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Stochastic unfolding and homogenization

Martin Heida, Stefan Neukamm, Mario Varga

Abstract

The notion of periodic two-scale convergence and the method of periodic un-

folding are prominent and useful tools in multiscale modeling and analysis of PDEs

with rapidly oscillating periodic coe�cients. In this paper we are interested in the

theory of stochastic homogenization for continuum mechanical models in form of

PDEs with random coe�cients, describing random heterogeneous materials. The

notion of periodic two-scale convergence has been extended in di�erent ways to the

stochastic case. In this work we introduce a stochastic unfolding method that fea-

tures many similarities to periodic unfolding. In particular it allows to characterize

the notion of stochastic two-scale convergence in the mean by mere convergence in

an extended space. We illustrate the method on the (classical) example of stochastic

homogenization of convex integral functionals, and prove a stochastic homogeniza-

tion result for an non-convex evolution equation of Allen-Cahn type. Moreover,

we discuss the relation of stochastic unfolding to previously introduced notions of

(quenched and mean) stochastic two-scale convergence. The method descibed in

the present paper extends to the continuum setting the notion of discrete stochastic

unfolding, as recently introduced by the second and third author in the context of

discrete-to-continuum transition.

1 Introduction

Homogenization theory deals with the derivation of e�ective, macroscopic models for
problems that involve two or more length-scales. Typical examples are continuum me-
chanical models for microstructured materials that give rise to boundary value problems
or evolutionary problems for partial di�erential equations with coe�cients that feature
rapid, spatial oscillations. The �rst results in homogenization theory were motivated by
a mechanics problem which was about the determination of the macroscopic behavior of
linearly elastic composites with periodic microstructure, see Hill [41]. In the mathematical
community early contributions in the 70s came from the French school (e.g. see [10] for an
early standard reference, and [68, 57] for Tartar and Murat's notion of H-convergence),
the Russian school (e.g. Zhikov, Kozlov and Oleinik, see [72]), and from the Italian school
for variational problems (e.g. Marcellini [49], Spagnolo [67] for G-convergence, and De
Giorgi and Franzoni for Γ-convergence [27]). In the 80s and later homogenization was in-
tensively studied for a variety of models from continuum mechanics including non-convex
integral functionals and applications to non-linear elasticity (e.g. Müller [56, 28] and
Braides [14]), or the topic of e�ective �ow through porous media (e.g. see Hornung et al.
[6, 44] and Allaire [2]). Most results in homogenization theory discuss problems with pe-
riodic microstructure, and speci�c analytic tools for periodic homogenization of linear (or
monotone) operators are developed, including the notions of two-scale convergence and
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M. Heida, S.Neukamm, M. Varga 2

periodic unfolding [62, 3, 70, 20], which by now are standard tools in multiscale modeling
and analysis. In the last decade considerable interest in applied mathematics emerged in
understanding random heterogeneous materials, i.e. materials whose properties on a small
length-scale are only described on a statistical level, such as polycrystalline composites,
foams, or biological tissues, see [69] for a standard reference. Although the �rst results
in stochastic homogenization were already obtained in the 70s and 80s for linear elliptic
equations and convex minimization problems, see [63, 46, 24], the theory in the stochastic
case is still less developed as in the periodic case and object of various recent studies,
e.g. regarding error estimates and regularity properties (see [32, 33, 31, 29, 30, 8, 7], or
modeling of random heterogeneous materials [73, 1, 17, 42, 38, 39, 11, 61]. With the
present paper we contribute to the latter. In particular, we introduce a stochastic unfold-
ing method that shares many similarities to periodic unfolding and two-scale convergence
with the intention to systematize and simplify the process of lifting results from peri-
odic homogenization to the stochastic case. We illustrate this by reconsidering stochastic
homogenization of convex integral functionals and by proving a new stochastic homog-
enization result for semilinear gradient �ows of Allen-Cahn type. In order to put the
notion into perspective, in the following we recall the concepts of two-scale convergence
and periodic unfolding.

For problems with periodic coe�cients, the notion of (periodic) two-scale convergence was
introduced in [62] and further developed in [3, 48]. Two-scale convergence re�nes weak
convergence in Lp-spaces: The two-scale limit captures not only the averaged behavior of
an oscillating sequence (as opposed to the weak limit), but also oscillations on a prescribed
small scale ε. In particular, let Q ⊂ Rd and � = [0, 1)d, a sequence (uε) ⊂ Lp(Q) two-scale
converges to u ∈ Lp(Q×�) (as ε→ 0) if

lim
ε→0

ˆ

Q

uε(x)ϕ
(
x,
x

ε

)
dx =

ˆ

Q

ˆ

�
u(x, y)ϕ(x, y)dydx,

for all ϕ ∈ Lq(Q;C#(�)). Here C#(�) denotes the space of continuous and �-periodic
functions and p, q ∈ (1,∞) are dual exponents.

In [6] in the speci�c context of homogenization of �ow through porous media Arbogast
et al. introduced a dilation operator to resolve oscillations on a prescribed scale of weakly
converging sequences; it turned out that the latter yields a characterization of two-scale
convergence (see [12, Proposition 4.6]). In a similar spirit, Cioranescu et al. introduced
in [20, 21] the periodic unfolding method as a systematic approach to homogenization.
The key object of this method is a linear isometry T pε : Lp(Q)→ Lp(Q×�) (the periodic
unfolding operator) which invokes a change of scales and allows (at the expense of doubling
the dimension) to use standard weak and strong convergence theorems in Lp-spaces to
capture the microscopic behavior of oscillatory sequences. It turned out that the method is
well-suited for periodic multiscale problems, e.g. see [19, 34, 55, 70, 59, 36, 47]. Moreover,
the unfolding method allows to rephrase two-scale convergence: Applied to an oscillatory
sequence (uε) ⊂ Lp(Q), the unfolded sequence (T pε uε) weakly converges in Lp(Q × �) if
and only if (uε) two-scale converges, and the corresponding limits are the same. We refer
to [55] where this perspective on two-scale convergence is investigated and applied in the
context of evolutionary problems.

Motivated by the idea of (periodic) two-scale convergence, in [13] the notion of stochastic
two-scale convergence in the mean was introduced suited for homogenization problems
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Stochastic unfolding and homogenization 3

that invoke random coe�cients, see also [5]. In stochastic homogenization typically ran-
dom coe�cients of the form a(ω, x) = a0(τxω) (for x ∈ Rd) are considered where ω stands
for a �random con�guration� and a0 is de�ned on a probability space (Ω,F , P ) that is
equipped with a measure preserving action τx : Ω → Ω, see Section 2.1. A sequence
(uε) ⊂ Lp(Ω × Q) (where Q ⊂ Rd denotes a continuum domain) is said to two-scale
converge in the mean to some u ∈ Lp(Ω×Q) if

lim
ε→0

ˆ

Ω

ˆ

Q

uε(ω, x)ϕ(τx
ε
ω, x)dxdP (ω) =

ˆ

Ω

ˆ

Q

u(ω, x)ϕ(ω, x)dxdP (ω)

for all ϕ ∈ Lq(Ω×Q) satisfying suitable measurability conditions.

Motivated by the concept of the periodic unfolding method, in [61] the second and third
author developed a stochastic unfolding method for a discrete-to-continuum analysis of
discrete models of random heterogeneous materials. In the present work, we extend the
concept to problems de�ned on continuum domains Q ⊂ Rd. In particular, we introduce
a stochastic unfolding operator Tε : Lp(Ω × Q) → Lp(Ω × Q) which is an isometric
isomorphism (see Section 2.2). It displays similar properties as the periodic unfolding
operator; in particular, weak convergence of the unfolded sequence (Tεuε) is equivalent to
stochastic two-scale convergence in the mean, and � as in the periodic case � we recover
a compactness statement for two-scale limits of gradients.

A �rst example that we treat via stochastic unfolding is the classical problem of stochastic
homogenization of convex integral functionals. As in the periodic case, the proof of the
homogenization theorem via unfolding is merely based on elementary properties of the
unfolding operator and on (semi-)continuity of convex functionals (with suitable growth
assumption). The second example we consider is homogenization for gradient �ows driven
by λ-convex energies. In particular, we consider an Allen-Cahn type equation with random
and oscillating coe�cients, yet with a non-convexity only acting on statistically averaged
quantities. The homogenization procedure follows the abstract strategy for evolutionary
Γ-convergence of gradients systems, see [52] and the references therein (we provide more
references in Section 3). On the one hand, the example illustrates that the stochastic
unfolding method yields a short and rather elementary argument for stochastic homog-
enization of the speci�c problem, on the other hand, the example points out certain
limitations of the method (e.g. due to the failure of Rellich-type compactness properties
in the extended space of random �elds).

An alternative and �ner �quenched� notion of stochastic two-scale convergence was intro-
duced by Zhikov and Piatnitski [73]. In a very general setting, they introduced two-scale
convergence on random measures as a generalization of periodic two-scale convergence
as presented in [71]. In this work, we restrict to the simplest case where the random
measure is the Lebesgue measure. The concept of stochastic two-scale convergence in [73]
is based on Birkho�'s ergodic theorem. Although the de�nition of (quenched) stochas-
tic two-scale convergence, which we recall in Section 4, and two-scale convergence in
the mean look quite similar, it is non-trivial to derive quenched convergence from mean
convergence (while the opposite direction in most cases is straight forward). In this pa-
per we investigate this issue and provide some tools that allow to draw conclusions on
quenched homogenization from mean homogenization, as we illustrate at the example of
convex integral functionals. For the analysis we appeal to Young measures generated by
stochastically two-scale convergent sequences in the mean and in particular establish a
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compactness result (see Theorem 4.11 and Lemma 4.14). Moreover, we exploit a recent
lower semicontinuity result of convex integral functionals w.r.t. quenched stochastic two-
scale convergence that has been recently obtained by the �rst author and Nesenenko in
[39].

Structure of the paper. In Section 2 we introduce the standard setting for stochastic
homogenization, introduce the notion of stochastic unfolding and derive the most signi�-
cant properties of the unfolding operator. In the following Section 3 two examples of the
homogenization procedure via stochastic unfolding are presented. Namely, Section 3.1
is dedicated to homogenization of convex functionals and in Section 3.2 homogenization
for Allen-Cahn type gradient �ows is provided. In Section 4 we discuss the relations of
stochastic unfolding and quenched stochastic two-scale convergence. Section 2 and 3.1,
which contain the basic concepts and the application to convex homogenization, are self-
contained and require only basic input from functional analysis. Section 3.2 and Section 4
require some advanced tools from analysis and measure theory.

2 Stochastic unfolding and properties

2.1 Description of random media - a functional analytic frame-

work

To �x ideas we consider for a moment the setup of Papanicolaou and Varadhan [63]
for homogenization of elliptic operators of the form −∇ · a(x

ε
)∇ with a coe�cient �eld

a : Rd → Rd×d. In the stochastic case the coe�cients are assumed to be random and
thus a can be viewed as a family of random variables {a(x)}x∈Rd . A minimal requirement
for stochastic homogenization of such operators is that the distribution of the coe�cient
�eld is stationary and ergodic. Stationarity means that the coe�cients are statistically
homogeneous (i.e. for any �nite set of points x1, . . . , xn ∈ Rd the joint distribution of
the shifted random variables a(x1 + z), . . . , a(xn + z) is independent of z ∈ Rd), while
ergodicity (see below for the precise de�nition) is an assumption that ensures a separation
of scales in the sense that long-range correlations of the coe�cients become negligible in
the large scale limit, e.g. cov[

ffl

B+z
a,
ffl

B
a] → 0 as z → ∞. In [63], Papanicolaou and

Varadhan introduced a (by now standard) setup that allows to phrase these conditions in
the following functional analytic framework (see also [45]):

Assumption 2.1. Let (Ω,F , P ) denote a probability space with a countably generated
σ-algebra, and let τ = {τx}x∈Rd denote a group of measurable, bijections τx : Ω→ Ω such
that

(i) (group property). τ0 = Id and τx+y = τx ◦ τy for all x, y ∈ Rd,

(ii) (measure preserving). P (τxA) = P (A) for all A ∈ F and x ∈ Rd,

(iii) (measurability). (ω, x) 7→ τxω is F⊗L-measurable (L denotes the Lebesgue-σ-algebra
on Rd).

From now on we assume that (Ω,F , P, τ) satis�es these assumptions and we write 〈·〉 :=
´

Ω
· dP as shorthand for the expectation.
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Stochastic unfolding and homogenization 5

In the functional analytic setting, a random coe�cient �eld is described by a map a :
Ω × Rd → Rd×d with the interpretation that a(ω, ·) : Rd → Rd×d with ω ∈ Ω sampled
according to P yields a realization of the random coe�cient �eld. Likewise, solutions
to an associated PDE with physical domain Q ⊂ Rd might be considered as random
functions, i.e. quantities de�ned on the product Ω×Q. In this paper we denote by Lp(Ω)
and Lp(Q) (with Q ⊂ Rd open) the usual Banach spaces of p-integrable functions de�ned
on (Ω,F , P ) and Q, respectively. We introduce function spaces for functions de�ned on
Ω×Q as follows: For closed subspaces X ⊂ Lp(Ω) and Y ⊂ Lp(Q) (resp. Y ⊂ W 1,p(Q))
we denote by X ⊗ Y the closure of

X
a
⊗ Y :=

{
n∑

i=1

ϕiηi : ϕi ∈ X, ηi ∈ Y, n ∈ N

}

in Lp(Ω;Lp(Q)) (resp. Lp(Ω;W 1,p(Q))). Since the probability space is countably gener-
ated, Lp(Ω) (with 1 ≤ p <∞) is separable, and thus we have Lp(Ω)⊗Lp(Q) = Lp(Ω×Q) =
Lp(Ω;Lp(Q)) up to isometric isomorphisms. We therefore simply write Lp(Ω×Q) instead
of Lp(Ω)⊗ Lp(Q).

In the functional analytic setting and in view of the measure preserving property of τ , the
requirement of stationarity can be rephrased as the assumption that the coe�cient �eld
can be written in the form a(ω, x) = a0(τxω) for some measurable map a0 : Ω → Rd×d.
The transition from a0 to a conserves measurability. As usual we denote by B(Q) (resp.
L(Q)) the Borel (resp. Lebesgue)-σ-algebra on Q ⊂ Rd. The proof of the following lemma
is obvious and therefore we do not present it.

Lemma 2.2 (Stationary extension). Let ϕ : Ω→ R be F-measurable. Then Sϕ : Ω×Q→
R, Sϕ(ω, x) := ϕ(τxω) de�nes a F ⊗ L(Q)-measurable function � called the stationary
extension of ϕ. Moreover, if Q is bounded, for all 1 ≤ p < ∞ the map S : Lp(Ω) →
Lp(Ω×Q) is a linear injection satisfying

‖Sϕ‖Lp(Ω×Q) = |Q| 1p‖ϕ‖Lp(Ω).

The assumption of ergodicity can be phrased as follows: We say (Ω,F , P, τ) is ergodic
(shorter 〈·〉 is ergodic), if

every shift invariant A ∈ F (i.e. τxA = A for all x ∈ Rd) satis�es P (A) ∈ {0, 1} .
In this case the celebrated ergodic theorem of Birkho� applies, which we recall in the
following form:

Theorem 2.3 (Birkho�'s ergodic Theorem [25, Theorem 10.2.II]). Let 〈·〉 be ergodic and
ϕ : Ω → R be integrable. Then for P -a.e. ω ∈ Ω it holds: Sϕ(ω, ·) is locally integrable
and for all open, bounded sets Q ⊂ Rd we have

lim
ε→0

ˆ

Q

Sϕ(ω, x
ε
) dx = |Q|〈ϕ〉 . (1)

Furthermore, if ϕ ∈ Lp(Ω) with 1 ≤ p ≤ ∞, then for P -a.e. ω ∈ Ω it holds: Sϕ(ω, ·) ∈
Lploc(Rd), and provided p <∞ it holds Sϕ(ω, ·

ε
) ⇀ 〈ϕ〉 weakly in Lploc(Rd) as ε→ 0.

Basic examples for stationary and ergodic systems include the random checkerboard
(e.g. see [58, Example 2.12]), Gaussian random �elds (e.g. see [58, Example 2.13]). We
remark that the setting for periodic homogenization �ts as well into this framework. In
particular, Ω = � equipped with the Lebesque-σ-algebra and the Lebesgue measure, and
the shift τxy = y + x mod 1 de�nes a system satisfying Assumption 2.1 and ergodicity.

DOI 10.20347/WIAS.PREPRINT.2460 Berlin 2017



M. Heida, S.Neukamm, M. Varga 6

2.2 Stochastic unfolding operator and two-scale convergence in

the mean

In the following we introduce the stochastic unfolding operator, which is a key object in
this paper. It is a linear, ε-parametrized, isometric isomorphism Tε on Lp(Ω×Q) where
Q ⊂ Rd denotes an open set which we think of as the domain of a PDE.

Lemma 2.4. Let ε > 0, 1 < p < ∞, q := p
p−1

, and Q ⊂ Rd be open. There exists a
unique linear isometric isomorphism

Tε : Lp(Ω×Q)→ Lp(Ω×Q)

such that

∀u ∈ Lp(Ω)
a
⊗ Lp(Q) : (Tεu)(ω, x) = u(τ−x

ε
ω, x) a.e. in Ω×Q.

