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Towards time-limited J{y-optimal model order reduction

Pawan Goyal, Martin Redmann

Abstract

In order to solve partial differential equations numerically and accurately, a high or-
der spatial discretization is usually needed. Model order reduction (MOR) techniques
are often used to reduce the order of spatially-discretized systems and hence re-
duce computational complexity. A particular class of MOR techniques are JHs-optimal
methods such as the iterative rational Krylov subspace algorithm (IRKA) and related
schemes. However, these methods are used to obtain good approximations on a in-
finite time-horizon. Thus, in this work, our main goal is to discuss MOR schemes for
time-limited linear systems. For this, we propose an alternative time-limited JHs-norm
and show its connection with the time-limited Gramians. We then provide first-order
optimality conditions for an optimal reduced order model (ROM) with respect to the
time-limited J2-norm. Based on these optimality conditions, we propose an iterative
scheme which upon convergences aims at satisfying these conditions. Then, we ana-
lyze how far away the obtained ROM is from satisfying the optimality conditions. We test
the efficiency of the proposed iterative scheme using various numerical examples and
illustrate that the newly proposed iterative method can lead to a better reduced-order
compared to unrestricted IRKA in the time interval of interest.

1 Introduction

We consider a continuous linear time-invariant (LTI) system as follows:

t(t) = Az(t) + Bu(t), x(0) =0,

y(t) = C(t), t>0, W

where A € R™" B € R"™™ and C' € RP*". Generally, z(t) € R", u(t) € R™
and y(t) € RP denote the state, control input and the quantity of interest (output vector),
respectively, and in the most cases, the dimension of the state vector is much larger than
the numbers of control input and output vectors, i.e., n > m, p. We also assume that the
matrix A is Hurwitz, meaning A(A) C C_, where A(-) denotes the spectrum of a matrix.
Due to the large dimension of system (), it is numerically very expensive to simulate the
system for various control inputs and perform engineering studies such as optimal control
and optimization. One approach to overcome such an issue is model order reduction (MOR),
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where we aim at constructing a reduced-order system as follows:

A

‘. {éc(t) f:l(t)JrBu(t), #(0) =0 2
§(t) = Ca(t), t>0,

=>

where A € R™", B € R™™ and C' € RP*" and r < n such that y ~ ¢ in an appropriate
norm for all admissible control inputs w. In the literature, there is a huge collection of methods
available which allow us to construct such reduced-order systems, e.g., see [1} 12, 3].

Most of the methods for linear systems such as balanced truncation, e.g., see [1} /4] and the
iterative rational Krylov subspace algorithm [5] aim at constructing a reduced-order system
which is good for an infinite time horizon. In other words, the output of system (1) is very well
approximated by the output of (2) on the time interval [0, c0). However, from a practical point
of view for instance, we are interested in approximating the output ¥ on a finite time interval,
e.g., [0, T, meaning that

y~y on [0,7]. 3)

Due to Equation , we expect a better reduced-order system in the time interval [0, T} as
compared to unconstrained MOR approaches for the same reduced order. Such a problem
in a view of balanced truncation was first considered in [6] and its further studied was car-
ried out in [7, 8]. However, in this work, we consider the similar time-limited model reduction
problem but in a view of extending the Wilson conditions [9] and the first-order optimality
conditions [5} 9] [10]. Generalized optimality conditions for bilinear systems have been stud-
ied, e.g., in [11}[12] but their setting (infinite time horizon) clearly differs from the one in this

paper.

In Section [2} we first discuss the time-limited J{5-norm for linear systems and provide dif-
ferent representations of the metric induced by this norm which are based on time-limited
Gramians. Then, we define the problem setting for time-limited MOR as an optimization
problem. Subsequently, in Section |3}, we extend the Wilson conditions to time-limited linear
systems and derive first order optimality conditions which minimize the time-limited JHs-norm
of the error system. Based on these conditions, we propose an iterative scheme, which we
aim at constructing a reduced-order system, satisfying approximately the optimality condi-
tions. Later on, we derive expressions, revealing how far away the obtained reduced systems
via the proposed iterative scheme are from being optimal. In Section |4, we illustrate the effi-
ciency of the proposed iterative scheme by three benchmark numerical examples for linear
systems. Finally, we conclude the paper with a small summary and future work.

2 Time-Limited J{,-Norm and Problem Setting

In this section, we first define the time-limited J{5-norm for linear systems, show its relation
to the output error and provide different representations for the time-limited JH5-norm using
time-limited Gramians. Subsequently, we define time-limited HH,-model reduction for linear
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Towards time-limited JH5-optimal model order reduction 3

systems. Before we proceed further, we note important relations between the Kronecker
product, the vectorization and the trace of a matrix. These are:

vec(XY Z) = (Z7 @ X) vec(Y), (4a)
tr(XYZ) = vec (XTI ®Y) vec(Z), (4b)
where X, Y and Z are matrices of suitable dimension; vec(+) and tr(-) denote the vector-

ization and the trace of a matrix, and @ represents the Kronecker product of two matrices.

