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Stochastic unfolding and homogenization

Martin Heida, Stefan Neukamm, Mario Varga

Abstract

The notion of periodic two-scale convergence and the method of periodic un-
folding are prominent and useful tools in multiscale modeling and analysis of PDEs
with rapidly oscillating periodic coefficients. In this paper we are interested in the
theory of stochastic homogenization for continuum mechanical models in form of
PDEs with random coefficients, describing random heterogeneous materials. The
notion of periodic two-scale convergence has been extended in different ways to the
stochastic case. In this work we introduce a stochastic unfolding method that fea-
tures many similarities to periodic unfolding. In particular it allows to characterize
the notion of stochastic two-scale convergence in the mean by mere convergence in
an extended space. We illustrate the method on the (classical) example of stochastic
homogenization of convex integral functionals, and prove a stochastic homogeniza-
tion result for an non-convex evolution equation of Allen-Cahn type. Moreover,
we discuss the relation of stochastic unfolding to previously introduced notions of
(quenched and mean) stochastic two-scale convergence. The method descibed in
the present paper extends to the continuum setting the notion of discrete stochastic
unfolding, as recently introduced by the second and third author in the context of
discrete-to-continuum transition.

1 Introduction

Homogenization theory deals with the derivation of effective, macroscopic models for
problems that involve two or more length-scales. Typical examples are continuum me-
chanical models for microstructured materials that give rise to boundary value problems
or evolutionary problems for partial differential equations with coefficients that feature
rapid, spatial oscillations. The first results in homogenization theory were motivated by
a mechanics problem which was about the determination of the macroscopic behavior of
linearly elastic composites with periodic microstructure, see Hill [41]. In the mathematical
community early contributions in the 70s came from the French school (e.g. see [10] for an
early standard reference, and [68, 57| for Tartar and Murat’s notion of H-convergence),
the Russian school (e.g. Zhikov, Kozlov and Oleinik, see |72]), and from the Italian school
for variational problems (e.g. Marcellini [49], Spagnolo [67] for G-convergence, and De
Giorgi and Franzoni for I'-convergence [27]). In the 80s and later homogenization was in-
tensively studied for a variety of models from continuum mechanics including non-convex
integral functionals and applications to non-linear elasticity (e.g. Miiller [56, 28] and
Braides [14]), or the topic of effective flow through porous media (e.g. see Hornung et al.
[6, 44] and Allaire [2]). Most results in homogenization theory discuss problems with pe-
riodic microstructure, and specific analytic tools for periodic homogenization of linear (or
monotone) operators are developed, including the notions of two-scale convergence and
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periodic unfolding [62, 3, 70, 20|, which by now are standard tools in multiscale modeling
and analysis. In the last decade considerable interest in applied mathematics emerged in
understanding random heterogeneous materials, i.e. materials whose properties on a small
length-scale are only described on a statistical level, such as polycrystalline composites,
foams, or biological tissues, see [69] for a standard reference. Although the first results
in stochastic homogenization were already obtained in the 70s and 80s for linear elliptic
equations and convex minimization problems, see 63, 46, 24|, the theory in the stochastic
case is still less developed as in the periodic case and object of various recent studies,
e.g. regarding error estimates and regularity properties (see [32, 33, 31, 29, 30, 8, 7|, or
modeling of random heterogeneous materials [73, 1, 17, 42, 38, 39, 11, 61|. With the
present paper we contribute to the latter. In particular, we introduce a stochastic unfold-
ing method that shares many similarities to periodic unfolding and two-scale convergence
with the intention to systematize and simplify the process of lifting results from peri-
odic homogenization to the stochastic case. We illustrate this by reconsidering stochastic
homogenization of convex integral functionals and by proving a new stochastic homog-
enization result for semilinear gradient flows of Allen-Cahn type. In order to put the
notion into perspective, in the following we recall the concepts of two-scale convergence
and periodic unfolding.

For problems with periodic coefficients, the notion of (periodic) two-scale convergence was
introduced in [62] and further developed in [3, 48]. Two-scale convergence refines weak
convergence in LP-spaces: The two-scale limit captures not only the averaged behavior of
an oscillating sequence (as opposed to the weak limit), but also oscillations on a prescribed
small scale . In particular, let Q C R? and O = [0, 1)%, a sequence (u.) C LP(Q) two-scale
converges to u € LP(Q x O) (as € — 0) if

e—0

lim ng(x)ap (:L’, g) dx:/Q/Du(x,y)go(x,y)dyda:,

for all ¢ € LY(Q; Cx(0)). Here Cx(0) denotes the space of continuous and O-periodic
functions and p,q € (1,00) are dual exponents.

In [6] in the specific context of homogenization of flow through porous media Arbogast
et al. introduced a dilation operator to resolve oscillations on a prescribed scale of weakly
converging sequences; it turned out that the latter yields a characterization of two-scale
convergence (see [12, Proposition 4.6]). In a similar spirit, Cioranescu et al. introduced
in [20, 21| the periodic unfolding method as a systematic approach to homogenization.
The key object of this method is a linear isometry 72 : LP(Q) — LP(Q x O) (the periodic
unfolding operator) which invokes a change of scales and allows (at the expense of doubling
the dimension) to use standard weak and strong convergence theorems in LP-spaces to
capture the microscopic behavior of oscillatory sequences. It turned out that the method is
well-suited for periodic multiscale problems, e.g. see [19, 34, 55, 70, 59, 36, 47|. Moreover,
the unfolding method allows to rephrase two-scale convergence: Applied to an oscillatory
sequence (u.) C LP(Q), the unfolded sequence (7*u.) weakly converges in LP(Q) x O) if
and only if (u.) two-scale converges, and the corresponding limits are the same. We refer
to [55] where this perspective on two-scale convergence is investigated and applied in the
context of evolutionary problems.

Motivated by the idea of (periodic) two-scale convergence, in [13| the notion of stochastic
two-scale convergence in the mean was introduced suited for homogenization problems
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Stochastic unfolding and homogenization 3

that invoke random coefficients, see also [5]. In stochastic homogenization typically ran-
dom coefficients of the form a(w, z) = ao(r,w) (for z € R?) are considered where w stands
for a “random configuration” and aq is defined on a probability space (€2, F, P) that is
equipped with a measure preserving action 7, : 2 — €2, see Section 2.1. A sequence
(u.) C LP(Q x Q) (where Q@ C R? denotes a continuum domain) is said to two-scale
converge in the mean to some u € LP(Q x Q) if

lirr(l)//uE w, 2)p(T2w, x)drdP(w // u(w, z)p(w, x)drd P(w)
e—

for all p € L9(€2 x Q) satisfying suitable measurability conditions.

Motivated by the concept of the periodic unfolding method, in [61] the second and third
author developed a stochastic unfolding method for a discrete-to-continuum analysis of
discrete models of random heterogeneous materials. In the present work, we extend the
concept to problems defined on continuum domains Q C R?. In particular, we introduce
a stochastic unfolding operator 7. : LP(Q2 x Q) — LP(Q2 x @) which is an isometric
isomorphism (see Section 2.2). It displays similar properties as the periodic unfolding
operator; in particular, weak convergence of the unfolded sequence (7:u.) is equivalent to
stochastic two-scale convergence in the mean, and — as in the periodic case — we recover
a compactness statement for two-scale limits of gradients.

A first example that we treat via stochastic unfolding is the classical problem of stochastic
homogenization of convex integral functionals. As in the periodic case, the proof of the
homogenization theorem via unfolding is merely based on elementary properties of the
unfolding operator and on (semi-)continuity of convex functionals (with suitable growth
assumption). The second example we consider is homogenization for gradient flows driven
by A-convex energies. In particular, we consider an Allen-Cahn type equation with random
and oscillating coefficients, yet with a non-convexity only acting on statistically averaged
quantities. The homogenization procedure follows the abstract strategy for evolutionary
[-convergence of gradients systems, see [52] and the references therein (we provide more
references in Section 3). On the one hand, the example illustrates that the stochastic
unfolding method yields a short and rather elementary argument for stochastic homog-
enization of the specific problem, on the other hand, the example points out certain
limitations of the method (e.g. due to the failure of Rellich-type compactness properties
in the extended space of random fields).

An alternative and finer “quenched” notion of stochastic two-scale convergence was intro-
duced by Zhikov and Piatnitski [73]. In a very general setting, they introduced two-scale
convergence on random measures as a generalization of periodic two-scale convergence
as presented in [71]. In this work, we restrict to the simplest case where the random
measure is the Lebesgue measure. The concept of stochastic two-scale convergence in [73|
is based on Birkhoff’s ergodic theorem. Although the definition of (quenched) stochas-
tic two-scale convergence, which we recall in Section 4, and two-scale convergence in
the mean look quite similar, it is non-trivial to derive quenched convergence from mean
convergence (while the opposite direction in most cases is straight forward). In this pa-
per we investigate this issue and provide some tools that allow to draw conclusions on
quenched homogenization from mean homogenization, as we illustrate at the example of
convex integral functionals. For the analysis we appeal to Young measures generated by
stochastically two-scale convergent sequences in the mean and in particular establish a

DOIT 10.20347/WIAS.PREPRINT.2460 Berlin 2017



M. Heida, S.Neukamm, M. Varga 4

compactness result (see Theorem 4.11 and Lemma 4.14). Moreover, we exploit a recent
lower semicontinuity result of convex integral functionals w.r.t. quenched stochastic two-
scale convergence that has been recently obtained by the first author and Nesenenko in
[39].

Structure of the paper. In Section 2 we introduce the standard setting for stochastic
homogenization, introduce the notion of stochastic unfolding and derive the most signifi-
cant properties of the unfolding operator. In the following Section 3 two examples of the
homogenization procedure via stochastic unfolding are presented. Namely, Section 3.1
is dedicated to homogenization of convex functionals and in Section 3.2 homogenization
for Allen-Cahn type gradient flows is provided. In Section 4 we discuss the relations of
stochastic unfolding and quenched stochastic two-scale convergence. Section 2 and 3.1,
which contain the basic concepts and the application to convex homogenization, are self-
contained and require only basic input from functional analysis. Section 3.2 and Section 4
require some advanced tools from analysis and measure theory.

2 Stochastic unfolding and properties

2.1 Description of random media - a functional analytic frame-
work

To fix ideas we consider for a moment the setup of Papanicolaou and Varadhan [63]
for homogenization of elliptic operators of the form —V - a(2)V with a coefficient field
a : RY — R In the stochastic case the coefficients are assumed to be random and
thus a can be viewed as a family of random variables {a(z)},cps. A minimal requirement
for stochastic homogenization of such operators is that the distribution of the coefficient
field is stationary and ergodic. Stationarity means that the coefficients are statistically
homogeneous (i.e. for any finite set of points x1,...,z, € R? the joint distribution of
the shifted random variables a(z; + 2),...,a(z, + 2) is independent of z € R?), while
ergodicity (see below for the precise definition) is an assumption that ensures a separation
of scales in the sense that long-range correlations of the coefficients become negligible in
the large scale limit, e.g. cov[f,.  a,fpa] — 0 as z — co. In [63], Papanicolaou and
Varadhan introduced a (by now standard) setup that allows to phrase these conditions in
the following functional analytic framework (see also [45]):

Assumption 2.1. Let (2, F, P) denote a probability space with a countably generated
o-algebra, and let T = {7,},.ga denote a group of measurable, bijections 1, : Q — Q such
that

(i) (group property). 7o = Id and 7,4, = T o7, for all x,y € RY,
(ii) (measure preserving). P(1,A) = P(A) for all A € F and x € R,

(iii) (measurability). (w, ) — Tw is FRL-measurable (L denotes the Lebesgue-c-algebra
on RY).

From now on we assume that (2, F, P, 7) satisfies these assumptions and we write (-) :=
Jq, - dP as shorthand for the expectation.
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Stochastic unfolding and homogenization 5t

In the functional analytic setting, a random coefficient field is described by a map a :
Q x R?Y — R¥? with the interpretation that a(w,-) : R? — R™? with w € Q sampled
according to P yields a realization of the random coefficient field. Likewise, solutions
to an associated PDE with physical domain  C R¢ might be considered as random
functions, i.e. quantities defined on the product Q x Q). In this paper we denote by LP(£2)
and LP(Q) (with @ C R open) the usual Banach spaces of p-integrable functions defined
on (Q,F, P) and @, respectively. We introduce function spaces for functions defined on
Q2 x @Q as follows: For closed subspaces X C LF(Q2) and Y C LP(Q) (resp. Y C W'?(Q))
we denote by X ® Y the closure of

XQY = {ngim e X,meY,ne N}
i=1
in LP(Q; LP(Q)) (resp. LP(Q; WP(Q))). Since the probability space is countably gener-
ated, LP(Q) (with 1 < p < 00) is separable, and thus we have LP(Q)QLP(Q) = LP(2xQ) =
LP(Q; LP(Q)) up to isometric isomorphisms. We therefore simply write LP(€ x @) instead
of LP(Q) ® L*(Q).

In the functional analytic setting and in view of the measure preserving property of 7, the
requirement of stationarity can be rephrased as the assumption that the coefficient field
can be written in the form a(w, ) = ag(m,w) for some measurable map ag : Q — R4
The transition from ag to a conserves measurability. As usual we denote by B(Q) (resp.
L(Q)) the Borel (resp. Lebesgue)-o-algebra on Q C R?. The proof of the following lemma
is obvious and therefore we do not present it.

Lemma 2.2 (Stationary extension). Let ¢ : 2 — R be F-measurable. Then S¢ : QxQ —
R, Sp(w,z) := p(r,w) defines a F @ L(Q)-measurable function — called the stationary
extension of p. Moreover, if Q is bounded, for all 1 < p < oo the map S : L(Q) —
LP(Q2 x Q) is a linear injection satisfying

1
”SSOHLP(QXQ) = |Q‘p”90HLP(Q)'

The assumption of ergodicity can be phrased as follows: We say (2, F, P,7) is ergodic
(shorter (-) is ergodic), if

every shift invariant A € F (i.e. 7,A = A for all x € R?) satisfies P(A) € {0, 1}.

