Let z̃ be a fuzzy set on Z with support C0[z̃] ⊂ Z and fix z ∈ C0[z̃].

1 Let (y(z), z) be a realisation of (ξ(z), z). In case that

u(y(z), z) ∈ V [z] = H((y(z), z)),

by ZADEH’s extension principle u(y(z), z) ∈ C0[u(y(z̃), z̃)]. Note that ξ(z̃) is a fuzzy set on
the set of random variables. Then,

u(y(z̃), z̃) ∈ F(V ), V :=
⋃

z∈C0[z̃]

⋃
y(z)∈img ξ(z)

H((y(z), z)).

2 Let Γ(z) = img ξ(z) and assume that

u[z] : Γ(z)→ H, y(z) 7→ u[z](y(z)) := u(y(z), z)

is an element of LP (Γ(z), µ(z);H). Then,

u[z̃] ∈ F(V ), V :=
⋃

z∈C0[z̃]

LP (Γ(z), µ(z);H).

3 In the simple case that p = (ξ, z) and Γ = img ξ such that the solution map

u[z] : Γ→ H, y 7→ u[z] := u(y, z)

is in LP (Γ, µ;H), it simply follows that

u[z̃] ∈ F(V ), V = LP (Γ, µ;H).

3.3 Polymorphic quantities of interest

In this section we consider quantities of interests (QoIs) Q depending on the structure of the defined
solution concepts. As in section 3.1 let p ∈ P represent an arbitrary realisation of a polymorphic
variable and denote by p̃ the polymorphic variable itself. For fixed p and a HILBERT space H(p)
define a map

q[p] : H(p)→ Rd, v 7→ q[p][v]. (3.14)

Consider a family of functions {u(p) ∈ H(p),p ∈ P}. Then a map

Q : P → Rd, p 7→ Q[p] := q[p](u(p)) (3.15)

defines a quantity of interest being a polymorphic field Q(p̃). In the case that p̃ = ξ/ p̃ = z̃ is a
random variable/ a fuzzy set, then Q(p̃) is a random variable/fuzzy set. For an example of such a
polymorphic quantity of interest we refer to the numerical section 5.1 and Example 3.5.
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Another type of QoIs is given for the underlying structure of BOCHNER SPACES V = LP (Γ, µ;H)
with H 6= H(p),Γ 6= Γ(p), µ 6= µ(p). For a given fuzzy set z̃ let u(z) ∈ V for all z ∈ C0[z̃].
Moreover define a map

q : V → Rd or q : V → H, (3.16)

defining a fuzzy QoI Q̃ := Q(z̃) = q(u(z̃)).

Example 3.5. [66] Important examples of fuzzy QoIs Q̃ include:

� k-th fuzzy moments of q(u(z̃)) given as

Q̃ := E
[
vk(z̃)

]
∈ F(H), k ≤ P. (3.17)

This also includes the fuzzy variance Ṽ = E [v2(z̃)]− E [v(z̃)]2 ∈ F(H) if P ≥ 2.

� fuzzy probabilities of failure, see e.g. [71], given as

Q̃ = P (g(u(z̃)) ≥ 0) , (3.18)

for a limit state function g : H → R.

� fuzzy cdfs, in the case of QoI of type (3.15) with image in Rd, d ≥ 1 given as

P(Q(p̃) ≤ t), or P(q(u(p̃))), t ∈ Rd, (3.19)

where P acts on the stochastic part of p̃ defined pointwise in z.

4 TheH-rank format

To introduce the hierarchical Tucker (HT) decomposition and thus the hierarchical Tucker approxima-
tion (HTA), we need two founding concepts. First, the dimension tree which represents the structure
of the decomposition, defined in Section 4.1. Second, the notion of a matricisation of a tensor array A
which is a rearrangement of its entries, defined in Section 4.2. For an accesible introduction to these
concepts, see [42, 43].

Definition 4.1. Let D := {1, . . . , d}. A tree TD is called a dimension tree if the following three
conditions hold:

� the index set D is the root of the tree TD,

� all vertices t ∈ TD are non-empty subsets t ⊂ D,

� every vertex t ∈ TD with #t ≥ 2 has two sons t1, t2 ∈ TD with the property

t = t1 ∪ t2, ∅ = t1 ∩ t2.

Furthermore, we define the set of leaves of TD by L (TD) := {t ∈ TD : #t = 1} and the set of sons
of t by sons (t).
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Definition 4.2. Let D := {1, . . . , d} and I1, . . . , Id be finite index sets with I := I1 × . . . × Id.
Given a subset t ⊂ D with complement [t] := D \ t, the matricisation

Mt : RI → RIt ⊗ RI[t] , It :=×
µ∈t
Iµ, I[t] :=×

µ∈[t]

Iµ

of a tensor A ∈ RI is defined by its entries

M (A)(iµ)µ∈t,(iµ)µ∈[t]
:= A(i1,...,id), iµ ∈ Iµ, µ ∈ D.

