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Temporal homogenization of a nonlinear parabolic system
Jie Yu, Dietmar Hömberg, Thomas Petzold, Shuai Lu

ABSTRACT. In this paper we develop are two-scale model for a nonlinear parabolic system. Assuming a
rapidly oscillating inhomogeneity with period ε for one equation we carry out a formal periodic expansion to
obtain a homogenized equation coupled to a local in time cell problem. We justify the expansion by deriving
an error estimate between the original and the two-scale model and show numerical simulations, which
confirm the analytically derived error estimate.

1. INTRODUCTION

Many technical or biological systems exhibit multiple spatial and/or temporal scales, which often can be
utilized for a more efficient numerical or semianalytical approximation based on asymptotic analysis or
homogenization. While especially spatial homogenization has been well-investigated both analytically and
numerically [1, 2, 3, 5], the influence of multiple temporal scales seems to be less investigated analytically.
Examples where averaging and homogenization techniques have been used numerically in technical
applications are the inductive heating of metal components, where a metal component is heated by a
rapidly alternating induction current [8, 10], and models of high-cycle fatigue, where a technical system,
e.g., a wind turbine, is subject to a rapidly changing load, while damage occurs on a much larger timescale
[6, 11].

The generic temporal multiscale problem studied in this paper is motivated by induction heating and reads

θε,t −∆θε = γ(θε)|∇hε|2(1.1a)

εhε,t − div (γ(θε)grad hε) = u1(t)φ1(
t

ε
) + εu2(t)φ2(

t

ε
) in Q(1.1b)

−∂θε
∂ν

= θε in Σ(1.1c)

hε = 0 in Σ(1.1d)

θε(0) = θI in Ω(1.1e)

hε(0) = hI in Ω.(1.1f)

Here, Ω ⊂ R3 is a domain with sufficiently smooth boundary, Q = Ω × (0, T ) the space-time cylinder
with lateral boundary Σ = ∂Ω × (0, T ). The main contributions of the present paper are the derivation
of an asymptotic temporal two-scale model for (1.1) consisting of a homogenized coarse scale problem
and a periodic local in time cell problem, together with an error analysis confirmed by numerical results.
Our approach is inspired by a corresponding spatial homogenization result for phase field models of
liquid-solid phase transitions [4]. Further results for formal asymptotic averaging and homogenization
approaches with multiple temporal scales can be found in [2, 6, 11] and the references therein. For
analytical two-scale convergence results for parabolic problems we refer to [9, 7].

The paper is organized as follows: in Section 2 we consider induction heating as a motivating example for
our model problem (1.1). In Section 3 we formulate our main result and use formal asymptotic expansions
to derive the temporal two-scale model. The following section is devoted to proving the error estimate.
Section 5 contains numerical results which confirm the error analysis.

2. AN APPLICATION PROBLEM – JOULE HEATING

As shown in [8], the Joule heating of a steel rod with cross section Ω̃ subject to a rapidly oscillating
magnetic field with angular frequency ω̃ can be described by a nonlinear coupled system of parabolic

DOI 10.20347/WIAS.PREPRINT.2524 Berlin 2018



J. Yu, D. Hömberg, Th. Petzold, S. Lu 2

PDEs for temperature θ̃ and magnetic field h̃,

ρcθ̃t̃ −K∆̃θ̃ = γ̃(θ̃)|∇̃h̃|2 in Q̃

µh̃t̃ − ∇̃ ·
(
γ̃(θ̃)∇̃h̃

)
= 0 in Q̃

−K ∂θ̃

∂ν̃
= α̃(θ̃ − θΓ) in Σ̃

h̃ = ũ(t̃) sin(ω̃t̃) in Σ̃

θ̃(0) = θ0 in Ω̃

h̃(0) = h0 in Ω̃.

with physical constants ρ, c, K, θΓ, α̃ and a temperature dependent resistivity γ̃(θ̃). Q̃ = Ω̃× (0, T̃ )
is the space-time cylinder with lateral boundary Σ̃. For a nondimensionalization of the system, we choose
a temperature scale θs, length scale L, time scale ts := %cL2

K
, and introduce non-dimensional quantities

θ =
θ̃ − θΓ

θs
, x =

x̃

L
, t =

t̃

ts
.

Then we obtain the nondimensionalized energy balance

θt −∆θ =
L2

θsK
γ̃(θsθ + θΓ)|∇̃h̃|2 in Q

−∂θ
∂ν

=
L

K
α̃θ in Σ

θ(0) =
θ̃0 − θΓ

θs
=: θ0 in Ω.

For the Maxwell system we introduce a magnetic field scale hs, define

h(x, t) =
h̃(x̃, t̃)

hs
=
h̃(xL, tst)

hs

and η =
µ

γm

L2

ts
to obtain

ηht − div
( γ̃(θ̃)

γm
grad h

)
= 0 in Q

h(t) =
ũ(tst)

hs
sin(ω̃tst) in Σ

h(0) =
h̃0

hs
=: h0 in Ω.