Moreover, its adjoint is the unique linear isometric isomorphism T ∗ε : Lq(Ω × Q) →
Lq(Ω×Q) that satis�es (T ∗ε u)(ω, x) = u(τx

ε
ω, x) a.e. in Ω×Q for all u ∈ Lq(Ω)

a
⊗Lq(Q).

For the proof see Section 2.4.

De�nition 2.5 (Unfolding operator and two-scale convergence in the mean). The operator
Tε : Lp(Ω×Q)→ Lp(Ω×Q) of Lemma 2.4 is called the stochastic unfolding operator. We
say that a sequence (uε) ⊂ Lp(Ω × Q) weakly (strongly) two-scale converges in the mean
in Lp(Ω×Q) to u ∈ Lp(Ω×Q) if (as ε→ 0)

Tεuε → u weakly (strongly) in Lp(Ω×Q).

In this case we write uε
2s
⇀ u (resp. uε

2s→ u) in Lp(Ω×Q).

To motivate the de�nition, let uε ∈ H1
0 (Q) denote a (distributional) solution to −∇ ·

aε(x)∇uε = f in Q, where aε is a family of uniformly elliptic, random coe�cient �elds
of the form aε(ω, x) = a0(τx

ε
ω). The main di�culty in homogenization of this PDE

is the passage to the limit ε → 0 in the product aε∇uε, since both factors in general
only weakly converge. The stochastic unfolding operator Tε turns this expression into a
product of a strongly and a weakly convergent sequence in L2(Ω × Q): Indeed, we have
Tε(aε∇uε) = a0(Tε∇uε) and thus it remains to characterize the limit of Tε∇uε, as will
be done in the next section. Since Tε is an isometry, we obtain the following properties
(which resemble the key properties of the periodic unfolding method). The below lemma
is obtained using the isometry property of Tε and the usual properties of weak and strong
convergence in Lp(Ω×Q) and therefore we do not present its proof.

Lemma 2.6 (Basic properties). Let p ∈ (1,∞) and Q ⊂ Rd be open. Consider sequences
(uε) ⊂ Lp(Ω×Q) and (vε) ⊂ Lq(Ω×Q).

(i) (Boundedness and lower-semicontinuity of the norm). If uε
2s
⇀ u, then

supε∈(0,1) ‖uε‖Lp(Ω×Q) <∞ and ‖u‖Lp(Ω×Q) ≤ lim infε→0 ‖uε‖Lp(Ω×Q).

(ii) (Compactness of bounded sequences). If lim supε→0 ‖uε‖Lp(Ω×Q) < ∞, then there

exists a subsequence ε′ and u ∈ Lp(Ω×Q) such that uε′
2s
⇀ u in Lp(Ω×Q).
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Stochastic unfolding and homogenization 7

(iii) (Characterization of strong two-scale convergence). uε
2s→ u if and only if uε

2s
⇀ u in

Lp(Ω×Q) and ‖uε‖Lp(Ω×Q) → ‖u‖Lp(Ω×Q).

(iv) (Products of strongly and weakly two-scale convergent sequences). If uε
2s
⇀ u in

Lp(Ω×Q) and vε
2s→ v in Lq(Ω×Q), then

〈
ˆ

Q

uε(ω, x)vε(ω, x)dx

〉
→
〈
ˆ

Q

u(ω, x)v(ω, x)dx

〉
.

Remark 2.7. The stochastic unfolding operator enjoys many similarities to the periodic un-
folding operator, however we would like to point out one considerable di�erence. Namely,
in the periodic case if a sequence (uε) ⊂ Lp(Q) satis�es uε → u strongly in Lp(Q), it fol-
lows that T pε uε → u strongly in Lp(Q×�) (see e.g. [55, Proposition 2.4]). In the stochastic
case, this does not hold in general, speci�cally even for a �xed function u ∈ Lp(Ω × Q),
in general it does not hold Tεu ⇀ u. However, if 〈·〉 is ergodic, using Proposition 2.11
below, it follows that for a sequence (uε) ⊂ Lp(Ω)⊗W 1,p(Q) such that uε ⇀ u weakly in

Lp(Ω×Q) it holds that uε
2
⇀ 〈u〉. In this respect, stochastic two-scale convergence might

be viewed as an ergodic theorem for weakly convergent sequences.

For homogenization of variational problems (in particular, convex integral functionals)
the following transformation and (lower semi-)continuity properties are convenient.

Proposition 2.8. Let p ∈ (1,∞) and Q ⊂ Rd be open and bounded. Let V : Ω × Q ×
Rm → R be such that V (·, ·, F ) is F ⊗ L(Q)-measurable for all F ∈ Rm and V (ω, x, ·) is
continuous for a.e. (ω, x) ∈ Ω × Q. Also, we assume that there exists C > 0 such that
for a.e. (ω, x) ∈ Ω×Q

|V (ω, x, F )| ≤ C(1 + |F |p), for all F ∈ Rm.

(i) We have

∀u ∈ Lp(Ω×Q)m
〈
ˆ

Q

V (τx
ε
ω, x, u(ω, x))dx

〉
=

〈
ˆ

Q

V (ω, x, Tεu(ω, x))dx

〉
. (2)

(ii) If uε
2s→ u in Lp(Ω×Q)m, then

lim
ε→0

〈
ˆ

Q

V (τx
ε
ω, x, uε(ω, x))dx

〉
=

〈
ˆ

Q

V (ω, x, u(ω, x))dx

〉
.

(iii) We additionally assume that for a.e. (ω, x) ∈ Ω×Q, V (ω, x, ·) is convex. Then, if

uε
2s
⇀ u in Lp(Ω×Q)m,

lim inf
ε→0

〈
ˆ

Q

V (τx
ε
ω, x, uε(ω, x))dx

〉
≥
〈
ˆ

Q

V (ω, x, u(ω, x))dx

〉
.

(For the proof see Section 2.4.)

DOI 10.20347/WIAS.PREPRINT.2460 Berlin 2017
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Remark 2.9 (A technical remark about measurability). The stochastic unfolding operator
Tε is de�ned as a linear operator on the Banach space Lp(Ω×Q), which is convenient since
this prevents us from (fruitless) discussions on measurability properties. The elements of
Lp(Ω × Q) are strictly speaking not functions but equivalence classes of functions that
coincide a.e. in Ω × Q. Thus, a representative function ũ in Lp(Ω × Q) is measurable
w.r.t. the completion of the product σ-algebra F ⊗ L(Q), and thus the map (ω, x) 7→
ũ(τxω, x) might not be measurable. However, if ũ is F ⊗ L(Q)-measurable (e.g. if ũ ∈
Lp(Ω)

a
⊗ Lp(Q)), then ũε(ω, x) := ũ(τx

ε
ω, x) is F ⊗ L(Q)-measurable. In particular, since

Lp(Ω)
a
⊗Lp(Q) is dense in Lp(Ω×Q), for any u ∈ Lp(Ω×Q) we can �nd a representative-

F ⊗ L(Q) measurable function ũ : Ω×Q→ R and we have Tεu = ũε a.e. in Ω×Q.
Remark 2.10 (Comparison to the notion of [13]). The notion of weak two-scale convergence
in the mean of De�nition 2.5, i.e. the weak convergence of the unfolded sequence, coincides
with the convergence introduced in [13] (see also [5]). More precisely, for a bounded

sequence (uε) ⊂ Lp(Ω×Q) we have uε
2s
⇀ u in Lp(Ω×Q) (in the sense of De�nition 2.5)

if and only if uε stochastically 2-scale converges in the mean to u in the sense of [13], i.e.

lim
ε→0

〈
ˆ

Q

uε(ω, x)ϕ(τx
ε
ω, x)dx

〉
=

〈
ˆ

Q

u(ω, x)ϕ(ω, x)dx

〉
, (3)

for any ϕ ∈ Lq(Ω×Q) that is admissible (in the sense that the transformation (ω, x) 7→
ϕ(τx

ε
ω, x) is well-de�ned). Indeed, with help of Tε (and its adjoint) we might rephrase the

integral on the left-hand side in (3) as

〈
ˆ

Q

uε(T ∗ε ϕ) dx

〉
=

〈
ˆ

Q

(Tεuε)ϕdx
〉
, (4)

which proves the equivalence.

2.3 Two-scale limits of gradients

As for periodic homogenization via periodic unfolding or two-scale convergence, also in
the stochastic case it is important to understand the interplay of the unfolding operator
and the gradient operator and to characterize two-scale limits of gradient �elds. As a
motivation we �rst recall the periodic case. A standard result states that for any bounded
sequence in W 1,p(Q) we can extract a subsequence such that uε weakly converges in
W 1,p(Q) to a single scale function u ∈ W 1,p(Q) and ∇uε weakly two-scale converges to a
two-scale limit of the form ∇u(x) + χ(x, y), where χ is a vector �eld in Lp(Q)⊗ Lpper(�)
and Lpper(�) denotes the space of locally p-integrable, �-periodic functions on Rd, and χ is
mean-free and curl-free w.r.t. y ∈ � =: [0, 1)d. Since � is compact, such vector �elds can
be represented with help of a periodic potential �eld, i.e. there exists ϕ ∈ Lp(Q,W 1,p

per (�))
s.t. χ(x, y) = ∇yϕ(x, y) for a.e. (x, y). A helpful example to have in mind is the following
uε(x) := εϕ(x

ε
)η(x) with η ∈ W 1,p(Q) and ϕ ∈ C∞per(�). Then a direct calculation shows

that ∇uε(x) = ∇yϕ(x
ε
)η(x) +O(ε), which obviously two-scale converges to ∇yϕ(y)η(x).

In the stochastic case the torus of the periodic case (which is above represented by �) is
replaced by the probability space Ω and periodic functions (e.g. ϕ above) are conceptually
replaced by stationary functions, i.e. functions of the form Sϕ(ω, x) = ϕ(τxω) with ϕ :
Ω→ R measurable. To proceed further, we need to introduce an analogon of the gradient
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∇y and its domainW 1,p
per (�) in the stochastic setting. As illustrated below, the shift-group

τ together with standard concepts from functional analysis lead to a horizontal gradient
D and the space W 1,p(Ω). With help of these objects we prove, as in the periodic case,
that any bounded sequence in Lp(Ω)⊗W 1,p(Q) admits (up to extraction of a subsequence)
a weak two-scale limit u and the sequence of gradients converges weakly two-scale to a
limit of the form ∇u + χ where χ is D-curl-free w.r.t. ω. A di�erence to the periodic
case to be pointed out is that χ in general does not admit a representation by means of
a stationary potential.

In order to implement the above philosophy we require some input from functional anal-
ysis, which we recall from the original work by Papanicolaou and Varadhan [63]. We
consider the group of isometric operators

{
Ux : x ∈ Rd

}
on Lp(Ω) de�ned by Uxϕ(ω) =

ϕ(τxω). This group is strongly continuous (see [45, Section 7.1]). For i = 1, ..., d, we
consider the 1-parameter group of operators {Uhei : h ∈ R} ({ei} being the usual basis of
Rd) and its in�nitesimal generator Di : Di ⊂ Lp(Ω)→ Lp(Ω)

Diϕ = lim
h→0

Uheiϕ− ϕ
h

,

which we refer to as horizontal derivative. Di is a linear and closed operator and the
associated domain Di is dense in Lp(Ω). We set W 1,p(Ω) = ∩di=1Di and de�ne for ϕ ∈
W 1,p(Ω) the horizontal gradient as Dϕ = (D1ϕ, ..., Ddϕ). In this manner, we obtain a
linear, closed and densely de�ned operator D : W 1,p(Ω)→ Lp(Ω)d, and we denote by

Lppot(Ω) := R(D) ⊂ Lp(Ω)d

the closure of the range of D in Lp(Ω)d. We denote the adjoint of D by D∗ : D∗ ⊂
Lq(Ω)d → Lq(Ω) which is a linear, closed and densely de�ned operator (D∗ is the domain
of D∗). Note that W 1,q(Ω)d ⊂ D∗ and for all ϕ ∈ W 1,p(Ω) and ψ ∈ W 1,q(Ω) (i = 1, ..., d)
we have the integration by parts formula

〈Diϕψ〉 = −〈ϕDiψ〉 ,

and thus D∗ψ = −∑d
i=1Diψi for ψ ∈ W 1,q(Ω)d. We de�ne the subspace of shift invariant

functions in Lp(Ω) by

Lpinv(Ω) =
{
ϕ ∈ Lp(Ω) : Uxϕ = ϕ for all x ∈ Rd

}
,

and denote by Pinv : Lp(Ω) → Lpinv(Ω) the conditional expectation with respect to the
σ-algebra of shift invariant sets

{
A ∈ F : τxA = A for all x ∈ Rd

}
. It is a contractive

projection and for p = 2 it coincides with the orthogonal projection onto L2
inv(Ω).

Proposition 2.11 (Compactness). Let p ∈ (1,∞) and Q ⊂ Rd be open. Let (uε) be
a bounded sequence in Lp(Ω) ⊗W 1,p(Q). Then, there exist u ∈ Lpinv(Ω) ⊗W 1,p(Q) and
χ ∈ Lppot(Ω)⊗ Lp(Q) such that (up to a subsequence)

uε
2s
⇀ u in Lp(Ω×Q), ∇uε 2s

⇀ ∇u+ χ in Lp(Ω×Q)d. (5)

If, additionally, 〈·〉 is ergodic, then u = Pinvu = 〈u〉 ∈ W 1,p(Q) and 〈uε〉 ⇀ u weakly in
W 1,p(Q).
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We remark that the above result is already established in [13] in the context of two-scale
convergence in the mean in the L2-space setting. We recapitulate its proof from the
perspective of stochastic unfolding, see section 2.4.

Remark 2.12. Since closed, convex subsets of a Banach space are also weakly closed, for
any sequence (uε) that satis�es the assumption of Proposition 2.11 and Tεuε ∈ X where
X ⊂ L2(Ω × Q) is closed and convex, the two-scale limit from Proposition 2.11 satis�es
u ∈ X. This is useful to study problems with boundary conditions.

Lemma 2.13 (Nonlinear recovery sequence). Let p ∈ (1,∞) and Q ⊂ Rd be open. For
χ ∈ Lppot(Ω) ⊗ Lp(Q) and δ > 0, there exists a sequence gδ,ε(χ) ∈ Lp(Ω) ⊗W 1,p(Q) such
that

‖gδ,ε(χ)‖Lp(Ω×Q) ≤ εC(δ), lim sup
ε→0

‖Tε∇gδ,ε(χ)− χ‖Lp(Ω×Q)d ≤ δ.

(For the proof see Section 2.4.)

Proposition 2.14 (Linear recovery sequence). Let p ∈ (1,∞) and Q ⊂ Rd be open,
bounded and C1. For ε > 0 there exists a linear operator Gε : Lppot(Ω)⊗Lp(Q)→ Lp(Ω)⊗
W 1,p

0 (Q), that is uniformly bounded in ε, with the property that for any χ ∈ Lppot(Ω)⊗Lp(Q)

Gεχ 2s→ 0 in Lp(Ω×Q), ∇Gεχ 2s→ χ in Lp(Ω×Q)d.

(For the proof see Section 2.4.)

Remark 2.15. If Q ⊂ Rd is open, bounded and C1, using Proposition 2.14, we obtain a
mapping

(
Lpinv(Ω)⊗W 1,p(Q)

)
×
(
Lppot(Ω)⊗ Lp(Q)

)
3 (u, χ) 7→ uε(u, χ) := u+Gεχ ∈ Lp(Ω)⊗W 1,p(Q)

which is linear, uniformly bounded in ε and it satis�es (for all (u, χ))

uε(u, χ)
2s→ u in Lp(Ω×Q), ∇uε(u, χ)

2s→ ∇u+ χ in Lp(Ω×Q). (6)

In the case that Q is merely open, we can use the nonlinear construction from Lemma 2.13.
Speci�cally, for (u, χ) ∈ (Lpinv(Ω)⊗W 1,p(Q)) ×

(
Lppot(Ω)⊗ Lp(Q)

)
we de�ne uδ,ε(u, χ) =

u + gδ,ε(χ). Using Attouch's diagonal argument, we �nd a sequence uε(u, χ) = uδ(ε),ε
which satis�es (6). We remark that in both cases, the recovery sequence uε matches the
boundary conditions of the function u (see constructions in Section 2.4).

We conclude this section with some basic facts from functional analysis used in the proof
of Proposition 2.11.

Remark 2.16. Let 1 < p <∞ be �xed.

(i) 〈·〉 is ergodic ⇔ Lpinv(Ω) ' R ⇔ Pinvf = 〈f〉.

(ii) The following orthogonality relations hold (for a proof see [15, Section 2.6]): Identify
the dual space Lp(Ω)∗ with Lq(Ω), and de�ne for a set A ⊂ Lq(Ω) its orthogonal
complement A⊥ ⊂ Lp(Ω) as A⊥ = {ϕ ∈ Lp(Ω) : 〈ϕψ〉 = 0 for all ψ ∈ A}. Then

N (D) = R(D∗)⊥, Lppot(Ω) = R(D) = N (D∗)⊥. (7)

Above, N (·) denotes the kernel and R(·) the range of an operator.