Using this concept, we assign a matricisationMt of the tensor to the vertex t in the dimension tree.
This association yields the definition of the hierarchical rank

k = (kt)t∈TD , kt := rank (Mt (A)) , t ∈ TD.

The set of tensors with a certain hierarchical rank k is denoted as

Hk :=
{
A ∈ RI : rank (Mt (A)) ≤ kt, t ∈ TD

}
.

Using the following lemma, a tensor inHk can be represented in a recursive fashion.

Lemma 4.3. Let A ∈ Hk. Then A = (UD)·,1 can be represented by the recursive relation

(Ut)·,j =

kt1∑
j1=1

kt2∑
j2=1

(Bt)j,j1,j2 (Ut1)·,j1 ⊗ (Ut2)·,j2 , j = 1, . . . , kt, (4.1)

for all t ∈ TD \ L(TD) with sons (t) = {t1, t2}, where Bt ∈ Rkt×kt1×kt2 and Ut ∈ RIt×kt ,
I := ×µ∈tIµ, for all t ∈ TD.

This is the key to the hierarchical Tucker decomposition. It reduces the number of stored entries from
nd toO (d · k3 + dkn) with k = maxt∈TD kt and n = maxµ∈D #Iµ since only the transfer tensors
Bt ∈ Rkt×Rkt1 ×Rkt2 and the frames U{µ} ∈ RIµ×Rkt have to be stored. In Figure 4, we find an
example of a balanced dimension tree for d = 4 and the relation of the transfer tensors to each other
and the frames.

Once an accurate approximation Ã ∈ Hk of the tensor A ∈ RI is found, the evaluation of a single
entry requires only O (dk3) arithmetic operations. In [41], a quasi-optimal algorithm was developed
based on singular value decomposition. For the resulting tensor B ∈ Hk, it holds

‖A− B‖F ≤
√

2d− 3 min
B∈Hk

‖A − B∗‖F . (4.2)

The use of a SVD is expensive in the sense that all entries of a matricisation are accessed. Another
method to find a low rank approximation of a matrix is the skeleton or cross approximation [39]. The
basic idea is to directly use the rows and columns of a matrix. LetM ∈ RI1×I2 ,P ⊂ I1 andQ ⊂ I2.
The cross approximation then reads

M× := M |I1×Q · S−1 ·M |P×I2 ,

where S is the submatrix that arises at the intersections of the chosen rows and columns. This method
only employs the entries of the rows and columns. Thus, the computation of most of the entries in the
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D = {1, 2, 3, 4}

{1, 2}

{1}

{2}

{3, 4}

{3}

{4}
dimension tree

B{1,2,3,4} ∈ Rk{1,2}×k{3,4}

B{1,2} ∈ Rk{1,2}×k{1}×k{2}

U{1} ∈ R#I1×k{1}

U{2} ∈ R#I2×k{2}

B{3,4} ∈ Rk{3,4}×k{3}×k{4}

U{3} ∈ R#I3×k{3}

U{4} ∈ R#I4×k{4}

stored data

Figure 4: A balanced dimension tree on the left and the arrangement of data representing the HT
decomposition on the right.

matrix are skipped. In [9], an adaptive cross approximation algorithm is employed to construct a hier-
archical Tucker decomposition in a non-intrusive fashion. This reduces the number of evaluated tensor
entries significantly. Additionally, the hierarchical rank is determined adaptively. Numerical results in
[8] show the practicability of this approach.

The most simple way to use the H-rank tensor is its evaluation for arbitrary indices of the underlying
tensor array, which requires only O(dk3) operations, cf. [45]. To evaluate the H-rank approximation

at arbitrary points, the format has to be extended by a set of functions
(
ψ

(i)
k (pi)

)
k∈{1,...,N}

for each

direction i, where

ψ
(i)
j (p) =

{
1, p = pi,k with k = j,

0, p = pi,k with k 6= j.

In between the grid points, the function maps to arbitrary real values. For instance, when taking triangu-
lar functions, the resulting approximation is the product of piecewise linear functions in each direction.
More sophisticated basis functions like wavelets or splines may also be implemented in principle.

Given a basis
(
ψ

(i)
k (pi)

)
k∈{1,...,N}

and aH-rank tensor with an underlying index set I , the evaluation

for an arbitrary point in p = (pk)
d
k=1 ∈ P with the structure P =×d

k=1
Pk corresponds to

Φ(p) =
∑
i∈I

H (pi)
d∏

k=1

ψ
(k)
ik

(pk)

=
∑
i∈I

H (pi) (W1 ⊗ . . .⊗Wd)i = 〈H,W1 ⊗ . . .⊗Wd〉 ,

with Wk =
(
ψ

(k)
1 (pk) · · ·ψ(k)

d (pk)
T
)

. This is just a contraction between a H tensor and the rank

1 tensorW = (W1 ⊗ . . .⊗Wd). The evaluation costs are constituted from the evaluation costs of
each basis function and the contraction.