We choose data for a plain carbon steel according to [8],

ρ = 7.85
g

cm3
, c = 0.5096

J

gK
, K = 0.5

J

gK
, γ(θ) = c1 + c2θ + c3θ

2 + c4θ
3V cm

A

with c1 = 4.9656 ·10−5, c2 = 8.4121 ·10−8, c3 = −3.7246 ·10−11, c4 = 6.1960 ·10−15, and choose
L = 1cm, hs = 1 A

cm . Then, we have

ts =
7.85 · 0.5096

0.5
≈ 8.0s γm = max

θ∈[20,1200]

1

σ(θ)
≈ 1.1 · 10−4 V cm

A

µ = 4π10−9 V s

Acm
η =

4π · 10−9

1.1 · 10−4

1

8
≈ 1.4 · 10−5.
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Temporal homogenization of a nonlinear parabolic system 3

Now, we define

γ(θ) =
γ̃(θ · θs + θΓ)

γm
, u(t) =

ĥ(t · ts)
hs

, ω = ω̃tsη, β =
h2
sγm
θsK

, α =
L

K
α̃

and obtain finally

θt −∆θ = βγ(θ)|∇h|2 in Q(2.1a)

ηht − div (γ(θ)grad h) = 0 in Q(2.1b)

−∂θ
∂ν

= αθ in Σ(2.1c)

h(t) = u(t) sin
(
ω
t

η

)
in Σ(2.1d)

θ(0) = θI in Ω(2.1e)

h(0) = hI in Ω.(2.1f)

Note that typical annular frequencies are in the range 104 − 106, hence we may assume ω = ω̃tsη ∼
O(1). Hence we can separate two time scales. In the sequel we assume ω = 2π. Then, for any solution
(θ, h) to (2.1) (θ, h−u(t) sin(ω t

η
)) is a solution to the model problem (1.1) with homogeneous boundary

conditions by choosing in addition α = β = 1.

3. ASYMPTOTIC EXPANSIONS, ASSUMPTIONS, AND MAIN RESULT

3.1. Derivation of the two-scale model. To derive a two-scale model for (1.1), we introduce a new, mi-
croscopic time variable τ = t

ε
with τ ∈ Y = (0, 1), and assume the existence of asymptotic expansions

θε(x, t) =
∑

m=0,1,...

εmθm(x, τ, t)(3.1)

hε(x, t) =
∑

m=0,1,...

εmhm(x, τ, t).(3.2)

Moreover, we consider a Taylor expansion for γ(θ) with respect to ε

(3.3) γε := γ(θε) = γ(θ0) + εγ1 + ε2γ2 + . . .

Note that the validity of this expansion with remainder of order εk requires γ(·) ∈ Ck.

Substituting (3.1)-(3.3) into the original system (1.1), we compare the coefficients of different powers of
ε, starting from the lowest order. We summarize the following equations

O

(
1

ε

)
: θ0,τ = 0

O(1) : θ1,τ + θ0,t −∆θ0 = γ(θ0)) |∇h0|2

h0,τ −∇ · (γ(θ0))∇h0) = u1(t)φ1(
t

ε
)

O(ε) : θ2,τ + θ1,t −∆θ1 = γ1 |∇h0|2 + 2γ(θ0))∇h0 · ∇h1

(h1,τ + h0,t)−∇ · (γ1∇h0)−∇ · (γ(θ0))∇h1) = u2(t)φ2(
t

ε
).

The problem of first order consists of the terms of order ε−1 in the heat equations, i.e.,

θ0,τ = 0(3.4)
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in Ω × (0, T ) × Y with unit interval Y = (0, 1). One can immediately infer that the solutions θ0 are
constant with respect to τ and thus θ0 = θ0(x, t).

The problem of second order is given by the terms of order ε0, i.e.,

θ1,τ + θ0,t −∆θ0 = γ(θ0)) |∇h0|2(3.5)

h0,τ −∇ · (γ(θ0))∇h0) = u1(t)φ1(
t

ε
)(3.6)

in Ω × (0, T ) × Y , with periodic boundary condition on Y for θ1, h0, h1. Taking the τ -average in (3.5)
and noticing θ0 is τ -independent, we obtain

θ0,t −∆θ0 = γ(θ0))

∫ 1

0

|∇h0(x, τ, t)|2 dτ in Ω× (0, T )

θ1,τ = γ(θ0)) |∇h0(x, τ, t)|2 − γ(θ0))

∫ 1

0

|∇h0(x, τ, t)|2 dτ in Ω× Y.

The second equation holds true at any time point t ∈ (0, T ).

