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A function space framework for structural total variation
regularization with applications in inverse problems

Michael Hintermüller, Martin Holler, Kostas Papafitsoros

Abstract

In this work, we introduce a function space setting for a wide class of structural/weighted
total variation (TV) regularization methods motivated by their applications in inverse problems.
In particular, we consider a regularizer that is the appropriate lower semi-continuous envelope
(relaxation) of a suitable total variation type functional initially defined for sufficiently smooth func-
tions. We study examples where this relaxation can be expressed explicitly, and we also provide
refinements for weighted total variation for a wide range of weights. Since an integral character-
ization of the relaxation in function space is, in general, not always available, we show that, for
a rather general linear inverse problems setting, instead of the classical Tikhonov regularization
problem, one can equivalently solve a saddle-point problem where no a priori knowledge of an
explicit formulation of the structural TV functional is needed. In particular, motivated by concrete
applications, we deduce corresponding results for linear inverse problems with norm and Poisson
log-likelihood data discrepancy terms. Finally, we provide proof-of-concept numerical examples
where we solve the saddle-point problem for weighted TV denoising as well as for MR guided
PET image reconstruction.

1 Introduction

In many classical applications of inverse problems, rather than measuring data from a single channel,
recently the simultaneous acquisition from multiple channels has gained importance. Besides having
different sources of information available, a main advantage of such multiple measurements is due
to the possibility of exploiting correlations between different data channels in the inversion process,
often leading to a significant improvement for each individual channel. In particular, when the under-
lying quantities of interest can be visualized as image data, these correlations typically correspond to
joint structures in images. In view of this background, multimodality and multicontrast imaging explore
such joint structures for improved reconstruction. Successful applications of these techniques can be
found for instance in biomedical imaging [9, 20, 21, 22, 40, 43, 45, 49, 52], geosciences [51], electron
microscopy [27] and several more.

In this context, one distinguishes two different approaches for exploiting correlations: (i) Joint recon-
struction techniques that treat all available channels equally, such as [40], and (ii) structural-prior-
based regularization techniques that assume some ground truth structural information to be available.
Here we focus on a particular class of type (ii), namely structural total-variation-type regularization
functionals, i.e., functionals which integrate a spatially-dependent pointwise function of the image gra-
dient for regularization. In this vein, given some prior information v, we consider a regularization func-
tional of the type

J(u) =

∫
Ω

jv(x,∇u(x)) dx,
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M. Hintermüller, M. Holler, K. Papafitsoros 2

which is used in a Tikhonov-type regularization problem where u is reconstructed by solving

min
u

∫
Ω

jv(x,∇u(x)) dx+ (λD ◦K)(u). (1)

Here,D denotes a data discrepancy term andK a bounded linear operator which reflects the forward
model. A very basic, formal example of such a regularization is given when v denotes the underlying
ground truth image and we incorporate information on its gradient by defining jv(x, z) := 1

|∇v(x)| |z|,
where | · | is some norm. This yields

J(u) =

∫
Ω

1

|∇v(x)|
|∇u(x)| dx,

which corresponds to a weighted total variation (TV) functional.

Even though problems of the form (1) limit the exchange of information to the gradient level, they cover
a large set of existing works in particular in the context of medical image processing. This can be
explained on the one hand by the popularity of TV-type regularization for imaging in general, which is
due to its capability of recovering jump discontinuities. On the other hand, the gradient level seems very
well suited for exploiting correlations between different contrasts or modalities as it primarily encodes
structural information, i.e., to some extent it is independent of the absolute magnitude of the signal.
With the goal of enforcing parallel level sets, in [19], for instance, the regularizer J was chosen for a
given image v as

J(u) =

∫
Ω

φ (ψ(|∇v|β|∇v|β)− ψ(|(∇u · ∇v)|β2)) dx, (2)

where φ, ψ are appropriate increasing functions, | · |β, | · |β2 denote smoothed norms, and a · b is the
scalar (“dot”) product of vectors a, b ∈ Rd. This definition is motivated by the fact that for two vectors
w, y the quantity |w||y| − |(w, y)| is zero if and only if they are parallel to each other. Particular
instances of (2) were then also used in [22] for joint MR-PET reconstruction. A similar functional, but
in the spirit of [39] is