DOI 10.20347/WIAS.PREPRINT.2580 Berlin 2019



Low rank surrogates for polymorphic fields 19

In addition to cutting the costs of a simple evaluation, a function given in the extendedH-rank format
allows for simplified usage of tensorized linear operators, since it holds

L (Φ) =
∑
i∈I

H (pi)
d∏

k=1

Lk
(
ψ

(k)
ik

)
.

With slightly more effort it is also possible to work with bilinear forms. Let (·, ·)B be a bilinear form and
Φ̃ another extendedH-rank tensor. The evaluation reads

(
Φ, Φ̃

)
B

=
∑
i∈I

Hi

(
d∏

k=1

ψ
(k)
ik
, Φ̃

)
B

=
∑
i∈I

∑
j∈J

HiH̃j

(
d∏

k=1

ψ
(k)
ik
,
d∏
l=1

ψ̃
(l)
jl

)
B

,

which is a two-sided contraction of twoH-rank tensors.

If a form of separability holds for the bilinear form, namely

(·, ·)B =
d⊗

k=1

(·, ·)B(i) ,

the computation becomes feasible by exploiting the Kronecker structure, see Section 4.3.

4.1 Tensor interpolation

Let v ∈ V =
⊗d

j=1 Vj a tensor space with an uniform crossnorm, cf. [45], and let U be a finite func-
tion space ofH-rank k, where each function u ∈ U is constructed accordingly to Eq. 4.1. The space
itself is hence constructed from a set of d finite dimensional subspaces Uj ⊂ Vj . Each subspace Uj

is spanned by a set of basis functions
{
ψ

(k)
j

}
j∈{1,...,rj}

, with dim(Uj) < ∞. Consequently, each

function u is represented by a suitable coefficient tensorHu and the linear combination

u =
∑
i∈I

Hu
i

d⊗
k=1

ψ
(k)
ik
.

Let Λj
i ∈ V ∗ for i = 1, . . . , dim (Uj) be linear independent linear functionals on Uj and Lji ∈ Uj be

the Lagrange functions defined such that

Λj
µ

(
Ljν
)

= δµν with 1 ≤ ν, µ ≤ dim (Uj) .

For each subspace Uj we introduce the interpolation operator

Ij (f) =
d∑
i=1

Λj
iL

j
i (f).

The operator Ij is a projection from Vj to Uj and the operatornorm
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Cj = ‖Ij‖Vj←Vj is denoted as stability constant. Taking the infimum over g ∈ Uj yields

‖f − Ij(f)‖Vj = ‖f − Ij(g) + Ij(g)− Ij(f)‖Vj (4.3)

≤ ‖f − g‖Vj + ‖Ij(g − f)‖Vj (4.4)

≤ (1 + Cj) inf
{
‖f − g‖Vj : g ∈ Uj

}
. (4.5)

Utilizing the tensor product, we define an interpolation operator from V to U by

I =
d⊗
j=1

Ij : V → U. (4.6)

For each direction, the univariate error is given by

εj(f) = inf

{
‖f − g‖ : g ∈

[
j−1⊗
k=1

Vk

]
⊗ Uj ⊗

[
d⊗

k=j+1

Vk

]}
.

Using (4.5) and the uniform crossnorm property recursively, the following proposition can be shown.

Theorem 4.4. ([45]) Let the norm of V be a uniform crossnorm and let f be a multivariate function
defined on a bounded product domain I =×d

k=1
Ik. With εj(f) and Cj from above, the interpolation

error of I from (4.6) can be bounded by

‖f − I(f)‖ ≤
d∑
j=1

[
j−1∏
k=1

Ck

]
(1 + Cj)εj(f).

This relates the multivariate interpolation error to the univariate ones. In this work, the univariate
spaces Vj are interpolated by CHEBYSHEV polynomials, meaning that the subspaces Uj are polyno-
mial spaces Prj−1. We define the grid points modulo affine transformation as CHEBYSHEV quadrature
points in a reference domain given by

ξri = cos

(
2i+ 1

2rj + 2
π

)
∈ [−1, 1] (i = 0, . . . , rj − 1) .

The linear functionals Λj
i become Dirac functionals and the Lagrange functions become polynomials

such that

Λj
i (f) = f(ξji ) and Lji (x) =

∏
k∈{0,...,rj−1}\{i}

x− ξjk
ξi − ξjk

.

A CHEBYSHEV interpolation of polynomial degree p leads to a stability constant

Cstab ≤ 1 +
2

π
log (p+ 1) ,

see [57]. For the multivariate product of the CHEBYSHEV interpolation, Theorem 4.4 yields

‖f − I(f)‖ ≤ O(log(p+ 1)d) · max
1≤j≤d

εj(f), with p = max
1≤j≤d

rj − 1.