DOI 10.20347/WIAS.PREPRINT.2460 Berlin 2017



Stochastic unfolding and homogenization 11

2.4 Proofs

Proof. We �rst de�ne Tε on A := {ψ(ω, x) = ϕ(ω)η(x) : ϕ ∈ Lp(Ω), η ∈ Lp(Q) } ⊂
Lp(Ω × Q) by setting (Tεψ)(ω, x) = (Sϕ)(ω,−x

ε
)η(x) for all ψ = ϕη ∈ A . In view of

Lemma 2.2 (Tεψ) is F ⊗ L(Q)-measurable, and
〈
ˆ

Q

|Tεψ|p dx
〉

=

ˆ

Q

( ˆ

Ω

|Sϕ(ω,−x
ε
)|p dP (ω)

)
|η(x)|p dx = ‖ϕ‖pLp(Ω)‖η‖

p
Lp(Q) = ‖ψ‖pLp(Ω×Q).

Since span(A ) is dense in Lp(Ω×Q), Tε extends to a linear isometry from Lp(Ω×Q) to
Lp(Ω×Q). We de�ne a linear isometry T−ε : Lq(Ω×Q)→ Lq(Ω×Q) analogously as Tε
with ε replaced by −ε. Then for any ϕ ∈ Lp(Ω)

a
⊗ Lp(Q) and ψ ∈ Lq(Ω)

a
⊗ Lq(Q) we

have (thanks to the measure preserving property of τ):
〈
ˆ

Q

(Tεϕ)ψ dx

〉
=

ˆ

Q

ˆ

Ω

ϕ(τ−x
ε
ω, x)ψ(ω, x) dP (ω) dx

=

ˆ

Q

ˆ

Ω

ϕ(ω, x)ψ(τx
ε
ω, x) dP (ω) dx =

〈
ˆ

Q

ϕ(T−εψ)

〉
dx.

Since these functions are dense in Lp(Ω ⊗ Q) and Lq(Ω ⊗ Q), respectively, we conclude
that T ∗ε = T−ε.
It remains to argue that Tε and T ∗ε are surjective. Since T ∗ε is an isometry, it follows that
Tε is surjective (see [15, Theorem 2.20]). Analogously, T ∗ε is as well surjective.

Proof of Proposition 2.8. We �rst note that V is a Charathéodory integrand (which is de-
�ned as a function satisfying the measurability and continuity assumptions given in the
statement of the proposition) and therefore it follows that V is F ⊗ L(Q) ⊗ B(Rd×d)-
measurable. For �xed ε > 0, the mapping (ω, x) 7→ (τx

ε
ω, x) is F ⊗ L(Q)-F ⊗ L(Q)-

measurable and therefore (ω, x, F ) 7→ V (τx
ε
ω, x, F ) de�nes as well a Charathéodory in-

tegrand (with same measurability as V ). As a result of these facts, for any function
u ∈ Lp(Ω×Q)m it follows that (ω, x) 7→ V (ω, x, u(ω, x)) and (ω, x) 7→ V (τx

ε
ω, x, u(ω, x))

de�ne measurable functions with respect to the completion of F ⊗ L(Q). Additionally,
these functions are integrable thanks to the growth assumptions on V . Thus all the
integrals in the statement of the proposition are well-de�ned.

(i) We �rst argue that it su�ces to prove that
〈
ˆ

Q

V (τx
ε
ω, x, u(ω, x))dx

〉
=

〈
ˆ

Q

V (ω, x, Tεu(ω, x))dx

〉
for all u ∈ Lp(Ω)

a
⊗ Lp(Q)m.

(8)

Indeed, for any u ∈ Lp(Ω×Q)m we can �nd a sequence uk ∈ Lp(Ω)
a
⊗ Lp(Q)m such that

uk → u strongly in Lp(Ω×Q)m, and by passing to a subsequence (not relabeled) we may
additionally assume that uk → u pointwise a.e. in Ω×Q. By continuity of V in its last vari-
able, we thus have V (τx

ε
ω, x, uk(ω, x))→ V (τx

ε
ω, x, u(ω, x)) for a.e. (ω, x) ∈ Ω×Q. Since

|V (τx
ε
ω, x, uk(ω, x))| ≤ C(1+|uk(ω, x)|p) a.e. in Ω×Q, the dominated convergence theorem

by Vital implies that limk→∞
〈
´

Q
V (τx

ε
ω, x, uk(ω, x))dx

〉
=
〈
´

Q
V (τx

ε
ω, x, u(ω, x))dx

〉
. In

the same way we conclude that

lim
k→∞

〈
ˆ

Q

V (ω, x, Tεuk(ω, x))dx

〉
=

〈
ˆ

Q

V (ω, x, Tεu(ω, x))dx

〉
,
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and thus (8) extends to general u ∈ Lp(Ω×Q)m.

It is left to show (8). Let u ∈ Lp(Ω)
a
⊗ Lp(Q)m. By Fubini's theorem, the measure

preserving property of τ , and the transformation ω 7→ τ−x
ε
ω in the second equality below,

it follows
〈
ˆ

Q

V (τx
ε
ω, x, u(ω, x))dx

〉
=

ˆ

Q

〈
V (τx

ε
ω, x, u(ω, x))

〉
dx =

ˆ

Q

〈
V (ω, x, u(τ−x

ε
ω, x))

〉
dx.

Since u ∈ Lp(Ω)
a
⊗ Lp(Q), we have u(τ−x

ε
ω, x) = Tεu(ω, x), and thus the right-hand side

equals
〈
´

Q
V (ω, x, Tεu(ω, x))dx

〉
, which completes the proof of (i).

(ii) By part (i) we get
〈
´

Q
V (τx

ε
ω, x, uε(ω, x))dx

〉
=
〈
´

Q
V (ω, x, Tεuε(ω, x))dx

〉
. Since

Tεuε → u strongly in Lp(Ω×Q)m (by assumption), using the growth conditions of V and
the dominated convergence theorem, it follows (similarly as in the proof of part (i)) that

limε→0

〈
´

Q
V (ω, x, Tεuε(ω, x))dx

〉
=
〈
´

Q
V (ω, x, u(ω, x))dx

〉
.

(iii) We note that the functional Lp(Ω × Q)m 3 u 7→
〈
´

Q
V (ω, x, u(ω, x))dx

〉
is convex

and lower semi-continuous, therefore it is weakly lower semi-continuous (see [15, Corol-
lary 3.9]). Combining this fact with the transformation formula from (i) and the weak
convergence Tεuε ⇀ u (by assumption), the claim follows.

Before stating the proof of Proposition 2.11, we present some auxiliary lemmas.

Lemma 2.17. Let p ∈ (1,∞) and q = p
p−1

.

(i) If ϕ ∈
{
D∗ψ : ψ ∈ W 1,q(Ω)d

}⊥
, then ϕ ∈ Lpinv(Ω).

(ii) If ϕ ∈
{
ψ ∈ W 1,q(Ω)d : D∗ψ = 0

}⊥
, then ϕ ∈ Lppot(Ω).

Proof. (i) First, we note that

ϕ ∈ Lpinv(Ω) ⇔ UheiUyϕ = Uyϕ for all y ∈ Rd, h ≥ 0, i = 1, ..., d.

We consider ϕ ∈
{
D∗ψ : ψ ∈ W 1,q(Ω)d

}⊥
and we show that ϕ ∈ Lpinv(Ω) using the above

equivalence. Let ψ ∈ W 1,q(Ω) and i ∈ {1, ..., d}. Then, by the group property we have
U−heiψ − ψ =

´ t

0
U−teiD

∗
iψdt and therefore

〈(Uheiϕ− ϕ)ψ〉 = 〈ϕ(U−heiψ − ψ)〉 =

〈
ϕ

ˆ t

0

U−teiD
∗
iψdt

〉
=

ˆ h

0

〈ϕD∗i (U−teiψ)〉 dt.

Since U−teiψ ∈ W 1,q(Ω) for any t ∈ [0, h], we obtain 〈ϕD∗i (U−teiψ)〉 = 0 and thus Uheiϕ =
ϕ. Furthermore, for any y ∈ Rd, we have 〈(UheiUyϕ− Uyϕ)ψ〉 = 〈(Uheiϕ− ϕ)U−yψ〉 = 0
by the same argument.

(ii) In view of Lppot(Ω) = N (D∗)⊥ (see (7)), it is su�cient to prove density of the set{
ϕ ∈ W 1,q(Ω)d : D∗ϕ = 0

}
in N (D∗). This follows by an approximation argument as in

[45], Section 7.2. Let ϕ ∈ N (D∗) and we de�ne for t > 0

ϕt(ω) =

ˆ

Rd
pt(y)ϕ(τyω)dy, where pt(y) =

1

(4πt)
d
2

e−
|y|2
4t .
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Then the claimed density follows, since ϕt ∈ W 1,q(Ω)d, D∗ϕt = 0 for any t > 0 and
ϕt → ϕ strongly in Lq(Ω)d. The last statement can be seen as follows. By the continuity
property of Ux, for any ε > 0 there exists δ > 0 such that 〈|ϕ(τyω)− ϕ(ω)|q〉 ≤ ε for any
y ∈ Bδ(0). It follows that

〈
|ϕt − ϕ|q

〉
=

〈∣∣∣∣
ˆ

Rd
pt(y) (ϕ(τyω)− ϕ(ω)) dy

∣∣∣∣
q〉

≤
ˆ

Rd
pt(y) 〈|ϕ(τyω)− ϕ(ω)|q〉 dy

=

ˆ

Bδ

pt(y) 〈|ϕ(τyω)− ϕ(ω)|q〉 dy +

ˆ

Rd\Bδ
pt(y) 〈|ϕ(τyω)− ϕ(ω)|q〉 dy.

The �rst term on the right-hand side of the above inequality is bounded by ε as well as
the second term for su�ciently small t > 0.

Lemma 2.18. Let uε ∈ Lp(Ω)⊗W 1,p(Q) be such that uε
2s
⇀ u in Lp(Ω×Q) and ε∇uε 2s

⇀ 0
in Lp(Ω×Q)d. Then u ∈ Lpinv(Ω)⊗ Lp(Q).

Proof. Consider a sequence vε = εT ∗ε (ϕη) such that ϕ ∈ W 1,q(Ω) and η ∈ C∞c (Q). Note
that Tεvε = εϕη and we have (i = 1, ..., d)

〈
ˆ

Q

∂iuεvεdx

〉
=

〈
ˆ

Q

Tε∂iuεTεvεdx
〉

=

〈
ˆ

Q

Tε∂iuεεϕηdx
〉
→ 0.

Moreover, it holds that ∂ivε = T ∗ε (Diϕη + εϕ∂iη) and therefore

〈
ˆ

Q

∂iuεvεdx

〉
= −

〈
ˆ

Q

uε∂ivεdx

〉
= −

〈
ˆ

Q

uεT ∗ε (Diϕη + εϕ∂iη)dx

〉

= −
〈
ˆ

Q

TεuεDiϕη + εTεuεϕ∂iηdx
〉
.

The last expression converges to−
〈
´

Q
uDiϕηdx

〉
as ε→ 0. As a result of this, 〈u(x)Diϕ〉 =

0 for almost every x ∈ Q and therefore u ∈ Lpinv(Ω)⊗ Lp(Q) by Lemma 2.17 (i).

Lemma 2.19. Let uε be a bounded sequence in Lp(Ω) ⊗ W 1,p(Q). Then there exists
u ∈ Lpinv(Ω)⊗W 1,p(Q) such that

uε
2s
⇀ u in Lp(Ω×Q), Pinvuε

2s
⇀ u in Lp(Ω×Q), Pinv∇uε 2s

⇀ ∇u in Lp(Ω×Q)d.

Proof. Step 1. Pinv ◦ Tε = Tε ◦ Pinv = Pinv.

The second equality holds clearly. To show that Pinv◦Tε = Pinv, we consider v ∈ Lp(Ω×Q),
ϕ ∈ Lq(Ω) and η ∈ Lq(Q). We have

〈
ˆ

Q

(PinvTεv)(ϕη)dx

〉
=

〈
ˆ

Q

(Tεv)P ∗inv(ϕη)dx

〉

=

〈
ˆ

Q

vP ∗inv(ϕη)dx

〉
=

〈
ˆ

Q

(Pinvv)(ϕη)dx

〉
,
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where we use the fact that T ∗ε P ∗inv = P ∗inv since the adjoint P
∗
inv of Pinv satis�es R(P ∗inv) ⊂

Lqinv(Ω). The claim follows by an approximation argument since Lq(Ω)
a
⊗ Lq(Q) is dense

in Lq(Ω×Q).

Step 2. Convergence of Pinvuε.

Pinv is bounded and it commutes with ∇ and therefore

lim sup
ε→0

〈
ˆ

Q

|Pinvuε|p + |∇Pinvuε|pdx
〉
≤ ∞.

As a result of this and with help of 2.6 (ii) and Lemma 2.18, it follows that Pinvuε
2s
⇀ v and

∇Pinvuε
2s
⇀ w (up to a subsequence), where v ∈ Lpinv(Ω)⊗Lp(Q) and w ∈ Lpinv(Ω)⊗Lp(Q)d.

Let ϕ ∈ W 1,q(Ω) and η ∈ C∞c (Q). On the one hand, we have
〈
ˆ

Q

(∂iPinvuε)T ∗ε (ϕη)dx

〉
=

〈
ˆ

Q

Tε(∂iPinvuε)(ϕη)dx

〉
→
〈
ˆ

Q

wiϕηdx

〉
.

On the other hand,
〈
ˆ

Q

(∂iPinvuε)T ∗ε (ϕη)dx

〉
= −1

ε

〈
ˆ

Q

(Pinvuε)(Diϕη)dx

〉
−
〈
ˆ

Q

(Pinvuε)(ϕ∂iη)dx

〉
.

The �rst term on the right-hand side vanishes since Pinvuε(·, x) ∈ Lpinv(Ω) for almost every

x ∈ Q and by (7). The second term converges to −
〈
´

Q
vϕ∂iηdx

〉
as ε→ 0. Consequently,

we obtain w = ∇v and therefore v ∈ Lpinv(Ω)⊗W 1,p(Q).

Step 3. Convergence of uε.

Since uε is bounded, by Lemma 2.18 there exists u ∈ Lpinv(Ω) ⊗ Lp(Q) such that uε
2s
⇀ u

in Lp(Ω × Q). Also, Pinv is a linear and bounded operator which, together with Step 1,
implies that Pinvuε ⇀ u. Using this, we conclude that u = v.

Proof of Proposition 2.11. Lemma 2.19 implies that uε
2s
⇀ u in Lp(Ω × Q) (up to a

subsequence), where u ∈ Lpinv(Ω) ⊗ W 1,p(Q). Moreover, it follows that there exists

v ∈ Lp(Ω × Q)d such that ∇uε 2s
⇀ v in Lp(Ω × Q)d (up to another subsequence). We

show that χ := v −∇u ∈ Lppot(Ω)⊗ Lp(Q).

Let ϕ ∈ W 1,q(Ω)d with D∗ϕ = 0 and η ∈ C∞c (Q). We have
〈
ˆ

Q

∇uε · T ∗ε (ϕη)dx

〉
=

〈
ˆ

Q

Tε∇uε · ϕηdx
〉
→
〈
ˆ

Q

v · ϕηdx
〉
. (9)

On the other hand,

〈
ˆ

Q

∇uε · T ∗ε (ϕη)dx

〉
= −

〈
ˆ

Q

uε

d∑

i=1

T ∗ε (
1

ε
Diϕη + ϕi∂iη)dx

〉

=

〈
ˆ

Q

(Tεuε)(D∗ϕη)dx

〉
−
〈
ˆ

Q

(Tεuε)
d∑

i=1

ϕi∂iηdx

〉
.

(10)

Above, the �rst term on the right-hand side vanishes by assumption and the second

converges to
〈
´

Q
∇u · ϕη

〉
as ε → 0. Using (10), (9) and Lemma 2.17 (ii) we complete

the proof.
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Proof of Lemma 2.13. For χ ∈ Lppot(Ω) ⊗ Lp(Q) and δ > 0, by de�nition of the space

Lppot(Ω) ⊗ Lp(Q) and by density of R(D) in Lppot(Ω), we �nd gδ =
∑n(δ)

i=1 ϕ
δ
iη
δ
i with ϕδi ∈

W 1,p(Ω) and ηδi ∈ C∞c (Q) such that

‖χ−Dgδ‖Lp(Ω×Q)d ≤ δ.

We de�ne gδ,ε = εT −1
ε gδ and note that gδ,ε ∈ Lp(Ω) ⊗W 1,p

0 (Q) and ∇gδ,ε = T −1
ε Dgδ +

T −1
ε ε∇gδ. As a result of this and with help of the isometry property of T −1

ε , the claim of
the lemma follows.

Proof of Proposition 2.14. For χ ∈ Lppot(Ω) ⊗ Lp(Q) we de�ne Gεχ = vε as the unique

weak solution in W 1,p
0 (Q) to the equation (for P -a.e. ω ∈ Ω)

−∆vε(ω) = −∇ · (T −1
ε χ(ω)). (11)

Above and further in this proof, we use the notation u(ω) := u(·, ω) ∈ Lp(Q) for functions
u ∈ Lp(Ω×Q).

By Poincaré's inequality and the Calderon-Zygmund estimate, we obtain

‖vε(ω)‖Lp(Q) ≤ C‖∇vε(ω)‖Lp(Q)d ≤ C‖T −1
ε χ(ω)‖Lp(Q)d ,

and therefore
‖vε‖Lp(Ω×Q) ≤ C‖∇vε‖Lp(Ω×Q)d ≤ C‖χ‖Lp(Ω×Q)d .