J(u) =

∫
Ω

|∇u|2 − (∇u · w)2 dx. (3)

Here w denotes some a priori vector field that contains gradient information. In the context of multi-
contrast MR, the authors in [20] choose

J(u) =

∫
Ω

∣∣∣∣(I − ∇v ⊗∇v|∇v|2

)
∇u
∣∣∣∣ dx =

∫
Ω

|∇u| sin θ dx. (4)

where again a smoothed version of the absolute value was used in the denominator. Here, θ denotes
the angle between∇u and∇v. Observe that the latter functional can also be written as∫

Ω

(
|∇u|2 −

(
∇u · ∇v

|∇v|

)2
)1/2

,

bearing similarity to the functional (3).

We note that the regularization approaches above have been considered only in discrete settings, de-
spite the original continuous formulations. Concerning the latter and as indicated above in connection
with (1), it is natural to consider u ∈ BV(Ω), i.e., |u| is Lebesgue integrable and u is of bounded total
variation, still allowing for jump discontinuities, i.e., sharp edges. As a consequence, the (generalized)
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gradient Du of u is in general a finite Radon measure, only. This fact, however, challenges the proper
defininition of regularization functionals of the above types in an associated function space setting.
The first part of our work aims at addressing precisely this issue. In fact, resorting to the concept of
functions of a measure [7] we propose to use the convex biconjugate as a regularizer. Indeed, starting
from a general function j : Ω × Rd → [0,∞), Ω ⊂ Rd with minimal assumptions, e.g., convexity,
linear growth, 1-homogeneity in the second variable, we define the functional J : Lp(Ω)→ R as

J(u) =

{∫
Ω
j(x,∇u(x)) dx if u ∈ W 1,1(Ω),

∞ else,
(5)

where we omit the dependence of j on the prior v for the sake of unburdening notation. Here, Lp(Ω)
and W 1,1(Ω) denote the usual Lebesgue and Sobolev spaces; see [1]. We note that J in (5) is not
suitable for variational regularization as it is finite only for a class of rather regular functions (i.e., in
W 1,1(Ω)) and it is not lower semi-continuous in an appropriate topology. As a remedy, we propose to
resort to the convex biconjugate J∗∗ of J , which we call structural TV functional. We recall that J∗∗

coincides with the lower semi-continuous envelope (relaxation) of J with respect to Lp convergence.
In general, J∗∗ may not have an explicit representation, but we show that it can always be expressed
in a dual form as

J∗∗(u) = sup
g∈Q

∫
Ω

u divg dx, for u ∈ Lp(Ω), (6)

where

Q :=
{
g ∈ W q

0 (div; Ω) ∩ L∞(Ω,Rd) : j◦(x, g(x)) ≤ 1 for almost every (a.e.) x ∈ Ω
}
, (7)

see (16) below for the precise definition of the support function j◦, and we refer to [25] for details
on W q

0 (div; Ω). Nevertheless, based on a recent result by Amar, De Cicco and Fusco [2], by linking
J∗∗ to the relaxed functional of J with respect to L1 convergence we are able to provide an integral
representation, under additional assumptions. For instance, in the case where j(x, z) = α(x)|z|,
α ∈ BV(Ω), with α ≥ 0, J∗∗ is equal to the weighted TV-functional

J∗∗(u) =

∫
Ω

α− d|Du|, u ∈ BV(Ω),

with α− the approximate lower limit of α; see (13) below for its definition. The set Q then reads

Q =
{
g ∈ W q

0 (div; Ω) ∩ L∞(Ω,Rd) : |g(x)| ≤ α(x) for a.e. x ∈ Ω
}
.

Interestingly, as a consequence of this formulation, we get certain density results of convex intersec-
tions in the spirit of [31, 32, 34] as a byproduct; compare Section 4.