The problem of third order is obtained by the terms of ε1 in in both equations

θ2,τ + θ1,t −∆θ1 = γ1 |∇h0|2 + 2γ(θ0))∇h0 · ∇h1

h1,τ + h0,t = ∇ · (γ1∇h0) +∇ · (γ(θ0))∇h1) + u2(t)φ2(
t

ε
).

For the two-scale model, we take the leading terms (θ0, h0) of the expansion. It consists of the macro-
scopic heat equation

θ0,t −∆θ0 = γ(θ0))|∇h0|2 in Ω× (0, T )(3.7a)

−∂θ0

∂n
= θ0 on ∂Ω× (0, T )(3.7b)

θ0(x, 0) = θI in Ω.(3.7c)

with averaged Joule heat term

|∇h0|2(x, t) =

∫ 1

0

|∇h0(x, τ, t)|2dτ.(3.7d)

Second part is a local in time cell problem to compute the heat source,

h0,τ −∇ · (γ(θ0))∇h0) = u1(t)φ1(τ) in Ω× Y(3.7e)

h0(x, τ, t) = 0 on ∂Ω× Y(3.7f)

h0(x, τ = 0, t) = hI in Ω.(3.7g)

The latter has to be solved for every point t ∈ [0, T ] of the macroscopic time interval.

3.2. Assumptions and main result. From now on, we use a superscript (·)ε denoting the macroscopic
approximation of the microscopic system when τ = t

ε
. For instance, we denote

hε0 := h0(x, τ, t)|τ= t
ε

DOI 10.20347/WIAS.PREPRINT.2524 Berlin 2018
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be the solution of the two-scale problem in its macroscopic approximation when τ = t
ε
. Then, the follow-

ing notations are straightforward

(∂τh0)ε = (∂τh0(x, τ, t))
∣∣∣
τ= t

ε

∂th
ε
0 = ∂th0(x, τ, t)

∣∣∣
τ= t

ε

+
1

ε
∂τh0(x, τ, t)

∣∣∣
τ= t

ε

.
(3.8)

We assume the following regularity for the data.

Assumption 3.1.

(D1) γ ∈ C1(R), γ1 ≥ γ ≥ γ0 > 0

(D2) u1,2 ∈ C1(0, T ) and φ1,2 ∈ C1
#(Y ).

Here, γ0 is some constant and Ck
#(Y ) the space of periodic Ck- functions on Y := [0, 1].

The main focus of the present paper is an error analysis between the original system (1.1) and the two-
scale system (3.7). To this end we simply assume the existence of solutions to both systems satisfying
the following regularity. For the multiscale system a regularity analysis can be found in [12, Theorem 3].

Assumption 3.2.

(R1) hε ∈ L2(0, T ;W 1,∞(Ω)) ∩H1(0, T ;L∞(Ω))

(R2) h0 ∈ W 1
4 (0, T ;C0

#(Y ),W 1
4 (Ω)) ∩ L∞(0, T ;C1

#(Y ), L2(Ω))

(R3) θε ∈ L2(0, T ;W 1,2(Ω)) ∩H1(0, T ;L2(Ω))

(R4) θ0 ∈ H1(0, T ;L2(Ω)) ∩ L∞(0, T ;L∞(Ω)).

Theorem 1. Let Assumptions 3.1 and 3.2 hold true, then the error estimate between the original multi-
scale system (1.1) and the two-scale system (3.7) is

‖θε − θ0‖L∞((0,T );L2(Ω)) + ε
1
2‖hε − hε0‖L∞((0,T );L2(Ω))

+ ‖∇(θε − θ0)‖L2((0,T );L2(Ω)) + ‖∇(hε − hε0)‖L2((0,T );L2(Ω)) ≤ Cε
1
2

where C is a generic constant.

4. PROOF OF THEOREM 1

4.1. Error estimate of the heat equation. Taking the difference between the original coupled system
and the macroscopic approximation, we obtain, for the heat equation

(4.1) ∂t(θε − θ0)−∆(θε − θ0) = γ(θε)|∇hε|2 − γ(θ0)|∇h0|2.

Now, we test (4.1) with θε − θ0 and integrate on Ω× (0, t) for fixed t > 0 and obtain

t∫
0

∫
Ω

∂t(θε − θ0)(θε − θ0)dxds−
t∫

0

∫
Ω

∆(θε − θ0)(θε − θ0)dxds

=

t∫
0

∫
Ω

(γ(θε)|∇hε|2 − γ(θ0)|∇h0|2)(θε − θ0)dxds.

DOI 10.20347/WIAS.PREPRINT.2524 Berlin 2018
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Denoting

I :=

t∫
0

∫
Ω

∂s(θε − θ0)(θε − θ0)dxds

II := −
t∫

0

∫
Ω

∆(θε − θ0)(θε − θ0)dxds

III :=

t∫
0

∫
Ω

(γ(θε)|∇hε|2 − γ(θ0)|∇h0|2)(θε − θ0)dxds

we estimate each term separately.