The Interpolation error depends heavily on the approximation error and only logarithmically on the
order of polynomials.
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4.2 Error analysis for the HTA as surrogate model

Our goal is the computation of an accurate HTA surrogate model for some quantity of interest q : P →
R with a compact parameter space P of tensorised form. We denote its numerical approximation by
qa : P → R. In our case, this approximation, e.g. will be the result of an evaluation of a FEM
discretization or numerical quadrature. We denote the pointwise absolute approximation error as

εa = sup
p∈P
|q(p)− qa(p)|.

The investigation of this error is a topic in its own right and not subject of this work. Since only qa is
available, the HTA is constructed with this basis.

A second source of error comes from the question if qa has a certain low-rank structure. Let G denote
a tensorized grid in P and the distance of the resulting tensor array q(G) to a hierarchical low-rank
manifoldHk be given by

εlr(G) = min
|k|<K

min
B∈Hk

‖q(G)− B‖,

where K is an upper limit to the H rank. It should be emphasized here that this error is difficult
to assess and in most cases it only may be determined by testing various tensor tree topologies. If
the mapping exhibits a low-rank structure, (4.2) indicates that it is possible to find a quasi-optimal
hierachical tensor representation using a SVD-based construction method which yields a mapping
qH : G → R. An extension by an interpolation basis leads to a surrogate model qext : P → R. As
described in Section 4.1, the interpolation and the univariate approximation remain as additional error
sources of this surrogate.

Let IG be the polynomial interpolation operator with interpolation points on the tensorized grid G. In
order to provide a rough estimate for the total error, we introduce

εint(q) = sup
p∈P
|q(p)− (IGq) (p)| and εgrid(u, v) = sup

p∈G
|u(p)− v(p)|.

By application of the triangle inequality and with the stability constant C of the interpolation, it holds

|q(p)− qext| ≤ |q(p)− qa(p)|+ |qa(p)− (IGqa) (p)|+ | (IGqa) (p)− (IGqH) (p)|
≤ εa + εint(qa) + C · εgrid(qa, qH).

Note that εgrid is strongly connected to the low-rank error εlr. We will omit the detailed investigation of
each error for the sake of focus in this paper.

4.3 TheH-rank approximation for the Galerkin method

As it was described in Section 2.4, there are manifold ways how fuzzy and stochastic variables may
interact. In this Section only fully seperated interaction is investigated, see Section 3.1.4. Meaning,
that in terms of Section 2.4 the set W is empty. The goal of this section is to provide a Galerkin
formalism for a fuzzy-stochastic weak formulation of a PDE, where the discretized solution to this
weak formulation is an extended hierarchical tensor.

Let p = (ξ(ω), z) = (y, z) ∈ Γ× Z with ξ = (ξi)i consisting of independent random variables ξi
with image Γi and push-forwards measure ρi for i = 1, . . . , dp <∞ and let Z be a product domain
with non-interactive fuzzy variables z̃i. Analogously to Eq. 3.13 we define pathwise for fixed z
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V (z) = L2(Γ, µ,H(D)) = H(D)⊗ L2(Γ, µ).

It is hence possible to perform a stochastic Galerkin projection for a fixed z. For the treatment of the
fuzzy parameters, we introduce the space L2 (Z,w) with CHEBYSHEV weights w(z). Assuming full
seperability for the Bochner space setting yields the solution space

L2(Z,w, V (z)) = H(D)⊗ L2(Γ, µ)⊗ L2(Z,w)

= H(D)⊗

(
dp⊗
i=1

L2(Γi, µi)

)
⊗

(
dz⊗
i=1

L2(Zi, wi)

)
.

Accordingly, let a (·, ·) : H × H 7→ R be a bilinear form describing a parameter dependend weak
formulation of a PDE with fixed y and z. Then, the fuzzy-stochastic weak formulation reads: Find
u(x,y, z) ∈ H(D)⊗ L2(Γ, µ)⊗ L2(Z,w) such that for all test functions v

∫
Γ

∫
Z

a (u(x,y, z), v(x,y, z))w(z)dµdz =

∫
Γ

∫
Z

〈f(x), v(x,y, z)〉H∗,H w(z)dµdz (4.7)

holds. Here the parameter space is split into the non-probabilistic spaceL2(Z,w) and the probabilistic
parameter spaceL2(Γ, µ). The parameters drawn from these spaces are assumed to be independend
of each other. Since we assume that the random variables are i.i.d and the fuzzy variables are non-
interactive it holds

µ =

dp∏
j=1

µj and w =
dz∏
j=1

wj.

For L2(Γi, µi) and L2(Zj, wj) we select a finite subspace, e.g. spanned by polynomials, orthogonal
with respect to the bilinear forms

(u, v)µj : L2(Γj, µj)× L2(Γj, µj)→ R, (u, v) 7→
∫

Γj

uvdµj

and (u, v)wj : L2(Zj, wj)× L2(Zj, wj)→ R, (u, v) 7→
∫
Zj

uvwjdzj.