Using Lemma 2.13, we �nd a sequence gδ,ε ∈ Lp(Ω)⊗W 1,p
0 (Q) such that

‖gδ,ε(χ)‖Lp(Ω×Q) ≤ εC(δ), lim sup
ε→0

‖Tε∇gδ,ε(χ)− χ‖Lp(Ω×Q)d ≤ δ.

Note that vε(ω)− gδ,ε(ω) ∈ W 1,p
0 (Q) (for P -a.e. ω ∈ Ω) and it is the unique weak solution

to
−∆(vε(ω)− gδ,ε(ω)) = −∇ · (T −1

ε χ(ω)−∇gδ,ε(ω)).

As before, we have

‖vε − gδ,ε‖Lp(Ω×Q) ≤ C‖∇vε −∇gδ,ε‖Lp(Ω×Q)d ≤ C‖χ− Tε∇gδ,ε‖Lp(Ω×Q)d . (12)

Therefore, using the isometry property of Tε, we obtain

‖Tε∇vε − χ‖Lp(Ω×Q)d ≤ ‖∇vε −∇gδ,ε‖Lp(Ω×Q)d + ‖Tε∇gδ,ε − χ‖Lp(Ω×Q)d

≤ C‖χ− Tε∇gδ,ε‖Lp(Ω×Q)d .

Consequently, �rst letting ε→ 0 and then δ → 0 we obtain that ∇vε 2s→ χ in Lp(Ω×Q)d.

Furthermore, using (12) we obtain that vε
2s→ 0 in Lp(Ω×Q) which completes the proof.

3 Applications to homogenization in the mean

In this section we apply the stochastic unfolding method to homogenization problems. We
discuss the classical homogenization problem of convex integral functionals and derive a
homogenization result for an evolutionary gradient system. We refer to [61] where a

DOI 10.20347/WIAS.PREPRINT.2460 Berlin 2017



M. Heida, S.Neukamm, M. Varga 16

similar analysis has been conducted in a discrete-to-continuum setting for convex integral
functionals and for an evolutionary rate-independent system.

The treatment of integral functionals is a well-known topic in stochastic homogenization
and previous results typically rely on the subadditive ergodic theorem (see e.g. [24, 60])
or on the notion of quenched stochastic two-scale convergence (see [39] and Section 4).
The analysis via unfolding is less involved than these methods since it merely relies on
lower semi-continuity of convex functionals and weak compactness properties of �unfolded�
sequences of functions in Lp(Ω × Q). On the other hand, the method we present yields
weaker results than other procedures, namely convergence for solutions is obtained in
a statistically averaged sense (see Proposition 3.5), whereas the analysis based on the
subadditive ergodic theorem (e.g. [60]) yields convergence for every typical realization of
the medium and it even allows to consider non-convex functionals. We refer to a recent
study [11] for an investigation of homogenization of non-convex integral functionals by a
two-scale Γ-convergence approach.

The second part of this section is dedicated to the analysis of an evolutionary problem, a
gradient system which corresponds to an Allen-Cahn type equation. A signi�cant number
of mathematical models can be phrased in the setting of evolutionary gradient systems
which are formulated variationally, with the help of an energy and a dissipation functional
(see Section 3.2 for a speci�c example). We refer to [4, 53] for the abstract theory of
gradient systems. Typically, the asymptotic analysis of sequences of gradient systems (so
called evolutionary Γ-convergence [52]) relies merely on Γ-convergence properties of the
underlying two functionals. For various general strategies for such problems we refer to
[65, 26, 53, 52]. In [47] a gradient system driven by a non-convex (Cahn-Hilliard type)
energy is considered and a periodic homogenization result is established using periodic
unfolding. In this study, we consider a related random model and derive a homogenization
result based on the stochastic unfolding procedure (see Section 3.2).

3.1 Convex integral functionals

Let p ∈ (1,∞) and Q ⊂ Rd be open, bounded and Lipschitz. We consider V : Ω × Q ×
Rd×d → R and the following set of assumptions.

(A1) V (·, ·, F ) is measurable w.r.t. the product σ-algebra F ⊗ L(Q) for all F ∈ Rd×d.

(A2) V (ω, x, ·) is convex for a.e. (ω, x) ∈ Ω×Q.

(A3) There exists a C > 0 such that

1

C
|F |p − C ≤ V (ω, x, F ) ≤ C(|F |p + 1)

for a.e. (ω, x) ∈ Ω×Q and every F ∈ Rd×d.

(A4) There exists b : R → R positive, continuous and with b(0) = 0 such that

|V (ω, x1, F1)− V (ω, x2, F2)| ≤ b(|x1 − x2|)

for P -a.e. ω ∈ Ω and every x1, x2 ∈ Q, F1, F2 ∈ Rd×d.
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(A5) V ≥ 0 and it holds that for a.e. (ω, x) ∈ Ω × Q, V (ω, x, ·) is uniformly convex
with modulus (·)p, i.e. there exists C > 0 (independent of (ω, x)) such that for all
F,G ∈ Rd×d and t ∈ [0, 1]

V (ω, x, tF + (1− t)G) ≤ tV (ω, x, F ) + (1− t)V (ω, x,G)− (1− t)tC|F −G|p.

Below we use the shorthand notation ∇su = 1
2

(
∇u+∇uT

)
and χs = 1

2

(
χ+ χT

)
. We

consider problems with homogeneous Dirichlet boundary conditions and energy functional

Eε : Lp(Ω)⊗W 1,p
0 (Q)d → R, Eε(u) =

〈
ˆ

Q

V (τx
ε
ω, x,∇su(ω, x))dx

〉
. (13)

Under the assumptions (A1)− (A3), in the limit ε→ 0 we obtain the following functional

E0 :
(
Lpinv(Ω)⊗W 1,p

0 (Q)d
)
×
(
Lppot(Ω)⊗ Lp(Q)d

)
,

E0(u, χ) =

〈
ˆ

Q

V (ω, x,∇su(ω, x) + χs(ω, x))dx

〉
.

(14)

Theorem 3.1 (Two-scale homogenization). Let p ∈ (1,∞) and Q ⊂ Rd open, bounded
and Lipschitz. Assume (A1)− (A3).

(i) (Compactness) Let uε ∈ Lp(Ω) ⊗ W 1,p
0 (Q)d be such that lim supε→0 Eε(uε) < ∞.

There exist (u, χ) ∈
(
Lpinv(Ω)⊗W 1,p

0 (Q)d
)
×
(
Lppot(Ω)⊗ Lp(Q)d

)
and a subsequence

(not relabeled) such that

uε
2s
⇀ u in Lp(Ω×Q)d, ∇uε 2s

⇀ ∇u+ χ in Lp(Ω×Q)d×d. (15)

(ii) (Liminf inequality) If the above convergence holds for the whole sequence, then

lim inf
ε→0

Eε(uε) ≥ E0(u, χ).

(iii) (Limsup inequality) Let (u, χ) ∈
(
Lpinv(Ω)⊗W 1,p

0 (Q)d
)
×
(
Lppot(Ω)⊗ Lp(Q)d

)
. There

exists a sequence uε ∈ Lp(Ω)⊗W 1,p
0 (Q)d such that

uε
2s→ u in Lp(Ω×Q)d, ∇uε 2s→ ∇u+ χ in Lp(Ω×Q)d×d, lim

ε→0
Eε(uε) = E0(u, χ).

(For the proof see Section 3.3.)

Corollary 3.2. Assume the same assumptions as in Theorem 3.1. Let uε ∈ Lp(Ω) ⊗
W 1,p

0 (Q)d be a minimizer of Eε. Then there exists a subsequence (not relabeled), u ∈
Lpinv(Ω)×W 1,p

0 (Q)d, and χ ∈ Lppot(Ω)⊗ Lp(Q)d such that uε
2s
⇀ u in Lp(Ω×Q)d, ∇uε 2s

⇀
∇u+ χ in Lp(Ω×Q)d×d, and

lim
ε→0

min Eε = lim
ε→0
Eε(uε) = E0(u, χ) = min E0.

(For the proof see Section 3.3.)

Remark 3.3. If V (ω, x, ·) is strictly convex the minimizers are unique and the convergence
in the above corollary holds for the entire sequence.

DOI 10.20347/WIAS.PREPRINT.2460 Berlin 2017



M. Heida, S.Neukamm, M. Varga 18

Remark 3.4. Wemight consider the perturbed energy functional Iε(·) = Eε(·)+〈lε, ·〉(Lp)∗,Lp

with lε
2→ l in Lq(Ω × Q). As in Corollary 3.2, minimizers of Iε converge in the above

two-scale sense (up to a subsequence) to minimizers of I0(·) = E0(·) + 〈Pinvl, ·〉(Lp)∗,Lp .

If we additionally assume that 〈·〉 is ergodic and (A4), the limit functional reduces to a
single-scale energy

Ehom : W 1,p
0 (Q)d → R, Ehom(u) =

ˆ

Q

Vhom(x,∇u(x))dx,

where the homogenized integrand Vhom is given for x ∈ Rd and F ∈ Rd×d by

Vhom(x, F ) = inf
χ∈Lppot(Ω)d

〈V (ω, x, F s + χs(ω))〉 . (16)

Theorem 3.5 (Ergodic case). Assume (A1)− (A4) and 〈·〉 is ergodic.

(i) Let uε ∈ Lp(Ω) ⊗W 1,p
0 (Q)d be such that lim supε→0 Eε(uε) < ∞. There exist u ∈

W 1,p
0 (Q)d and a subsequence (not relabeled) such that

uε
2s
⇀ u in Lp(Ω×Q)d, 〈uε〉 → u strongly in Lp(Q)d,

〈∇uε〉⇀ ∇u weakly in Lp(Q)d×d. (17)

Moreover,

lim inf
ε→0

Eε(uε) ≥ Ehom(u).

(ii) Let u ∈ W 1,p
0 (Q)d. There exists a sequence uε ∈ Lp(Ω)⊗W 1,p

0 (Q)d such that

uε
2s→ u in Lp(Ω×Q)d, 〈∇uε〉 → ∇u strongly in Lp(Q)d×d, lim

ε→0
Eε(uε) = Ehom(u).

(For the proof see Section 3.3.)

We consider problems with an additional strong convexity assumption and consequently
obtain that the whole sequence of unique minimizers of Eε converges strongly in the usual
strong topology of L2(Ω×Q) to the unique minimizer of Ehom:

Proposition 3.6. Let p ∈ (1,∞) and Q ⊂ Rd open, bounded and Lipschitz. Assume
(A1) − (A5). Eε and Ehom admit unique minimizers uε ∈ Lp(Ω) ⊗ W 1,p(Q)d and u ∈
W 1,p

0 (Q), respectively. We have

uε → u in Lp(Ω×Q)d, 〈∇uε〉⇀∇u weakly in Lp(Q)d×d.

(For the proof see Section 3.3.)
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3.2 Allen-Cahn type equations

In this section we provide a homogenization result for an evolutionary gradient system.
The system is de�ned on a state space B = L2(Ω×Q) and with the help of two functionals
- a dissipation potential Rε and an energy functional Eε. The dissipation potential Rε :
B → [0,∞) is given by

Rε(u) =
1

2

〈
ˆ

Q

r(τx
ε
ω)|u(ω, x)|2dx

〉
,

where r : Ω → R. The energy functional Eε : B → R ∪ {∞} is de�ned as follows. For
u ∈ L2(Ω)⊗H1(Q),

Eε(u) =

〈
ˆ

Q

a(τx
ε
ω)∇u(ω, x) · ∇u(ω, x) + b(τx

ε
ω)|u(ω, x)|2 + f(τx

ε
ω, 〈u(ω, x)〉)dx

〉
,

and we extend Eε by ∞ to the whole B. Above, a : Ω → Rd×d, b : Ω → R and
f : Ω× R→ R. We consider the following assumptions:

(B1) r, a, b are measurable and there exist C1, C2 > 0 such that for P -a.e. ω ∈ Ω it holds
r(ω), b(ω) ∈ [C1, C2]. Moreover, a ∈ L∞(Ω)d×d and there exists C > 0 such that

a(ω)F · F ≥ C|F |2 for P -a.e. ω ∈ Ω and all F ∈ Rd.

(B2) f(·, x) is measurable for all x ∈ R and f(ω, ·) is continuous for P -a.e. ω ∈ Ω. There
exist λ ∈ R, C > 0 and p < 2∗ (2∗ = ∞ for d = 1, 2 and 2∗ = 2d

d−2
for d ≥ 3) such

that for P -a.e. ω ∈ Ω

f(ω, ·) is λ-convex, i.e. x 7→ f(ω, x)− λ

2
x2 is convex,

− C ≤ f(ω, x) ≤ C(|x|p + 1) for all x ∈ R.

We remark that the above assumptions imply that u 7→ Eε(u)−ΛRε(u) is convex, where
Λ := λ

C1
.

We consider the following gradient system in the energy dissipation principle formulation
(see [52] for equivalent formulations of gradient systems): Let T > 0. It is said that
u ∈ AC([0, T ]; B) is a solution to the gradient system associated with (Rε, Eε) (shorter u
satis�es EDPε (energy dissipation principle)) if

Eε(u(T )) +

ˆ T

0

Rε(u̇(t)) +R∗ε(ξ(t))dt ≤ Eε(u(0)),

ξ(t) ∈ ∂FEε(u(t)) for a.e. t ∈ (0, T ].

(18)

Above R∗ε : B∗ → [0,∞), R∗ε(ξ) = supu∈B

(
〈ξ, u〉B∗,B −Rε(u)

)
denotes the Legendre-

Fenchel conjugate of Rε. Moreover, ∂FEε(u) denotes the Fréchet subdi�erential of Eε at
the point u ∈ B and it is de�ned as

∂FEε(u) =
{
ξ ∈ B∗ : Eε(u) ≤ Eε(w) + 〈ξ, u− w〉B∗,B − ΛRε(u− w) for all w ∈ B

}
.
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Remark 3.7. Gradient systems driven by Λ-convex energies (in a suitable setting) have
unique solutions (see [22]). In particular, if (B1) − (B2) hold and for an initial data
u0
ε ∈ L2(Ω) ⊗ H1(Q), there exists uε ∈ CLip([0, T ],B), a unique solution to EDPε with
uε(0) = u0

ε (see e.g. [22, Theorem 3.2]).

As ε→ 0, we derive a limit gradient system which is described in the following. The state
space for the e�ective model is B0 := L2

inv(Ω)⊗L2(Q). The e�ective dissipation potential
Rhom : B0 → [0,∞) is given by

Rhom(u) =

〈
ˆ

Q

r(ω)|u(ω, x)|2dx
〉
.

The energy functional Ehom : B0 → R ∪ {∞} is de�ned as

Ehom(u) = inf
χ∈L2

pot(Ω)⊗L2(Q)

〈
ˆ

Q

a(ω) (∇u(ω, x) + χ(ω, x)) · (∇u(ω, x) + χ(ω, x))

+ b(ω)|u(ω, x)|2 + f(ω, 〈u(ω, x)〉)dx
〉 (19)

for u ∈ L2
inv(Ω) ⊗ H1(Q) and Ehom = ∞ otherwise. We remark that u 7→ Ehom(u) −

ΛRhom(u) is convex. We say that u ∈ AC([0, T ],B0) is a solution to the gradient system
associated with (Rhom, Ehom) (shorter satis�es EDP0) if it satis�es inequality (18) with
B, Eε and Rε replaced by B0, Ehom and Rhom, respectively.

Remark 3.8. If (B1)− (B2) hold and for initial data u0 ∈ L2
inv(Ω)⊗H1(Q), there exists

u ∈ CLip([0, T ],B0), a unique solution to EDP0 with u(0) = u0 (see [22, Theorem 3.2]).

The following homogenization result is based on a general strategy for evolutionary Γ-
convergence of abstract gradient systems presented in [52, 53]. We remark that an impor-
tant ingredient (which allows to consider non-convex energy functionals) in this theory is
a compactness assumption for solutions uε(t) (w.r.t. the strong topology of B). However,
in our model a priori bounds do not lead to compactness, namely the uniform bounds
we obtain in the space L2(Ω)⊗H1(Q) do not attain convergent subsequences in B (but
merely weakly convergent subsequences). In contrast, in deterministic homogenization of
similar problems (e.g. [47]) the compact Sobolev embedding H1(Q)⊂Lp(Q) with p < 2∗

is critically used. In the stochastic case, we only have L2(Ω) ⊗H1(Q) ⊂ L2(Ω) ⊗ Lp(Q)
continuously. We remedy this issue, by restricting the analysis to a special class of prob-
lems in which the non-convex term in the energy acts only on the statistical average
〈uε(t)〉 ∈ H1(Q) of the solution and in this manner we are able to exploit the compact
Sobolev embedding for passing to the limit in the non-convex part of the energy.

Theorem 3.9 (Evolutionary Γ-convergence). Let (B1) − (B2) hold and consider u0 ∈
L2

inv(Ω)⊗H1(Q), u0
ε ∈ L2(Ω)⊗H1(Q) such that

u0
ε → u0 strongly in L2(Ω×Q), Eε(u0

ε)→ Ehom(u0) (well-prepared initial data).