In this case the celebrated ergodic theorem of Birkhoff applies, which we recall in the
following form:

Theorem 2.3 (Birkhoft’s ergodic Theorem [25, Theorem 10.2.11]). Let (-) be ergodic and
¢ : Q — R be integrable. Then for P-a.e. w € Q it holds: Sp(w,-) is locally integrable
and for all open, bounded sets Q C RY we have

limy /Q Siplw, £) dr = |Q|() 1)

e—0

Furthermore, if ¢ € LP(Q) with 1 < p < oo, then for P-a.e. w € Q it holds: Sp(w,-) €
Ly (RY), and provided p < oo it holds Sp(w, £) — (@) weakly in LY (R?) as e — 0.

loc loc

Basic examples for stationary and ergodic systems include the random checkerboard
(e.g. see [58, Example 2.12|), Gaussian random fields (e.g. see [58, Example 2.13]). We
remark that the setting for periodic homogenization fits as well into this framework. In
particular, 2 = [ equipped with the Lebesque-o-algebra and the Lebesgue measure, and
the shift 7,y = y + x mod 1 defines a system satisfying Assumption 2.1 and ergodicity.
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2.2 Stochastic unfolding operator and two-scale convergence in
the mean

In the following we introduce the stochastic unfolding operator, which is a key object in
this paper. It is a linear, e-parametrized, isometric isomorphism 7 on LP({2 x )) where
Q C R? denotes an open set which we think of as the domain of a PDE.

Lemma 2.4. Let ¢ >0, 1 < p < o0, q := z%’ and Q C R be open. There exists a
unique linear isometric isomorphism

T LP(Qx Q)= LP(Q2xQ)
such that
Vu € LP(Q) ® LP(Q) : (Teu)(w, z) = u(T-2w, 7) a.e. in Qx Q.

Moreover, its adjoint is the unique linear isometric isomorphism T : L1(Q x Q) —
LI(Q x Q) that satisfies (T u)(w, ) = u(Tzw,z) a.e. in Q@ x Q for all u € LI(2) ® L1(Q).

For the proof see Section 2.4.

Definition 2.5 (Unfolding operator and two-scale convergence in the mean). The operator
T LP(2x Q) — LP(Q2x Q) of Lemma 2.4 is called the stochastic unfolding operator. We
say that a sequence (u.) C LP(Q2 x Q) weakly (strongly) two-scale converges in the mean
in LP(Q x Q) tou e LP(Q x Q) if (ase —0)

Tous — u weakly (strongly) in LP(Q x Q).
In this case we write u. =X u (resp. u. = u) in LP(2 x Q).

To motivate the definition, let u. € H}(Q) denote a (distributional) solution to —V -
a.(x)Vu. = f in @, where a. is a family of uniformly elliptic, random coefficient fields
of the form a.(w,z) = agp(rzw). The main difficulty in homogenization of this PDE
is the passage to the limit ¢ — 0 in the product a.Vu., since both factors in general
only weakly converge. The stochastic unfolding operator 7. turns this expression into a
product of a strongly and a weakly convergent sequence in L?(Q x Q): Indeed, we have
T-(a:Vu.) = ag(T-Vu.) and thus it remains to characterize the limit of T:Vu,., as will
be done in the next section. Since 7. is an isometry, we obtain the following properties
(which resemble the key properties of the periodic unfolding method). The below lemma
is obtained using the isometry property of 7; and the usual properties of weak and strong
convergence in LP(§) x @) and therefore we do not present its proof.

Lemma 2.6 (Basic properties). Let p € (1,00) and Q C R? be open. Consider sequences
(ue) C LP(Q x Q) and (v.) C LI(Q x Q).
(1) (Boundedness and lower-semicontinuity of the norm). If u. 2 u, then
SUP.c(0,1) [|UellLriaxq) < 00 and ||ul|raxq) < liminfe o [Jucllzroxq)-
(ii) (Compactness of bounded sequences). If limsup, g ||u.||zraxq) < 00, then there

exists a subsequence € and u € LP(Q x Q) such that ue X u in LP(Q x Q).
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Stochastic unfolding and homogenization 7

(111) (Characterization of strong two-scale convergence). u. 2 if and only if u,. 2w in
LP(2 x Q) and |Juc||rxq) = llullr@xq)-

(iv) (Products of strongly and weakly two-scale convergent sequences). If u. 2w in
LP(Q2 x Q) and v, 20 in Li(Q2 x Q), then

([ wctoantonsiar) + { [ ateaputo,apic).

Remark 2.7. The stochastic unfolding operator enjoys many similarities to the periodic un-
folding operator, however we would like to point out one considerable difference. Namely,
in the periodic case if a sequence (u.) C LP(Q) satisfies u. — u strongly in LP(Q), it fol-
lows that TPu. — u strongly in LP(Q x0) (see e.g. [55, Proposition 2.4]). In the stochastic
case, this does not hold in general, specifically even for a fixed function u € LP(2 x Q),
in general it does not hold T.u — w. However, if (-) is ergodic, using Proposition 2.11
below, it follows that for a sequence (u.) C LP(Q) ® W1P(Q) such that u. — u weakly in

LP(©2 x @) it holds that wu, A (u). In this respect, stochastic two-scale convergence might
be viewed as an ergodic theorem for weakly convergent sequences.

For homogenization of variational problems (in particular, convex integral functionals)
the following transformation and (lower semi-)continuity properties are convenient.

Proposition 2.8. Let p € (1,00) and Q C R? be open and bounded. Let V : Q x Q x
R™ — R be such that V(-,-, F) is F ® L(Q)-measurable for all F € R™ and V(w,x,-) is
continuous for a.e. (w,x) € Q x Q. Also, we assume that there exists C > 0 such thal
for a.e. (w,z) € QxQ

V(w,z, F)| < C(1+ |FP), forall F €R™.

(i) We have

Vu € IP(Qx Q)™ </Q V(Tgw,x,u(w,x))dx> </QV(w,x,7;u(w,x))dx>. )

(i) If ue 23w in LP(Q x Q)™, then

lim </Q V(Tﬁw,x,ug(w,x))dx> _ </QV(w,m,u(w,x))dx>.

(111) We additionally assume that for a.e. (w,z) € Q x Q, V(w,z,-) is conver. Then, if
2s .
ue = w in LP(Q x Q)™,

n%ﬁ</Qv<fgw,x,u€(w,x))dx> > </QV(w,x,u(w,m))dm>.

(For the proof see Section 2.4.)

DOIT 10.20347/WIAS.PREPRINT.2460 Berlin 2017



M. Heida, S.Neukamm, M. Varga 8

Remark 2.9 (A technical remark about measurability). The stochastic unfolding operator
7 is defined as a linear operator on the Banach space LP(€)x ), which is convenient since
this prevents us from (fruitless) discussions on measurability properties. The elements of
LP(©2 x Q) are strictly speaking not functions but equivalence classes of functions that
coincide a.e. in © x Q. Thus, a representative function @ in LP(Q X @) is measurable
w.r.t. the completion of the product o-algebra F ® L£(Q), and thus the map (w,z) —
@(7w, x) might not be measurable. However, if @ is F ® L£(Q)-measurable (e.g. if @ €

LP(Q2) ® LP(Q)), then t.(w,z) := (Tew, x) is F ® L(())-measurable. In particular, since

LP(Q2) ® LP(Q) is dense in LP(2 x Q), for any u € LP(2 x Q) we can find a representative-
F ® L(Q) measurable function @ : Q x @ — R and we have Tou = 4. a.e. in Q X Q.

Remark 2.10 (Comparison to the notion of [13]). The notion of weak two-scale convergence
in the mean of Definition 2.5, i.e. the weak convergence of the unfolded sequence, coincides
with the convergence introduced in [13] (see also [5]). More precisely, for a bounded

sequence (u:) C LP(2 x Q) we have u. 2 win LP(©2 x @) (in the sense of Definition 2.5)
if and only if u. stochastically 2-scale converges in the mean to u in the sense of [13], i.e.

i ([ e 2)gtrs e ) = ([ ateo ol s, )

for any ¢ € L1(Q x Q) that is admissible (in the sense that the transformation (w,z) —
p(Tew, x) is well-defined). Indeed, with help of 7 (and its adjoint) we might rephrase the
integral on the left-hand side in (3) as

( [ e ) = / (Taueds ). n

which proves the equivalence.

2.3 Two-scale limits of gradients

As for periodic homogenization via periodic unfolding or two-scale convergence, also in
the stochastic case it is important to understand the interplay of the unfolding operator
and the gradient operator and to characterize two-scale limits of gradient fields. As a
motivation we first recall the periodic case. A standard result states that for any bounded
sequence in WhP(Q) we can extract a subsequence such that u. weakly converges in
WP(Q) to a single scale function u € W'?(Q) and Vu, weakly two-scale converges to a
two-scale limit of the form Vu(x) + x(x,y), where x is a vector field in L?(Q) ® L2, (O)

per

and Lk, (0J) denotes the space of locally p-integrable, [l-periodic functions on R?, and y is
mean-free and curl-free w.r.t. y € 00 =: [0,1)%. Since O is compact, such vector fields can
be represented with help of a periodic potential field, i.e. there exists ¢ € LP(Q, W, 2(0))
s.t. x(x,y) = Vyp(z,y) for a.e. (x,y). A helpful example to have in mind is the following
us(z) == ep(£)n(z) with n € WHP(Q) and ¢ € C35(0). Then a direct calculation shows

per

that Vu.(z) = V,o(Z)n(x) + O(e), which obviously two-scale converges to V¢ (y)n(z).

In the stochastic case the torus of the periodic case (which is above represented by ) is
replaced by the probability space € and periodic functions (e.g. ¢ above) are conceptually
replaced by stationary functions, i.e. functions of the form Sy(w,z) = p(m,w) with ¢ :
2 — R measurable. To proceed further, we need to introduce an analogon of the gradient
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Stochastic unfolding and homogenization 9

V, and its domain W'}é’r’(D) in the stochastic setting. As illustrated below, the shift-group
7 together with standard concepts from functional analysis lead to a horizontal gradient
D and the space WP(Q). With help of these objects we prove, as in the periodic case,
that any bounded sequence in L?(Q) @ W'?(Q) admits (up to extraction of a subsequence)
a weak two-scale limit v and the sequence of gradients converges weakly two-scale to a
limit of the form Vu + x where x is D-curl-free w.r.t. w. A difference to the periodic
case to be pointed out is that y in general does not admit a representation by means of

a stationary potential.

In order to implement the above philosophy we require some input from functional anal-
ysis, which we recall from the original work by Papanicolaou and Varadhan [63]. We
consider the group of isometric operators {Ux cx € Rd} on LP(Q) defined by U,p(w) =
@(1,w). This group is strongly continuous (see [45, Section 7.1]). For i = 1,...,d, we
consider the 1-parameter group of operators {Uy,, : h € R} ({e;} being the usual basis of
R?) and its infinitesimal generator D; : D; C LP(Q) — LP(Q)

1 Uh€i¢_§0
Diep = Jim ———,

which we refer to as horizontal derivative. D; is a linear and closed operator and the
associated domain D; is dense in LP(). We set W1P(Q) = N D; and define for ¢ €
WhP(Q) the horizontal gradient as Dy = (Dy, ..., Dgp). In this manner, we obtain a
linear, closed and densely defined operator D : W?(Q)) — LP(Q)¢, and we denote by

L2 () = R(D) C I(2)"

the closure of the range of D in LP(Q)9. We denote the adjoint of D by D* : D* C
L)% — L) which is a linear, closed and densely defined operator (D* is the domain
of D*). Note that W4(Q)? C D* and for all ¢ € WP(Q) and ¢ € WH(Q) (i = 1,...,d)
we have the integration by parts formula

(Digy) = = (¢ D)) ,

and thus D*¢ = — Zle Dt for ¢p € W4(Q)4. We define the subspace of shift invariant
functions in LP(Q2) by

LB () ={pell(Q):Up=yp forallzeR'},

inv

and denote by P, : LP(Q2) — L? (Q) the conditional expectation with respect to the

inv

o-algebra of shift invariant sets {A e F:rn,A=Aforall x € Rd}. It is a contractive
projection and for p = 2 it coincides with the orthogonal projection onto L2 ().

Proposition 2.11 (Compactness). Let p € (1,00) and Q C R? be open. Let (u.) be
a bounded sequence in LP(Q) @ WHP(Q). Then, there exist u € Lt (Q) @ WH(Q) and
X € Lpot(2) @ LP(Q) such that (up to a subsequence)

ue 2oy in LP(2 x Q), Vue 2 Vu + x in LP(Q x Q)™ (5)

If, additionally, (-) is ergodic, then u = Pppu = (u) € WHP(Q) and (u.) — u weakly in
Whr(Q).
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We remark that the above result is already established in [13] in the context of two-scale
convergence in the mean in the L2-space setting. We recapitulate its proof from the
perspective of stochastic unfolding, see section 2.4.

Remark 2.12. Since closed, convex subsets of a Banach space are also weakly closed, for
any sequence (u.) that satisfies the assumption of Proposition 2.11 and T;u. € X where
X C L*(Q x Q) is closed and convex, the two-scale limit from Proposition 2.11 satisfies
uw € X. This is useful to study problems with boundary conditions.

Lemma 2.13 (Nonlinear recovery sequence). Let p € (1,00) and Q C R? be open. For
X € Lpor(Q) @ LP(Q) and § > 0, there exists a sequence gs-(x) € LP(Q) @ WP(Q) such
that

195, 00| zrax@) < €C(6), limsup [|TeVgse(x) — Xl raxgye < 0.

e—0

(For the proof see Section 2.4.)