We investigate the large scale system and are seeking for a reduced order system
having the same structure. Since our goal is to construct a good approximation of the system
on a finite time interval [0, 7] below, where T' > 0 is the terminal time, we first investigate
the worst case error between the output of the system and the output of () on [0, T]. In
order to find a bound for the error between the output y of the original model and the output
1 of the reduced system, arguments from [13, 14} [15] are used. There an J{5-error bound
for stochastic systems applying balanced truncation is derived.

We make use of the explicit representations for the outputs

t t .
y(t) = C / A9 Bu(s)ds, (t) = C / A9 By(s)ds,
0 0

and obtain that

t t R
ly(t) —9(t)], = HC/ A=) Bu(s)ds — C’/ A=) Bu(s)ds
0 0

t
<.
0

t
<
0

By the inequality of Cauchy-Schwarz and substitution, we have

b -5 < ([ i@)é(zﬂwwn@w)%
- </ CevB-CetE Hids)é (/ Ju(s)I1 ds)é

1
T 2 2
< (/ HCeAsB — CeASBH ds) w2 -
0 F r

fort € [0, 7. Hence,

2

<C A=) B — CreAlt=s) l%) u(s)H ds
2

CeAlt=9) g _ C'efi(t_s) EH [u(s)l|y ds.
F

CeA(t—s) B— CfeA(t—s) B

max [ly(t) — 5(0), < = - 5
t€[0,T

%, 7 HU||L2T7 ()
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. ; NN
where HZ — Z’ = <fOT HC’eASB — C’eASBH ds) . We call [|-||4. _ the time-
F 2,T

fH2,T

limited Ho-norm since HZ — f]‘ provides the time-domain representation of the metric

B }CQ,T
induced by the Hy-norm if T — oc.

The time-limited JH,-error can also be expressed with the help of the time-limited reachability
and observability Gramians [6]. In order to show this, we first provide the following lemma.

Lemma 2.1. Let A, € RE*4 A, € RE*% wjth A(A)) N —A(Ay) = 0 and K| €
Réxds | [, € R%*4_ Then,

T
X = / e K KT e42% ds
0
uniquely solves the Sylvester equation
AX + XAT = —K\ KT + eMT K KT AT (6)

Proof. This result is a consequence of the product rule. Setting g;(t) := e K| and
ga(t) :== KT e it holds that

gl(T)gz(T)—gl(O)gz(O)Z/o 91(8)d92(8)+/0 dg1(5)g2(s)

T T
= / g1(8)g2(s)ds AS + A, / g1(s)g2(s)ds,
0 0
since dgs(s) = go(s) AL ds and dgi (s) = A, g1(s)ds. Now, the solution is unique since (6)

can be written equivalently as

([dz (29 Al + Ag X [dl) VGC(X) = VGC(ng) (7)

/

=Ag

using (4a). Here, R, is the right-hand side in (6) and /, denotes the identity matrix of size

q X q. Now, the eigenvalues of Ay are given by /ﬁ) + ugj), where ugi) is the ¢th eigenvalue

of A; and ,ugj) the jth eigenvalue of A,. Due the assumption on the spectra of A; and A,,
the matrix A is invertible which gives a unique solution to (7). O

The next proposition shows that the time-limited error can be expressed with the help of
time-limited Gramians. This result is used later on in order to derive first-order necessary
conditions for a minimal error in the time-limited Hy-norm.

Proposition 2.2. Let Y and 3 be the original and reduced-order systems as defined in
and (2). Then, the time-limited H5-norm of its difference is given by

2

HE - E‘ = tr(CPrC") + tr(CPrCT) = 2tx(C Py CY), ®

Hop
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Towards time-limited JH5-optimal model order reduction 5

where Pr, P, 7 and PT, respectively, satisfy

APg 4 PpAT = —BBT + AT BBT AT 9)
APy 7+ Py AT = —BBT + T BB AT, (10)
APy + PrAT = —BBT 4 AT BBT AT (11)

Proof. The definition of the Frobenius norm and the linearity of the integral yield

2

N T N ~ 12
Hz—z :/ HCeASB—CeASBH ds
0 F

Hop

T T UV
:/ tr <C’eAS BBT A's C’T> ds +/ tr (C’eAs BBT A" C’T> ds
0 0
T o
—2/ tr <CeAS BBT ¢4 SCT> ds
0

=tr (CPTC’T) +tr (C’PTCT) —2 tr (CPZTCA'T) ,

with P 1= fOT es BBT eA"s (s, Py 7= fOT eAs BBT eA"s ds, Py, .= fOT eAs BBT eA"s s,

Due to LemmaPT, P, 1 and PT are the solutions to @) and 1! respectively. O

The result of Proposition[2.2has the same structure as the error bound in [8], where the case
of time-limited balanced truncation has been investigated. Moreover, the JH,-error bound
when applying balanced truncation to stochastic systems has the similar structure as
but it is clearly different since other types of generalized matrix equations play a role in the
stochastic setting. The next proposition shows that the time-limited J5-norm of the error
system as in Proposition [2.2] can be rewritten using the time-limited observability Gramians.