Since θε and θ0 have the same initial condition θI , we have

I =
1

2

∫ t

0

d

ds

(∫
Ω

|θε − θ0|2dx
)
ds

=
1

2
‖(θε − θ0)(t)‖2

L2(Ω).

With the aid of Green’s formula and the Robin boundary condition for θε and θ0, we obtain

II =

t∫
0

∫
Ω

∇(θε − θ0) · ∇(θε − θ0)dxds−
∫ t

0

∫
∂Ω

∂(θε − θ0)

∂n
(θε − θ0)dxds

=‖∇(θε − θ0)‖2
L2(Qt)

+ ‖θε − θ0‖2
L2(Σt)

where we have used the abbreviations Qt = Ω× (0, t) and Σt = ∂Ω× (0, t). Together, we obtain

(4.2) I + II ≥ 1

2
‖(θε − θ0)(t)‖2

L2(Ω) + ‖∇(θε − θ0)‖2
L2(Qt)

.

The remaining heat source term

III =

t∫
0

∫
Ω

(γ(θε)−γ(θ0))|∇hε|2(θε − θ0)dxds

+

t∫
0

∫
Ω

γ(θ0)(|∇hε|2 − |∇h0|2)(θε − θ0)dxds

shall be calibrated more carefully. By virtue of the property of u, the regularity of hε in Assumption 3.1
and the imbedding between C1(R) and C0,1(R), we derive the estimate of the first term in III

t∫
0

∫
Ω

(γ(θε)− γ(θ0))|∇hε|2(θε − θ0)dxds
(D1)

≤ C

t∫
0

∫
Ω

|∇hε|2|θε − θ0|2dxds

(R1)

≤ C‖θε − θ0‖2
L2(0,t;L2(Ω))

with a generic constant C . To derive an upper bound for
t∫

0

∫
Ω

γ(θ0)(|∇hε|2 − |∇h0|2)(θε − θ0)dxds

DOI 10.20347/WIAS.PREPRINT.2524 Berlin 2018



Temporal homogenization of a nonlinear parabolic system 7

the error estimate of |∇hε0|2 − |∇h0|2 is necessary and provided by the following lemma.

Lemma 4.1. Let the time interval IT := [0, T ] with a finite T <∞, Y := [0, 1]. If f ∈ H1((0, T );C0
#(Y )),

then f ∈ L∞((0, T );C0
#(Y )). Moreover, for all f ε0 (t) := f(t, t

ε
) and f0(x) :=

∫
Y
f(t, τ)dτ there

holds

(4.3) ‖f ε0 − f0‖H1(0,T )∗ ≤ Cε
(
‖f‖H1((0,T );C0(Y )) + ‖f‖L∞((0,T );C0(Y ))

)
.

Here, ‖ · ‖H1(0,T )∗ stands for the norm of the dual space of H1(0, T ). We note that Lemma 4.1 is a
one-dimensional variant of [4, Lemma 4.1], hence we omit the proof and refer to the reference instead.
We apply Lemma 4.1 to the second term of III and obtain

t∫
0

∫
Ω

γ(θ0)(|∇hε|2 − |∇h0|2)(θε − θ0)dxds

=

t∫
0

∫
Ω

γ(θ0)(|∇hε|2 − |∇hε0|2)(θε − θ0)dxds

+

t∫
0

∫
Ω

γ(θ0)(|∇hε0|2 − |∇h0|2)(θε − θ0)dxds

≤ C
( (D1),(R1),(R2)︷ ︸︸ ︷
ε2 + ‖θε − θ0‖2

L2(0,t;L2(Ω)) +

(D1),(R4)︷ ︸︸ ︷
‖∇hε −∇hε0‖2

L2(0,t;L2(Ω))

)
with aid of the Cauchy-Schwarz inequality as well as the factorization |∇hε|2 − |∇hε0|2 = (|∇hε| +
|∇hε0|)(|∇hε| − |∇hε0|). We thus derive

(4.4) III ≤ C
(
‖θε − θ0‖2

L2(0,t;L2(Ω)) + ε2 + ‖∇hε −∇hε0‖2
L2(0,t;L2(Ω))

)
.

Combining the estimates (4.2) and (4.4), we obtain

Proposition 2. Let Assumption 3.1 holds true, the estimate for the difference between θε and θ0 is

1

2
‖(θε − θ0)(t0)‖2

L2(Ω) + ‖∇(θε − θ0)‖2
L2(0,t;L2(Ω)) ≤

C
(
‖θε − θ0‖2

L2(0,t;L2(Ω)) + ε2 + ‖∇hε −∇hε0‖2
L2(0,t;L2(Ω))

)
(4.5)

where C is a generic constant.