Proposition 2.14 (Linear recovery sequence). Let p € (1,00) and Q C R? be open,
bounded and C'. For e > 0 there exists a linear operator G. : Lb,,(Q) @ LP(Q) — LP(Q) ®

WyP(Q), that is uniformly bounded in e, with the property that for any x € Lot ()@ LP(Q)
G-x 20 in P2 xQ), VG.x = x in LP(Q x Q)%

(For the proof see Section 2.4.)

Remark 2.15. If Q C R? is open, bounded and C*, using Proposition 2.14, we obtain a
mapping

(Line () @ W(Q)) % (Ljor (2) © L7(Q)) 3 (1, x) = e, X) 1= utGex € LM (Q)@W'(Q)

which is linear, uniformly bounded in ¢ and it satisfies (for all (u, x))
ue(u,x) Buin LM(Q x Q), Vue(u,x) 3 Vu+ x in LP(Q x Q). (6)

In the case that () is merely open, we can use the nonlinear construction from Lemma 2.13.
Specifically, for (u,x) € (L, () @ W'P(Q)) x (Lh(Q) ® LP(Q)) we define us.(u, x) =

nv
u + gs5-(x). Using Attouch’s diagonal argument, we find a sequence u.(u,Xx) = Us(e),e
which satisfies (6). We remark that in both cases, the recovery sequence u. matches the

boundary conditions of the function u (see constructions in Section 2.4).

We conclude this section with some basic facts from functional analysis used in the proof
of Proposition 2.11.

Remark 2.16. Let 1 < p < oo be fixed.

(i) () is ergodic & L (Q) ~R < Pnf = (f).

nv

(ii) The following orthogonality relations hold (for a proof see [15, Section 2.6]): Identify
the dual space LP(2)* with L9(2), and define for a set A C L%(Q) its orthogonal
complement At C LP(Q) as A+ = {p € LP(Q) : (pv)) =0 for all » € A}. Then

N(D)=R(D*)", Lb(Q) =R(D) =N(D")". (7)

Above, N(-) denotes the kernel and R(-) the range of an operator.
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2.4 Proofs

Proof. We first define 7; on & := {¢(w,x) = p(w)n(z) : ¢ € LP(Q),n € LP(Q)} C
LP(Q2 x Q) by setting (T-v)(w,z) = (S¢)(w, —Z)n(z) for all = ¢n € /. In view of
Lemma 2.2 (72¢) is F ® L£(Q))-measurable, and

([imoaz) = [ ([ 190 -2P aP@)n@rds = el il = 1.

Since span(&7) is dense in LP(Q2 x @), 7T extends to a linear isometry from LP(Q X Q) to
LP(Q2 x Q). We define a linear isometry T_ : L(Q x Q) — L1 x Q) analogously as T;
with € replaced by —e. Then for any ¢ € LP(Q) ® LP(Q) and ¢ € L1(Q) ® L1(Q) we
have (thanks to the measure preserving property of 7):

</Q<7;go>wdx> - // b(w,2) dP(w) da
- [ ¢(Wa$)¢(75w7$)dp(w)d$=< / AT0)) da

Since these functions are dense in LP(Q) ® Q) and LI(2 ® @), respectively, we conclude
that 7 = T_..

It remains to argue that 7. and 7" are surjective. Since 7" is an isometry, it follows that
7T is surjective (see [15, Theorem 2.20]). Analogously, 7* is as well surjective. ]

Proof of Proposition 2.8. We first note that V' is a Charathéodory integrand (which is de-
fined as a function satisfying the measurability and continuity assumptions given in the
statement of the proposition) and therefore it follows that V is F ® £(Q) @ B(R%*4)-
measurable. For fixed ¢ > 0, the mapping (w,z) — (12w, z) is F @ L(Q)-F @ L(Q)-
measurable and therefore (w,z, F) — V(7zw,z, F') defines as well a Charathéodory in-
tegrand (with same measurability as V). As a result of these facts, for any function
u € LP(Q2 x Q)™ it follows that (w,z) — V(w,r,u(w,z)) and (w,z) = V(Tzw, z,u(w, v))
define measurable functions with respect to the completion of F ® £(Q). Additionally,
these functions are integrable thanks to the growth assumptions on V. Thus all the
integrals in the statement of the proposition are well-defined.

(i) We first argue that it suffices to prove that

</62V(T’;W,x,u(w,x))dx> = </62V(w,x,72u(w,x))dx> for all u € LP(Q) & Q)™
(8)

Indeed, for any u € LP(£2 x Q)™ we can find a sequence uy € LP() ® LP(Q)™ such that
u — w strongly in LP(Q x Q)™, and by passing to a subsequence (not relabeled) we may
additionally assume that v, — u pointwise a.e. in {2x (). By continuity of V' in its last vari-
able, we thus have V (7w, z, up(w, z)) = V(7zw, v, u(w, z)) for a.e. (w,z) € 2 x Q. Since
\V(Tzw z,up(w, x))| < C(l—i—\uk(w z)[P) a.e. in QXQ, the dominated convergence theorem
by Vital implies that limy_,s0 <fQ (Tzw, 2, up(w, ) > = <fQ (Tzw, 2, u(w, a:))dx> In
the same way we conclude that

lim </QV(w v, Toun(w, o dm> </v m))daj>,
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and thus (8) extends to general u € LP(2 x Q)™.

It is left to show (8). Let u € LP(Q) ® LP(Q)™. By Fubini’s theorem, the measure
preserving property of 7, and the transformation w — 7_zw in the second equality below,
it follows

</QV(T§w,w,u(w,:L’))dx> :/Q<V(T:w,x,u(w,$))>dl’:/Q<V(w,x,u(7:w,x))>dx,

Since u € LP(2) ® LP(Q), we have u(T_zw,z) = Tcu(w, ), and thus the right-hand side
equals <fQ V(w,z, Tou(w, x))dx>, which completes the proof of ().

(ii) By part (i) we get <fQ V(Tgw,x,ua(w,x))dx> = <fQ V(w,x,ﬁua(w,:r))dx>. Since
Toue — w strongly in LP(Q x Q)™ (by assumption), using the growth conditions of V" and
the dominated convergence theorem, it follows (similarly as in the proof of part (i)) that

lim,_, <fQ w, x, Teus(w, z dx> <fQ w, x, u(w x))da:>

(iii) We note that the functional LP(2 x Q)™ > u +— <fQ V(w,x,u(w,x))dx> is convex
and lower semi-continuous, therefore it is weakly lower semi-continuous (see [15, Corol-

lary 3.9]). Combining this fact with the transformation formula from (i) and the weak
convergence T.u. — u (by assumption), the claim follows. O

Before stating the proof of Proposition 2.11, we present some auxiliary lemmas.

Lemma 2.17. Let p € (1,00) and q = )
(i) If g € {D*¢:p € WH(Q)V, then o € L2, ().
(ii) If ¢ € {1 € WH(Q)4: D = 0}, then ¢ € Lhe(Q).
Proof. (i) First, we note that
el () & UkUp=Ugp forallycR* h>0,i=1,...4d.

We consider ¢ € {D*: ¢ € Wh( } and we show that ¢ € LT (Q) using the above
equivalence. Let v € Wh4(Q) and i € {1,...,d}. Then, by the group property we have
U_pe, ) — ) = fg U_te, D¥)dt and therefore

(Unesp = 0)¥) = {p(U-pesth — ) = <g0 /0 t UteiD;‘wdt> = /0 ' (pDH(U_yo.1b)) dt.

Since U_.,1b € WH4(Q) for any ¢ € [0, h], we obtain (pD;(U_s,%)) = 0 and thus Uy, =
¢. Furthermore, for any y € R, we have ((Upe,U, — U,)¥0) = ((Upe,0 — @) U_0) = 0
by the same argument.

(ii) In view of Lb,(Q) = N(D*)* (see (7)), it is sufficient to prove density of the set
{o e WH(Q)?: D*¢ =0} in N(D*). This follows by an approximation argument as in
[45], Section 7.2. Let ¢ € N(D*) and we define for ¢ > 0

o' (w) = / dpt(y)w(fyw)dy, where p(y) = Je .
R 2
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Then the claimed density follows, since ¢! € W14(Q)4, D*p! = 0 for any t > 0 and
¢! — ¢ strongly in L4(Q)¢. The last statement can be seen as follows. By the continuity

property of U,, for any ¢ > 0 there exists § > 0 such that (|¢(7w) — ¢(w)|?) < € for any
y € Bs(0). It follows that
q
(' = ol = | [ ) (ot0) - wtnan] )
< [ mw) (o) = o)) dy
R

- /B p(y) {Jop(ryw) — 9(@)|7) dy + / p(y) {ip(ryw) — p(@)|) dy.

R4\ B;

The first term on the right-hand side of the above inequality is bounded by ¢ as well as
the second term for sufficiently small ¢ > 0. m

Lemma 2.18. Let u. € LP(Q)QWP(Q) be such that u,. 2R win LP(Q2%x Q) and eVu, 20
in LP(Q x Q). Thenu € LY (Q) @ LP(Q).

Proof. Consider a sequence v. = €7*(pn) such that ¢ € W4(Q) and n € C°(Q). Note
that 7.v. = epn and we have (i = 1, ...,d)

</ 8iu5vgdx> = </ ﬁ@iugﬁvsdx> = </ ﬁ@iusagondx> — 0.
Q Q Q

Moreover, it holds that d;v. = T*(D;pn + epd;n) and therefore

</ 8iu5v5dx> = — </ ueaivsdx> = — </ uT (Dipn + 5g0(‘3m)dx>
Q Q Q

= — < / Teu-Dipn + 672u8900ﬂ7dx> :
Q

The last expression converges to — <fQ uDinpnd:c> ase — 0. Asaresult of this, (u(x)D;p) =
0 for almost every z € @ and therefore u € L¥ () ® LP(Q) by Lemma 2.17 (i). O

nv

Lemma 2.19. Let u. be a bounded sequence in LP(Q) @ WYP(Q). Then there exists
uwe LP (Q) @ W(Q) such that

ue Buwin IP(Ux Q), Pate 2w in LP(Q% Q),  Pn,Vue 22 Vu in LP(Q x Q)%

Proof. Step 1. P, o T: =Tz 0 Pppy = Py

The second equality holds clearly. To show that P, 07 = Py, we consider v € LP(2xQ),
p € L) and n € LI(Q). We have

</Q(Pinv72v)(<ﬂ77)d:c> — </Q(7;U)Pi:§v(<ﬁ77)dx>
= ([ vrtende) = ( [ Paienic).
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where we use the fact that 7*P, = P,

of Py, satisfies R(P:

inv

) C
LI (). The claim follows by an approximation argument since L7({) ® LA (Q) is dense

nv

in L9(Q x Q).

since the adjoint Py,

Step 2. Convergence of Pipyu..
P, is bounded and it commutes with V and therefore

lim sup </ | Py |P + |VPim,u€]”dx> < 00.
Q

e—0

As a result of this and with help of 2.6 (ii) and Lemma 2.18, it follows that P, u. 22y and
V Pvtie -2 w (up to a subsequence), where v € L2 (Q)® LP(Q) and w € LP ()@ LP(Q)".

Let p € WH(Q) and n € C2°(Q). On the one hand, we have

</Q(3i1%nvus)72*(sm7)dx> = </Q72(0i1%nvus)(son)dx> — </Qwis0ndw>-

On the other hand,

([ @PeaT(enyir) === ( [ (o (Dignite) = ( [ (P (o)

The first term on the right-hand side vanishes since Pyu.(-,z) € L

P (Q) for almost every

z € @ and by (7). The second term converges to — <fQ vgp@mdm> as ¢ — 0. Consequently,
we obtain w = Vv and therefore v € LY (Q) @ W'(Q).

Step 3. Convergence of u..
Since u, is bounded, by Lemma 2.18 there exists u € L7, () ® LP(Q) such that u. =X u

nv

in LP(Q2 x Q). Also, P, is a linear and bounded operator which, together with Step 1,
implies that P,,u. — u. Using this, we conclude that u = v. O

Proof of Proposition 2.11. Lemma 2.19 implies that u. =X u in LP(Q2 x Q) (up to a
subsequence), where u € LP (Q) @ W'P(Q). Moreover, it follows that there exists

v € LP(Q x Q)% such that Vu. =2 v in LP(Q x Q)¢ (up to another subsequence). We
show that x :=v — Vu € L5, () ® LP(Q).

Let ¢ € WH(Q)? with D*¢ = 0 and n € C>°(Q). We have

</QVu5 . 7;*(90?7)da:> - </Q7;w . gpnd;p> = </QU . sond:c>. )

On the other hand,

<va“ﬁ@m®>=—<ém'

)

_ </Q(7;u5)(D*<pn)dx> _ </Q(7;u5)§;<pﬁmdx>.

Above, the first term on the right-hand side vanishes by assumption and the second

d
1
ﬁ*(gDz’W? + 901'31'77)6137>
=1 (10)

converges to <fQ Vu - g0n> as ¢ — 0. Using (10), (9) and Lemma 2.17 (ii) we complete
the proof. n
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Proof of Lemma 2.13. For x € L, () ® LP(Q) and § > 0, by definition of the space
Lot () ® LP(Q) and by density of R(D) in L (€2), we find g5 = Z?:(ﬁ) ©2n? with ¢? €
WP(Q) and n? € C>(Q) such that

X = Dgsll Lraxq)s < 6.

We define gs. = £7.'gs and note that gs. € LP(Q) ® W, *(Q) and Vgs. = T "Dgs +
T 'eVgs. As a result of this and with help of the isometry property of 7.7!, the claim of
the lemma follows. []

Proof of Proposition 2.14. For x € Lpy(2) ® LP(Q) we define G.x = v, as the unique
weak solution in W, 7(Q) to the equation (for P-a.e. w € Q)

~Av(w) = V- (T (W), (1)

Above and further in this proof, we use the notation u(w) := u(-,w) € LP(Q) for functions
ue LP(Q2 x Q).