We denote these polynomial spaces as PPj and PZj , with dimension nPj and nZj respectively. For
H(D) we select a suitable FEM space Vh(D), with dimension N . For these finite spaces, we define
the index set

Λ = ΛV × ΛP × ΛZ =
{

(α, ν1, . . . , νdp , µ1, . . . , νdz) ∈ N1+dp+dz
∣∣

0 ≤ α ≤ N, 0 ≤ νj ≤ nPj − 1, 0 ≤ µj ≤ nZj − 1
}
,

(4.8)

and the fully discrete space

V =

u(x,y, z) =
∑

(α,µ,ν)∈Λ

X u
(α,µ,ν)hα(x)pµ(y)qν(z)

∣∣∣∣∣∣hα ∈ Vh(D), pµ ∈ PPj , qν ∈ PZj

 ,

(4.9)
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with a tensor array X u. This function space is spanned by N ·
∏dp

j=1 nPj ·
∏dz

j=1 nZj basis functions.
One approach to break the curse of dimensionality is to reduce the number of basis functions, cf.
[16]. Another approach is to use a nested multi-level function basis, cf. [13]. In this paper, the curse of
dimensionality is tackled with a low-rank approximation of X u.

Since in our case the bilinear form a (·, ·) only acts on Vh, for u, v ∈ V it yields∫
Γ

∫
Z

a (u, v)w(z)dµdz =
∑

(α,µ,ν)∈Λ

∑
(α′,µ′,ν′)∈Λ

X u
(α,µ,ν)X v

(α′,µ′,ν′)A
V
α,α′A

P
ν,ν′A

Z
µ,µ′ ,

where

AVα,α′ = a (hα(x), hα′(x))

APν,ν′ =

∫
Γ

pν(y)pν′(y)dµ

AZµ,µ′ =

∫
Z

qν(z)qν′(z)w(z)dz.

For the right-hand side, it holds∫
Γ

∫
Z

〈f(x),
∑

(α,µ,ν)∈Λ

X u
(α,µ,ν)hα(x)pµ(y)qν(z)〉H∗,Hw(z)dµdz

=
∑

(α,µ,ν)∈Λ

X u
(α,µ,ν)〈f(x), hα(x)〉

∫
Z

qν(z)w(z)dz

∫
Γ

pµ(y)dµ

=
∑

(α,µ,ν)∈Λ

X u
(α,µ,ν)b

V
α b

P
ν b

Z
µ .

To summarize, this yields a linear system of equations of the form

A · X u = b, with A = AV ⊗ AP ⊗ AZ and b = bV ⊗ bP ⊗ bZ . (4.10)

The matricesAP andAZ , as well as the vectors bP and bZ are constructed by KRONECKER products.

Due to the curse of dimensionality, this linear system is difficult to solve directly since even the solution
X u easily exhibits a prohibitively large number of entries. As a remedy, a hierarchical tensor format
is employed to represent X u. The term A · X u is a matrix-matrix multiplication of the leafs with
the respective matrices AVα , APµj or AZνi which yields another hierarchical tensor. To solve the linear
system, linear iterations of the basic form

X u
j+1 = X u

j −C ·
(
A · X u

j − b
)

(4.11)

may be applied. Here, C is some preconditioning matrix and X u
0 is any initial Hierarchical tensor.

When for the spectral radius ρ (C ·A) < 1 holds, the convergence of (4.11) is assured. See [50]
on the choice of C. In each step the ranks of X u

j+1 are increased. Therefore, a truncation algorithm
is used to keep the number of ranks of X u

j at a feasible number. Accelerated versions of (4.11) like
GMRES are also possible. For example in [7] a projection method, similar to the Krylov subspace
method where introduced.
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5 Numerical Experiments

In this section, two examples are presented to illustrate polymorphic uncertainties in partial differen-
tial equations. The first example is a 2D orthotropic elasticity problem defined on a domain with an
ellipsoidal cavity. This model can be employed with adhesive films with air containments, where the
durability (or failure) of these films is of interest.

The second example is the diffusion equation with a random coefficient field based on a GAUSSian
kernel, which is ubiquitous in the field of uncertainty quantification. We decompose this random field
by a Karhune-Loève expansion in M terms, thus introducing M probabilistic parameters. Additionaly,
the correlation length of the GAUSSian kernel is modelled as a fuzzy number. This modification of
the problem presents a generalisation of the typical examples as for instance found in [76] with fixed
correlation length.

The numerical simulations were performed with FEniCS [34] for the FE simulation based on meshes
generated with gmsh [37], ALEA [30] for the UQ part involving fuzzy propagation and for the tensor
reconstruction the code basis used in [44].