4.2. Error estimate of the Maxwell equation. In the sequel we will utilize a time-variable cut-off function
χTε enjoying the following properties

Assumption 4.1.

(CO1) χTε ∈ C1
0(0, T ), 0 ≤ χTε ≤ 1, ε|χTε

′| ≤ C

(CO2) χTε (t) = 1 for t ∈ (ε, T − ε)

(CO3) ‖1− χTε ‖L2(0,T ) ≤ Cε
1
2 and ‖χTε

′‖L2(0,T ) ≤ Cε−
1
2 .

Taking the difference between the original coupled system (1.1) and the macroscopic approximation (3.7),
we obtain for the Maxwell equation

(4.6) ε∂thε − (∂τh0)ε +∇ · (γ(θ0)∇hε0)−∇(γ(θε)∇hε) = εu2(t)φ2(
t

ε
)

DOI 10.20347/WIAS.PREPRINT.2524 Berlin 2018
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with homogeneous boundary condition and zero initial condition.

Choosing hε − h0 as a test function and integrating on Ω× (0, T ) for arbitrary t > 0 we obtain

−
t∫

0

∫
Ω

(∂τh0)ε(hε − hε0)dxds+

t∫
0

∫
Ω

ε∂thε(hε − hε0)dxds

+

t∫
0

∫
Ω

∇ · (γ(θ0)∇hε0)(hε − hε0)dxds−
t∫

0

∫
Ω

∇ · (γ(θε)∇hε)(hε − hε0)dxds

= ε

t∫
0

∫
Ω

u2(s)φ2(
s

ε
)(hε − hε0)dxds.

Denote the following items

(i) := −
t∫

0

∫
Ω

(∂τh0)ε(hε − hε0)dxds

(ii) :=

t∫
0

∫
Ω

ε∂shε(hε − hε0)dxds

(iii) :=

t∫
0

∫
Ω

∇ · (γ(θ0)∇hε0)(hε − hε0)dxds

(iv) := −
t∫

0

∫
Ω

∇ · (γ(θε)∇hε)(hε − hε0)dxds

(v) := −ε
t∫

0

∫
Ω

u2(s)φ2(
s

ε
)(hε − hε0)dxds.

We focus on the first term (i). Since the solutions of the macroscopic problems do not satisfy any boundary
condition on the boundary of the microscopic domain, we then need the cut-off function introduced in
Assumption 4.1. The following decomposition is important

(4.7) (∂τh0)ε = (1− χTε )(∂τh0)ε + εχTε ∂th
ε
0 − εχtε(∂th0)ε

recalling the formula in (3.8)

∂th
ε
0 = ∂th0(x, τ, t)

∣∣∣
τ= t

ε

+
1

ε
∂τh0(x, τ, t)

∣∣∣
τ= t

ε

and

(∂th0)ε = ∂th0(x, τ, t)
∣∣∣
τ= t

ε

.

In particular, we also have

(∂τh0)ε = ε (∂th
ε
0 − (∂th0)ε) .

DOI 10.20347/WIAS.PREPRINT.2524 Berlin 2018



Temporal homogenization of a nonlinear parabolic system 9

For simplicity’s sake, we denote vε be the test function hε − hε0 and reformulate the integral in item (i) by

t∫
0

∫
Ω

(∂τh0)εvεdxds =

t∫
0

∫
Ω

(1− χtε)(∂τh0)εvεdxds−
t∫

0

∫
Ω

εχtε(∂th0)εvεdxds

+

t∫
0

∫
Ω

εχtε∂th
ε
0vεdxds.(4.8)

The first integral on the right-hand side of (4.8) can be estimated by

t∫
0

∫
Ω

(1− χtε)(∂τh0)εvεdxds

=
(
‖1− χtε‖L2(0,t)‖∂τh0‖L∞(0,t;C0

#(Y ),L2(Ω)) + ε‖∂th0‖L2(0,t;C0
#(Y ),L2(Ω))

+ ε‖χ′ε‖L2(0,t)‖h0‖L∞(0,t;C0
#(Y ),L2(Ω))

)
‖vε‖L2(Qt)

+ ‖1− χtε‖L2(0,t)‖h0‖L∞(0,t;C0
#(Y ),L2(Ω))ε‖∂tvε‖L2(Qt)