Taking advantage of duality theory, in the second part of the paper we use the structural TV functional
J∗∗ for the regularization of linear inverse problems. In particular we study the general minimization
problem

inf
u∈Lp(Ω)

J∗∗(u) + (λD ◦K)(u). (8)

As emphasized above, an explicit representation of the functional J∗∗ is available only under some
additional, perhaps restrictive assumptions. In order to solve (8) without invoking such assumptions,
we employ Fenchel-Rockafellar duality and show, in the continuous setting, equivalence of (8) to a
saddle-point problem of the form
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inf
p∈W q

0 (div;Ω)
p∈Q

sup
u∈Lp(Ω)

(divp, u)− (λD ◦K)(u), (9)

where (·, ·) denotes an appropriate pairing. This is achieved under assumptions which are tight in the
sense that we can provide a counterexample where, without these assumptions, even existence of a
solution for (8) fails. The major advantage of the above saddle-point reformulation is that it allows to
obtain a solution of the original problem without requiring an explicit form of neither J∗∗ nor (D ◦K)∗.
Note that the latter would be required for solving the predual problem. Furthermore, it has a format
directly amenable to duality-based numerical optimization algorithms.

The equivalence to a saddle-point reformulation is obtained under rather general assumptions on the
data discrepancy term D, which, as corollary, allows us to cover the case of any norm discrepancy
term as well as the case of a log-likelihood term for Poisson noise, which is relevant for instance for
PET image reconstruction and electron tomography. The latter leads to the minimization problem

min
u∈Lp(Ω)

J∗∗(u) + λ

∫
Σ

Ku− f log(Ku+ c0) dσ + I[0,∞)(u). (10)

where K denotes a Radon-transform-type operator, f, c0 some given data, and I is the indicator
function for a set M , i.e., IM(u) = 0 if u ∈M and IM(u) = +∞ otherwise.

Finally, we show the versatility of our approach with proof-of-concept numerical examples in weighted
TV denoising with vanishing weight function and MR guided PET reconstruction.

We note here that there is previous work on the analysis of weighted and/or structural TV regular-
ization in an infinite dimension setting. In [26], another instance of structural-TV type functionals is
employed, but the work only considers the case of image denoising. Further, the authors simultane-
ously optimize over the image data and an anisotropy in the TV-term, which leads to a non-convex
problem. Regarding properties of solutions of weighted TV denoising we refer to the work by Jalalzai
[38] as well as to [30]. Finally, we mention that in [5] the authors analyze a weighted TV regularization
model for vortex density models.

Structure of the paper

The paper is organized as follows: In Section 2, we fix our notation and we remind the reader of basic
facts concerning functions of bounded variation and W (div) spaces.

In Section 3 we describe the relaxation framework for the structural TV functional. Under some con-
ditions, we provide an integral representation of the relaxation based on a result of [2] and we also
provide a characterization of its subdifferential.

Some refinements for weighted TV functional are given in Section 4 in the case of continuous and lower
semi-continuous weight functions. We show that the functional can be defined in a dual fashion, using
smooth test functions and as a byproduct we obtain certain density results of convex intersections in
the spirit of [32, 34].

Section 5 contains the main duality result of the paper. In particular, we show that under certain mild
assumptions, the variational regularization problem with the relaxed structural TV functional as regu-
larizer can be equivalently formulated as a saddle-point problem which requires knowledge neither of
the explicit form of the relaxation, as it is the case for the primal problem, nor of the convex conjugate of
the discrepancy term, as it is the case for the predual problem. As particular application, we elaborate
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A function space framework for structural total variation regularization 5

on the case of Poisson log-likelihood discrepancy terms and show how the result can be transferred
to this situation.

Finally, in Section 6 we provide proof-of-concept numerical examples, where we solve our saddle
point problem for weighted TV denoising with vanishing weight function and for MR-guided PET image
reconstruction.

2 Notation and Preliminaries

2.1 Functions of bounded variation

Throughout the paper, Ω ⊂ Rd, with d ≥ 2, will be a bounded, open set with Lipschitz boundary,
and we denote d∗ = d

d−1
. By p, q we always denote two real numbers such that p, q ∈ [1,∞] and

q = p
p−1

if p ∈ (1,∞), q =∞ if p = 1, and q = 1 if p =∞.