5.1 Fuzzy-stochastic linear elasticity with orthotropic media

Let D = [−2.5, 2.5]2 and consider an ellipsoid E specified by midpoint M = (m1,m2)T ∈ D, radii
range a, b possibly rotated by α ∈ [0, 2π], see Figure 5. The geometrical parameters are collected in
pgeo := (m1,m2, a, b, α). Then,

E(pgeo) =

{
x = (x1, x2) ∈ D :

(x1 −m1)2

a2
+

(x2 −m2)2

b2
= 1

}
. (5.1)

The perforated domain of interest is denoted as D(pgeo) := D \ E(pgeo). Furthermore, consider an
orthotropic elastic material described by a compliance matrix

S =

 1
E11

−ν1,2
E11

0

−ν1,2
E11

1
E22

0

0 0 1
G12

 (5.2)

with directional elastic modulus E11 and E22, shear modulus G12 and POISSON ratio ν1,2. Further-
more, denote by C := S−1 the stiffness tensor of the material. Let R be the conversion from tensor
strain to engineering strain and for β ∈ [0, 2π] let Q3[β] be a rotation operator for arbitrary second
order tensors through an angle β with

R :=

1 0 0
0 1 0
0 0 2

 , Q3[β] :=

 sin2 β cos2 β 2 sin β cos β
sin2 β cos2 β −2 sin β cos β

− sin β cos β sin β cos β cos2 β − sin2 β

 . (5.3)

This results in the stress σ = (σ1, σ2, σ12)T to strain ε = (ε1, ε2, ε12)T relation of the orthotropic
material rotated at angle β given by

σ = C[β]ε, C[β] := Q3[β]−1CRQ3[β]R−1, (5.4)

with a parametric stiffness matrixC[β].
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Figure 5: Illustration of parameters for the ellipse.

The parameteric linear elastic problem in p = (pgeo, β) in strong form reads

f = − divσ equilibrium eq.
strain-displacement eq.
constitutive eq.

 on D(pgeo),ε = 1
2

[
∇u +∇Tu

]
σ = C[β] : ε
u = 0 Dirichlet b.c. on Γ0,

σ · n = h Neumann b.c. on Γσ := ∂D \ Γ0,
σ · n = 0 Neumann b.c. on Γσ,0 := ∂E(pgeo),

(5.5)

with Γ0 := [−2.5, 2.5] × {−2.5} denoting the bottom facet of D(pgeo). Moreover, write Γσ =
ΓR ∪ ΓT ∪ ΓL with right, top and left facets of D. For simplicity, we choose f = 0 and define
h ≡ −e1 on ΓR, h ≡ −e2 on ΓT and h ≡ e1 on ΓL. The (weak) solution of (5.5) is ensured by the
LAX-MILGRAM theorem with u(p) ∈ H1

Γ0
(D(pgeo))2. For given parameter p = (pgeo, β), consider

the free HELMHOLTZ energy

Φ(p) :=
1

2

∫
D(pgeo)

ε : C[β] : εdx ∈ R, (5.6)

as the quantity of interest.

For the considered model, the parameters are assumed not be be coupled s.t. we can write Φ as
mapping

Φ:
M×
d=1

Id 7→ R, (5.7)

with closed intervals Id ⊂ R, see Table 1.

Table 1: Polymorphic parameter description for (5.5).

parameter xm ym a b α β
model 〈−3

2
, 0, 3

2
〉 〈−3

2
, 0, 3

2
〉 〈 1

10
, 5

10
, 8

10
〉 〈 1

10
, 5

10
, 8

10
〉 U (0, 2π) U (0, 2π)

All results presented here are computed with a surrogate model based on hierarchical tensors which is
extended by a high-dimensional interpolation with CHEBYSHEV polynomials, see Section 4. For each
direction 10 CHEBYSHEV points are used and the H-rank k is constrained s.t. ‖k‖∞ ≤ 10. From
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Figure 6: Illustration of displacement of (5.5) obtained by FE-simulation based on weak-formulation for
realisations of p.

each matricization, a random submatrix of size 20× 20 is chosen in order to find the pivot index sets
for the construction of the H tensor. With this setup, 20.180 evaluations of the actual model result
in a H-rank with ki = 10 for all entries. The error histogram in Figure 7 shows two distributions.
The first one for random samples on the tensor grid G which contains the low-rank error. The second
one for random samples on the whole domain which additionally contains the interpolation error. Both
look very similar. Thus, it can be assumed that the low-rank error is dominating. The high ranks and
the error histograms are indications that the quantity of interest at hand does not necessarily hold a
low-rank structure. It is possible that a change of basis, a simple transformation of the tree structure or
more ranks on the transfer nodes are a remedy. We postpone accuracy improvements to further work.