≤ C

(R2),(CO3)︷ ︸︸ ︷
(ε+

√
ε)‖vε‖L2(Qt) +C

(CO3)︷ ︸︸ ︷
ε

3
2‖∂tvε‖L2(Qt)

by properties of the cut-off function χtε using Assumptions 3.1 and 4.1. Using integration by parts, we
derive the following equalities for the remaining two terms on the right-hand side of (4.8)

t∫
0

∫
Ω

εχtε∂th
ε
0vεdxds

=−
t∫

0

∫
Ω

ε∂tχ
t
εh

ε
0vεdxds−

t∫
0

∫
Ω

εhε0∂tvεχ
t
εdxds

=−
t∫

0

∫
Ω

ε∂tχ
t
εh

ε
0vεdxds+

t∫
0

∫
Ω

εhε0∂tvε(1− χtε)dxds−
t∫

0

∫
Ω

εhε0∂tvεdxds

(4.9)

and

t∫
0

∫
Ω

(∂τh0)εvεdxds

=

t∫
0

∫
Ω

((
(1− χtε)(∂τh0)ε − εχtε(∂th0)ε − ε∂tχtεhε0

)
vε + (1− χtε)εhε0∂tvε

)
dxds

−
t∫

0

∫
Ω

εhε0∂tvεdxds.

(4.10)
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Based on (4.9)-(4.10), it is straight forward to derive that

(i) = −
t∫

0

∫
Ω

((
(1− χtε)(∂τh0)ε − εχtε(∂th0)ε − ε∂tχtεhε0

)
(hε − hε0)

+ (1− χtε)εhε0∂s(hε − hε0)
)
dxds+

t∫
0

∫
Ω

εhε0∂s(hε − hε0)dxds := (vi) + (vii)(4.11)

where we denote

(vi) := −
t∫

0

∫
Ω

(((1− χtε)(∂τh0)ε − εχtε(∂th0)ε − ε∂tχtεhε0)(hε − hε0)

+ (1− χtε)εhε0∂s(hε − hε0))dxds

(vii) :=

t∫
0

∫
Ω

εhε0∂s(hε − hε0)dxds.

Integrating by parts yields

(vii) = −ε
t∫

0

∫
Ω

∂sh
ε
0(hε − hε0)dxds+

∫
Ω

εhε0(hε − hε0)dx
∣∣∣t
0

:= (viii) + (ix)(4.12)

where right-hand sides of the above equality are further defined by

(viii) := −ε
t∫

0

∫
Ω

∂sh
ε
0(hε − hε0)dxds

(ix) :=

∫
Ω

εhε0(hε − hε0)dx|t0.

Combining (4.11) and (4.12) we thus obtain

(i) = (vi) + (viii) + (ix).

As for the item (vi), we apply (CO3) to obtain the upper bound. Indeed, by virtue of elementary inequality,
we immediately derive

|(vi)| ≤ C

(∫
Qt0Ω

(1− χtε)2dxds +

∫
Qt0Ω

ε2dxds+

∫
Qt0Ω

(1− χtε)2ε2dxds

+

∫
Qt0Ω

(hε − hε0)2dxds

)
which yields

|(vi)| ≤ C

(R1,R2,C03)︷ ︸︸ ︷
(ε+ ‖hε − hε0‖2

L2(Qt)
) .
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Consequently we obtain via the Cauchy-Schwarz inequality

(ii) + (viii) =

t∫
0

∫
Ω

ε
∂(hε − hε0)

∂s
(hε − hε0)dxds

=
1

2
ε‖(hε − hε0)‖2

L2(Ω)

|(ix)| =
∣∣∣∣∫

Ω

εhε0(hε − hε0)(t0)dx

∣∣∣∣
≤ Cε+

1

4
ε‖(hε − hε0)(t0)‖2

L2(Ω)

|(v)| ≤ C

t∫
0

∫
Ω

ε(hε − hε0)dxds

≤ C
(
ε2 + ‖hε − hε0‖2

L2(Qt0Ω)

)
.

Finally with the aid of the decomposition

γ(θ0)∇hε0 − γ(θε)∇hε = γ(θε)∇(hε0 − hε)− (γ(θε)− γ(θ0))∇hε0
we can obtain the estimates for (iii) and (iv) by Assumption 3.1 and 3.2.

More precisely, by the Green’s formula, we have

(iii) + (iv) =

t∫
0

∫
Ω

∇ · (γ(θε))∇(hε0 − hε)(hε − hε0)dxds

−
t∫

0

∫
Ω

∇ · ((γ(θε)− γ(θ0))∇hε0)(hε − hε0)

=−
t∫

0

∫
Ω

γ(θε))∇(hε0 − hε) · ∇(hε − hε0)dxds

−
t∫

0

∫
Ω

∇ · ((γ(θε)− γ(θ0))∇hε0)(hε − hε0)

=

:=(iii)′︷ ︸︸ ︷
t∫

0

∫
Ω

γ(θε)|∇(hε0 − hε)|2dxds

:=(iv)′︷ ︸︸ ︷
−

t∫
0

∫
Ω

∇ · ((γ(θε)− γ(θ0))∇hε0)(hε − hε0) .