Then uε ∈ CLip([0, T ],B), the unique solution to EDPε with uε(0) = u0
ε, satis�es: For

all t ∈ [0, T ]

uε(t)
2
⇀ u(t) in L2(Ω×Q), Pinv∇uε(t) ⇀ ∇u(t) weakly in L2(Ω×Q)d.

where u ∈ CLip([0, T ],B0) is the unique solution to EDP0 with u(0) = u0. Moreover, for
any t ∈ [0, T ]

Eε(uε(t))→ Ehom(u(t)).
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(For the proof see Section 3.3.)

Remark 3.10 (Ergodic case). If we additionally assume that 〈·〉 is ergodic, the limit system
is driven by deterministic functionals. In particular, the limit is described by a state space
B̃0 = H1(Q), dissipation potential

R̃hom(u) =

ˆ

Q

〈r〉 |u(x)|2dx,

and energy functional

Ẽhom(u) =

ˆ

Q

ahom∇u(x) · ∇u(x) + 〈b〉 |u(x)|2 + fhom(u(x))dx,

where ahom and fhom are de�ned as: ahomF ·F = infχ∈L2
pot(Ω) 〈a(ω)(F + χ(ω)) · (F + χ(ω))〉

for F ∈ Rd, and let fhom(x) = 〈f(ω, x)〉 for x ∈ R.

3.3 Proofs

Proof of Theorem 3.1. (i) The Poincaré-Korn inequality and the growth conditions of V
imply that uε is bounded in L

p(Ω)⊗W 1,p(Q). By Proposition 2.11 there exist u ∈ Lpinv(Ω)⊗
W 1,p(Q)d and χ ∈ Lppot(Ω)⊗Lp(Q)d with the claimed convergence (up to a subsequence).

From Tεuε ∈ Lp(Ω)⊗W 1,p
0 (Q)d for every ε > 0, we conclude that u ∈ Lpinv(Ω)⊗W 1,p

0 (Q)d

(cf. Remark 2.12).

(ii) The claim follows from Proposition 2.8 (iii).

(iii) The existence of a strongly two-scale convergent sequence uε ∈ Lp(Ω)⊗W 1,p
0 (Q) from

Remark 2.15. Furthermore, the convergence of the energy Eε(uε)→ E0(u, χ) follows from
Proposition 2.8 (ii).

Proof of Corollary 3.2. The statement follows by a standard argument from Γ-convergence:
Since uε is a minimizer we conclude that lim supε→0 Eε(uε) ≤ lim supε→0 Eε(0) < ∞.
Hence, by Theorem 3.1 there exists u ∈ Lpinv(Ω) ×W 1,p

0 (Q)d and χ ∈ Lppot(Ω) ⊗ Lp(Q)d

such that uε
2s
⇀ u in Lp(Ω×Q)d, ∇uε 2s

⇀ ∇u+ χ in Lp(Ω×Q)d×d, and

lim inf
ε→0

Eε(uε) ≥ E0(u, χ).

Let (u0, χ0) denote the minimizer of E0. Then by Theorem 3.1 (iii) there exists a recovery
sequence vε s.t. Eε(vε)→ E0(u0, χ0), and thus

min E0 = lim
ε→0
Eε(vε) ≥ lim inf

ε→0
Eε(uε) = lim inf

ε→0
min Eε ≥ E0(u, χ) ≥ min E0,

and thus (u, χ) is a minimizer of E0 and Eε(uε) = min Eε → min E0 = E0(u, χ).

Before presenting the proof of Theorem 3.5, we provide an auxiliary result. The argument
of the following Korn inequality in Lp(Ω) is similar as the proof for the case p = 2 in [40].
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Lemma 3.11. There exists C > 0 such that

〈|χ|p〉 ≤ C 〈|χs|p〉 for every χ ∈ Lppot(Ω)d.

Proof. We prove the claim for χ = Dϕ for ϕ ∈ W 1,p(Ω)d and the general case follows by
density.

Recall, the stationary extension of Dϕ is given by SDϕ(ω, x) = Dϕ(τxω) and we have
∇Sϕ(ω, x) = SDϕ(ω, x). Let R > 0, K > 0 and ηR ∈ C∞c (BR+K) be a cut-o� function
satisfying η = 1 in BR, 0 ≤ η ≤ 1 and |∇ηR| ≤ 2

K
. Using stationarity of P , we obtain

〈|Dϕ|p〉 =

〈
 

BR

|∇Sϕ|pdx
〉

=

〈
 

BR

|∇(ηRSϕ)|pdx
〉
≤
〈

1

|BR|

ˆ

Rd
|∇(ηRSϕ)|pdx

〉
.

Using this and Korn's inequality in Lp(Rd),

〈|Dϕ|p〉 ≤ 2

〈
1

|BR|

ˆ

Rd
|∇s(ηRSϕ)|p

〉

= 2

〈
 

BR

|∇sSϕ|pdx
〉

+
2

|BR|

〈
ˆ

BR+K\BR
|∇s(ηRSϕ)|pdx

〉
.

The �rst term on the right-hand side of the above inequality equals 2 〈|Dsϕ|p〉 and there-
fore to conclude the proof, it is su�cient to show that the second term vanishes in the
limit R→∞. We have

1

|BR|

〈
ˆ

BR+K\BR
|∇s(ηRSϕ)|pdx

〉
≤ 1

|BR|

〈
ˆ

BR+K\BR
|∇(ηRSϕ)|pdx

〉

≤ C

|BR|

〈
ˆ

BR+K\BR
|ηR|p|∇Sϕ|p + |∇ηR|p|Sϕ|pdx

〉

≤ C

|BR|

〈
ˆ

BR+K\BR
|∇Sϕ|pdx

〉
+

C

|BR|Kp

〈
ˆ

BR+K\BR
|Sϕ|pdx

〉
.

(20)

For the �rst term on the right-hand side, we have

C

|BR|

〈
ˆ

BR+K\BR
|∇Sϕ|pdx

〉
=
C|BR+K |
|BR|

〈
 

BR+K

|∇Sϕ|pdx
〉
− C

〈
 

BR

|∇Sϕ|pdx
〉

=C 〈|Dϕ|p〉
( |BR+K |
|BR|

− 1

)

and as R→∞ the last expression vanishes. Similarly, the second term on the right-hand
side of (20) vanishes as R→∞.

For the proof of Theorem 3.5 we apply Castaing's measurable selection lemma in the
following form:

Lemma 3.12 (See [16]). Let X be a complete separable metric space, (S, σ) a measurable
space and f : S → P (X) a multifunction. Further, assume that for all x ∈ S, f(x) is
nonempty and closed in X, and for any closed G ⊂ X we have

{x ∈ S : f(x) ∩G 6= ∅} ∈ σ.
Then f admits a measurable selection, i.e. there exists f̃ : S → X measurable with
f̃(x) ∈ f(x).
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Proof of Theorem 3.5. (i) According to Theorem 3.1 (i) there exist u ∈ W 1,p
0 (Q) and χ ∈

Lppot(Ω)⊗Lp(Q)d such that (using Proposition 2.11) uε satis�es the claimed convergences.
Furthermore, we have

lim inf
ε→0

Eε(uε) ≥ E0(u, χ) ≥ Ehom(u).

(ii) We show that there exists χ ∈ Lppot(Ω)⊗Lp(Q) such that E0(u, χ) = Ehom(u) as follows.
By Lemma 3.11 and the direct method of calculus of variations, the cell problem (16) has
a solution for every (x, F ) ∈ Q× Rd×d, thus

f : Q× Rd×d 3 (x, F ) 7→
{
χ ∈ Lppot(Ω)d : 〈V (ω, x, F s + χs(ω))〉 = Vhom(x, F )

}

de�nes a multifunction. We equip Q×Rd×d with the Borel sigma algebra B(Q×Rd×d) and
we verify the assumptions of Castaing's measurable selection theorem (see Lemma 3.12):
f(x, F ) is nonempty and closed for any (x, F ) ∈ Q×Rd×d, and if G ⊂ Lppot(Ω)d is a closed
ball, it holds

f−(G) :=
{

(x, F ) ∈ Q× Rd×d : f(x, F ) ∩G 6= ∅
}
∈ B(Q× Rd×d),

as can be seen as follows. Consider a sequence (xj, Fj) ∈ f−(G) such that xj → x and
Fj → F . There exists χj ∈ f(xj, Fj) ∩ G and up to a subsequence (not relabeled) it
satis�es χj ⇀ χ∗ weakly in Lppot and χ

∗ ∈ G. Let χ ∈ f(x, F ), it holds

〈V (ω, x, F s + χs∗(ω))〉 ≤ lim inf
j→∞

〈
V (ω, xj, F

s
j + χsj)

〉

≤ lim inf
j→∞

〈
V (ω, xj, F

s
j + χs)

〉
= Vhom(x, F ).

The �rst inequality is obtained using the continuity assumption (A4). As a result of
this, χ∗ ∈ f(x, F ) ∩G and therefore f−(G) is a closed set and therefore it is measurable.
Further, we consider the case G ⊂ Lppot(Ω) is a closed set. Since Lp(Ω) is separable, the
closed set G ⊂ Lp(Ω)d×d can be represented as a countable intersection of countable unions
of closed balls. Therefore, f−(G) ∈ B(Q×Rd×d). Hence we may apply Theorem 3.12 and

obtain a measurable function f̃ : Q× Rd×d → Lppot(Ω)d such that f̃(x, F ) ⊂ f(x, F ).

We de�ne χ(x) = f̃(x,∇u(x)) which is measurable by the properties of f̃ and therefore
χ de�nes an element in Lppot(Ω)d⊗Lp(Q) with E0(u, χ) = Ehom(u). Thus, by Theorem 3.1

(iii) there exists a strongly two-scale convergent sequence uε ∈ Lp(Ω) ×W 1,p
0 (Q)d such

that

lim
ε→0
Eε(uε) = E0(u, χ) = Ehom(u).

Since χ is mean-free, the convergence for 〈∇uε〉 follows.

Proof of Proposition 3.6. Uniqueness of minimizers follows by the uniform convexity as-
sumption on the integrand V . As in the proof of Theorem 3.5 (ii), we select χ ∈ Lppot(Ω)⊗
Lp(Q)d such that Vhom(x,∇u(x)) = 〈V (ω, x,∇su(x) + χs(ω, x))〉. Theorem 3.1 (iii) im-

plies that there exists a sequence vε ∈ Lp(Ω)⊗W 1,p
0 (Q)d such that vε

2s→ u in Lp(Ω×Q)d

and Eε(vε) → E0(u, χ) = Ehom(u). By triangle's inequality we have ‖uε − u‖Lp(Ω×Q) ≤
‖uε − vε‖Lp(Ω×Q) + ‖vε − u‖Lp(Ω×Q). By the isometry property of Tε and strong two-scale
convergence of vε we have ‖vε−u‖Lp(Ω×Q) = ‖Tε(vε−u)‖Lp(Ω×Q) = ‖Tεvε−u‖Lp(Ω×Q) → 0.
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Furthermore, the Poincaré-Korn inequality ‖uε−vε‖pLp(Ω×Q) ≤ C‖∇suε−∇svε‖pLp(Ω×Q) (for

a generic constant C that is independent of ε but might change from line to line), the uni-
form convexity of V in form of C

4
‖∇suε−∇svε‖pLp(Ω×Q) ≤ 1

2
Eε(uε)+ 1

2
Eε(uε)−Eε(1

2
(uε+vε)),

and the minimality of uε, yield the estimate

‖uε − vε‖pLp(Ω×Q) ≤ CEε(vε)− Eε(1
2
(uε + vε)).

Since Eε(vε) → Ehom(u) and lim inf
ε→0

Eε(1
2
(uε + vε)) ≥ E(u, χ) = Ehom(u), we conclude that

the right-hand side converges to 0. Thus, uε → u in Lp(Ω × Q), and the convergence of
the gradient follows using Proposition 2.11.

Proof of Theorem 3.9. This proof follows the general strategy outlined in [52, Theorem
3.3] (see also [53]) with slight modi�cations regarding compactness issues.

Step 1. A priori estimates and compactness.

The assumptions on the initial data (well-preparedness) imply that there exists C > 0
such that Eε(u0

ε) ≤ C. This means that the right-hand side of (18) (for uε) is bounded
(uniformly in ε), consequently using the growth conditions in (B1)− (B2) we obtain that

sup
t∈[0,T ]

‖uε(t)‖L2(Ω)⊗H1(Q) + ‖uε‖H1([0,T ];B) + ‖ξε‖L2([0,T ],B) ≤ C. (21)

Here and below, we identify ξε(t) ∈ B∗ with its Riesz-representative in B. In this

respect, R∗ε might be indenti�ed with the functional R∗ε(ξ) =
〈
´

Q
r−1(τx

ε
ω)(ξ(ω, x))2dx

〉

(not relabeled) de�ned on B.

With help of the estimate (21) we extract a subsequence (not relabeled) such that

uε ⇀ u weakly in H1([0, T ]; B), ξε ⇀ ξ weakly in L2([0, T ]; B).

Moreover, since (21) implies a uniform estimate for uε in the C0, 1
2 ([0, T ],B) norm, the

Arzelá-Ascoli theorem implies that there exists a subsequence (not relabeled) such that
for all t ∈ [0, T ] we have

uε(t) ⇀ u(t) weakly in B.

Furthermore, weak lower semi-continuity of the B-norm and the uniform estimate for uε
in C0, 1

2 ([0, T ],B) yield u ∈ C0, 1
2 ([0, T ]; B). It holds that u(0) = u0 since by assumption

u0
ε → u0. Note that (21) and Jensen's inequality imply that supt∈[0,T ] ‖ 〈uε(t)〉 ‖H1(Q) ≤ C

and therefore the compact Sobolev embedding implies that for all t ∈ [0, T ], 〈uε(t)〉 →
〈u(t)〉 strongly in Lp(Q).

Step 2. Passage to the limit ε→ 0.

First, we remark that the conditional expectation Pinv is a contraction on L
s(Ω) for any s ∈

[1,∞]. As a result of this and since r is positive, it holds
〈
´

Q
(PinvT ∗ε r)(ω, x)(w(ω, x))2dx

〉
≤

Rε(w) for any w ∈ B. Furthermore, we have PinvT ∗ε r = Pinvr (cf. proof of Lemma 2.19)
and appealing to Jensen's inequality for Pinv, the above inequality yields Rhom(Pinvw) =〈
´

Q
(Pinvr)(ω)((Pinvw)(ω, x))2dx

〉
≤ Rε(w) for any w ∈ B (where the �rst equality is
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obtained using an approximation argument). The analogous inequality holds as well for
R∗ε. As a result of this, inequality (18) (for uε) implies

Eε(uε(T )) +

ˆ T

0

Rhom(Pinvu̇ε(t)) +R∗hom(Pinvξε(t))dt ≤ Eε(uε(0)). (22)

The right-hand side of the above inequality converges to Ehom(u(0)) using the well-
preparedness of the initial data. We note that the functional u ∈ L2([0, T ],B0) 7→
´ T

0
Rhom(u(t))dt is weakly l.s.c. since it is convex and strongly l.s.c. (the same holds

if we replace Rhom by R∗hom) and therefore we conclude that

lim inf
ε→0

ˆ T

0

Rhom(Pinvu̇ε(t))+R∗hom(Pinvξε(t))dt ≥
ˆ T

0

Rhom(∂t(Pinvu)(t))+R∗hom(Pinvξ(t))dt,

where we use that Pinv is a linear and bounded operator and thus Pinvu̇ε ⇀ ∂t(Pinvu)

weakly in L2([0, T ]; B) (Pinv and ˙(·) =: ∂t(·) commute) and Pinvξε ⇀ Pinvξ weakly in
L2([0, T ]; B).

Moreover, we have lim infε→0 Eε(uε(T )) = limε′→0 Eε′(uε′(T )) for a subsequence ε′. Using
the uniform bound in (21) and Proposition 2.11 we extract a further subsequence ε′′ such
that

uε′′(T )
2s
⇀ Pinvu(T ), ∇uε′′(T )

2s
⇀ ∇Pinvu(T ) + χ,

for some χ ∈ L2
pot(Ω)⊗ L2(Q). We have

lim inf
ε→0

Eε(uε(T )) ≥ lim inf
ε′′→0

〈
ˆ

Q

a(τ x
ε′′
ω)∇uε′′(T )(ω, x) · ∇uε′′(T )(ω, x)dx

〉

+ lim inf
ε′′→0

〈
ˆ

Q

b(τ x
ε′′
ω)|uε′′(T )(ω, x)|2dx

〉
+ lim inf

ε′′→0

〈
ˆ

Q

f(ω, 〈uε′′(T )(ω, x)〉)dx
〉
.

The third term on the right-hand side of equals
〈
´

Q
f(ω, 〈u(T )(ω, x)〉)dx

〉
. This follows

from the strong convergence of 〈u(T )〉, the continuity and growth assumptions of f and by
the dominated convergence theorem (cf. proof Proposition 2.8). For the other terms we
apply Proposition 2.8 (ii) to obtain that lim infε→0 Eε(uε(T )) ≥ Ehom(Pinvu(T )). Collecting
all the previous estimates for the terms in (22) and using the shorthand v := Pinvu, we
obtain

Ehom(v(T )) +

ˆ T

0

Rhom(v̇(t)) +R∗hom(Pinvξ(t))dt ≤ Ehom(v(0)).

Step 4. Weak-weak closedness of the subdi�erential.