Employing this surrogate, it becomes feasible to investigate the polymorphic nature of the QoI (5.6).
Depending on the interaction and level of nestedness of the probabilistic and non-probabilistic param-
eters, different characteristic values may be deduced. For random variables, the mean and variance
are characteristic values, for fuzzy variables the propagated membership function is characteristic.
In this example, the parameters are explicitly independent and only random and fuzzy variables are
present. Therefore, the randomness of the QoI simply transfers to the propagated membership func-
tion, i.e. each alpha cut is a random variable. The same holds for the fuzzyness of the QoI, which e.g.
has the effect that the mean value becomes a fuzzy variable.

In Figure 7 the membership function of the mean and variance as well as the cumulative distribution
function are shown. The computation of the membership function of the mean and variance involves
a minimization and maximization via POWELL’s method where each function evaluation is the compu-
tation of the mean respectively variance for one set of fixed non-probabilistic parameters. Since the
extendedH tensor has a polynomial representation, the computation of the mean is similar to a regular
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evaluation with an integrated polynomial basis. The computation of the variance involves a contraction
of the extendet tensor with itself. For the mean, 10 equally distributed α-cuts are used. This results in
appproximately 3.500 evaluations. For the variance, only 5 α-cuts are used. The tensor structure is
not employed and only the empirical variance is computed via random sampling. This already leads to
101.000 evaluations. The fuzzy cumulative distribution function is produced by computing 5 α-cuts for
each of the 500 random samples of the random input variables. In total, around 1.600.000 evaluations
of theH tensor are needed.

(a) Tensor approximation quality on and off the
Chebyshef grid.

(b) Membership function of the mean E(Φ).

(c) Membership function of the variance V(Φ). (d) Fuzzy cumulative distribution function.

Figure 7: Different views on the polymorphic properties of the QoI Φ for the elasticity problem in (5.5).

5.2 KLE type problems

LetD = (0, 1)d with d = 2 and denote by ‖·‖2 the EUCLIDEAN norm. Motivated by the representation
of random fields through Karuhn-Loève expansions, denote by c : D ×D 7→ R a covariance kernel.
As a classical example, consider the isotropic and stationary GAUSSIAN kernel c given by

c(x1,x2, ρ
2) = c(‖x1 − x2‖, ρ2) := σ2 exp−‖x1 − x2‖2

2

ρ2Λ2
, x1,x2 ∈ D, (5.8)

with a correlation length parameter ρ ∈ Z = R+ and a scaling parameter σ2 > 0 and diameter
Λ = diam(D) = 1. Motivated by a possibly unknown correlation length in practise, we model z := ρ2
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as a triangular fuzzy number z̃ = 〈0.5, 0.75, 1〉 and choose σ = 1. For fixed z ∈ C0[z̃] = [0.5, 1],
describe a random field κ : D × Ω 7→ R as

κ(x, ω, z) = κ(x, ξ(ω), z) = κ0(x, z) +
∞∑
m=1

κm(x, z)ξm(ω), (5.9)

with mean κ0(·, z) ≡ 2.5 and iid random variables ξm ∼ U(−1, 1). Here,

κm(·, z) =
√
λm(z)φm(·, z), (5.10)

where (λm(z), φm(·, z)) denotes the m-th eigenpair of the associated covariance operator C w.r.t. c
given as

C : L2(D) 7→ L2(D), u 7→ C[v](·) :=

∫
D

c(x1, ·, z)v(x1)dx1. (5.11)

By a push-forward argument [75] with µ = ξ#P and image identification y = ξ(ω) ∈ Ξ :=
[−1, 1]∞, ym = ξm(ω) ∈ [−1, 1], we henceforth shall work in a parametric framework. Denote
by κM(·, z) the truncation of (5.9) after M terms. We have convergence of κM(·, z) to κ(·, z) in
L2(Ξ,B(Ξ), µ;L∞(D)) [55], where B(Ξ) denotes the BOREL sigma algebra on Ξ omitted in the fol-
lowing notations. The accuracy can be characterised by the decay of the eigenvalues (λm(z))m. The
GAUSSIAN kernels is the smooth limit of the Matérn kernel class with regularity parameter ν → ∞.
The decay of the eigenvalues depends on the correlation length ρ, e.g. [76] given as

λm(ρ) ∈ O

(
σ2 (1/ρ)m

1/d+2

Γ(0.5m1/d)

)
, ∀m ≥ 1, (5.12)

with Gamma function Γ. For z ∈ C0[z̃] representing a fixed realisation of ρ2 and y ∈ Ξ, consider the
elliptic model problem

− div κ(x,y, z)∇u(x,y, z) = f(x) in D,
γ0u(x,y, z) = 0 on Γ0 := [0, 1]× {0},

γκ1 [z]u(x,y, z) = g on Γg := ∂D \ Γ0,
(5.13)

with DIRICHLET trace operator γ0 and conormal trace operator γκ1 [z]. The conormal trace g is defined
for x = (x1, x2) as

g(x) =

{
sin(5πx1), x ∈ Γt := {1} × [0, 1],

0, x ∈ Γbr := ∂D \ (Γ0 ∪ Γt).
(5.14)

The source term is deterministic and given by f(x) = 10 exp(−20(x1− 0.5)2 + (x2− 0.5)2)). The
field κ is uniformly bounded and strictly positiv, i.e. there exists positive constants κ, κ s.t.