Proposition 2.3. Let Y and 3 be the original and reduced-order systems as defined in
and (2). Moreover, let Pr, P, 1 and Pr be the solutions to (9), and (T1), respectively.
Then, the following holds:

tr(CPrCT) = tr(BTQ+B

tr(CPrCT) = tr(BTQsB

where the matrices Qr, Q5 1+ and QT satisfy

ATQr + QA= —CTC + AT CTC AT, (12)
ATQup + QupA = —CTC + AT CTC AT, (13)
ATQp + QrA = —CTC + AT OTC AT (14)
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Proof. We insert the integral representations of Pr, P, 7 and PT and use basic properties
of the trace operator. Thus,

T T
tr(CPpCT) = / tr(C' e BBT 4" CT)ds = / tr(BT A" CTC e B)ds,
0 0

T . A R T R . o
tr(CPrCT) = / tr(C e BBT A" CT)ds = / tr(BT e CTC e B)ds
0

0

T . T N ST A
tr(CPy;CT) = / tr(C e BBT 2" CT)ds = / tr(BT A" CTC e B)ds.
0 0

Let us define Q7 := OT ATs CTC e ds, Qurp = OT As CTC oA ds and Qp =
fOT AT OTC o4 s, Then, applying Lemmay|elds the claim. O

with re-

From inequality (5), it can be seen that it makes sense to minimize HZ E‘
9{2 T

spect to the reduced order matrices A, B and C since this also minimizes the output error.

Due to the fact that HE — f]’ is increasing in 7', the time-limited error is less or equal

:}CQ,T

the error in the full Fo-norm |||, ,.. also bounds the output error in (5) but
since this bound is larger than the time-limited one, a more accurate reduce order model is
expected on [0, 7'] when using the time-limited H(2-norm instead.

3 First-Order Necessary Conditions for Optimality and Model-
Order Reduction

In this section, we begin with deriving first-order necessary conditions for time-limited H,-
optimal reduced order systems. In other words, our aim is to construct a reduced-order
system 3 of order 7 as in (2), such that it minimizes ||~ — E||9{ _=: &, where X is the

original systems as in (). An expression for € is given in (8). Smce the term tr(C' PzC7) in
does not depend on the reduced order matrices, we focus on minimizing the expression

&, = tr(CPpCT) — 2tr(CPy7CT). (15)

Before proceeding further, we assume that the matrix Ain @) is diagonalizable, i.e., there
exists an invertible matrix S such that A = S—1DS, where D = diag(\y, ..., \.). Using
the matrix S as a state-space transformation of (2), the term (15) can be rewritten as

&, = tr(CST'SPpSTS™TCT) — 2tr(CPySTSTCT)
= tr(CPpCT) — 2tr(C Py pCT), (16)
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Towards time-limited JH5-optimal model order reduction 7

where C = CS™!, P; = SP7ST and PQ,T = P, +ST. The matrices Py, Py are the
solutions to

APy 7+ Py7D = —BBT + T BBT "7, (17)

DP; + P;D = —BB” +¢”T BBT &7, (18)

where B = SB. Equation is obtained by multiplying with ST from the right-side,

and Equation is derived from multiplying with S and ST from the left and right sides,
respectively, and using that e” = S—1ePT S.

In order to find necessary conditions for a locally minimal transformed error expression (16),
we compute the partial derivatives of the form 9, tr(C'PrC”) and 0, tr(C'P, +CT) and
then set

0, tr(CPpCT) = 20, tr(C Py 7 CT),
where x = \;, Cp;, l;zj ie{l,...;rhje{l,....,m} ke {l,...,p}and é, l;ij being
kj-th and 7j-th elements of the matrices C' and B, respectively.