The lower bound for (iii)′ can be achieved by

(iii)′ ≥ u0‖∇(hε0 − hε)‖2
L2(Qt)
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and the upper bound for (iv)′ is

|(iv)′| ≤ |
t∫

0

∫
Ω

(γ(θε)− γ(θ0))(hε − hε0)∇hε0dxds|

≤ C
(
‖hε − hε0‖2

L2(Qt)
+ ‖θ0 − θε‖2

L2(Qt)

)
.

With the lower bound for (iii)′ and estimates for (i), (ii), (iv)′, (v), we finally obtain the estimate for the
Maxwell equation.

Proposition 3. Let Assumption 3.1 hold true, then the estimate for the difference between hε and hε0 is

1

2
ε‖(hε − hε0)(t)‖2

L2(Ω) + ‖∇(hε − hε0)‖2
L2(Qt)

≤ C
(
‖hε − hε0‖2

L2(Qt)
+ ε+ ‖θ0 − θε‖2

L2(Qt)

)
(4.13)

where C is a generic constant.

4.3. Error estimate of the coupled system. Combining the estimates for the heat equation and Maxwell’s
equation in Propositions 2 and 3, we obtain

‖(θε − θ0)(t)‖2
L2(Ω) + ε‖(hε − hε0)(t)‖2

L2(Ω)

+ ‖∇(θε − θ0)‖2
L2(Qt)

+ ‖∇(hε − hε0)‖2
L2(Qt)

≤ C
(
ε+ ‖hε − hε0‖2

L2(Qt)
+ ‖θε − θ0‖2

L2(Qt)

)
.

By virtue of the Gronwall lemma and the Hölder inequity, we conclude the proof of Theorem 1.

5. NUMERICAL EXPERIMENTS

In this section, we present numerical computations and compare results of the multiscale system to the
homogenized equations. For simplicity we focus on the one-dimensional case, i.e. we choose Ω = (0, 1).
Then the non-dimensionalized multiscale system reads

θε,t − θε,xx = βγ(θε)h
2
ε,x in Q(5.1a)

εhε,t − (γ(θε)hε,x)x = u(t) cos

(
2π
t

ε

)
in Q(5.1b)

−θε,x = αθε in Σ(5.1c)

hε = 0 in Σ(5.1d)

θε(0) = θI in Ω(5.1e)

hε(0) = hI in Ω.(5.1f)

We choose α = 5 and β = 1/20. In this example, the control u(t) is taken as a constant, i. e. u(t) = g
with g = 200. In Section 2, the electrical resistivity was scaled by γm = 1.1 · 10−4. The electrical
resistivity directly influences the skin effect, a low value of γ results in a lower penetration depth. Since
our application is related to induction heating, where heating occurs only in a boundary layer of the
domain, we choose γm = 1 · 10−2 for the numerical tests to have a pronounced skin effect.
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The one-dimensional homogenized system reads as follows

θ0,t − θ0,xx = βγ(θ0)h2
0,x in Ω× (0, T )(5.2a)

−θ0,x = αθ0 on ∂Ω× (0, T )(5.2b)

θ0(x, 0) = θI in Ω(5.2c)

h2
0,x(x, t) =

∫ 1

0

h0,x(x, τ, t)
2dτ(5.2d)

h0,τ − (γ(θ0)h0,x)x = u(t) cos(2πτ) in Ω× Y(5.2e)

h0(x, τ, t) = 0 on ∂Ω× Y(5.2f)

h0(x, τ = 0, t) = hI in Ω.(5.2g)

In the homogenized system, equations (5.2e)–(5.2g) depend on the space variable x and the micro time
variable τ ∈ Y = (0, 1) (cf. Sec. 3.1), whereas the macro time variable t is fixed. In current tests, we set
θI ≡ 0 and hI ≡ 0.

For the discretization of the above systems, we choose an equidistant partition of the space interval, i.e.

xi = i/M, i = 0, . . . ,M.

For the time integration, we make use of the Matlab PDE solver pdepe, that solves initial-boundary value
problems for parabolic-elliptic PDEs in 1D with adaptive time stepping.

We first fix ε = 10−4 and display the numerical results of the multi-scale system in Figure 1. The tem-

(a) Temperature θε for t ∈ (0, 0.1) (b) Temperature θε for t ∈ (0, 1) (c) Magnetic field hε for t ∈ (0, 5 ·10−4)

FIGURE 1. Solution of the multi-scale system for ε = 10−4.

perature is depicted in Fig. 1(a) and 1(b) on the time interval (0, 0.1) and on the longer interval (0, 1). At
the initial stage of the heating, the temperature rises only on the boundary part of the workpiece. At later
times, by virtue of thermal conduction, we observe that the temperature rises from the boundary to the
interior domain of the steel workpiece. At the end, a homogeneous temperature profile is observed. The
magnetic field is shown in Fig. 1(c). In contrast to the temperature, the magnetic field hε admits a time
scale related to ε.