0 < κ < κ(z;x, ω) < κ <∞, a.e. in D × Ξ× C0[z̃]. (5.15)

Since g ∈ H1/2
00 (Γg) and f ∈ L2(D) due to the LAX-MILGRAM theorem for fixed z ∈ C0[z̃], there

exists a unique solution u(·, z) ∈ V := L2(Ξ, µ;P;H1
Γ0

(D)). We note that V is independent of Z .
Hence, u(·, z̃) ∈ F(V ) defines a fuzzy set on the HILBERT space V .
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For a given prescribed tolerance δ > 0, let M δ ∈ N denote the minimal number needed to uniformly
bound the truncation expansion error in (5.9) w.r.t. the range of z, i.e.

M δ := inf
M∈N

{
sup

z∈C0[z̃]

‖κ(·, z)− κM(·, z)‖L2(Ξ,µ;L∞(D)) < δ

}
(5.16)

The uniform bound is motivated for fixing the parametric dimension for the considered range of the
correlation length and associated eigenvalue decay. Let uM(·, z) ∈ V M denote the weak solution of
(5.13) with truncated field κM instead of κ. Here V M = L2

(
ΞM , µM ;H1

Γ0
(D)

)
denotes the solution

space associated to the truncation with ΞM = img ξM , µM = ξM# and ξM := (ξm)Mm=1.

Based on the underlying V -elliptic bilinear form associated to the weak formulation of (5.13), the
truncation error can be estimated like

‖u(·, z)− uM(·, z)‖V ≤ C‖κ(·, z)− κM(·, z)‖L2(Ξ,µ;L∞(D)). (5.17)

Consequently, ‖u(·, z)− uMδ
(·, z)‖V ∈ O(δ) uniform in z ∈ C0[z̃]. In our experiments we choose

M δ = 10 with a uniform 50 × 50 triangular mesh with global polynomial degree of 2. The eigen-
value problem is approximated on a 30 × 30 grid instead. The effect of additional approximation of
eigenfunctions is studied in [10].

Next a physical quantity of interestQ is defined by

q : H1
Γ0

(D)→ R, v 7→ q(v) :=

∫
Γbr

v2dS, (5.18)

defining our polymorphic quantity of interest as

q(u(·, p̃)), p̃ = (y, z̃) = (ξ(ω), z̃). (5.19)

The results for the diffusion problem are generated in a similar way, as in the preceeding section with
slight changes. To account for the decrease of influence of each additional KLE term, the number
of CHEBYSHEV points used is decreased by one for every two additional expansion terms. For the
fuzzy parameter 15 points are used, for the first KLE term 6 points and for the 10-th expansion term
only 2 points. The maximal rank was set to 15, but was not exhausted by the cross approximation at
each transfer node. Together with the error distribution in Figure 8, this is a strong indication for an
underlying low-rank structure. For the construction of the H tensor 20100 evaluations of the actual
model were used. It can be assumed that this number may be decreased by using a tree structure
which considers that the correlation lenghts ρ influences every KL term equally.

The number of α-cuts und random samples used in the graphs (b)-(d) in Figure 8 are similar to the
preceeding section. Since a optimization method is involved, the number of evaluations differs. For (b)
601, for (c) 101.000 and for (d) 415.029 evaluations were used.

6 Conclusion

We presented a hybrid uncertainty description approach stated in a probabilistic and possibilistic mod-
eling framework. The approach entered into the setting of general linear elliptic partial differential equa-
tions. From a parametric point of view we unified both frameworks yielding to possible high-dimensional
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(a) Tensor approximation quality on and off the
Chebyshef grid.

(b) Membership function of the mean E(Φ).

(c) Membership function of the variance V(Φ). (d) Fuzzy cumulative distribution function.

Figure 8: Different views on the polymorphic properties of the QoI q for the diffusion problem in (5.13).
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parameter dependent partial differential equations. Based on the special case of a separated param-
eteric dependence structure low-rank formats in terms of hierachical tensor formats we used as a
surrogate response, allowing for very fast propagation of fuzzy-stochastic input realisations for desired
quantities of interest. A H-rank approximation for a GALERKIN scheme was presented, allowing for
the representation of the whole map p → u(·,p). Based on this several quantities of interests can
be computed directly without rebuilding surrogates for each of them. Numerical examples for a linear
elastic -and a diffusion problem with polymorphic dependency in geometry, material or through the
modeling of a KLE with underlying fuzzy GAUSSIAN kernel were demonstrated.
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