In this part we show that Pinvξ(t) ∈ ∂FEhom(v(t)) for a.e. t ∈ [0, T ]. Commonly, such
closedness of the subdi�erential is proved using strong convergence of uε(t) (missing in
our case) and Mosco convergence of the energy Eε. In order to show the above property,
we borrow an argument from the analysis of evolutionary rate-independent systems (see
[55, 54, Proposition 4.5]). Namely, we show that the construction of suitable joint recovery
sequences yields the above closedness property.

First, we show that for ξε, ξ ∈ B (recall that we identify elements in B and B∗):

If ξε ∈ ∂FEε(uε(t)) and ξε ⇀ ξ weakly in B, then ξ ∈ ∂FEhom(v(t)). (23)
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We assume that ξε ∈ ∂FEε(uε(t)) and ξε ⇀ ξ weakly in L2(Ω × Q), and we consider a

subsequence (not relabeled) such that uε(t)
2
⇀ v(t) and ∇uε(t) 2

⇀ ∇v(t) + χ for some
χ ∈ L2

pot(Ω)⊗ L2(Q) (using Proposition 2.11). It follows that

Eε(uε(t)) ≤ Eε(w) + 〈ξε, uε − w〉B∗,B − ΛRε(uε − w) for all w ∈ B. (24)

We consider an arbitrary w̃ ∈ L2
inv(Ω) ⊗ H1(Q) and denote by χw̃ ∈ L2

pot(Ω) ⊗ L2(Q), a
minimizer to

L2
pot(Ω)⊗ L2(Q) 3 χ 7→

〈
ˆ

Q

a(ω)(∇w̃(ω, x) + χ(ω, x)) · (∇w̃(ω, x) + χ(ω, x))dx

〉
.

Using Remark 2.15, we are able to construct a sequence w̃ε ∈ L2(Ω)⊗H1(Q) such that

w̃ε
2→ v(t)− w̃ in B, ∇w̃ε 2→ ∇v(t)− w̃ + χ− χw̃ in Bd.

Furthermore, we de�ne the joint recovery sequence as wε = uε(t)− w̃ε. We set w = wε in
(24), to obtain

0 ≤ Eε(wε)− Eε(uε(t)) + 〈ξε, uε(t)− wε〉B − ΛRε(uε(t)− wε). (25)

Note that by construction uε(t)−wε → v(t)− w̃ strongly and in two-scales and therefore
the sum of the third and fourth terms on the right-hand side of the above inequality
converges to 〈Pinvξ, v(t)− w̃〉 − ΛRhom(v(t) − w̃). The �rst two terms are treated as
follows. Since the �rst two terms in the energy are quadratic we obtain

Eε(wε)− Eε(uε(t))

=

〈
ˆ

Q

a(ω) (Tε(∇wε −∇uε(t))) · (Tε(∇wε +∇uε(t)))
〉

+

〈
ˆ

Q

b(ω) (wε − uε(t)) (wε + uε(t)) dx+ f(ω, 〈wε〉)− f(ω, 〈uε(t)〉)dx
〉
.

We remark that the �rst and the second terms on the right-hand side above are by
construction products of strongly and weakly converging sequence. As a result of this and
with the help of the facts that 〈wε〉 → 〈w̃〉 and 〈uε〉 → 〈v(t)〉 strongly in Lp(Q), we are
able to pass to the limit in the above inequality

lim
ε→0
Eε(wε)− Eε(uε(t)) ≤ Ehom(w̃)− Ehom(v(t)).

Collecting the previous statements for (25), we obtain

0 ≤ Ehom(w̃)− Ehom(v(t)) + 〈Pinvξ, v(t)− w̃〉B∗0 ,B0
− ΛRhom(v(t)− w̃).

This proves (23).

Second, we refer to [64, Theorem 3.2] (see also Section 4.5.1) to obtain that there exists a
parametrized measure µt on B such that the weak limit ξ of ξε satis�es ξ(t) =

´

B
ηdµt(η).

Moreover, the measure µt is concentrated on the set of weak cluster points of ξε(t). For
any weak cluster point ξ of the sequence ξε(t), using (23), it holds ξ ∈ ∂FEhom(v(t)). As a
result of this and with the help of the fact that ∂FEhom(v(t)) is a convex set, we conclude
that ξ(t) =

´

B
ηdµt(η) ∈ ∂FEhom(v(t)).
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Step 5. Convergence for the whole sequence and convergence of the energy.

As a result of the previous steps, we obtain that up to a subsequence for all t ∈ [0, T ],

uε(t)
2
⇀ v(t) = Pinvu(t) and Pinv∇uε(t) ⇀ ∇v(t) weakly in Bd, where v ∈ CLip([0, T ],B0)

is the unique solution to EDP0 with v(0) = u0. Using the uniqueness of solutions to the
limit problem and by a standard contradiction argument, we obtain that the convergence
holds for the whole sequence.

The above procedure of passing to the limit in inequality (18) can be repeated if we replace
T in the inequality by an arbitrary t ∈ (0, T ]. We remark that using the chain rule for Eε
and Ehom (see e.g. [52, Theorem 3.2]) it follows that the inequalities in the formulations
of EDPε and EDP0 (where T is replaced by t) are equalities. Using this and the fact
that the liminif inequalities hold separately for Eε(uε(t)) and

´ t

0
Rε(u̇s) +R∗ε(ξε(s))ds, we

obtain that for any t ∈ [0, T ], limε→0 Eε(uε(t)) = Ehom(v(t)). This concludes the proof.

4 Quenched stochastic two-scale convergence and rela-

tion to stochastic unfolding

In this section, we recall the concept of quenched stochastic two-scale convergence (cf. [73])
and study its relation to stochastic unfolding. The notion of quenched stochastic two-
scale convergence is based on the individual ergodic theorem, see Theorem 2.3. We thus
assume throughout this section that

(Ω,F , P, τ) satis�es Assumption 2.1 and P is ergodic.

Moreover, throughout this section we �x exponents p ∈ (1,∞), q := p
p−1

, and an open

and bounded domain Q ⊂ Rd. We denote by (Bp, ‖ · ‖Bp) the Banach space Lp(Ω × Q)
and the associated norm, and we write (Bp)∗ for the dual space. For the de�nition of
quenched two-scale convergence we need to specify a suitable space of test-functions in
Bq that is countably generated. To that end we �x sets DΩ and DQ such that

• DΩ is a countable set of bounded, measurable functions on (Ω,F) that contains the
identity 1Ω ≡ 1 and is dense in L1(Ω) (and thus in Lr(Ω) for any 1 ≤ r <∞).

• DQ ⊂ C(Q) is a countable set that contains the identity 1Q ≡ 1 and is dense in
L1(Q) (and thus in Lr(Q) for any 1 ≤ r <∞).

We denote by A := {ϕ(ω, x) = ϕΩ(ω)ϕQ(x) : ϕΩ ∈ DΩ, ϕQ ∈ DQ} the set of simple
tensor products (a countable set), and by D0 the Q-linear span of A , i.e.

D0 :=
{ m∑

j=1

λjϕj : m ∈ N, λ1, . . . , λm ∈ Q, ϕ1, . . . , ϕm ∈ A
}
.

We �nally set D := spanA = spanD0 and denote by D := span(DQ) (the span of DQ

seen as a subspace of D), and note that D and D0 are dense subsets of Bq, while the
closure of D in Bq is isometrically isomorph to Lq(Q). Let us anticipate that D serves as
our space of test-functions for stochastic two-scale convergence. As opposed to two-scale
convergence in the mean, �quenched� stochastic two-scale convergence is de�ned relative
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to a �xed �admissible� realization ω0 ∈ Ω. Throughout this section we denote by Ω0

the set of admissible realizations; it is a set of full measure determined by the following
lemma:

Lemma 4.1. There exists a measurable set Ω0 ⊂ Ω with P (Ω0) = 1 s.t. for all ϕ, ϕ′ ∈ A ,
all ω0 ∈ Ω0, and r ∈ {p, q} we have with (T ∗ε ϕ)(ω, x) := ϕ(τx

ε
ω, x),

lim sup
ε→0

‖(T ∗ε ϕ)(ω0, ·)‖Lr(Q) ≤ ‖ϕ‖Br

and lim
ε→0

ˆ

Q

T ∗ε (ϕϕ′)(ω0, x)dx =

〈
ˆ

Q

(ϕϕ′)(ω0, x) dx

〉
.

Proof. This is a simple consequence of Theorem 2.3 and the fact that A is countable.

For the rest of the section Ω0 is �xed according to Lemma 4.1.

4.1 De�nition and basic properties

The idea of quenched stochastic two-scale convergence is similar to periodic two-scale
convergence: We associate with a bounded sequence (uε) ⊂ Lp(Q) and ω0 ∈ Ω0, a sequence
of linear functionals (Uε) de�ned on D . We can pass (up to a subsequence) to a pointwise
limit U , which is again a linear functional on D and which (thanks to Lemma 4.1) can
be uniquely extended to a bounded linear functional on Bq. We then de�ne the weak
quenched ω0-two-scale limit of (uε) as the Riesz-representation u ∈ Bp of U ∈ (Bq)∗.

De�nition 4.2 (quenched two-scale limit, cf. [73, 38]). Let (uε) be a sequence in Lp(Q),
and let ω0 ∈ Ω0 be �xed. We say that uε converges (weakly, quenched) ω0-two-scale to

u ∈ Bp, and write uε
2s
⇀ω0u, if the sequence uε is bounded in Lp(Q), and for all ϕ ∈ D we

have

lim
ε→0

ˆ

Q

uε(x)(T ∗ε ϕ)(ω0, x) dx =

ˆ

Ω

ˆ

Q

u(x, ω)ϕ(ω, x) dx dP (ω). (26)

Lemma 4.3 (Compactness). Let (uε) be a bounded sequence in L
p(Q) and ω0 ∈ Ω0. Then

there exists a subsequence (still denoted by ε) and u ∈ Bp such that uε
2s
⇀ω0u and

‖u‖Bp ≤ lim inf
ε→0

‖uε‖Lp(Q), (27)

and uε ⇀ 〈u〉 weakly in Lp(Q).

(For the proof see Section 4.1.1).

For our purpose it is convenient to have a metric characterization of two-scale convergence.

Lemma 4.4 (Metric characterization). (i) Let {ϕj}j∈N denote an enumeration of A1 :=
{ ϕ
‖ϕ‖Bq

: ϕ ∈ D0}. The vector space Lin(D) := {U : D → R linear } endowed with
the metric

d(U, V ;Lin(D)) :=
∑

j∈N
2−j

|U(ϕj)− V (ϕj)|
|U(ϕj)− V (ϕj)|+ 1

is complete and separable.
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(ii) Let ω0 ∈ Ω0. Consider the maps

Jω0
ε : Lp(Q)→ Lin(D), (Jω0

ε u)(ϕ) :=

ˆ

Q

u(x)(T ∗ε ϕ)(ω0, x) dx,

J0 : Bp → Lin(D), (J0u)(ϕ) :=

〈
ˆ

Q

uϕ

〉
.

Then for any bounded sequence uε in L
p(Q) and any u ∈ Bp we have uε

2s
⇀ω0u if and

only if Jω0
ε uε → J0u in Lin(D).

(For the proof see Section 4.1.1).

Remark 4.5. Convergence in the metric space (Lin(D), d(·, ·,Lin(D)) is equivalent to
pointwise convergence. (Bq)∗ is naturally embedded into the metric space by means
of the restriction J : (Bq)∗ → Lin(D), JU = U |D . In particular, we deduce that for a

bounded sequences (Uk) in (Bq)∗ we have Uk
∗
⇀ U if and only if JUk → JU in the metric

space. Likewise, Bp (resp. Lp(Q)) can be embedded into the metric space Lin(D) via J0

(resp. Jω0
ε with ε > 0 and ω0 ∈ Ω0 arbitrary but �xed), and for a bounded sequence (uk)

in Bp (resp. Lp(Q)) weak convergence in Bp (resp. Lp(Q)) is equivalent to convergence
of (J0uk) (resp. (Jω0

ε uk)) in the metric space.

Lemma 4.6 (Strong convergence implies quenched two-scale convergence). Let (uε) be
a strongly convergent sequence in Lp(Q) with limit u ∈ Lp(Q). Then for all ω0 ∈ Ω0 we

have uε
2s
⇀ω0u.

(For the proof see Section 4.1.1).

De�nition 4.7 (set of quenched two-scale cluster points). For a bounded sequence (uε) in
Lp(Q) and ω0 ∈ Ω0 we denote by CP(ω0, (uε)) the set of all ω0-two-scale cluster points,

i.e. the set of u ∈ Bp with J0u ∈
⋂∞
k=1

{
Jω0
ε uε : ε < 1

k

}
where the closure is taken in the

metric space
(
Lin(D), d(·, ·;Lin(D))).

We conclude this section with two elementary results on quenched stochastic two-scale
convergence:

Lemma 4.8 (Approximation of two-scale limits). Let u ∈ Bp. Then for all ω0 ∈ Ω0,

there exists a sequence uε ∈ Lp(Q) such that uε
2s
⇀ω0 u as ε→ 0.

(For the proof see Section 4.1.1).

Similar to the slightly di�erent setting in [38] one can prove the following result:

Lemma 4.9 (Two-scale limits of gradients). Let (uε) be a sequence in W 1,p(Q) and ω0 ∈
Ω0. Then there exist a subsequence (still denoted by ε) and functions u ∈ W 1,p(Q) and
χ ∈ Lppot(Ω)⊗ Lp(Q) such that uε ⇀ u weakly in W 1,p(Q) and

uε
2s
⇀ω0u and ∇uε 2s

⇀ω0∇u+ χ as ε→ 0 .
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4.1.1 Proofs

Proof of Lemma 4.3. Set C0 := lim sup
ε→0

‖uε‖Lp(Q) and note that C0 < ∞. By passing to

a subsequence (not relabeled) we may assume that C0 = lim inf
ε→0

‖uε‖Lp(Q). Fix ω0 ∈ Ω0.

De�ne linear functionals Uε ∈ Lin(D) via

Uε(ϕ) :=

ˆ

Q

uε(x)(T ∗ε ϕ)(ω0, x) dx.

Note that for all ϕ ∈ A , (Uε(ϕ)) is a bounded sequence in R. Indeed, by Hölder's
inequality and Lemma 4.1,

lim sup
ε→0

|Uε(ϕ)| ≤ lim sup
ε→0

‖uε‖Lp(Q)‖T ∗ε ϕ(ω0, ·)‖Lq(Q) ≤ C0‖ϕ‖Bq . (28)

Since A is countable we can pass to a subsequence (not relabeled) such that Uε(ϕ)
converges for all ϕ ∈ A . By linearity and since D = span(A ), we conclude that Uε(ϕ)
converges for all ϕ ∈ D , and U(ϕ) := lim

ε→0
Uε(ϕ) de�nes a linear functional on D . In view

of (28) we have |U(ϕ)| ≤ C0‖ϕ‖Bq , and thus U admits a unique extension to a linear

functional in (Bq)∗. Let u ∈ Bp denote its Riesz-representation. Then uε
2s
⇀ω0u, and

‖u‖Bp = ‖U‖(Bq)∗ ≤ C0 = lim inf
ε→0

‖uε‖Lp(Q).

Since 1Ω ∈ DΩ we conclude that for all ϕQ ∈ DQ we have

ˆ

Q

uε(x)ϕQ(x) dx = Uε(1ΩϕQ)→ U(1ΩϕQ) =

〈
ˆ

Q

u(ω, x)ϕQ(x) dx

〉
=

ˆ

Q

〈u(x)〉ϕQ(x) dx.

Since (uε) is bounded in Lp(Q), and DQ ⊂ Lp(Q) is dense, we conclude that uε ⇀ 〈u〉
weakly in Lp(Q).

Proof of Lemma 4.4. (i) Argument for completeness: If (Uj) is a Cauchy sequence in
Lin(D), then for all ϕ ∈ A1, (Uj(ϕ)) is a Cauchy sequence in R. By linearity of the
Uj's this implies that (Uj(ϕ)) is Cauchy in R for all ϕ ∈ D . Hence, Uj → U pointwise
in D and it is easy to check that U is linear. Furthermore, Uj → U pointwise in A1

implies Uj → U in the metric space.

Argument for separability: Consider the (injective) map J : (Bq)∗ → Lin(D) where
J(U) denotes the restriction of U to D . The map J is continuous, since for all U, V ∈
(Bq)∗ and ϕ ∈ A1 we have |(JU)(ϕ)−(JV )(ϕ)| ≤ ‖U−V ‖(Bq)∗‖ϕ‖Bq = ‖U−V ‖(Bq)∗

(recall that the test functions in A1 are normalized). Since (Bq)∗ is separable (as a
consequence of the assumption that F is countably generated), it su�ces to show
that the range R(J) of J is dense in Lin(D). To that end let U ∈ Lin(D). For
k ∈ N we denote by Uk ∈ (Bq)∗ the unique linear functional that is equal to U on
the the �nite dimensional (and thus closed) subspace span{ϕ1, . . . , ϕk} ⊂ Bq (where
{ϕj} denotes the enumeration of A1), and zero on the orthogonal complement in
Bq. Then a direct calculation shows that d(U, J(Uk);Lin(D)) ≤ ∑j>k 2−j = 2−k.
Since k ∈ N is arbitrary, we conclude that R(J) ⊂ Lin(D) is dense.
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(ii) Let uε denote a bounded sequence in Lp(Q) and u ∈ Bp. Then by de�nition,

uε
2s
⇀ω0u is equivalent to Jω0

ε uε → J0u pointwise in D , and the latter is equivalent to
convergence in the metric space Lin(D).