Let us start with the optimality conditions with respect to c¢g;. With e;, we denote the i-th
column of the identity matrix of suitable dimension that is clear from the context. We then
obtain that

Oey, tr(CPpCT) = g, tr(CTC'Pr)
= tr((ﬁgkiC’T)éIST + C*T(agkié) ~T> = tr(eief(j’]sf + éTekef]sT)
= 26%6’]%61,
where we have used the linearity of the trace, the product rule and the fact that ]57 does not
depend on C'. Since
Oz, tr(C]SQ,TéT) = tr(C’]sgjeie;‘g) = efCISQjei,
the optimality condition with respect to &, is e C' Pre; = efCPQ,TeZ- foralli € {1,...,7},
k€ {1,...,p}. Hence, we obtain
OPT = Cpgj. (19)
We now derive the partial derivatives with respect to Bij. We rewrite to simplify this
procedure by applying Proposition [2.3]:
&, = tr(CPCT) — 2tr(CPyrCT) = tr(BTQrB) — 2tr(BQy.1B)
= tr(B"QrB) — 2tr(B" Qy1B),
where Q7 = S~TQpS™ ' and Qy 7 = S~7Qs 1. The matrices Q7 and Q, 7 satisfy
DQ27T + QQ,TA = —OTO + eDT OTO eDT, (20)
DQr+ QpD = —CTC + " CTC T (21)
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P. Goyal, M. Redmann 8

Equation is obtained by multiplying with S~ from the left side, and we find by
multiplying with S~ from the left side and with S~ from the right side. Thus, we have

0, (BB Q) = (25, B)B" Qr + B(3;,, B)Qr) = ta(ese] BT Qr + Beyel Qs)
= QGiTQTBGj

using that QT does not depend on Bor 13” Since
8I;ij tr(BTQZTB) = tr(eje;erQ,TfB) = €;Q2,TB€J',

it is necessary that e/ QrBe; = el QypBejfori € {1,...,7}, 7 € {1,...,m}, which
can equivalently be written as

QrB = Qy1B. (22)

Next, we first introduce the following lemma in order to derive an optimality condition with
respect to the eigenvalues \; of A.

Lemma 3.1. The partial derivatives X V) := 0y, Py and Xéi) = 8,\1.]527T solve

DX 4+ xOp = —eieiTpT — ﬁfeie? + Teie;fp ePT BBT PT 1T PT BBT oPT e;el

79

(23)
AXS + XD = =Py gesel + Te'T BBT PT ¢jel (24)
Proof. The derivative of the left side of equation (17) is
AX2(i) + Xéi)D + PQ’TeieiT
applying the product rule. The derivative of corresponding right side is
AT BBTo,, PT = AT BBT T eief T,
because 0y, ePT = 9, diag(eMT, ... eNT ... M) = diag(0,...,TeNT, ... 0).

This yields (23). Applying 0, to the left of equation provides
eieiTpT +DXD 4+ XOp 4 pTeieiT
again using the product rule. Doing the same with the corresponding right side, we have

8>\i(eDT BBT eDT) = (O, eDT)BBT DT +eDT BBT(GM eDT)

= Te;el T BBT P +PT BBT PT il T.

This provides equation (24). O

DOI 10.20347/WIAS.PREPRINT.2441 Berlin 2017



Towards time-limited JH5-optimal model order reduction 9

Let us introduce the infinite Gramian QOO which we get from for T — oo if the re-
duced system is asymptotically stable (exponential term on the right side vanishes due to
the asymptotic stability of the system). If the asymptotic stability is not given, we can still
define Qoo as the solution to

DQo + QoD = —CTC
if D and —D have no common eigenvalues. We insert this matrix equation to
I tr(CPrCT) = tr(CTCXY) = —tr([DQuo + Qoo DX V) = — tr(Que[X DD + DX ).
With Lemma [3.1] we get
O, tr(CPrCT) = tr(Quoleie Py + Presel — Teel T BBT 2T —T oPT BBT PT ¢;eT))
= 2¢7Quo[Pr — T ePT BB PT)e;.

Assuming that D and — A have no common eigenvalues, we define the infinite cross Gramian
(02,00 Which satisfies

DQQ,OO + QQ,OOAT = _éTC
Hence, it holds that

O, tr(CPyCT) = tr(CTC X)) = — tr([D Q.m0 + Qo.00A| X))
= — t1(Qane[ XD + AXS)) = t0(Qane[Poy — T T BBT PT)esel)

= eiTQZOO[Z-:’Q,T — T eAT BBT ePTle;
applying Lemma [3.7]again. This leads to the third optimality condition which is
el Qo0 Po.7 — Te*T BB ePT)e; = €T Quo|[Pr — T ePT BB PT)e;  (25)

foralli € {1,...,r}.

Below, the generalized optimality conditions are summarized that have been derived above. Addi-
tionally, an equivalent Kronecker formulation is provided that is useful for the error analysis in the
optimality conditions. A different type of extended Wilson conditions for bilinear systems has been
shown in [12]. Its equivalent Kronecker formulation is presented in [11]. Since the bilinear setting is
very different from the the time-limited case, the optimality conditions have a different structure which
can be seen in the next theorem.