The space of functions of bounded variation on Ω is denoted by BV(Ω). We have that u ∈ BV(Ω)
if and only if it is in L1(Ω) and its distributional derivative is a bounded Radon measure, denoted by
Du. The total variation TV(u) of u is defined to be the total variation of that measure, i.e., TV(u) =
|Du|(Ω) and it is equal to

|Du|(Ω) = sup

{∫
Ω

u divφ dx : φ ∈ C∞c (Ω,Rd), |φ(x)| ≤ 1, ∀x ∈ Ω

}
. (11)

The measure Du can be decomposed into

Du = Dau+Dju+Dcu,

where Dau is the absolutely continuous with respect to Lebesgue measure Ld, with density function
denoted by ∇u, Dju denotes the jump part which is the restriction to the jump set Ju of u, and
Dcu is the Cantor part of Du. We recall that Dj

u is defined over the set of points in Ω for which that
u+(x) > u−(x) where

u+(x) = inf

{
t ∈ [−∞,∞] : lim

r→0

Ld({v > t} ∩B(x, r))

rd
= 0

}
, (12)

u−(x) = sup

{
t ∈ [−∞,∞] : lim

r→0

Ld({v < t} ∩B(x, r))

rd
= 0

}
, (13)

are the approximate upper and lower limits of u, respectively. With these definitions, the total variation
of the measure Dju can be written as

|Dju|(Ω) =

∫
Ju

|u+(x)− u−(x)| dHd−1,

whereHd−1 denotes the (d− 1)-dimensional Hausdorff measure. The density functions of the mea-
sures Dju and Dcu with respect to |Dju| and |Dcu| are denoted by σDju and σDcu, respectively.
For further details about the space BV(Ω), we refer the reader to [3, 24].
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2.2 The space W q(div; Ω)

As the Banach space W q(div; Ω), with q ∈ [1,∞), plays a major role in our work, we recall here
some basic facts.

Definition 2.1 (W q(div; Ω)). Let 1 ≤ q <∞ and g ∈ Lq(Ω,Rd). We have divg ∈ Lq(Ω) if there
exists w ∈ Lq(Ω) such that for all φ ∈ C∞c (Ω)∫

Ω

∇φ · g dx = −
∫

Ω

φw dx.

Furthermore we define

W q(div; Ω) :=
{
g ∈ Lq(Ω,Rd) : divg ∈ Lq(Ω)

}
,

with the norm ‖g‖qW q(div;Ω) := ‖g‖qLq(Ω) + ‖divg‖qLq(Ω).

Remark 2.2. By density of C∞c (Ω) in Lp(Ω) we have divg = w as w ∈ Lq(Ω) is unique. By
completeness of Lq(Ω) and Lq(Ω,Rd) it follows that W q(div; Ω) is a Banach space when equipped
with ‖ · ‖W q(div;Ω).

We now state some general properties of W q(div; Ω). As W q(div; Ω) is just a straightforward gen-
eralization of the well-known space H(div; Ω) := W 2(div; Ω), these results can be proven readily
by generalizing from H(div; Ω); see [25, Chapter 1] for details on the latter.

Proposition 2.3 (Density). Let q ∈ [1,∞). Then C∞(Ω,Rd) is dense in W q(div; Ω) with respect
to ‖ · ‖W q(div;Ω).

Proposition 2.4 (Normal trace). Let q ∈ [1,∞) and denote by nΩ(x) ∈ Rd the outer normal vector
to ∂Ω at x ∈ ∂Ω. Then the mapping

τ : C∞(Ω,Rd)→
(
W 1− 1

p
,p(∂Ω)

)∗
, g 7→ τ(g),

with τ(g)(v) :=
∫
∂Ω

(g, nΩ)v dHd−1 for v ∈ W 1− 1
p
,p(∂Ω), can be extended to a linear, continuous

mapping, also denoted by τ : W q(div; Ω) →
(
W 1− 1

p
,p(∂Ω)

)∗
. Further we have a Gauss-Green

formula for W q(div; Ω) functions:∫
Ω

∇v · g dx+

∫
Ω

v divg dx = τ(g)(v) for all v ∈ W 1,p(Ω), g ∈ W q(div; Ω).