Lemma 4.6. This follows from Hölder's inequality and Lemma 4.1, which imply for all
ϕ ∈ A the estimate

lim sup
ε→0

ˆ

Q

|(uε(x)− u(x))T ∗ε ϕ(ω0, x)| dx

≤ lim sup
ε→0

(
‖uε − u‖Lp(Q)

(
ˆ

Q

|T ∗ε ϕ(ω0, x)|q dx
) 1

q )
= 0.

Proof of Lemma 4.8. Since D (de�ned as in Lemma 4.4) is dense in Bp, for any δ > 0
there exists vδ ∈ D0 with ‖u−vδ‖Bp ≤ δ. De�ne vδ,ε(x) := T ∗ε vδ(ω0, x). Let ϕ ∈ D . Since
vδ and ϕ (resp. vδϕ) are by de�nition linear combinations of functions (resp. products of
functions) in A , we deduce from Lemma 4.1 that (vδ,ε)ε is bounded in Lp(Q), and that

ˆ

Q

vδ,εT ∗ε ϕ(ω0, x) =

ˆ

Q

T ∗ε (vδϕ)(ω0, x)→
〈
ˆ

Q

vδϕ

〉
.

By appealing to the metric characterization, we can rephrase the last convergence as
d(Jω0

ε vδ,ε, J0vδ;Lin(D))→ 0. By the triangle inequality we have

d(Jω0
ε vδ,ε, J0u;Lin(D)) ≤ d(Jω0

ε vδ,ε, J0vδ;Lin(D)) + d(J0vδ, J0u;Lin(D)).

The second term is bounded by ‖vδ − u‖Bp ≤ δ, while the �rst term vanishes for ε ↓ 0.
Hence, there exists a diagonal sequence uε := vδ(ε),ε (bounded in Lp(Q)) such that there

holds d(Jω0
ε uε, J0u;Lin(D))→ 0. The latter implies uε

2s
⇀ω0u by Lemma 4.4.

4.2 Comparison to stochastic two-scale convergence in the mean

via Young measures

In this paragraph we establish a relation between quenched two-scale convergence and two-
scale convergence in the mean (in the sense of De�nition 2.5). The relation is established
by Young measures: We show that any bounded sequence uε in Bp � viewed as a functional
acting on test-functions of the form T ∗ε ϕ � generates (up to a subsequence) a Young
measure on Bp that (a) concentrates on the quenched two-scale cluster points of uε, and
(b) allows to represent the two-scale limit (in the mean) of uε.

De�nition 4.10. We say ν := {νω}ω∈Ω is a Young measure on Bp, if for all ω ∈ Ω, νω
is a Borel probability measure on Bp (equipped with the weak topology) and

ω 7→ νω(B) is measurable for all B ∈ B(Bp),

where B(Bp) denotes the Borel-σ-algebra on Bp (equipped with the weak topology).
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Theorem 4.11. Let uε denote a bounded sequence in Bp. Then there exists a subsequence
(still denoted by ε) and a Young measure ν on Bp such that for all ω0 ∈ Ω0,

νω0 is concentrated on CP
(
ω0,
(
uε(ω0, ·)

))
,

and

lim inf
ε→0

‖uε‖pBp ≥
ˆ

Ω

(
ˆ

Bp

‖v‖pBp dνω(v)

)
dP (ω).

Moreover, we have

uε
2s
⇀u where u :=

ˆ

Ω

ˆ

Bp

v dνω(v)dP (ω).

Finally, if there exists v : Ω → Bp measurable and νω = δv(ω) for P -a.e. ω ∈ Ω, then up
to extraction of a further subsequence (still denoted by ε) we have

uε(ω)
2s
⇀ωv(ω) for P -a.e. ω ∈ Ω.

(For the proof see Section 4.2.1).

In the opposite direction we observe that quenched two-scale convergence implies two-scale
convergence in the mean in the following sense:

Lemma 4.12. Consider a family {(uωε )}ω∈Ω of sequences (uωε ) in Lp(Q) and suppose that:

(a) There exists u ∈ Bp s.t. for P -a.e. ω ∈ Ω we have uωε
2s
⇀ωu.

(b) There exists a sequence (ũε) s.t. u
ω
ε (x) = ũε(ω, x) for a.e. (ω, x) ∈ Ω×Q.

(c) There exists a bounded sequence (χε) in Lp(Ω) such that ‖uωε ‖Lp(Q) ≤ χε(ω) for
a.e. ω ∈ Ω.

Then ũε
2s
⇀ u weakly two-scale (in the mean).

(For the proof see Section 4.2.1).

To compare homogenization of convex integral functionals w.r.t. stochastic two-scale con-
vergence in the mean and in the quenched sense, we appeal to the following result.

De�nition 4.13 (Quenched two-scale normal integrand). A function h : Ω×Q×Rd → R
is called a quenched two-scale normal integrand, if for all ξ ∈ Rd, h(·, ·, ξ) is F ⊗ B(Rd)-
measurable, and for a.e. (ω, x) ∈ Ω × Q, h(ω, x, ·) is lower semicontinuous, and for
P -a.e. ω0 ∈ Ω0 and sequence (uε) in L

p(Q) the following implication holds:

uε
2s
⇀ω0u ⇒ lim inf

ε→0

ˆ

Q

h(τx
ε
ω0, x, uε(x))dx ≥

ˆ

Ω

ˆ

Q

h(ω, x, u(ω, x)) dx dP (ω).

Lemma 4.14. Let h denote a quenched two-scale normal integrand, let (uε) denote a
bounded sequence in Bp that generates a Young measure ν on Bp in the sense of Theorem
4.11. Suppose that hε : Ω→ R, hε(ω) := −

´

Q
min

{
0, h(τx

ε
ω, x, uε(ω, x))

}
dx is uniformly

integrable. Then

lim inf
ε→0

ˆ

Ω

ˆ

Q

h(τx
ε
ω, x, uε(ω, x)) dx dP (ω)

≥
ˆ

Ω

ˆ

Bp

(
ˆ

Ω

ˆ

Q

h(ω̃, x, v(ω̃, x)) dx dP (ω̃)

)
dνω(v) dP (ω) (29)

(For the proof see Section 4.2.1).
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4.2.1 Proof of Theorem 4.11 and Lemmas 4.14 and 4.12

We �rst recall some notions and results of Balder's theory for Young measures [9]. Through-
out this section M is assumed to be a separable, complete metric space with metric
d(·, ·; M ).

De�nition 4.15. • We say a function s : Ω→M is measurable, if it is F −B(M )-
measurable where B(M ) denotes the Borel-σ-algebra in M .

• A function h : Ω×M → (−∞,+∞] is called a normal integrand, if h is F⊗B(M )-
measurable, and for all ω ∈ Ω the function h(ω, ·) : M → (−∞,+∞] is lower
semicontinuous.

• A sequence sε of measurable functions sε : Ω → M is called tight, if there exists
a normal integrand h such that for every ω ∈ Ω the function h(ω, ·) has compact
sublevels in M and lim supε→0

´

Ω
h(ω, sε(ω)) dP (ω) <∞.

• A Young measure in M is a family µ := {µω}ω∈Ω of Borel probability measures on
M such that for all B ∈ B(M ) the map Ω 3 ω 7→ µω(B) ∈ R is F-measurable.

Theorem 4.16 ([9, Theorem I]). Let sε : Ω→M denote a tight sequence of measurable
functions. Then there exists a subsequence, still indexed by ε, and a Young measure
µ : Ω→M such that for every normal integrand h : Ω×M → (−∞,+∞] we have

lim inf
ε→0

ˆ

Ω

h(ω, sε(ω)) dP (ω) ≥
ˆ

Ω

ˆ

M

h(ω, ξ)dµω(ξ)dP (ω) , (30)

provided that the negative part h−ε (·) = |min{0, h(·, sε(·))}| is uniformly integrable. More-
over, for P -a.e. ω ∈ Ω0 the measure µω is supported in the set of all cluster points of

sε(ω), i.e. in
⋃∞
k=1 {sε(ω) : ε < 1

k
} (where the closure is taken in M ).

In order to apply the above theorem we require an appropriate metric space in which
two-scale convergent sequences and their limits embed:

Lemma 4.17. (i) We denote by M the set of all triples (U, ε, r) with U ∈ Lin(D),
ε ≥ 0, r ≥ 0. M endowed with the metric

d((U1, ε1, r1), (U2, ε2, r2); M ) := d(U1, U2;Lin(D)) + |ε1 − ε2|+ |r1 − r2|

is a complete, separable metric space.

(ii) For ω0 ∈ Ω0 we denote by M ω0 the set of all triples (U, ε, r) ∈M such that

U =

{
Jω0
ε u for some u ∈ Lp(Q) with ‖u‖Lp(Q) ≤ r in the case ε > 0,

J0u for some u ∈ Bp with ‖u‖Bp ≤ r in the case ε = 0.
(31)

Then M ω0 is a closed subspace of M .

(iii) Let ω0 ∈ Ω0, and (U, ε, r) ∈ M ω0. Then the function u in the representation (31)
of U is unique, and





‖u‖Lp(Q) = sup
ϕ∈D , ‖ϕ‖Bq≤1

|U(ϕ)| if ε > 0,

‖u‖Bp = sup
ϕ∈D , ‖ϕ‖Bq≤1

|U(ϕ)| if ε = 0.
(32)
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(iv) For ω0 ∈ Ω0 the function ‖ · ‖ω0 : M ω0 → [0,∞),

‖(U, ε, r)‖ω0 :=





(
sup

ϕ∈D , ‖ϕ‖Bq≤1

|U(ϕ)|p + ε+ rp
) 1
p if (U, ε, r) ∈M ω0 , ε > 0,

(
sup

ϕ∈D , ‖ϕ‖Bq≤1

|U(ϕ)|p + rp
) 1
p if (U, ε, r) ∈M ω0 , ε = 0,

is lower semicontinuous on M ω0.

(v) For all (u, ε) with u ∈ Lp(Q) and ε > 0 we have s := (Jω0
ε u, ε, ‖u‖Lp(Q)) ∈M ω0 and

‖s‖ω0 =
(
2‖u‖pLp(Q) + ε

) 1
p . Likewise, for all (u, ε) with u ∈ Bp and ε = 0 we have

s = (J0u, ε, ‖u‖Bp) and ‖s‖ω0 = 2
1
p‖u‖Bp.

(vi) For all R <∞ the set {(U, ε, r) ∈M ω0 : ‖(U, ε, r)‖ω0 ≤ R} is compact in M .

(vii) Let ω0 ∈ Ω0 and let uε denote a bounded sequence in Lp(Q). Then the triple sε :=
(Jω0
ε uε, ε, ‖uε‖Lp(Q)) de�nes a sequence in M ω0. Morever, we have sε → s0 in M as

ε→ 0 if and only if s0 = (J0u, 0, r) for some u ∈ Bp, r ≥ ‖u‖Bp, and uε
2s
⇀ω0u.

Proof. (i) This is a direct consequence of Lemma 4.4 (i) and the fact that the product
of complete, separable metric spaces remains complete and separable.

(ii) Let sk := (Uk, εk, rk) denote a sequence in M ω0 that converges in M to some
s0 = (U0, ε0, r0). We need to show that s0 ∈ M ω0 . By passing to a subsequence,
it su�ces to study the following three cases: εk > 0 for all k ∈ N0, εk = 0 for all
k ∈ N0, and ε0 = 0 while εk > 0 for all k ∈ N.
Case 1: εk > 0 for all k ∈ N0.
W.l.o.g. we may assume that infk εk > 0. Hence, there exist uk ∈ Lp(Q) with
Uk = Jω0

εk
uk. Since rk → r, we conclude that (uk) is bounded in Lp(Ω). We thus

may pass to a subsequence (not relabeled) such that uk ⇀ u0 weakly in Lp(Q), and

‖u0‖Lp(Q) ≤ lim inf
k
‖uk‖Lp(Q) ≤ lim

k
rk = r0. (33)

Moreover, Uk → U in the metric space Lin(D) implies pointwise convergence on
D , and thus for all ϕQ ∈ DQ we have Uk(1ΩϕQ) =

´

Q
ukϕQ →

´

Q
u0ϕQ. We thus

conclude that U0(1ΩϕQ) =
´

Q
u0ϕQ. Since DQ ⊂ Lq(Q) dense, we deduce that

uk ⇀ u0 weakly in Lp(Q) for the entire sequence. On the other hand the properties
of the shift τ imply that for any ϕΩ ∈ DΩ we have ϕΩ(τ ·

εk
ω0)→ ϕΩ(τ ·

ε0
ω0) in Lq(Q).

Hence, for any ϕΩ ∈ DΩ and ϕQ ∈ DQ we have

Uk(ϕΩϕQ) =

ˆ

Q

uk(x)ϕQ(x)ϕΩ(τ x
εk
ω0) dx→

ˆ

Q

u0(x)ϕQ(x)ϕΩ(τ x
ε0
ω0) dx = Jω0

ε0
(ϕΩϕQ)

and thus (by linearity) U0 = Jω0
ε0
u0.

Case 2: εk = 0 for all k ∈ N0.
In this case there exist a bounded sequence uk in Bp with Uk = J0uk for k ∈ N.
By passing to a subsequence we may assume that uk ⇀ u0 weakly in Bp for some
u0 ∈ Bp with

‖u0‖Bp ≤ lim inf
k
‖uεk‖Bp ≤ r0. (34)

DOI 10.20347/WIAS.PREPRINT.2460 Berlin 2017



Stochastic unfolding and homogenization 35

This implies that Uk = J0uk → J0u0 in Lin(D). Hence, U0 = J0u0 and we conclude
that s0 ∈M .

Case 3: εk > 0 for all k ∈ N and ε0 = 0.
There exists a bounded sequence uk in L

p(Q). Thanks to Lemma 4.3, by passing to

a subsequence we may assume that uk
2s
⇀ω0u0 for some u ∈ Bp with

‖u0‖Bp ≤ lim inf
k
‖uk‖Lp(Q) ≤ r0. (35)

Furthermore, Lemma 4.4 implies that Jω0
εk
uk → J0u0 in Lin(D), and thus U0 = J0u0.

We conclude that s0 ∈M .

(iii) We �rst argue that the representation (31) of U by u is unique. In the case ε > 0
suppose that u, v ∈ Lp(Q) satisfy U = Jω0

ε u = Jω0
ε v. Then for all ϕQ ∈ DQ we have

´

Q
(u − v)ϕQ = Jω0

ε u(1ΩϕQ) − Jω0
ε v(1ΩϕQ) = U(1ΩϕQ) − U(1ΩϕQ) = 0, and since

DQ ⊂ Lq(Q) dense, we conclude that u = v. In the case ε = 0 the statement follows
by a similar argument from the fact that D is dense Bq.

To see (32) let u and U be related by (31). Since D (resp. D) is dense in Lq(Q)
(resp. Bq), we have





‖u‖Lp(Q) = sup
ϕ∈D , ‖ϕ‖Bq≤1

|
´

Q
uϕ dx dP | = sup

ϕ∈D , ‖ϕ‖Bq≤1

|U(ϕ)| if ε > 0,

‖u‖Bp = sup
ϕ∈D , ‖ϕ‖Bq≤1

|
´

Ω

´

Q
uϕ dx dP | = sup

ϕ∈D , ‖ϕ‖Bq≤1

|U(ϕ)| if ε = 0.

(iv) Let sk = (Uk, εk, rk) denote a sequence in M ω0 that converges in M to a limit
s0 = (U0, ε0, r0). By (ii) we have s0 ∈ M ω0 . For k ∈ N0 let uk in Lp(Q) or Bp

denote the representation of Uk in the sense of (31). We may pass to a subsequence
such that one of the three cases in (ii) applies and (as in (ii)) either uk weakly

converges to u0 (in Lp(Q) or Bp), or uk
2s
⇀ω0u0. In any of these cases the claimed

lower semicontinuity of ‖ · ‖ω0 follows from εk → ε0, rk → r0, and (32) in connection
with one of the lower semicontinuity estimates (33) � (35).

(v) This follows from the de�nition and duality argument (32).

(vi) Let sk denote a sequence in M ω0 . Let uk in Lp(Q) or Bp denote the (unique)
representative of Uk in the sense of (31). Suppose that ‖sk‖ω0 ≤ R. Then (rk)
and (εk) are bounded sequences in R≥0, and supk ‖uk‖ ≤ supk rk < ∞ (where ‖ · ‖
stands short for either ‖ · ‖Lp(Q) or ‖ · ‖Bp). Thus we may pass to a subsequence such
that rk → r0, εk → ε0, and one of the following three cases applies:

• Case 1: infk∈N0 εk > 0. In that case we conclude (after passing to a further
subsequence) that uk ⇀ u0 weakly in Lp(Q), and thus Uk → U0 = Jω0

ε0
u0 in

Lin(D).

• Case 2: εk = 0 for all k ∈ N0. In that case we conclude (after passing to a
further subsequence) that uk ⇀ u0 weakly in Bp(Q), and thus Uk → U0 = J0u0

in Lin(D).

• Case 3: εk > 0 for all k ∈ N and ε0 = 0. In that case we conclude (after passing

to a further subsequence) that uk
2s
⇀ω0u0, and thus Uk → U0 = J0u0 in Lin(D).
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In all of these cases we deduce that s0 = (U0, ε0, r0) ∈M ω0 , and sk → s0 in M .