In the industrial application of induction heating, only a heating of the boundary region of the workpiece
is desired, which will require short heating times.

Next, we perform numerical tests for different values of ε. We choose ε = 10−2, 10−3 and 10−4. The
final time is fixed as T = 0.1. A high value of ε refers to a low frequency, e.g. a value of ε = 10−2

would result in 10 oscillations on the time interval (0, 0.1). In the results of the multiscale system, Figure
2, we depict the magnetic field hε and the temperature θε. One can clearly observe the oscillations in the
temperature. As ε becomes smaller, the frequency of the oscillations in hε rises. Due to the smoothing
properties of the heat equation, the oscillations in the temperature are merely visible. For ε = 10−4, there
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are no oscillations in the temperature visible. But in order to resolve the oscillations in the magnetic field,
a very fine discretization of the time interval is necessary, where the number of time steps is proportional
to ε−1.

(a) T = 0.1, ε = 10−2 (b) T = 0.1, ε = 10−3 (c) T = 0.1, ε = 10−4

FIGURE 2. Performance of the original system with different ε, top: temperature θε, bot-
tom: magnetic field hε.

Next, we compare the results of the multi-scale system and the homogenized system (5.2). In order to
solve the homogenized system, we again use the Matlab routine pdepe. In each of the time steps taken
by the solver, the sub-problem (5.2e)–(5.2g) for τ ∈ (0, 1) has to be solved and the average of h2

0,x has
to be computed according to (5.2d). The average enters the heat equation (5.2a)–(5.2c), that is solved on
the macro time interval (0, T ). Since for fixed time t ∈ (0, T ) the temperature θ0 is independent of the
micro time τ , equations (5.2e)–(5.2g) are linear. Therefore, a harmonic approach for h0(τ) can be used
to solve (5.2e)–(5.2g) with respect to time τ , i.e. we assume

h0(x, τ, t) = hcos(x, t) cos(2πτ) + hsin(x, t) sin(2πτ).

Then (5.2e)–(5.2g) becomes an elliptic system for hcos(x, t) and hsin(x, t). The average can be computed
according to |h0,x|2 = 1/2(h2

cos,x + h2
sin,x).

One has to note that the time discretization for the multiscale system must resolve the oscillations of
the magnetic field, resulting in a time step size proportional to ε, while the time discretization for the
homogenized equations is independent of ε.

In Figure 3 we compare the temperature and the gradient of the magnetic field for the original and the
homogenized system for a choice of ε = 10−2.

As can be seen, the original system admits an oscillatory behaviour in the temperature due to oscillations
in the magnetic field gradient, that represents the heat source. For the homogenized system, the temper-
ature increases smoothly. The averaged magnetic field gradient for the homogenized system is shown
on the right of Fig. 3(b). There is a decrease with respect to the macro time t, which results from the
temperature dependent parameter γ(θ0). The same can also be observed for the original problem, Fig.
3(a), resulting in a decrease of the amplitude of |hε,x|2.

With a further decrease of ε, the amplitudes of the oscillations in the temperature become much smaller.
If we compare the temperature for the homogenized system, Fig. 3(b) with the temperature of the original
system with a choice of ε = 10−4, Fig. 1(a), there is no visible difference.

In Figure 4(a), we compare the error between the original and the homogenized system for various values
of ε. The L2-norm of the temperature difference ‖θε − θ0‖L∞((0,T );L2(Ω)) is plotted in blue, the norm of
the difference of the temperature gradients, ‖∇(θε − θ0)‖L2((0,T );L2(Ω)), is shown in red. The triangles
indicates the slope 1/2 and 1. As can be seen, the error between the original and the homogenized
system reduces for the temperature and the temperature gradient with respect to ε. While the error
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(a) Temperature θε and |hε,x|2, original system, T=0.1, ε = 10−2

(b) Temperature θ0 and |h0,x|2, homogenized system, T=0.1, ε = 10−2

FIGURE 3. Comparison between original and homogenized system.

estimate in Theorem 1 has a dependence on the error related to ε
1
2 , the numerical experiments in this

section suggest a linear reduction of the error with respect to ε.

(a) Error (b) Computational time

FIGURE 4. Norms ‖θε − θ0‖L∞((0,T );L2(Ω)) and ‖∇(θε − θ0)‖L2((0,T );L2(Ω)) and com-
putational time in dependence on ε.
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Finally, we compare computational times for the original and the homogenized system in Figure 4(b). As
one can see, the computational time for the original problem rises linearly as ε is reduced. This is due to
the fact that the time stepping has to resolve the frequency of the magnetic field, that is related to ε−1. In
the homogenized system, the computational cost is independent of ε.
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