Theorem 3.2. Let the reduced-order system (2) be a locally optimal approximation to the original

system (1) with respect to ||-||4_ . Then, conditions @) and (25) hold or equivalently, we have

Te0)|ed)+ Do) T PT BoeAT B - B o B)veo(l) o
=I®C)[I®A)+ (D) (PTBoe'T B— B® B)vec(l),

DOI 10.20347/WIAS.PREPRINT.2441 Berlin 2017
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(BT @ 1) {(I ® D)+ (AT ® I)} AT ET @ PTG (T & G vee(1)
=B"en[ITeD)+ AT (AT @elTET - CT @ CT)vee(I)

andforallt =1,...,r

(27)

.. . ~1
vecT (1)(C & C) [(1 ®D)+(A® I)} (I ® esel)
~ -1 a5 4 5~ . ~ R = o~
X ([(I ®D)+(A® I)} €T BwePTB - B B) — (TeAT BT B)> vec(I)
=vec'(I(C@C)[(I®D)+ (A )] (I ®eel)
x (e D)+ (AN (T BT B~ BoB) ~ (Te B e B))vee().
(28)
Proof. Applying the vec operator to leads to the following equivalent formulation:
vec(CPr) = vec(C’]—f’Qj).
Now, using the vectorization of equation (T8), we obtain by that
vee(CPp) = (I® C)vee(Pp) = (I @ C)[(I® D)+ (D& I)] " vec(ePT BBT ePT —BBT)
=IO [(IeD)+ DD (T BT B~ Bo B)vec(l).

Since (I ® C) = IoC)I®S)and (ePTBoePTB—B@B) = (125 )P B
AT B — B® B), we get
-~ ~ ~ —1 - PUSEN - ~
vec(CPp) = (12 C) [(1 ®Ad)+ (D 1)} T BweAT B~ B® B)vec(l).

With equation , the vectorization of CPQ’T is given by
vec(C'P, 7)=I®C0C) vec(P, 7=IeC)[IeA)+ (D& nt Vec(eAT BBT ePT —BBT)
=I®0) [I®A)+ Do (PTBwe' B— B® B)vec(I)
applying again such that (26) follows. Condition (22) is equivalent to
vec(Q7B) = vee(Qy 7B),
where with property it holds that

vee(QpB) = (B" @ I) vee(Qr)

=BTeN[(IoD)+ Do) (ePTCT ®ePTCT — 6T @ CT) vec(I)
inserting the vectorized representation of (21). Using the identiies (B” @ I) = (BT @ I)(S~T ®
I)“tand (ePTCT @ ePTCT - CT @ CT) (ST @ )~ (AT CT @ ePT T — T © CT)
yields

vee(QpB) = (BT 1) |(I @ D)+ (AT @ 1)} AT T 5 oPT T AT & G veo(I),

DOI 10.20347/WIAS.PREPRINT.2441 Berlin 2017



Towards time-limited JH5-optimal model order reduction 11

Vectorizing leads to
vee(Qy7B) = (BT @ 1) [(I© D)+ (AT o D)] " (AT CT ©ePT O — CT @ CT) vec(I)
which gives us equation (27). Condition is equivalent to

tr([1527T —TeAT BBT eDT]eie?QQ,oo) = tr([Pp — T ePT BBT eDT]eieiTQoo)
foreveryt = 1,...,r. Taking into account, we can express the trace using the vec operator:
tr([Pr — TePT BBT eDT]eieiTQoo) =vecl (P; — T PT BBT eDT)(I ® eiel) vee(Qoo).
With the above arguments, we see that

vee(Qw) = (5" @ 1) [@ D)+ (AT 0 1)] (T © ) vee(D).

Combining this with

leads to the following:
tr([Pp — T ePT BB ePT)e;el Qo)

A AT ~ = . ~ ~ -1 N AT ~ =
= vec (I) [(BT eV T @BT PT _BT & BT) [(I ® D)+ (AT ® I)} — (TBT ' T @BT PT)

. -1
x (I ® eel) [—(I ® D) — (AT @ 1)} (CT @ ET) vec(I)
Using and evaluating the expression
tr([Pz,T —TeAT BBT eDT]eieiTQZOO) = vecT(pzTT— —TePT BBT eATT)(I ® eel) vee(Q2.00)

further by inserting the vectorized form of the matrices yields (28). O

Inspired by the first-order optimality conditions as presented in Theorem [3:2]and IRKA for linear sys-
tems in [5], we propose an iterative algorithm, see Algorithm[T] which we refer to as time-limited IRKA-
type algorithm. The scheme is characterized by an additional term in the right side of the Sylvester
equations in comparison to the classical IRKA. These Sylvester equations provide the projection ma-
trices V' and W that are used to determine the reduced system (2). However, we would like to point
out that the proposed algorithm in general does not construct reduced-order systems which satisfy
the first-order necessary conditions for optimality. Thus, our next goal is to derive expressions, which
allow us to estimate how far away the obtained reduced-order systems corresponding to Algorithm
are from satisfying the optimality conditions exactly.