By Poincaré’s inequality and the Calderon-Zygmund estimate, we obtain
lv-(@)llzo(@) < ClIVV=(W)lri@ye < CIT X (W)l (@yes

and therefore
”UsHLP(QXQ) < CHVUEHLP(QXQ)d < OHX“LP(QxQ)d-

Using Lemma 2.13, we find a sequence gs. € LP(Q) @ W, (Q) such that

195, 00| 2o (2x@) < €C(6), hmsoup 172V g5.(x) = Xl Lrxgye < 6.
E—>

Note that v.(w) — gs.(w) € Wy P(Q) (for P-a.e. w € Q) and it is the unique weak solution
to

—A:(w) = gse(w)) = =V (T X (W) = Vgse(w))-

As before, we have
|ve = gsellraxq) < ClVve = Vgsellrxoyr < Clix — TeVgsellroxgya-  (12)
Therefore, using the isometry property of 7., we obtain

H7ZVU€ - XHLP(QXQ)d < vaa - vgé,anLP(QxQ)d + ||7;Vg<5,5 - X“LP(QXQ)d
<Clx— 7;Vg6,sHLP(Q><Q)d-

Consequently, first letting € — 0 and then § — 0 we obtain that Vo, Tt x in LP(2 x Q)%
Furthermore, using (12) we obtain that v, 2 0in LP(Q2x Q) which completes the proof. [

3 Applications to homogenization in the mean

In this section we apply the stochastic unfolding method to homogenization problems. We
discuss the classical homogenization problem of convex integral functionals and derive a
homogenization result for an evolutionary gradient system. We refer to [61] where a
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similar analysis has been conducted in a discrete-to-continuum setting for convex integral
functionals and for an evolutionary rate-independent system.

The treatment of integral functionals is a well-known topic in stochastic homogenization
and previous results typically rely on the subadditive ergodic theorem (see e.g. |24, 60|)
or on the notion of quenched stochastic two-scale convergence (see [39] and Section 4).
The analysis via unfolding is less involved than these methods since it merely relies on
lower semi-continuity of convex functionals and weak compactness properties of ,unfolded”
sequences of functions in LP(Q2 X @)). On the other hand, the method we present yields
weaker results than other procedures, namely convergence for solutions is obtained in
a statistically averaged sense (see Proposition 3.5), whereas the analysis based on the
subadditive ergodic theorem (e.g. [60]) yields convergence for every typical realization of
the medium and it even allows to consider non-convex functionals. We refer to a recent
study [11] for an investigation of homogenization of non-convex integral functionals by a
two-scale I'-convergence approach.

The second part of this section is dedicated to the analysis of an evolutionary problem, a
gradient system which corresponds to an Allen-Cahn type equation. A significant number
of mathematical models can be phrased in the setting of evolutionary gradient systems
which are formulated variationally, with the help of an energy and a dissipation functional
(see Section 3.2 for a specific example). We refer to [4, 53| for the abstract theory of
gradient systems. Typically, the asymptotic analysis of sequences of gradient systems (so
called evolutionary I'-convergence [52|) relies merely on I'-convergence properties of the
underlying two functionals. For various general strategies for such problems we refer to
[65, 26, 53, 52]. In [47] a gradient system driven by a non-convex (Cahn-Hilliard type)
energy is considered and a periodic homogenization result is established using periodic
unfolding. In this study, we consider a related random model and derive a homogenization
result based on the stochastic unfolding procedure (see Section 3.2).

3.1 Convex integral functionals

Let p € (1,00) and @ C R? be open, bounded and Lipschitz. We consider V : Q x Q x
R4 — R and the following set of assumptions.

(A1) V(-,-, F) is measurable w.r.t. the product o-algebra F @ L£(Q) for all F € R,
(A2) V(w,x,-) is convex for a.e. (w,z) € Q x Q.

(A3) There exists a C' > 0 such that
1
E\FP’—C <V(w,z,F) <C(|F|P +1)

for a.e. (w,r) € Q x Q and every F € R¥*%,
(A4) There exists b: R — R positive, continuous and with 5(0) = 0 such that
|V(W,ZE1, Fl) - V(w, 9, F2)| S b(|ZE1 — J]2|)

for P-a.e. w € Q and every z1, 79 € Q, Fy, Fy € R4,
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(A5) V > 0 and it holds that for a.e. (w,z) € Q x Q, V(w,z,-) is uniformly convex
with modulus (-)?, i.e. there exists C' > 0 (independent of (w,x)) such that for all
F,G e R™ and t € [0,1]

V(w,2,tF + (1 = 1t)G) < tV(w, 2, F) + (1 = t)V(w,z,G) — (1 — t)tC|F — G.

Below we use the shorthand notation Vou = § (Vu+ Vu') and x* = £ (x +x%). We
consider problems with homogeneous Dirichlet boundary conditions and energy functional

E P @WIP(Q) = R, E.(u) = </Q V(Tﬂ;(,d,l’,vsu(w,l’))dl’> . (13)

Under the assumptions (A1) — (A3), in the limit ¢ — 0 we obtain the following functional
Eo+ (Lo () @ W5 (Q)7) x (L) ® LP(Q)7)

Eo(u, x) = </Q V(w, z, Viu(w, x) + Xs(w,:c))d;c> _ (14)

Theorem 3.1 (Two-scale homogenization). Let p € (1,00) and Q C R¢ open, bounded
and Lipschitz. Assume (Al) — (A3).

(i) (Compactness) Let u. € LP(Q) @ WyP(Q)? be such that limsup, . E-(u.) < oo.
There exist (u,x) € (L%, (Q) @ WyP(Q)?) x (Lhot(2) ® LP(Q)) and a subsequence

mnv

(not relabeled) such that
ue Bowin P x Q). Vue 2 Vu+ x in LP(Q x Q). (15)

(i1) (Liminf inequality) If the above convergence holds for the whole sequence, then

lim iglf E-(us) > E(u, x).

(iti) (Limsup inequality) Let (u, x) € (L%, (Q) ® Wol’p(Q)d) X (Lot () @ LP(Q)?). There

mv

exists a sequence u. € LP(Q) @ Wy P(Q)? such that

ue B uin LP(Qx Q)Y Vu, 5 Vu+ y in LP(Q x Q)™ lir% E(ue) = E(u, x).
e—

(For the proof see Section 3.3.)

Corollary 3.2. Assume the same assumptions as in Theorem 3.1. Let u. € LP(Q) ®

WoP(Q) be a minimizer of E.. Then there exists a subsequence (not relabeled), u 26
S

L2 () x WP(Q)?, and x € L5e(Q) @ LP(Q)? such that u. 2w in LP(Q x Q)Y, Vu, &

mv

Vu+x in LP(Q x Q)™ and

ll_{r(l) min &, = }:1_{% E(us) = E(u, x) = min &.

(For the proof see Section 3.3.)

Remark 3.3. If V(w, x,-) is strictly convex the minimizers are unique and the convergence
in the above corollary holds for the entire sequence.
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Remark 3.4. We might consider the perturbed energy functional Z.(-) = & (-)+(le, ) 1oy 1o

with I = [ in L1 x Q). As in Corollary 3.2, minimizers of Z. converge in the above
two-scale sense (up to a subsequence) to minimizers of Zo(-) = &(-) + (Pavl, ) 1oy 10-

If we additionally assume that (-) is ergodic and (A4), the limit functional reduces to a
single-scale energy

ghom : W()Lp(Q)d — R) ghom(u) = / Vhom(xa VU(IE))dZE,
Q

where the homogenized integrand Viom is given for z € R? and F' € R¥ by

Viom(z, F) = inf  (V(w,z, F*+ x*(w))) . (16)

XELpor ()¢

pot

Theorem 3.5 (Ergodic case). Assume (Al) — (A4) and (-) is ergodic.

(i) Let u. € LP(Q) @ Wy (Q)* be such that limsup, . E-(u.) < co. There ewist u €
WoP(Q) and a subsequence (not relabeled) such that

u Xy in LP(Q x Q)Y (u.) — u strongly in LP(Q)%,
(Vu.) — Vu weakly in LP(Q)**. (17)

Moreover,

lim ionf E(uz) > Enom(u).

(ii) Let u € WyP(Q)L There exists a sequence u. € LP(Q) @ Wy (Q)¢ such that

u. B win LP(Q x Q) (Vu.) — Vu strongly in LP(Q)™, liH(l) E(ue) = Enom(u).
e—

(For the proof see Section 3.5.)

We consider problems with an additional strong convexity assumption and consequently
obtain that the whole sequence of unique minimizers of £. converges strongly in the usual
strong topology of L*(€2 x Q) to the unique minimizer of Epom:

Proposition 3.6. Let p € (1,00) and Q C R? open, bounded and Lipschitz. Assume
(A1) — (A5). & and Ewom admit unique minimizers u. € LP(Q) @ WIP(Q)? and u €
WyP(Q), respectively. We have

ue — u in LP(Q x Q)% (Vu.) =Vu weakly in LP(Q)%<.

(For the proof see Section 3.3.)
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3.2 Allen-Cahn type equations

In this section we provide a homogenization result for an evolutionary gradient system.
The system is defined on a state space Z = L*(2x Q) and with the help of two functionals
- a dissipation potential R, and an energy functional £.. The dissipation potential R. :

P — [0,00) is given by
1 2
Re(u) == /T(Tzw)|u(w,x)| dx ),
2 0 €

where r : Q2 — R. The energy functional & : Z — R U {oo} is defined as follows. For
ue L*(Q) ® HY(Q),

E(u) = </Q a(Tew)Vu(w, ) - Vu(w, z) + b(Tew)|u(w, z)]* + f(rzw, (u(w,x)))dx> :

and we extend & by oo to the whole 4. Above, a : Q@ — R4 b : Q — R and
f QxR — R. We consider the following assumptions:

(B1) r,a,b are measurable and there exist C;, Cy > 0 such that for P-a.e. w € € it holds
r(w),b(w) € [C1,Cy]. Moreover, a € L>®(2)9? and there exists C' > 0 such that

a(W)F - F > CO|F|* for P-a.e. we€ Qand all I € R

(B2) f(-,x) is measurable for all x € R and f(w,-) is continuous for P-a.e. w € §2. There
exist A € R, C' > 0 and p < 2* (2*—ooford:1,2and2*:d27d2ford23) such
that for P-a.e. w € 2

A
f(w,-) is A\-convex, i.e. xz+— f(w,z)— 5352 is convex,

—C < flw,z) <C(Jz)P+1) forall z € R.

We remark that the above assumptions imply that u — &.(u) — AR.(u) is convex, where
A

A= &

We consider the following gradient system in the energy dissipation principle formulation

(see [52] for equivalent formulations of gradient systems): Let 7" > 0. It is said that

u € AC([0,T]; A) is a solution to the gradient system associated with (R., ;) (shorter u

satisfies EDP. (energy dissipation principle)) if

/ Ro(i(t)) + RE(EW))dE < E-(u(0)),
) € Op&.(u(t)) for a.e. t € (0,T].

(18)

Above R: : #* — [0,00), RE(§) = sup,cy (<§7u>%*,% - Rg(u)> denotes the Legendre-
Fenchel conjugate of R.. Moreover, 0r&.(u) denotes the Fréchet subdifferential of &£, at
the point u € # and it is defined as

Opé.(u) = {5 € B E.(u) < E(w) + (E,u—w),. , — AR(u—w) forall w e @} |
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Remark 3.7. Gradient systems driven by A-convex energies (in a suitable setting) have
unique solutions (see [22]). In particular, if (B1) — (B2) hold and for an initial data
uw € L2() @ HY(Q), there exists u. € CL?([0,T], %), a unique solution to EDP. with
u.(0) = u? (see e.g. [22, Theorem 3.2]).

As e — 0, we derive a limit gradient system which is described in the following. The state
space for the effective model is B, := L2 (Q) ® L*(Q). The effective dissipation potential
Rhom : Bo — [0,00) is given by

Ruan(1) = { / rluen)ds ).

The energy functional Epopm : By — R U {00} is defined as

Enom (u) = inf </Qa(w) (Vu(w, z) + x(w, z)) - (Vu(w, ) + x(w, x))

XEL2, (BL(Q)
(19)

+b(w)|u(w, )[* + flw, (u(w, llf)))dx>
for v € L2,(Q) ® H(Q) and Eyom = oo otherwise. We remark that u — Epom(u) —
ARpom(u) is convex. We say that u € AC([0,7], %) is a solution to the gradient system
associated with (Ruom, Enom) (shorter satisfies EDPF,) if it satisfies inequality (18) with
A, E. and R. replaced by By, Enom and Ryom, respectively.

Remark 3.8. If (B1) — (B2) hold and for initial data u® € L2 () ® H'(Q), there exists

u € CFP([0,T), %By), a unique solution to EDPy with u(0) = u° (see [22, Theorem 3.2]).

The following homogenization result is based on a general strategy for evolutionary I'-
convergence of abstract gradient systems presented in |52, 53]|. We remark that an impor-
tant ingredient (which allows to consider non-convex energy functionals) in this theory is
a compactness assumption for solutions wu.(t) (w.r.t. the strong topology of %). However,
in our model a priori bounds do not lead to compactness, namely the uniform bounds
we obtain in the space L*(Q) ® H*(Q) do not attain convergent subsequences in % (but
merely weakly convergent subsequences). In contrast, in deterministic homogenization of
similar problems (e.g. [47]) the compact Sobolev embedding H'(Q)CL*(Q) with p < 2*
is critically used. In the stochastic case, we only have L*(Q) ® H'(Q) C L*() ® L?(Q)
continuously. We remedy this issue, by restricting the analysis to a special class of prob-
lems in which the non-convex term in the energy acts only on the statistical average
(u.(t)) € H'(Q) of the solution and in this manner we are able to exploit the compact
Sobolev embedding for passing to the limit in the non-convex part of the energy.