(vii) This is a direct consequence of (ii) � (vi), and Lemma 4.4.

Now we are in position to prove Theorem 4.11

Proof of Theorem 4.11. Let M , M ω0 , Jω0
ε etc. be de�ned as in Lemma 4.17.

Step 1. (Identi�cation of (uε) with a tight M -valued sequence). Since uε ∈ Bp, by Fubini's
theorem, we have uε(ω, ·) ∈ Lp(Q) for P -a.e. ω ∈ Ω. By modifying uε on a null-set in
Ω × Q (which does not alter two-scale limits in the mean), we may assume w.l.o.g. that
uε(ω, ·) ∈ Lp(Q) for all ω ∈ Ω. Consider the measurable function sε : Ω→M de�ned as

sε(ω) :=

{(
Jωε uε(ω, ·), ε, ‖uε(ω, ·)‖Lp(Q)

)
if ω ∈ Ω0

(0, 0, 0) else.

We claim that (sε) is tight. To that end consider the integrand h : Ω×M → (−∞,+∞]
de�ned by

h(ω, (U, ε, r)) :=

{
‖(U, ε, r)‖pω if ω ∈ Ω0 and (U, ε, r) ∈M ω,

+∞ else.

From Lemma 4.17 we deduce that h is a normal integrand and h(ω, ·) has compact
sublevels for all ω ∈ Ω. Moreover, for all ω0 ∈ Ω0 we have sε(ω0) ∈ M ω0 and thus
h(ω0, sε(ω0)) = 2‖uε(ω0, ·)‖pLp(Q) + ε. Hence,

ˆ

Ω

h(ω, sε(ω)) dP (ω) = 2‖uε‖pBp + ε.

We conclude that (sε) is tight.

Step 2. (Compactness and de�nition of ν). By appealing to Theorem 4.16 there exists a
subsequence (still denoted by ε) and a Young measure µ that is generated by (sε). Let
µ1 denote the �rst component of µ, i.e. the Young measure on Lin(D) characterized for
ω ∈ Ω by

ˆ

Lin(D)

f(ξ) dµ1,ω(ξ) =

ˆ

M

f(ξ1) dµω(ξ),

for all f : Lin(D) → R continuous and bounded, where M 3 ξ = (ξ1, ξ2, ξ3) → ξ1 ∈
Lin(D) denotes the projection to the �rst component. By Balder's theorem, µω is concen-
trated on the limit points of (sε(ω)). By Lemma 4.17 we deduce that for all ω ∈ Ω0

any limit point s0(ω) of sε(ω) has the form s0(ω) = (J0u, 0, r) where 0 ≤ r < ∞
and u ∈ Bp is a ω-two-scale limit of a subsequence of uε(ω, ·). Thus, µ1,ω is sup-
ported on {J0u : u ∈ CP(ω, (uε(ω, ·))} which in particular is a subset of (Bq)∗. Since
J0 : Bp → (Bq)∗ is an isometric isomorphism (by the Riesz-Frechét theorem), we con-
clude that ν = {νω}ω∈Ω, νω(B) := µ1,ω(J0B) (for all Borel sets B ⊂ Bp where Bp is
equipped with the weak topology) de�nes a Young measure on Bp, and for all ω ∈ Ω0,
νω is supported on CP(ω, (uε(ω, ·)).
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Step 3. (Lower semicontinuity estimate). Note that h : Ω×M → [0,+∞],

h(ω, (U, ε, r)) :=





supϕ∈D , ‖ϕ‖Bq≤1 |U(ϕ)|p if ω ∈ Ω0 and (U, ε, r) ∈M ω, ε > 0,

supϕ∈D , ‖ϕ‖Bq≤1 |U(ϕ)|p if ω ∈ Ω0 and (U, ε, r) ∈M ω, ε = 0,

+∞ else.

de�nes a normal integrand, as can be seen as in the proof of Lemma 4.17. Thus Theo-
rem 4.16 implies that

lim inf
ε→0

ˆ

Ω

h(ω, sε(ω)) dP (ω) ≥
ˆ

Ω

ˆ

M

h(ω, ξ) dµω(ξ)dP (ω).

In view of Lemma 4.17 we have supϕ∈D , ‖ϕ‖Bq≤1 |(Jωε uε)(ω, ·))(ϕ)| = ‖uε(ω, ·)‖Lp(Q) for
ω ∈ Ω0, and thus the left-hand side turns into lim infε→0 ‖uε‖pBp . Thanks to the de�nition
of ν the right-hand side turns into

´

Ω

´

Bp ‖v‖pBp dνω(v)dP (ω).

Step 4. (Identi�cation of the two-scale limit in the mean). Let ϕ ∈ D0. Then h : Ω×M →
[0,+∞],

h(ω, (U, ε, r)) :=

{
U(ϕ) if ω ∈ Ω0, (U, ε, r) ∈M ω,

+∞ else.

de�nes a normal integrand. Since h(ω, sε(ω)) =
´

Q
uε(ω, x)T ∗ε ϕ(ω, x) dx for P -a.e. ω ∈ Ω,

we deduce that |h(·, sε(·))| is uniformly integrable. Thus, (30) applied to ±h and the
de�nition of ν imply that

lim
ε→0

ˆ

Ω

ˆ

Q

uε(ω, x)(T ∗ε ϕ)(ω, x) dx dP (ω) = lim
ε→0

ˆ

Ω

h(ω, sε(ω)) dP (ω)

=

ˆ

Ω

ˆ

Bp

h(ω, v) dνω(v) dP (ω)

=

ˆ

Ω

ˆ

Bp

〈
ˆ

Q

vϕ

〉
dνω(v) dP (ω).

Set u :=
´

Ω

´

Bp v dνω(v)dP (ω) ∈ Bp. Then Fubini's theorem yields

lim
ε→0

ˆ

Ω

ˆ

Q

uε(ω, x)(T ∗ε ϕ)(ω, x) dx dP (ω) =

〈
ˆ

Q

uϕ

〉
.

Since span(D0) ⊂ Bq dense, we conclude that uε
2s
⇀u.

Step 5. Recovery of quenched two-scale convergence. Suppose that νω is a delta distribu-
tion on Bp, say νω = δv(ω) for some measurable v : Ω → Bp. Note that h : Ω ×M →
[0,+∞],

h(ω, (U, ε, r)) := −d(U, J0v(ω);Lin(D))

is a normal integrand and |h(·, sε(·))| is uniformly integrable. Thus, (30) yields

lim sup
ε→0

ˆ

Ω

d(Jωε uε(ω, ·), J0v(ω);Lin(D)) dP (ω)

= − lim inf
ε→0

ˆ

Ω

h(ω, sε(ω)) dP (ω)

≤ −
ˆ

Ω

ˆ

Bp

h(ω, J0v) dνω(v) dP (ω) = −
ˆ

Ω

h(ω, J0v(ω)) dP (ω) = 0.
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Thus, there exists a subsequence (not relabeled) such that d(Jωε uε(ω, ·), J0v(ω);Lin(D))→
0 for a.e. ω ∈ Ω0. In view of Lemma 4.4 this implies that uε

2s
⇀ωv(ω) for a.e. ω ∈ Ω0.

Proof of Lemma 4.14. Step 1. Representation of the functional by a lower semicontinuous
integrand on M .
For all ω0 ∈ Ω0 and s = (U, ε, r) ∈ M ω0 we write πω0(s) for the unique representation
u in Bp (resp. Lp(Q)) of U in the sense of (31). We thus may de�ne for ω ∈ Ω0 and
s ∈M ω0 the integrand

h(ω0, s) :=

{
´

Q
h(τx

ε
ω, x, (πω0s)(x)) dx if s = (U, ε, s) with ε > 0,

´

Ω

´

Q
h(ω, x, (πω0s)(x)) dx dP (ω) if s = (U, ε, s) with ε = 0.

We extend h(ω0, ·) to M by +∞, and de�ne h(ω, ·) ≡ 0 for ω ∈ Ω \ Ω0. We claim that
h(ω, ·) : M → (−∞,+∞] is lower semicontinuous for all ω ∈ Ω. It su�ces to consider
ω0 ∈ Ω0 and a convergent sequence sk = (Uk, εk, rk) in M ω0 . For brevity we only consider
the (interesting) case when εk ↓ ε0 = 0. Set uk := πω0(sk). By construction we have

h(ω0, sk) =

ˆ

Q

h(τ x
εk
ω0, uk(ω0, x)) dx,

and

h(ω0, s0) =

ˆ

Ω

ˆ

Q

h(ω, x, u0(ω, x)) dx dP (ω).

Since sk → s0 and εk → 0, Lemma 4.17 (vi) implies that uk
2s
⇀ω0u0, and since h is

assumed to be a quenched two-scale normal integrand, we conclude that lim inf
k

h(ω0, sk) ≥
h(ω0, s0), and thus h is a normal integrand.

Step 2. Conclusion.
As in Step 1 of the proof of Theorem 4.11 we may associate with the sequence (uε)
a sequence of measurable functions sε : Ω → M that (after passing to a subsequence
that we do not relabel) generates a Young measure µ on M . Since by assumption uε
generates the Young measure ν on Bp, we deduce that the �rst component µ1 satis�es
νω(B) = µω(J0B) for any Borel set B. Applying (30) to the integrand h of Step 1, yields

lim inf
ε→0

ˆ

Ω

ˆ

Q

h(τx
ε
ω0, uε(ω0, x)) dx dP (ω)

= lim inf
ε→0

ˆ

Ω

h(ω, sε(ω)) dP (ω)

≥
ˆ

Ω

ˆ

M

h(ω, ξ) dµω(ξ) dP (ω)

=

ˆ

Ω

ˆ

Bp

( ˆ

Ω

ˆ

Q

h(ω̃, x, v(ω̃, x)) dx dP (ω̃)
)
dνω(v) dP (ω).

Proof of Lemma 4.12. By (b) and (c) the sequence (ũε) is bounded in Bp and thus
we can pass to a subsequence such that (ũε) generates a Young measure ν. Set ũ :=
´

Ω

´

Bp v dνω(v) dP (ω) and note that Theorem 4.11 implies that ũε
2s
⇀ ũ weakly two-scale
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in the meam. On the other hand the theorem implies that νω concentrates on the quenched
two-scale cluster points of (uωε ) (for a.e. ω ∈ Ω). Hence, in view of (a) we conclude that
for a.e. ω ∈ Ω the measure νω is a Dirac measure concentrated on u, and thus ũ = u
a.e. in Ω×Q.

4.3 Quenched homogenization of convex functionals

In this section we demonstrate how to lift homogenization results w.r.t. two-scale con-
vergence in the mean to quenched statements at the example of a convex minimization
problem. Throughout this section we assume that V : Ω × Q × Rd×d → R is a convex
integrand satisfying the assumptions (A1) − (A3) of Section 3.1. For ω ∈ Ω we de�ne
Eωε : W 1,p

0 (Q)→ R,

Eωε (u) :=

ˆ

Q

V
(
τx
ε
ω, x,∇su(x)

)
dx,

and recall from Section 3.1 the de�nition (13) of the averaged energy Eε and the de�nition
(14) of the two-scale limit energy E0. The goal of this section is to relate two-scale limits
of �mean�-minimizers, i.e. functions uε ∈ Lp(Ω) ⊗W 1,p

0 (Q) that minimize Eε, with limits
of �quenched�-minimizers, i.e. families {uε(ω)}ω∈Ω of minimizers to Eωε in W 1,p

0 (Q).

Theorem 4.18. Let uε ∈ Lp(Ω) ⊗W 1,p
0 (Q) be a minimizer of Eε. Then there exists a

subsequence such that (uε,∇uε) generates a Young measure ν in B := (Bp)d+d2 in the
sense of Theorem 4.11, and for P -a.e. ω ∈ Ω, νω concentrates on the set

{
(u,∇u+ χ) :

E0(u, χ) = min E0

}
of minimizers of the limit functional. Moreover, if V (ω, x, ·) is strictly

convex for all x ∈ Q and P -a.e. ω ∈ Ω, then the minimizer uε of Eε and the minimizer
(u, χ) of E0 are unique, and for P -a.e. ω ∈ Ω we have (for a not relabeled subsequence)

uε ⇀ u weakly in W 1,p(Q), uε(ω, ·) 2s
⇀ωu, ∇uε(ω, ·) 2s

⇀ω∇u+ χ,

and min Eωε = Eωε (uε(ω, ·))→ E0(u, χ) = min E0.

Remark 4.19 (Identi�cation of quenched two-scale cluster points). If we combine Theo-
rem 4.18 with the identi�cation of the support of the Young measure in Theorem 4.11
we conclude the following: There exists a subsequence such that (uε,∇uε) two-scale con-
verges in the mean to a limit of the form (u0,∇u0 +χ0) with E0(u0, χ0) = min E0, and for
a.e. ω ∈ Ω the set of quenched ω-two-scale cluster points CP(ω, (uε(ω, ·),∇uε(ω, ·))) is
contained in

{
(u,∇u + χ) : E0(u, χ) = min E0

}
. In the strictly convex case we further

obtain that CP(ω, (uε(ω, ·),∇uε(ω, ·))) = {(u,∇u+ χ)} where (u, χ) is the unique min-
imizer to E0. Note, however, that our argument (that extracts quenched two-scale limits
from the sequnece of �mean� minimizers) involves an exceptional P -null-set that a priori
depends on the selected subsequence. This is in contrast to the classical result in [24]
which is based on a subadditive ergodic theorem and states that there exists a set of full
measure Ω′ such that for all ω ∈ Ω′ the minizer uωε to Eωε weakly converges in W 1,p(Q) to
the deterministic minimizer u of the reduced functional Ehom for any sequence ε→ 0.

In the proof of Theorem 4.18 we combine homogenization in the mean in form of The-
orem 3.1, the connection to quenched two-scale limits via Young measures in form of
Theorem 4.11, and a recent result by Nesenenko and the �rst author that states that V
is a quenched two-scale normal integrand:
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Lemma 4.20 ([39, Lemma 5.1]). V is a quenched two-scale normal integrand in the sense
of De�nition 4.13.

Proof of Theorem 4.18. Step 1. (Identi�cation of the support of ν).

Since uε is a sequence of minimizers, by Corollary 3.2 there exists a subsequence (not
relabeled) and minimizers (u, χ) ∈ W 1,p

0 (Q) × (Lppot(Ω) ⊗ Lp(Q)d) of E0 such that that

uε
2s
⇀ u in Lp(Ω×Q)d, ∇uε 2s

⇀ ∇u+ χ in Lp(Ω×Q)d×d, and

lim
ε→0

min Eε = lim
ε→0
Eε(uε) = E0(u, χ) = min E0. (36)

In particular, the sequence (uε,∇uε) is bounded in B. By Theorem 4.11 we may pass
to a further subsequence (not relabeled) such that (uε,∇uε) generates a Young measure
ν on B. Since νω is supported on the set of quenched ω-two-scale cluster points of
(uε(ω, ·),∇uε(ω, ·)), we deduce from Lemma 4.9 that the support of νω is contained in
B0 := {ξ = (ξ1, ξ2) = (u′,∇u′ + χ′) : u′ ∈ W 1,p

0 (Q), χ ∈ Lppot(Ω) ⊗ Lp(Q)d} which
is a closed subspace of B. Moreover, thanks to the relation of the generated Young
measure and stochastic two-scale convergence in the mean, we have (u, χ) =

´

Ω

´

B0
(ξ1, ξ2−

∇ξ1) νω(dξ) dP (ω). By Lemma 4.20, V is a quenched two-scale normal integrand and thus
Lemma 4.14 implies that

lim
ε→0
Eε(uε) ≥

ˆ

Ω

ˆ

B

( ˆ

Ω

ˆ

Q

V (ω̃, x, ξ2) dx dP (ω̃)
)
νω(dξ) dP (ω).

In view of (36) and the fact that νω is supported in B0, we conclude that

min E0 ≥
ˆ

Ω

ˆ

B0

E0(ξ1, ξ2 −∇ξ1) νω(dξ) dP (ω) ≥ min E0

ˆ

Ω

ˆ

B0

νω(dξ)dP (ω).

Since
´

Ω

´

B0
νω(dξ)dP (ω) = 1, we have

´

Ω

´

B0
|E0(ξ1, ξ2−∇ξ1)−min E0| νω(dξ) dP (ω) = 0,

and thus we conclude that for P -a.e. ω ∈ Ω0, νω concentrates on {(u,∇u+χ) : E0(u, χ) =
min E0}.

Step 2. (The strictly convex case).

The uniqueness of uε and (u, χ) is clear. From Step 1 we thus conclude that νω = δξ

where ξ = (u,∇u+χ). Theorem 4.11 implies that (uε(ω, ·),∇uε(ω, ·)) 2s
⇀ω(u,∇u+χ) (for

P -a.e. ω ∈ Ω). By Lemma 4.20, V is a quenched two-scale normal integrand and thus for
P -a.e. ω ∈ Ω,

lim inf
ε→0

Eωε (uε(ω, ·)) ≥ E0(u, χ) = min E0.

On the other hand, since uε(ω, ·) minimizes Eωε , we deduce by a standard argument that
for P -a.e. ω ∈ Ω,

lim
ε→0

min Eωε = lim
ε→0
Eωε (uε(ω, ·)) = E0(u, χ) = min E0.
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