Theorem 3.3. Let fl B and C be the reduced order matrices computed by Algor/'thm Then, the
difference between the left and the right side in (26) is

E=Uo0) |[1ed)+man] @7 BeWTV) "W (eAPT — AT)B) veo(I)

DOI 10.20347/WIAS.PREPRINT.2441 Berlin 2017
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Algorithm 1 Time-limited IRKA-type Algorithm

Input: The system matrices: A, B, C
Output The reduced matrices: A B C.
: Make an initial (random) guess of the reduced matrices fl, B, C.
2: while not converged do
3 Perform the spectral decomposition of A and define:
A= SASlB SBC cst.
4:  Solve for V and IV: ) )
—VD — AV = BBT — eATBBTePT,
—WD — ATW = CTC — A" TCTCePT,
5: Determine the reduced matrices:
A= WTV)"'WTAV, B=WTV)"'"WTB, (C=CV.
6: end while

and equation is satisfied up to the error term
. . -1 . . o
Ey= (BT 1) [(1 ® D) + (AT ® 1)} (VT (ATPT T _ oATTYOT g oDT (T vee(I),

where Pr := V(WTV)='WT Foralli = 1,...,r the deviation in @ is Eﬁ\ = E;\ 1+ E; 9
where

By =ve (N(C@0) [TeD) + (AeD)| (o)
x ([(1 ®D)+(A® I)} WY)W (APT _ AT B g oPT B
—(TWTV) W (APTT _ oAT\B g oPT B)) vee(I)
and the second term is given by
ES 5 = vecT (I)(C T @C PT)
x [(V ® 1) [(I ® D)+ (A® I)] WTVYWT e )~ [(Te D)+ (A I)]_l]
x (I ®eel) [[(1@ D)+ A@ D] (e TB®e’TB-B®B) - (TeAT BT B)}

x vec([).

Proof. The left side of can be expressed as
A . -1 a - . A
IC)|IoA)+ Do) (PTBe WIV)"'WTer B—- B B)vec(I) + E.,

where we apply that eAT B = (WTV)1WT AP T B Weset K := (I ® A) + (D ® I) and
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K:=(I®A)+ (D ® I) and obtain

I O)K Y (ePTBo (WTV)"'WTeAT B — B ® B)vec(I)
=ITeCOK ' I W'V) "W (T BoeT B— B® B) vec(I)
=(IO)K T o (WIV)"'WT)K vec(V)

=IOV K YT o (WIV)TWDK vee(V(WTV) 1w Ty)
=(ICO)K YT WIV)'TWHKI o VIWTV)TWT) vec(V)
=(IoCO)K'K(I o (WIV)7'WT) vec(V)
=IC)IoV)Io(WIV)TWT) vee(V) = (I® C)vec(V)

= (I®C)K Y (ePTB®erT B— B® B)vec(l),

where the last term above is the right side of (26). The left side of is given by
. . -1 _ . . -
BTen|IeD)+ (AT VTer'TCT ePTCT — CT @ CT)vec(I) + By,

taking the identity ATT OT — YT ATPITT 0T intg account. So, by setting K := (I ® D) +
(A®I)and Ky := (I ® D) + (A® I), we have

(BT @ NE;T(VT AT 0T @ ePT 6T — 67 © CT) vec(I)

=BT DNE;TVT@I)(eMTCT ©ePT T - T @ C7) vec(I)
= (BT o )K; T(vT @ I KT vec(WT)
(BT @ DK, T (VT @ KT vee(WTV(WTv)twT) 29)
= (BT o DK;T(vT @ KT (WWTV)TVT @ I) vec(WT)
= (BT o NK; TR (VT @ I) vec(WT)
=BT WWTV) T DV @I)vec(WT) = (BT @ I)vec(WT)
= (BT o K; T TCT @ePTCT — T @ CT)vee(I)

which is the right side of (27). The left side of (28) is given by

B+ vec  (1)(C @ OV Ky YT ® eqel) (K;l((WTV)—le ATBeeT B - B B)

—(TWTV)'WT AT B @ ePT B)) vee(I).
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For the term right of (I ® e;e; ) it holds that

SHWTVY TWT AT B PT B — B® B)

—(TWTV)'WT AT B & ePT B)| vec(I)

WIV)yTWT @ I Ky vee(VT) — (T(WTV)'WT AT B @ ePT B)vec(I)
WIV) W @ I Ka vee(VIW(WTV)TVT)