Theorem 3.9 (Evolutionary I'-convergence). Let (B1) — (B2) hold and consider u’ €
L2 ()@ HYQ), u? € L*(N) @ H(Q) such that
ul — u® strongly in L*(Q x Q),  &-(u?) = Enom(u®)  (well-prepared initial data).
Then u. € CL%([0,T), B), the unique solution to EDP. with u.(0) = u, satisfies: For
alit € 0,7
ue(t) 2 u(t) in L2 QX Q),  PmVue(t) — Vu(t) weakly in L*(Q x Q).
where uw € CL?([0,T], Bo) is the unique solution to EDPy with u(0) = u®. Moreover, for
any t € [0, 7]
E-(us(t)) = Enom(u(t)).
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(For the proof see Section 3.5.)

Remark 3.10 (Ergodic case). If we additionally assume that (-) is ergodic, the limit system
is driven by deterministic functionals. In particular, the limit is described by a state space
By = H'(Q), dissipation potential

Rbom(1) = /Q () lu(z) Pd,

and energy functional
ghom(u) = / anom V() - V() + (b) [u(2)]? + fuom(u(z))d,
Q

where anom and fuom are defined as: anom F'-F = inf\c 12 (o) (a(w)(F' + x(w)) - (F + x(w)))
for F' € R4, and let fuom(7) = (f(w,)) for z € R.

3.3 Proofs

Proof of Theorem 3.1. (i) The Poincaré-Korn inequality and the growth conditions of V
imply that u,. is bounded in LP(Q)@W'P(Q). By Proposition 2.11 there exist u € L? (Q)®
WP(Q)* and x € Lh, () ® LP(Q)? with the claimed convergence (up to a subsequence).
From Tou. € LP(Q) ® Wy P(Q)? for every £ > 0, we conclude that u € LP, () @ W, ?(Q)?
(cf. Remark 2.12).

(ii) The claim follows from Proposition 2.8 (iii).

(iii) The existence of a strongly two-scale convergent sequence u. € LP(Q) @ W, ?(Q) from
Remark 2.15. Furthermore, the convergence of the energy & (u.) — & (u, x) follows from
Proposition 2.8 (ii). O

Proof of Corollary 3.2. The statement follows by a standard argument from I'-convergence:
Since u. is a minimizer we conclude that limsup,._ & (u.) < limsup,,E&(0) < oo.
Hence, by Theorem 3.1 there exists u € L () x Wy ?(Q)? and x € LB, (Q) @ LP(Q)*

nv

such that w. 22w in LP(Q x Q)%, V. 2 Vu + x in LP(Q x Q)9 and

ln;n_}glf E-(us) > E(u, x).

Let (ug, Xo) denote the minimizer of &. Then by Theorem 3.1 (iii) there exists a recovery
sequence v, s.t. & (v:) = E(uo, o), and thus

min & = lim & (v.) > liminf & (u.) = liminf min & > &)(u, x) > min &,
e—0 e—0 e—0

and thus (u, x) is a minimizer of & and & (u.) = min &, — min &y = E(u, x). O

Before presenting the proof of Theorem 3.5, we provide an auxiliary result. The argument
of the following Korn inequality in LP(€2) is similar as the proof for the case p = 2 in |40].
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Lemma 3.11. There exists C' > 0 such that

(IxI?) < C{x°[P)  for every x € Lipor()".
Proof. We prove the claim for x = Dy for ¢ € W?(Q)? and the general case follows by
density.

Recall, the stationary extension of Dy is given by SDy(w,x) = Dp(1,w) and we have
VSp(w,z) = SDp(w,z). Let R > 0, K > 0 and ng € C°(Brixk) be a cut-off function
satisfying 7 = 1 in Bg, 0 <7 < 1 and |Vng| < 2. Using stationarity of P, we obtain

1ol = (£ R wseras) - (f R VnsoPir) < (2 [ [Vuseras ).

Using this and Korn’s inequality in LP(R?),
1 S
1pery <2 [ 17l
|Br| Jra

2
=2 <][ |VSSgo|pdx> + — / |V¥(nrSe)Pdz ) .
Br |BR| Bryx\Br

The first term on the right-hand side of the above inequality equals 2 (| D*p|?) and there-
fore to conclude the proof, it is sufficient to show that the second term vanishes in the
limit R — co. We have

1 1
L / Vo Se)Pda ) < / IV (nSie) P
|BR| Br+k\Br |BR| Bryx\Br

C
<o ([ mpIVSel + [VanpISips (20)
| R’ BRJrK\BR

C / C
< — VSplPdr ) + ——— / SplPdx ).
| BR < BR+K\BR| | > ’BR’KP< BR+K\BR| | >

For the first term on the right-hand side, we have

<& IV Sp[Pdx _ClBrikl IVSp|Pdz ) — C VS y|Pdr
B B
| R| Bryx\Br | R| Brik Br

—c (gl (15K 1)

and as R — oo the last expression vanishes. Similarly, the second term on the right-hand
side of (20) vanishes as R — oo. O

For the proof of Theorem 3.5 we apply Castaing’s measurable selection lemma in the
following form:

Lemma 3.12 (See [16]). Let X be a complete separable metric space, (S,0) a measurable
space and f : S — P(X) a multifunction. Further, assume that for all x € S, f(z) is
nonempty and closed in X, and for any closed G C X we have

{resS: flx)NG # 2} €o.
Then [ admits a measurable selection, i.e. there exists f S — X measurable with

f(z) € f(z).
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Proof of Theorem 3.5. (i) According to Theorem 3.1 (i) there exist « € W, ?(Q) and y €
LPo(Q) ® LP(Q)? such that (using Proposition 2.11) u. satisfies the claimed convergences.
Furthermore, we have

liminf & (u:) > Eo(u, x) > Enom(u).

e—0

(ii) We show that there exists x € L () ® LP(Q) such that E(u, X) = Enem(u) as follows.
By Lemma 3.11 and the direct method of calculus of variations, the cell problem (16) has

a solution for every (z, F) € Q x R4, thus
f1Q xR 2 (2, F) = {x € Lbu(Q)": (V(w,z, F* + x*(w))) = Vhom(z, F)}

defines a multifunction. We equip Q x R?*? with the Borel sigma algebra B(Q x R?*?) and
we verify the assumptions of Castaing’s measurable selection theorem (see Lemma 3.12):
f(z, F) is nonempty and closed for any (z, F) € Q@ x R™>? and if G C Lb,,(Q)? is a closed
ball, it holds

[(G)={(z,F) € @ xR™: f(z, F))NG # 0} € B(Q x R™%),

as can be seen as follows. Consider a sequence (z;, F;) € f~(G) such that x; — x and
F; — F. There exists x; € f(x;, F;) NG and up to a subsequence (not relabeled) it
satisfies x; — x. weakly in Li, and x* € G. Let x € f(z, F'), it holds
(V(w, 2, F* + x2(w))) < liminf (V(w, 25, F + X))
j—o0
< liminf (V(w,z;, F5 + x°)) = Viom(z, F).

j—o0
The first inequality is obtained using the continuity assumption (A4). As a result of
this, x« € f(z, F) NG and therefore f~(G) is a closed set and therefore it is measurable.
Further, we consider the case G C L, (Q) is a closed set. Since LP(Q) is separable, the
closed set G C LP(£2)? can be represented as a countable intersection of countable unions
of closed balls. Therefore, f~(G) € B(Q x R¥?). Hence we may apply Theorem 3.12 and
obtain a measurable function f: Q x R™>? — LF () such that f(z,F) C f(z, F).

We define x(z) = f(x, Vu(z)) which is measurable by the properties of fand therefore
x defines an element in L} (Q)? @ LP(Q) with & (u, X) = Enom(u). Thus, by Theorem 3.1
(iii) there exists a strongly two-scale convergent sequence u. € LP(Q) x W,?(Q)¢ such
that

lim & (ue) = Eo(u, X) = Enom (©).

e—0

Since y is mean-free, the convergence for (Vu,) follows. O

Proof of Proposition 3.6. Uniqueness of minimizers follows by the uniform convexity as-
sumption on the integrand V. As in the proof of Theorem 3.5 (ii), we select x € Ly, () ®
LP(Q)? such that Viem(z, Vu(z)) = (V(w,z, Vou(x) + x*(w,z))). Theorem 3.1 (iii) im-
plies that there exists a sequence v. € LP(Q) @ W, *(Q)? such that v, 2 win LP(Q x Q)4
and E.(v:) = & (u,x) = Enom(u). By triangle’s inequality we have ||u. — ul|rraxg) <
|te — Ve || r(ax@) + [[ve — u||r(@x@)- By the isometry property of 7. and strong two-scale
convergence of v. we have ||ve —ul|r(ax@) = || T (ve =) || Lr(ax @) = || Teve —ul|Lr(axg) — 0.
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Furthermore, the Poincaré-Korn inequality [[u—v[|7, gy q) < ClIV U= V0.7, ) (for
a generic constant C' that is independent of € but might change from line to line), the uni-
form convexity of V' in form of %HVSU’E_VSUE”LIJ(QXQ) <L (ue)+5E(us) —E- (3 (uA4v.)),
and the minimality of u., yield the estimate

[us — UEHZJ(QXQ) < C&(v:) — 55(%(“5 +v:)).

Since &.(v:) = Epom(u) and hrn mfé' (3 (ue +v.)) > E(u, X) = Enom(u), we conclude that

the right-hand side converges to O Thus, u. — u in LP(Q x @), and the convergence of
the gradient follows using Proposition 2.11. O]

Proof of Theorem 3.9. This proof follows the general strategy outlined in [52, Theorem
3.3] (see also [53]) with slight modifications regarding compactness issues.

Step 1. A priori estimates and compactness.

The assumptions on the initial data (well-preparedness) imply that there exists C' > 0
such that & (u?) < C. This means that the right-hand side of (18) (for w.) is bounded
(uniformly in ¢), consequently using the growth conditions in (B1) — (B2) we obtain that

o lue ()l 22@emr @) + el oz + 16l L20,11,2) < C- (21)
te|0,

Here and below, we identify &.(t) € %" with its Riesz- representative in %’ In this
respect, R* might be indentified with the functional R (& <fQ (Tew)(§(w :c))Qda:>
(not relabeled) defined on A.

With help of the estimate (21) we extract a subsequence (not relabeled) such that
u, — u weakly in H'([0,7]; #), & — & weakly in L*([0,T]; ).

Moreover, since (21) implies a uniform estimate for u. in the C%2([0,T], %) norm, the
Arzela-Ascoli theorem implies that there exists a subsequence (not relabeled) such that
for all ¢ € [0, T] we have

ue(t) — u(t) weakly in A.

Furthermore, weak lower semi-continuity of the Z-norm and the uniform estimate for u,
in C" l([ T], B) yield u € C%2([0,T]; %). Tt holds that u(0) = u° since by assumption
ul — u°. Note that (21) and Jensen’s inequality imply that sup,ci 7 || (ue(t)) |1 q) < C
and therefore the compact Sobolev embedding implies that for all t € [0,7], (u.(t)) —

(u(t)) strongly in LP(Q).
Step 2. Passage to the limit ¢ — 0.

First, we remark that the conditional expectation P, is a contraction on L*(Q2) for any s €
[1,00]. As aresult of this and since r is positive, it holds <fQ(Pinv7;*7“)(w, 7) (w(w, x))gdx> <

R.(w) for any w € . Furthermore, we have P, 7r = B, (cf. proof of Lemma 2.19)
and appealing to Jensen’s inequality for P,,, the above inequality yields Ryom(Pnvw) =

<fQ(Pinvr)(w)((Pinvw)(w,x))de> < Re.(w) for any w € A (where the first equality is
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obtained using an approximation argument). The analogous inequality holds as well for
R:. As a result of this, inequality (18) (for u.) implies

Ec(us(T)) +/0 Rnom (Pioviie (t)) + Riom (Binvée (t))dt < Ec(ue(0)). (22)

The right-hand side of the above inequality converges to Enom(u(0)) using the well-
preparedness of the initial data. We note that the functional u € L*([0,T], %) —
fo Ruom(u(t))dt is weakly ls.c. since it is convex and strongly ls.c. (the same holds
if we replace Rpom by Rj,,,) and therefore we conclude that

hmlnf/ Rom (Piavite (1)) +Rpom (Pnvée (1)) dt >/ Riom (Ot (Piavtt) (1)) + Riom (Pnv€ (1)) dt,

where we use that P,, is a linear 'and bounded operator and thus Pp,i. — 0y(Payu)
weakly in L%([0,T]; &) (Pav and (1) =: 9;(-) commute) and Pn& — P& weakly in
L*([0,T); #).

Moreover, we have liminf. o & (u.(T)) = lim.—o E (ue (T)) for a subsequence €. Using
the uniform bound in (21) and Proposition 2.11 we extract a further subsequence ¢” such
that

2s

uer (T) 22 Pou(T),  Vuer(T) 2 VPou(T) + x,
for some x € L2,,(Q) ® L*(Q). We have

e”—0

+ligpi%1f< /Q b(mw)|usn<T)(w,x)|2dx>+ng§%f< /Q Flw, (uEu(T)(w,x)>)dx>.

The third term on the right-hand side of equals <fQ f(w, (u(T)(w, x)>)dx> This follows

from the strong convergence of (u(T")), the continuity and growth assumptions of f and by
the dominated convergence theorem (cf. proof Proposition 2.8). For the other terms we
apply Proposition 2.8 (ii) to obtain that liminf. o & (us(T)) > Enom(Pavu(T)). Collecting
all the previous estimates for the terms in (22) and using the shorthand v := Pyu, we
obtain

liren_jglf E-(ue(T)) > liminf </Q a(72,w)Vuer (T)(w, ) - Vuen (T') (w, x)dx>

Enom(v / Ruom(0(8)) + Rion (P (0)dt < Enom(0(0)).