—(TwTv)=twT AT B g ePT B)vec(I)
= (WTV)" "W @ I)vec(VT) — (T(WTV)"'WT eAT B @ ePT B) vec(I)
=WV 'WT e I) Ky (eA T B2 ePT B - Bo B) — (TeAT B ePT B)} vee(I)

Since (WIV)"'WT @ I) and (I ® e;e] ) commute, it remains to analyze the following term

vec" (I)(C @ O)K; (WTV)'Whe ) = |(WWTV) T e DK, (CT o CT) Vec(I)] "
We add a zero such that
wWwTv)y T oK *T(C*T ® CT) vec(I)
=WWTWV) T DHE;T (VT @ D)[(CT & CT) — (' T T @ PT CT)] vec(I)
+WWTV)y TeoDK;TVT @ 1) TCT ©ePT CT) vec()
Using the same steps as in (29), we find
WWTV)y Te DE;T(VT @ )[(CT @ CT) — (M T ¢  ePT €7)] vee(I)
= K;T[(CT @ CT) = (AT CT @ ePT CT)] vec(I).
Consequently, we have
vec! (I)(C @ CYK; ' (WTVYTWT @ I) = vecT (I)(C ® C) K5 !
+vecT (I)(C AT &€ ePT) [(v o Ky (WTV) "Wl @ 1) — K;l] . (@0)

The term in 1} provides E; o Which concludes the proof. O

Theorem[3.3]allows us to point out the cases in which Algorithm[f]works well. The method is expected
to perform well whenever the error expressions Ey, F. and E are small. By Theorem the error
in the optimality condition is bounded as follows:

1Eelly <

oPT BHQ H(WTV)—le(eAPrT _eAT>B‘ ,
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Towards time-limited JH5-optimal model order reduction 15

where k. > 0 is a suitable constant. Thus,

E.||, is small if H(WTV)AWT(eAPrT - eAT)BH
2
is small. At the same time

H&’B

oo

2 2

should not be too large which is given if the largest eigenvalue A5y of A is small enough or ideally
negative (asymptotic stability of the reduced system). Similar conclusions can be made when looking
at F. It is bounded by

= o] ot -

PrAT

with a sufficiently large constant k;, > 0. Hence, if HC(e eAT)VH2 is small, then condition

is approximately satisfied. Now, ’Ef\ 1’ can be bounded in a similar way as || E||, such that it is

also small if ’ (WTV)= 1w T (e4 PrT _ eAT)BH is neglectable, whereas for ’Ef\ 2’ it is required
2 )
to have the product
o] Joer]
2 2

<|ven|uep) +@den| (W) W e -[IeD)+(AeD]

2

small. The asymptotically stable matrix A is also helpful in this context.

4 Numerical Experiments

In this section, we investigate the efficiency of the time-limited IRKA inspired algorithm, see Algo-
rithm |1}, and compare it with conventional IRKA (unbounded time), see [5]. All the experiments are
done in MATLAB® 8.0.0.783 (R2012b) on a machine Intel®Xeon®CPU X5650 @ 2.67GHz with 48
GB RAM. We run both iterative algorithms until the relative change in the eigenvalues of A becomes
less a tolerance of 10~8. We initialize conventional IRKA randomly, and we use the reduced-order
system obtained by conventional IRKA as an initial guess for Algorithm([i] In Table[f] we list the exam-
ples used in order to compare the algorithms. For all examples, we compare the impulse responses
of the systems, which is simulated using the impulse command from MATLAB. To quantify the
quality of reduced-order systems, we determine either the absolute or the relative error, depending
on weather the impulse response crosses zero or not. We define the absolute &%) (t) and relative
errors &) (), respectively, as follows:

) (1) — 2,9
1) = I0(0) ~yP O] ana (e := L8Ol

where y(5) and yffs) are the impulses responses of original and reduced-order systems. In addition to

this, we numerically examine how far away the reduced-order systems due to IRKA and Algorithm
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Example n mi|p

Heat equation 200 | 1 | 1

Clamped beam model 348 | 1 | 1

Component 1r of the International Space Station | 270 | 3 | 3

Table 1: A list of examples with their dimensions (n), the numbers of inputs (m) and
outputs (p). These examples are taken from http://slicot.org/20-site/
126-benchmark-examples—-for-model—-reductionl

Method &, &y Ea
IRKA 27x103 | 2.7x 1072 [ 9.10 x 1073
TL-IRKA | 1.39 x 1074 | 1.39 x 10* | 1.58 x 10!

Table 2: Heat example: relative errors in satisfying the optimality conditions.

are from satisfying the optimality conditions — (28). To measure this, we first define the following
quantities:

Ec = IR — RO /IR, (32a)
b b

& = [R” — RV /IR, (32b)

&) = max (Ry,), Ry, = | RO — R /‘:Rl“i) . (320)

where Rl(c) and R\ are the left and right sides of (26); Rl(b) and R\ are the left and right sides of
@7; fR;Ai) and R\ are the left and right sides of (28); max(-) denotes the maximum.

In the following, we discuss each of these examples in detail. Beginning with the heat example,
we compute the reduced-order systems by employing conventional IRKA and Algorithm |1 of order
r = 5. We consider the terminal time 7" = 1. In Figure [1} we compare the impulse response
which shows that Algorithm[T]yields a reduced-order system, replicating the systems dynamics better
in the time interval [0, T]. Furthermore, as it has been noted in Section (3, Algorithm [1| does not
yield a reduced-order system, satisfying the optimality conditions. Thus, in Table [2] we measure the
error of the reduced-order systems obtained via IRKA and Algorithm [1] in the optimality conditions
as described in (32). The table shows that for the heat example, Algorithm [1] does a better job in
satisfying the two optimality conditions, and in contrast the third condition is satisfied better by the
reduced-order system due to conventional IRKA.

As a second example, we have taken a beam model which is reduced to the order r = 10 using the
IRKA and Algorithm |1] For this, we set the terminal time to T = 2. Next, we compare the impulse
responses of the original and reduced-order systems in Figure[2] Clearly, we observe that Algorithm(]
produces a better reduced-order system as compared to IRKA at least within the time interval of
interest. Furthermore, in Table[3] we measure the error of the obtained reduced-order systems in the
optimality conditions, where we make a similar observation as in the heat example.

Lastly, we present the results for the model of a space station. We first set the terminal time to
T' = 1. For this example, we construct reduced systems of order » = 20 via IRKA and Algorithm
and compare the quality of them using the impulse response. Since the example has 3 inputs and
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Figure 1: Heat example: a comparison of the impulse response of the original system and
reduced-order system obtained via IRKA and Algorithm m

— Ori. sys. —+— ROM via conventional IRKA —4— ROM via Algorithm ‘
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Figure 2: Beam example: a comparison of the impulse response of the original system and
reduced-order system obtained via IRKA and Algorithm m

Method &, Ep Ex
IRKA | 5.96 x 1072 | 5.96 x 1072 | 9.47 x 1072
TL-IRKA | 3.94 x 107* | 3.94 x 107* | 1.26 x 107!

Table 3: Beam example: maximum relative error in satisfying the optimality conditions.

3 outputs, for brevity we refrain to plot the impulse response, but we rather plot the norm absolute
error which is shown in Figure [3] We observe that Algorithm [1] constructs a reduced-order system
which replicates the dynamics better within the time interval of interest. For this example, we again
compute how far away the reduced-order systems are from satisfying the optimality conditions exactly
in Table[d] For this example as well, Algorithm[T]does a better job than IRKA in satisfying the first two
conditions, but fails to perform better for the third conditions. However, importantly, Algorithm 1] yields
a better reduced-order system.
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—— ROM via conventional IRKA —— ROM via Algorithm ‘
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Figure 3: ISS example: a comparison of the impulse response of the original system and
reduced-order system obtained via IRKA and Algorithm

Method &, &y Ex
IRKA | 261 x1071[1.62x 10" 1.08 x 10~*
TL-IRKA | 6.00 x 1072 | 5.43 x 1073 | 4.46 x 10!

Table 4: ISS example: relative error in satisfying the optimality conditions.

5 Conclusions

In this work, we have studied large scale linear time-invariant systems which we aimed to reduce.
We showed that the error between the original and the reduced system on a finite time interval can
be bounded using the so-called time-limited JHo-norm. In order to find a reduced order model with
a small output error, we minimized the Js-norm with respect to the reduced order system matrices.
This resulted in necessary conditions for optimality using representation of the time-limited Hs-norm
based on the time-limited Gramians. Reduced systems satisfying theses condition are expected to
perform well on the finite time interval of interest. Based on these optimality conditions, we propose an
iterative scheme which is inspired by the iterative rational Krylov algorithm [5]. Moreover, the error of
the proposed iterative algorithm in the derived optimality conditions has been analyzed to point out the
cases in which the proposed method works particularly well. We concluded this paper by comparing
conventional IRKA, an algorithm leading to a good reduced system on an infinite time horizon, with
the proposed iterative scheme in several numerical experiments. The simulations showed that time-
limited IRKA can outperform IRKA on the finite time interval of interest.

As we have seen, the proposed iterative-type algorithm for the time-limited problem does not satisfy
the optimality conditions exactly. Therefore, it would be worthwhile to come up with an improved algo-
rithm, allowing us to construct a reduced-order system which satisfy the derived optimality conditions
exactly.
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