Step 4. Weak-weak closedness of the subdifferential.

In this part we show that Py,&(t) € Op&pom(v(t)) for a.e. t € [0,7]. Commonly, such
closedness of the subdifferential is proved using strong convergence of u.(t) (missing in
our case) and Mosco convergence of the energy &.. In order to show the above property,
we borrow an argument from the analysis of evolutionary rate-independent systems (see
[55, 54, Proposition 4.5]). Namely, we show that the construction of suitable joint recovery
sequences yields the above closedness property.

First, we show that for &, & € Z (recall that we identify elements in % and %*):
If & € 0p&.(uc(t)) and & — & weakly in A, then £ € Op&pom(v(t)). (23)
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We assume that & € 9p€.(u-(t)) and & — £ weakly in L*(Q2 x Q), and we consider a

subsequence (not relabeled) such that wu.(t) N v(t) and Vu.(t) 2 Vu(t) + x for some
x € L2,,(9) ® L*(Q) (using Proposition 2.11). Tt follows that

pot

E(uc(t)) < Ec(w) + (&, e — w) o yy — AR (ue —w)  for all w € B (24)
We consider an arbitrary w € L7, (Q) ® H'(Q) and denote by x4 € L3,,(?) ® L*(Q), a
minimizer to
Liot(ﬂ) ® L*(Q) > x — </Q a(w)(V(w, z) + x(w,x)) - (V(w, z) + x(w, x))da:> )
Using Remark 2.15, we are able to construct a sequence w, € L*(2) ® H'(Q) such that
@Daiv(t)—ﬁ) in A, ngivv(t)—mx—xi, in %%

Furthermore, we define the joint recovery sequence as w. = u.(t) — w.. We set w = w, in
(24), to obtain

0 S g&(wa) - gzs(ua(t)) + <€a> ua(t) - ws)@ - ARE(UE(t) - ws)' (25)

Note that by construction u.(t) — w. — v(t) — @ strongly and in two-scales and therefore
the sum of the third and fourth terms on the right-hand side of the above inequality
converges to (P&, v(t) — W) — ARpom(v(t) — @). The first two terms are treated as
follows. Since the first two terms in the energy are quadratic we obtain

gg(w5> - ge(ue(t))
= ([ ) (T = Tt - (7T + o))

+ </Q b(w) (wa - ua(t)) (wa + ua<t)) dx + f(w’ <wa>) - f(wv <ug(t)))dx> :

We remark that the first and the second terms on the right-hand side above are by
construction products of strongly and weakly converging sequence. As a result of this and
with the help of the facts that (w.) — (@) and (u.) — (v(t)) strongly in LP(Q), we are
able to pass to the limit in the above inequality

g (1) — E-(12(1)) < En() — v (0(1).
Collecting the previous statements for (25), we obtain
0 < Enom (D) — Enom (0(8)) + (P 0(t) — ) g, — MR (0(8) — ).
This proves (23).

Second, we refer to |64, Theorem 3.2| (see also Section 4.5.1) to obtain that there exists a
parametrized measure 1, on 2 such that the weak limit & of & satisfies £(t) = [, ndpu(n).
Moreover, the measure i, is concentrated on the set of weak cluster points of & (¢). For
any weak cluster point £ of the sequence &.(t), using (23), it holds £ € Opnom(v(t)). As a
result of this and with the help of the fact that Op&pom(v(t)) is a convex set, we conclude

that g(t) = f@ Udﬂt(n) S 8F€hom(v(t))'
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Step 5. Convergence for the whole sequence and convergence of the energy.

As a result of the previous steps, we obtain that up to a subsequence for all ¢ € [0, 7],
u(t) 2 v(t) = Poyu(t) and Po,Vue(t) — Vo(t) weakly in 2%, where v € CL?([0, T, %)
is the unique solution to ED Py with v(0) = u°. Using the uniqueness of solutions to the
limit problem and by a standard contradiction argument, we obtain that the convergence
holds for the whole sequence.

The above procedure of passing to the limit in inequality (18) can be repeated if we replace
T in the inequality by an arbitrary ¢ € (0,7]. We remark that using the chain rule for &,
and Epom (see e.g. [52, Theorem 3.2|) it follows that the inequalities in the formulations
of EDP. and EDP, (where T is replaced by t) are equalities. Using this and the fact
that the liminif inequalities hold separately for & (u.(t)) and fot Ro(is) +RE(E(s))ds, we
obtain that for any ¢ € [0, 7T, lim._,0 & (u-(t)) = Enom(v(t)). This concludes the proof. O

4 Quenched stochastic two-scale convergence and rela-
tion to stochastic unfolding

In this section, we recall the concept of quenched stochastic two-scale convergence (cf. [73])
and study its relation to stochastic unfolding. The notion of quenched stochastic two-
scale convergence is based on the individual ergodic theorem, see Theorem 2.3. We thus
assume throughout this section that

(Q, F, P, 7) satisfies Assumption 2.1 and P is ergodic.

Moreover, throughout this section we fix exponents p € (1,00), ¢ := p%l, and an open

and bounded domain Q@ C R%. We denote by (%?,] - ||#») the Banach space LP(Q x Q)
and the associated norm, and we write (%P)* for the dual space. For the definition of
quenched two-scale convergence we need to specify a suitable space of test-functions in
21 that is countably generated. To that end we fix sets Z and % such that

e Y is a countable set of bounded, measurable functions on (2, F) that contains the
identity 1o = 1 and is dense in L*(2) (and thus in L"(Q2) for any 1 < r < o).

e 7o C C(Q) is a countable set that contains the identity 1o = 1 and is dense in
LY(Q) (and thus in L™(Q) for any 1 < r < 00).

We denote by & = {p(w,z) = pa(w)po(z) : va € Za,po € Pg} the set of simple
tensor products (a countable set), and by %, the Q-linear span of <7, i.e.

@0::{2)\3'90]’ -meN, A\,....\, €Q, QOl,...,QOmE,Q{}.

j=1

We finally set 2 := spane/ = span?, and denote by Z := span(Zg) (the span of %,
seen as a subspace of ), and note that 2 and %, are dense subsets of %% while the
closure of & in 89 is isometrically isomorph to L4 (Q). Let us anticipate that 2 serves as
our space of test-functions for stochastic two-scale convergence. As opposed to two-scale
convergence in the mean, “quenched” stochastic two-scale convergence is defined relative
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to a fixed “admissible” realization wy € ). Throughout this section we denote by €
the set of admissible realizations; it is a set of full measure determined by the following
lemma:

Lemma 4.1. There exists a measurable set Qg C Q with P(Qy) = 1 s.t. for all p, ¢’ € o7,
all wy € Qo, and r € {p, ¢} we have with (T p)(w,z) == p(Tzw, ),

limsup [[(72¢) (wo, )| r (@) < [l

e—0

ond - tiny [ oo a)ds = / (¢ e ) ).

E—r Q
Proof. This is a simple consequence of Theorem 2.3 and the fact that <7 is countable. [J

For the rest of the section € is fixed according to Lemma 4.1.

4.1 Definition and basic properties

The idea of quenched stochastic two-scale convergence is similar to periodic two-scale
convergence: We associate with a bounded sequence (u.) C LP(Q) and wy € €y, a sequence
of linear functionals (U.) defined on 2. We can pass (up to a subsequence) to a pointwise
limit U, which is again a linear functional on 2 and which (thanks to Lemma 4.1) can
be uniquely extended to a bounded linear functional on 9. We then define the weak
quenched wy-two-scale limit of (u.) as the Riesz-representation u € %P of U € (A9)*.

Definition 4.2 (quenched two-scale limit, cf. [73, 38]). Let (u.) be a sequence in LP(Q),
and let wy € Qg be fized. We say that u. converges (weakly, quenched) wo-two-scale to

u e AP, and write u52 = l, if the sequence u. is bounded in LP(Q)), and for all ¢ € P we
have

lim [ w.(z)(7 ) (wo, x) doe = u(z,w)o(w, x) dr dP(w).
@) (T e = [ [ utr ot ) draPle) (26)

e—0

Lemma 4.3 (Compactness). Let (u.) be a bounded sequence in LP(Q) and wy € Qy. Then
there exists a subsequence (still denoted by ) and u € AP such that ugﬁwou and

zr < limi el||LP )
|ul|zr < hm(E 10nf e e (@) (27)
and u. — (u) weakly in LP(Q).

(For the proof see Section 4.1.1).

For our purpose it is convenient to have a metric characterization of two-scale convergence.

Lemma 4.4 (Metric characterization). (i) Let {¢;}jen denote an enumeration of o =

{—”@H@q © € Do}t. The vector space Lin(2) .= {U :  — R linear} endowed with
the metric Ulo) -V
d(U’ V’ Lln Z 2= J ’ SOJ <g0])|
T UGp) =Vig)l+1

15 complete and separable.
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(11) Let wy € Q. Consider the maps
JE L LP(Q) — Lin(2),  (Ju)(p) = / u(@)(T2 @) (wo, ) dz,
Q

Jo: B > Lin(2),  (Jou)(p) == </Q u<p>.

Then for any bounded sequence u. in LP(Q) and any u € BP we have ugﬁwou if and
only if J¥u. — Jou in Lin(2).

(For the proof see Section 4.1.1).

Remark 4.5. Convergence in the metric space (Lin(2),d(-,-,Lin(2)) is equivalent to
pointwise convergence. (#7)* is naturally embedded into the metric space by means
of the restriction J : (#9)* — Lin(2), JU = Ul|g. In particular, we deduce that for a
bounded sequences (Uy) in (49)* we have U, — U if and only if JU), — JU in the metric
space. Likewise, 2P (resp. LP(Q))) can be embedded into the metric space Lin(2) via Jy
(resp. J*0 with e > 0 and wy € Qg arbitrary but fixed), and for a bounded sequence (uy)
in AP (resp. LP(Q)) weak convergence in %P (resp. LP(Q))) is equivalent to convergence
of (Joug) (resp. (J<°uy)) in the metric space.

Lemma 4.6 (Strong convergence implies quenched two-scale convergence). Let (u.) be

a strongly convergent sequence in LP(Q) with limit u € LP(Q). Then for all wy € Qo we

2s
have u.—,,u.

(For the proof see Section 4.1.1).

Definition 4.7 (set of quenched two-scale cluster points). For a bounded sequence (u.) in
LP(Q) and wy € Qy we denote by €L (wo, (u:)) the set of all wy-two-scale cluster points,
i.e. the set of u € AP with Jou € [\, {JEJOUE e < %} where the closure is taken in the
metric space (Lin(%2),d(-,-;Lin(2))).

We conclude this section with two elementary results on quenched stochastic two-scale
convergence:

Lemma 4.8 (Approximation of two-scale limits). Let u € %P. Then for all wy € Q,

there exists a sequence u. € LP(Q) such that u. ﬁwo u ase — 0.

(For the proof see Section 4.1.1).

Similar to the slightly different setting in [38] one can prove the following result:

Lemma 4.9 (Two-scale limits of gradients). Let (u.) be a sequence in W'P(Q) and wy €
Qo. Then there exist a subsequence (still denoted by ) and functions u € WP(Q) and
X € Lho(Q) @ LP(Q) such that u. — u weakly in W*(Q) and

2s 2s
U~ and  Vu.—, Vu-+x ase —0.

DOIT 10.20347/WIAS.PREPRINT.2460 Berlin 2017



M. Heida, S.Neukamm, M. Varga 30

4.1.1 Proofs

Proof of Lemma 4.3. Set Cy := limsup ||u.||zr(g) and note that Cy < co. By passing to
e—0

a subsequence (not relabeled) we may assume that Cy = lim iglf ||| e (). Fix wy € Q.
e—

Define linear functionals U. € Lin(2) via

Uilp) = /Q e (2) (T2 ) (o, ) di.

Note that for all ¢ € o/, (U.(¢)) is a bounded sequence in R. Indeed, by Holder’s
inequality and Lemma 4.1,

limsup [U- ()] < limnsup .| x@) | 7270 e, ) 10) < Coll el (28)
e—>

e—0

Since &/ is countable we can pass to a subsequence (not relabeled) such that U.(y)

converges for all ¢ € o/. By linearity and since = span(«/), we conclude that U.(p)

converges for all ¢ € Z, and U(p) := lir% U:(p) defines a linear functional on Z. In view
E—

of (28) we have |U(¢)| < Coll¢||#e, and thus U admits a unique extension to a linear
functional in (£9)*. Let u € %P denote its Riesz-representation. Then ugﬁwou, and

7 = 17 * < = 1 ] .
full = Ul ony: < Co = bmminf ooy

Since 1g € Y we conclude that for all pg € Zg we have

[ 1)a0t) ds = Uiltape) = Ultaa) = ( | wtea)ote) ) - | e o)

Since (u.) is bounded in LP(Q), and %o C LP(Q) is dense, we conclude that u. — (u)
weakly in LP(Q). O

Proof of Lemma 4.4. (i) Argument for completeness: If (U;) is a Cauchy sequence in
Lin(2), then for all ¢ € o4, (U;(p)) is a Cauchy sequence in R. By linearity of the
U;’s this implies that (U;(p)) is Cauchy in R for all ¢ € 2. Hence, U; — U pointwise
in & and it is easy to check that U is linear. Furthermore, U; — U pointwise in .27
implies U; — U in the metric space.

Argument for separability: Consider the (injective) map J : (#9)* — Lin(2) where
J(U) denotes the restriction of U to 2. The map J is continuous, since for all U, V' €
(#9)" and ¢ € 2/ we have |(JU)()=(JV)()] < [|U=V|(z0)- [ollze = U=V (z0)-
(recall that the test functions in 7 are normalized). Since (#7)* is separable (as a
consequence of the assumption that F is countably generated), it suffices to show
that the range R(J) of J is dense in Lin(Z). To that end let U € Lin(¥Z). For
k € N we denote by Uy € (#7)* the unique linear functional that is equal to U on
the the finite dimensional (and thus closed) subspace span{y1, ..., pr} C B? (where
{¢;} denotes the enumeration of 7 ), and zero on the orthogonal complement in
2. Then a direct calculation shows that d(U, J(Uy);Lin(2)) < 3., 277 = 27k,
Since k € N is arbitrary, we conclude that R(J) C Lin(2) is dense.
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(ii) Let u. denote a bounded sequence in LP(Q) and u € 9%P. Then by definition,

ugﬁwou is equivalent to J*°u. — Jyu pointwise in &, and the latter is equivalent to
convergence in the metric space Lin(2).

]

Lemma 4.6. This follows from Holder’s inequality and Lemma 4.1, which imply for all
v € of the estimate

limsup/Q](ug(x)—u(aj))T o(wp, )| dx

e—0
< limsup (Ilue — @) (/ 7 p(wo, ”qdﬂ”) > -0
e—0 Q

[]

Proof of Lemma 4.8. Since 2 (defined as in Lemma 4.4) is dense in %P, for any 6 > 0
there exists v; € 2 with ||u—vs||2» < 9. Define vs.(x) := T 'vs(wo, x). Let p € 2. Since
vs and @ (resp. vsp) are by definition linear combinations of functions (resp. products of
functions) in &7, we deduce from Lemma 4.1 that (vs.). is bounded in L?(Q), and that

| eseToptena) = [ Tl en ) < / 90>

By appealing to the metric characterization, we can rephrase the last convergence as
d(J¢vs,, Jovs; Lin(Z)) — 0. By the triangle inequality we have

d(JZvse, Jou; Lin(2)) < d(JZvse, Jovs; Lin(2)) + d(Jovs, Jou; Lin(2)).

The second term is bounded by ||vs
Hence, there exists a diagonal sequence u. := v5 (bounded in LP(Q)) such that there

holds d(J*u., Jou; Lin(2)) — 0. The latter 1mp11es u. 22 2wptt by Lemma 4.4. O

4.2 Comparison to stochastic two-scale convergence in the mean
via Young measures

In this paragraph we establish a relation between quenched two-scale convergence and two-
scale convergence in the mean (in the sense of Definition 2.5). The relation is established
by Young measures: We show that any bounded sequence u. in 2P — viewed as a functional
acting on test-functions of the form 7*¢ — generates (up to a subsequence) a Young
measure on %P that (a) concentrates on the quenched two-scale cluster points of u., and
(b) allows to represent the two-scale limit (in the mean) of w..

Definition 4.10. We say v := {1, },,cq 5 a Young measure on %P, if for all w € 1, v,
is a Borel probability measure on P (equipped with the weak topology) and

w > v,(B) is measurable for all B € B(AP),

where B(AP) denotes the Borel-o-algebra on 5P (equipped with the weak topology).
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Theorem 4.11. Let u. denote a bounded sequence in 9BP. Then there exists a subsequence
(still denoted by €) and a Young measure v on AP such that for all wy € Qo,

Uy, 1S concentrated on €% (wo, (u8 (wo, ))) )

lim inf [l |7, 2/ (/ oI, duw(v)) AP(w).
e—0 " Q Bp

Moreover, we have
u 2y whereu::// vdy,(v)dP(w).
oJar

Finally, if there exists v : Q0 — %P measurable and v, = 0y, for P-a.e. w € (), then up
to extraction of a further subsequence (still denoted by ¢) we have

and

ug(w)ﬁwv(w) for P-a.e. w € Q.

(For the proof see Section 4.2.1).

In the opposite direction we observe that quenched two-scale convergence implies two-scale
convergence in the mean in the following sense:

Lemma 4.12. Consider a family {(u¥) }ueq of sequences (u) in LP(Q) and suppose that:

£

(a) There exists u € AP s.t. for P-a.e. w € Q we have u‘;ﬁwu.
(b) There exists a sequence () s.t. u¥(x) = tU.(w, x) for a.e. (w,x) € QA x Q.

(¢) There exists a bounded sequence (x.) in LP(Q) such that ||ue|lr@) < Xxe(w) for
a.e. w € L

Then @i, 22 u weakly two-scale (in the mean).

(For the proof see Section 4.2.1).
To compare homogenization of convex integral functionals w.r.t. stochastic two-scale con-

vergence in the mean and in the quenched sense, we appeal to the following result.

Definition 4.13 (Quenched two-scale normal integrand). A function h : Qx QxR? — R
is called a quenched two-scale normal integrand, if for all € € Re, h(-,-, &) is F @ B(R?)-
measurable, and for a.e. (w,z) € Q x Q, h(w,x,-) is lower semicontinuous, and for
P-a.e. wyg € Qo and sequence (u.) in LP(Q) the following implication holds:

usﬁwou = liminf/h(T:wo,x,ug(x))dxz//h(w,x,u(w,x))d:vdp(w).
Q QJQ

e—0

Lemma 4.14. Let h denote a quenched two-scale normal integrand, let (u.) denote a
bounded sequence in AP that generates a Young measure v on P in the sense of Theorem
4.11. Suppose that h. : Q@ — R, h(w) := — fQ min {0, h(rzw, T, u.(w, z)) } dz is uniformly
integrable. Then

liminf//h(Ta;w,a:,ug(w,x))da:dP(w)
QJQ

2/9//3 </Q/Qh(cb,a:,v(@,x))dde(cD)> dv(v) dP(w) (29)

(For the proof see Section 4.2.1).
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4.2.1 Proof of Theorem 4.11 and Lemmas 4.14 and 4.12

We first recall some notions and results of Balder’s theory for Young measures [9]. Through-
out this section .# is assumed to be a separable, complete metric space with metric

Definition 4.15. o We say a function s : QQ — A is measurable, if it is F — B(MA)-
measurable where B(.#) denotes the Borel-o-algebra in A .

o A function h: QX M — (—o0,+00] is called a normal integrand, if h is F Q B(.A)-
measurable, and for all w € Q the function h(w,-) : M — (—o0,400] is lower
Semicontinuous.

o A sequence s. of measurable functions s. : Q0 — A is called tight, if there exists
a normal integrand h such that for every w € Q the function h(w,-) has compact
sublevels in .4 and limsup,_,, [, h(w, s:(w)) dP(w) < co.

o A Young measure in M is a family p = {pw}, cq of Borel probability measures on
M such that for all B € B(.#) the map Q 3> w+— p,(B) € R is F-measurable.

Theorem 4.16 (|9, Theorem I|). Let s. : Q — .4 denote a tight sequence of measurable
functions. Then there exists a subsequence, still indexed by e, and a Young measure
p:Q — A such that for every normal integrand h : Q X M — (—o0, +00| we have

lim inf / h(w, 5.(w)) dP(w) > / / h(w, €)dp ()dP(w), (30)
=0 Ja QJoa

provided that the negative part h- (-) = | min{0, h(-, s(+))}| is uniformly integrable. More-
over, for P-a.e. w € )y the measure p,, s supported in the set of all cluster points of
se(w), d.e. in Upe; {sc(w) : e < £} (where the closure is taken in A ).

In order to apply the above theorem we require an appropriate metric space in which
two-scale convergent sequences and their limits embed:

Lemma 4.17. (i) We denote by A the set of all triples (U,e,r) with U € Lin(2),
e>0,r>0. 4 endowed with the metric

d((Ul, 61,7”1), (UQ,EQ, Tg); %) = d(Ul, U27 LIH(.@)) + ’51 — 82’ —+ ‘7"1 — 7’2’
15 a complete, separable metric space.
(1i) For wy € Qo we denote by M*“° the set of all triples (U,e,r) € M such that

U= {Jgou for some u € LP(Q) with ||u||trq)y < 7 in the case € > 0, (31)

Jou  for some u € PBP with ||u||z» < r in the case e = 0.
Then A is a closed subspace of M .

(i11) Let wy € Qo, and (U,e,r) € M. Then the function u in the representation (31)
of U is unique, and

lullr@y = sup  |U(p)| ife>0,
v€Z, |lellaa<l (32)

lulze = sup  |U(p)]  ife=0.

€, llellma<l
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(iv) For wy € Q the function || - ||, : A#“° — [0,00),

1
sup  |U(@)IP +e+17)r if (Ue,r) € A, e >0,
(U, e,7) || := 4 #€7 Iellaas

sup (U@ +17)r i (Uie,r) € =, e =0,

0€?, |ollza<l
18 lower semicontinuous on M*“°.

(v) For all (u,e) with w € LP(Q) and € > 0 we have s := (Ju, €, ||ul|1r(q)) € A*° and
1
I1S]|lwo = (2HuH§p(Q) + 5)". Likewise, for all (u,e) with u € P and € = 0 we have

1
s = (Jou, &, [|ullzr) and ||s]lu, = 27[Jul|z0-
(vi) For all R < oo the set {(U,e,r) € A : ||(U,e,r)|lw, < R} is compact in A .

(vii) Let wo € Qo and let u. denote a bounded sequence in LP(Q). Then the triple s. :=
(J&u, €, |ucl|Lr(q)) defines a sequence in M. Morever, we have s. — s in M as

e — 0 if and only if so = (Jou,0,7) for some u € BP, r > ||lul|l g, and u.2,,u.

Proof. (i) This is a direct consequence of Lemma 4.4 (i) and the fact that the product
of complete, separable metric spaces remains complete and separable.

(ii) Let sg := (Uk,ex, ) denote a sequence in .Z“° that converges in .# to some
so = (U, €0,70). We need to show that sy € .Z“°. By passing to a subsequence,
it suffices to study the following three cases: e, > 0 for all £ € Ny, e, = 0 for all
k € Ny, and €9 = 0 while ¢, > 0 for all k € N.

Case 1: g, > 0 for all k € Nj.

W.lo.g. we may assume that infye, > 0. Hence, there exist uy € LP(Q) with
Up = J&uy. Since 1, — 7, we conclude that (uy) is bounded in LP(€2). We thus
may pass to a subsequence (not relabeled) such that u, — uy weakly in LP(Q), and

ol Lr @) < limkinf ||l e @) < liin Te = T0. (33)

Moreover, Uy — U in the metric space Lin(Z) implies pointwise convergence on
2, and thus for all g € Yy we have U(lapg) = fQ Uppg — fQ ugpg. We thus
conclude that Uy(lopg) = fQ uppq. Since Yo C LU(Q) dense, we deduce that
up — ug weakly in LP(Q) for the entire sequence. On the other hand the properties
of the shift 7 imply that for any pq € Zq we have @Q(T;CUQ) — (,OQ(T%W()) in LY(Q).
Hence, for any ¢q € Zq and pg € Y we have

Ur(papq) = /

uk(7)po(r)pa(rewo) dr — / uo(2)eq(x)pa(Tzwo) dr = JP (parq)
Q Q

and thus (by linearity) Uy = J<uy.

Case 2: ¢, =0 for all £k € Nj.
In this case there exist a bounded sequence uy in AP with U, = Jyuy for k € N.
By passing to a subsequence we may assume that u;, — ug weakly in %P for some
Ug € PP with

|uo|| e < limkinf llte, |l ze < T0. (34)
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(i)

(iv)

This implies that Uy = Jyur, — Joug in Lin(2). Hence, Uy = Jouy and we conclude
that So € M.

Case 3: ¢, >0 for all k € N and ¢y = 0.

There exists a bounded sequence wuy in LP(Q). Thanks to Lemma 4.3, by passing to

2s .
a subsequence we may assume that u;—,uo for some v € A with

ol < T inf [Jus | o) < 7o- (35)

Furthermore, Lemma 4.4 implies that J&ouy, — Jyug in Lin(2), and thus Uy = Joue.
We conclude that sy € ..

We first argue that the representation (31) of U by u is unique. In the case € > 0
suppose that u,v € LP(Q) satisty U = J“ou = J¥v. Then for all ¢ € % we have
Jo(u—v)pq = J&u(lapq) — Jv(lavg) = U(lawg) — U(lapg) = 0, and since
Pq C LI(Q) dense, we conclude that © = v. In the case ¢ = 0 the statement follows
by a similar argument from the fact that & is dense %1.

To see (32) let u and U be related by (31). Since Z (resp. ) is dense in LI(Q)
(resp. #7), we have

lullr@) = sup |fng0dde| = sup U(p)| ife>0,
©€D, |lollaa<l ©€D, |lollaa<l

[ul| 2 = sup | o fQ updrdP| = sup \U(p)| ife=0.
v€, |lellza<l v€D, |l¢llaa<l

Let s = (Ug,ex, i) denote a sequence in .#Z“° that converges in .Z to a limit
so = (Uo,€0,70). By (ii) we have so € .#“°. For k € Ny let uy in LP(Q) or AP
denote the representation of Uy in the sense of (31). We may pass to a subsequence
such that one of the three cases in (ii) applies and (as in (ii)) either wu, weakly

converges to ug (in LP(Q) or BP), or up-2,,u. In any of these cases the claimed
lower semicontinuity of || - ||, follows from e — &g, 7z — 79, and (32) in connection
with one of the lower semicontinuity estimates (33) — (35).

This follows from the definition and duality argument (32).

Let s, denote a sequence in .Z“°. Let u, in LP(Q) or %P denote the (unique)
representative of Uy in the sense of (31). Suppose that [|sg|., < R. Then (ry)
and (gx) are bounded sequences in R>q, and sup,, ||ug|| < sup,ry < oo (where || - ||
stands short for either | - || »(g) or || - ||#»). Thus we may pass to a subsequence such
that r, — rg, ex — €0, and one of the following three cases applies:

e Case 1: infgen,er > 0. In that case we conclude (after passing to a further
subsequence) that u, — uo weakly in LP(Q), and thus Uy — Uy = J&0uq in
Lin(2).

e Case 2: g, = 0 for all k£ € Ny. In that case we conclude (after passing to a
further subsequence) that u, — wuy weakly in %7(Q), and thus U, — Uy = Joug
in Lin(2).

e Case 3: ¢, > 0 for all K € Nand gy = 0. In that case we conclude (after passing
to a further subsequence) that ukﬁwouo, and thus U, — Uy = Joug in Lin(2).
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In all of these cases we deduce that sq = (U, €0, 70) € A, and s, — s¢ in A .

(vii) This is a direct consequence of (ii) — (vi), and Lemma 4.4.

Now we are in position to prove Theorem 4.11

Proof of Theorem 4.11. Let M, #“°, J¢° etc. be defined as in Lemma 4.17.

Step 1. (Identification of (u.) with a tight A -valued sequence). Since u. € 98P, by Fubini’s
theorem, we have u.(w,:) € LP(Q) for P-a.e. w € . By modifying u. on a null-set in
Q2 x @ (which does not alter two-scale limits in the mean), we may assume w.l.o.g. that
us(w,-) € LP(Q) for all w € Q. Consider the measurable function s, : Q@ — .# defined as
o) i {(Jsuaw, )@, ) w@) i w e D
(0,0,0) else.

We claim that (s.) is tight. To that end consider the integrand h : Q X # — (—o0, +00]
defined by

U poif 2 and (U /A
2 o {0 €0 G €
+00 else.
From Lemma 4.17 we deduce that h is a normal integrand and h(w,-) has compact
sublevels for all w € . Moreover, for all wy € Qp we have s.(wp) € 4“0 and thus
h(wo, se(wo)) = 2[|uc(wo, )[[75(q) + - Hence,

/Q h(w, 52(w)) dP(w) = 2[usll’ + <.

We conclude that (s.) is tight.

Step 2. (Compactness and definition of v). By appealing to Theorem 4.16 there exists a
subsequence (still denoted by ¢) and a Young measure p that is generated by (s.). Let
p1 denote the first component of p, i.e. the Young measure on Lin(2) characterized for
w € Q by

Jrin, @I = [ rE) i)

for all f : Lin(Z2) — R continuous and bounded, where .# > £ = (&,£,8) — & €
Lin(2) denotes the projection to the first component. By Balder’s theorem, p,, is concen-
trated on the limit points of (s.(w)). By Lemma 4.17 we deduce that for all w €
any limit point so(w) of s.(w) has the form so(w) = (Jou,0,7) where 0 < r < o0
and v € AP is a w-two-scale limit of a subsequence of wu.(w,-). Thus, g, is sup-
ported on {Jou : u € € (w, (us(w,-))} which in particular is a subset of (#7)*. Since
Jo 1 BP — ($9)* is an isometric isomorphism (by the Riesz-Frechét theorem), we con-
clude that v = {v,}ueq, Vw(B) := m(JoB) (for all Borel sets B C %P where %? is
equipped with the weak topology) defines a Young measure on %?, and for all w € Q,
v, is supported on €2 (w, (u.(w,-)).
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Step 3. (Lower semicontinuity estimate). Note that h: Q x .4 — [0, 400,

SUP 7, ||p)ma<t [U (PP 1w € Qg and (U,e,r) € 4%, >0,
h(w, (U,g,7)) := { SUPyeg. o) ma<t U (@) if w e Qo and (U,e,r) € 4%, e=0,
+00 else.

defines a normal integrand, as can be seen as in the proof of Lemma 4.17. Thus Theo-
rem 4.16 implies that

limin /ﬂ h(w, 5.(w)) dP(w) > /Q /%h(w,g) 1o (€)AP(w).

In view of Lemma 4.17 we have sup,cz |, 4q0<1 |(Ju) (W, ) (@) = [Jue(w, )L (@) for
w € o, and thus the left-hand side turns into liminf. o ||u.||%,,. Thanks to the definition
of v the right-hand side turns into [, [, [|v]|%, dv.(v)dP(w).

Step 4. (Identification of the two-scale limit in the mean). Let o € Py. Then h: Qx A4 —
[0, 400,

U(p) ifweQq, (Ue,r)e.a#”,

+o00 else.

h(w, (U,e,r)) == {

defines a normal integrand. Since h(w, s.(w)) = fQ ue(w, x)TXo(w, x) dz for P-a.e. w € Q,
we deduce that |h(-, s-(+))| is uniformly integrable. Thus, (30) applied to +h and the
definition of v imply that

lim//ugw x ¢)(w,z)drdP(w) = lim h(w Se(w)) dP(w)

e—0 e—0

_ /L (w,v) v (v) dP(w)
_ /Q/j </Qw> dv(v) dP(w).

Set u := [, [, vdv,(v)dP(w) € %°. Then Fubini’s theorem yields

lig(l)//uawx o) (w,z)dr dP(w) = </Qu<,0>.

Since span(%,) C %7 dense, we conclude that u. 2.

Step 5. Recovery of quenched two-scale convergence. Suppose that v, is a delta distribu-
tion on AP, say v, = 0y, for some measurable v : 2 — %P. Note that h : Q X .4 —
0, 400,

hMw, (U,e,r)) = —d(U, Jov(w); Lin(2))

is a normal integrand and |h(-, s-(-))| is uniformly integrable. Thus, (30) yields

limsup/Qd(J“ug( ), Jov(w); Lin(2)) dP(w)

e—0

= —liminf h(w 5:(w)) dP(w)

e—0

< //,3 w, Jov) du, (v) dP(w) = —/Qh(w,Jov(w))dP(w) = 0.
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Thus, there exists a subsequence (not relabeled) such that d(J“uE( ), Jov(w); Lin(2)) —
0 for a.e. w € Q. In view of Lemma 4.4 this implies that u, wv( ) for a.e. w e Qy. O

Proof of Lemma 4.1/. Step 1. Representation of the functional by a lower semicontinuous
integrand on M .

For all wy € Qp and s = (U,e,r) € A*“° we write 7°(s) for the unique representation
win AP (resp. LP(Q)) of U in the sense of (31). We thus may define for w € € and
s € M*° the integrand

E(w ) - fQ h(7§w7 Z, (WWOS)(x)) dz if s = (U,z’:‘, S) with € > O,
v Ja fQ hw, z, (m*°s)(x)) de dP(w) if s = (U,e,s) with e = 0.

We extend h(wp, ) to .# by +oo, and define h(w,-) = 0 for w € Q\ Q. We claim that
h(w,-) : M — (—00,+00] is lower semicontinuous for all w € Q. It suffices to consider
wp € Qy and a convergent sequence s, = (Uy, ek, %) in #“°. For brevity we only consider
the (interesting) case when g | g9 = 0. Set uy := 7°(s;). By construction we have

o 56) = [ (rzn, wnfen, ) d
Q

and

Bwasso) = [ /Q h{w, 7, to(w, 2)) dz dP(w).

Since s, — so and ¢ — 0, Lemma 4.17 (vi) implies that qu —olo, and since h is
assumed to be a quenched two-scale normal integrand, we conclude that hmklnf h(wo, s) >

h(wo, 50), and thus & is a normal integrand.

Step 2. Conclusion.

As in Step 1 of the proof of Theorem 4.11 we may associate with the sequence (u.)
a sequence of measurable functions s. : Q@ — .# that (after passing to a subsequence
that we do not relabel) generates a Young measure p on .#. Since by assumption u.
generates the Young measure v on %P, we deduce that the first component p; satisfies
Vyo(B) = p1,(JoB) for any Borel set B. Applying (30) to the integrand h of Step 1, yields

«—0

lim inf /Q /Q B(r2wo, s (w0, 7)) dz dP(w)
— timipt [ Fw,s.() dP()

«—0

> // (w, ) dpe(§) dP(w)
_ //@ // 0)) dz dP() ) duss(v) dP(w).

Proof of Lemma 4.12. By (b) and (c) the sequence (u.) is bounded in %P and thus
we can pass to a subsequence such that (@.) generates a Young measure v. Set 4 :=

Jo [ v dvs(v) dP(w) and note that Theorem 4.11 implies that . 22 @ weakly two-scale

]
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in the meam. On the other hand the theorem implies that v,, concentrates on the quenched
two-scale cluster points of (u¥) (for a.e. w € Q). Hence, in view of (a) we conclude that

for a.e. w €  the measure v, is a Dirac measure concentrated on u, and thus u = u
a.e. in 0 x Q. O

4.3 Quenched homogenization of convex functionals

In this section we demonstrate how to lift homogenization results w.r.t. two-scale con-
vergence in the mean to quenched statements at the example of a convex minimization
problem. Throughout this section we assume that V : Q x Q x R™? — R is a convex
integrand satisfying the assumptions (A1) — (A3) of Section 3.1. For w € Q we define
£ Wy"(Q) » R,

EX(u) == /QV (Tgw,x,vsu(:l:)) dx,

and recall from Section 3.1 the definition (13) of the averaged energy &. and the definition
(14) of the two-scale limit energy &. The goal of this section is to relate two-scale limits
of “mean”-minimizers, i.e. functions u. € LP(Q) ® Wy*(Q) that minimize ., with limits
of “quenched”-minimizers, i.e. families {u.(w)}yeq of minimizers to £ in W, ?(Q).

Theorem 4.18. Let u. € LP(Q) @ Wy P(Q) be a minimizer of .. Then there erists a
subsequence such that (u., Vu.) generates a Young measure v in B = (B°)% in the
sense of Theorem 4.11, and for P-a.e. w € (), v,, concentrates on the set { (u, Vu+ x) :
Eo(u, x) = min &, } of minimizers of the limit functional. Moreover, if V(w,z,-) is strictly
convex for all x € Q) and P-a.e. w € §, then the minimizer u. of & and the minimizer
(u,x) of & are unique, and for P-a.e. w € Q we have (for a not relabeled subsequence)
ve = w weakly in WW(Q),  wew,)Ruu, Vi, VR Va4 x,
and min &Y = & (u.(w, ) — E(u, x) = min &.

Remark 4.19 (Identification of quenched two-scale cluster points). If we combine Theo-
rem 4.18 with the identification of the support of the Young measure in Theorem 4.11
we conclude the following: There exists a subsequence such that (u., Vu.) two-scale con-
verges in the mean to a limit of the form (ug, Vug + xo) with & (ug, xo) = min &, and for
a.e. w € ) the set of quenched w-two-scale cluster points €2 (w, (u.(w, ), Vue(w, -))) is
contained in { (u, Vu + x) : &Elu, x) = min& } In the strictly convex case we further
obtain that €2 (w, (us(w, ), Vu.(w,-))) = {(u, Vu+ x)} where (u, ) is the unique min-
imizer to . Note, however, that our argument (that extracts quenched two-scale limits
from the sequnece of “mean” minimizers) involves an exceptional P-null-set that a priori
depends on the selected subsequence. This is in contrast to the classical result in [24]
which is based on a subadditive ergodic theorem and states that there exists a set of full
measure € such that for all w € ' the minizer v¥ to £ weakly converges in WP(Q) to
the deterministic minimizer u of the reduced functional &, for any sequence € — 0.

In the proof of Theorem 4.18 we combine homogenization in the mean in form of The-
orem 3.1, the connection to quenched two-scale limits via Young measures in form of
Theorem 4.11, and a recent result by Nesenenko and the first author that states that V'
is a quenched two-scale normal integrand:
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Lemma 4.20 ([39, Lemma 5.1|). V is a quenched two-scale normal integrand in the sense
of Definition 4.13.

Proof of Theorem 4.18. Step 1. (Identification of the support of v).

Since u. is a sequence of minimizers, by Corollary 3.2 there exists a subsequence (not
relabeled) and minimizers (u,y) € Wy(Q) x (LE () ® LP(Q)?) of & such that that

Ue = u in LP(Q X Q)da vus = Vu + X in LP(Q X Q)dXd7 and

limmin &, = lir% E(u:) = E(u, x) = min &. (36)

e—0

In particular, the sequence (u., Vu.) is bounded in . By Theorem 4.11 we may pass
to a further subsequence (not relabeled) such that (u., Vu.) generates a Young measure
v on A. Since v, is supported on the set of quenched w-two-scale cluster points of
(te(w, ), Vue(w, ), we deduce from Lemma 4.9 that the support of v, is contained in
By = { = (&,&) = (W, Vu +X) : o € W(Q), x € Lhu(Q) ® LP(Q)*} which
is a closed subspace of . Moreover, thanks to the relation of the generated Young
measure and stochastic two-scale convergence in the mean, we have (u, x) fQ f% &,6—

V&) v,(d€) dP(w). By Lemma 4.20, V' is a quenched two-scale normal integrand and thus
Lemma 4.14 implies that

lim &, (u) > / / ( / /Q V(8.2.6) dr dP()) v,(d€) dP(w).

In view of (36) and the fact that v, is supported in %y, we conclude that
min & > / / Eo(&1,& — V&) v, (dE) dP(w) > miné’o// v, (d€)dP(w).
Q 330 Q 930

Since [, [, Vo(d§)dP(w) = 1, we have [, [, [E0(&1,§—VE) —min & v, (d€) dP( )
and thus we conclude that for P-a.e. w € g, v, concentrates on {(u, Vu+x) : E(u, x
min & }.

=0,
):

Step 2. (The strictly conver case).

The uniqueness of u. and (u, x) is clear. From Step 1 we thus conclude that v, = J¢

where ¢ = (u, Vu+ y). Theorem 4.11 implies that (u.(w, ), V. (w, )22, (v, Vu+ ) (for
P-a.e. w € Q). By Lemma 4.20, V is a quenched two- scale normal integrand and thus for
P-a.e. w € (),

liminf £ (u.(w, -)) > E(u, x) = min &.

e—0

On the other hand, since u.(w, ) minimizes £, we deduce by a standard argument that
for P-a.e. w € (,

hr% min £ = hm EX (ue(w,-)) = &E(u, x) = min &.

[]
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