Definition 2.5. For 1 ≤ q <∞, we define

W q
0 (div; Ω) = C∞c (Ω,Rd)

‖·‖Wq(div;Ω)
.

The next proposition also uses ideas from [25] but since its proof is slightly more involved, we include
it in Appendix A.

Proposition 2.6. For q ∈ [1,∞) we have W q
0 (div; Ω) = {g : τ(g) ≡ 0} =: ker(τ), with τ

the W q(div; Ω)-trace operator as in Proposition 2.4 and τ(g) ≡ 0 is understood in the sense of(
W 1− 1

p
,p(∂Ω)

)∗
.

From this fact, another equivalent characterization of W q
0 (div; Ω) can be obtained readily.

Corollary 2.7. For q ∈ [1,∞) and g ∈ W q(div; Ω) we have g ∈ W q
0 (div; Ω) if and only if∫

Ω

∇v · g dx = −
∫

Ω

v divg dx, for all v ∈ W 1,p(Ω). (14)
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A function space framework for structural total variation regularization 7

3 Structural TV as a lower semi-continuous envelope

The goal of this section is to obtain a predual representation of a general TV-based functional that
includes the case of weighted TV for a general choice of weights. To this aim, we will define the
corresponding functional as the Lp-lower semi-continuous envelope of a restriction to W 1,1 functions,
with p ∈ [1,∞). The approach is motivated by the paper of Bouchitte and Dal Maso [12]. We start
with a few definitions.

By j : Ω× Rd → [0,∞) we always denote a function satisfying the following conditions:

(J1) For a.e. x ∈ Ω, j(x, ·) is convex and positively 1-homogeneous on Rd.

(J2) There exists γ > 0 such that

0 ≤ j(x, z) ≤ γ(1 + |z|) for a.e. x ∈ Ω and every z ∈ Rd.

(J3) For every z ∈ Rd, j(x, z) = j(x,−z), i.e., j is an even function in the second variable.

Furthermore, for p ∈ [1,∞) we define J : Lp(Ω)→ [0,∞] as

J(u) :=

{∫
Ω
j(x,∇u(x)) dx if u ∈ W 1,1(Ω),

∞ else.
(15)

Remark 3.1. We note that j(x, z) = α(x)|z| with any α : Ω→ [0,∞) bounded above satisfies the
above assumptions (J1)–(J3).

In what follows, convex conjugation of j will always be understood with respect to the second argu-
ment, and convex conjugation of J is performed in Lp(Ω). Due to positive 1-homogeneity, we get the
following well known representation of j∗. For its formulation, we define the support function

j◦(x, z∗) := sup
z:j(x,z)≤1

z∗ · z, (16)

and denote by j∗ the convex conjugate of j; see [23] for more information on the latter concept.

Proposition 3.2. Let z∗ ∈ Rd. Then, for any x ∈ Ω we have j∗(x, z∗) = IAx(z∗), with IAx the
convex indicator function of the set Ax = {z ∈ Rd : j◦(x, z) ≤ 1}.

Proof. In case j(x, ·) = 0 the assertion holds true trivially. Hence we assume that there exists z ∈ Rd

with j(x, z) 6= 0. For such a point z, we can write

j(x, z) = j

(
x, j(x, z)

z

j(x, z)

)
= λj(x, z̃)

with λ = j(x, z) ≥ 0 and for z̃ such that j(x, z̃) = 1. Hence we get

j◦(x, z∗) = sup
λ∈[0,1]

sup
j(x,z)=1

λ(z∗ · z) = sup
j(x,z)=1

z∗ · z ≥ 0,
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where the non-negativity follows from the fact that j(x, ·) is even. We further have

j∗(x, z∗) = sup
z
{z∗ · z − j(x, z)} = sup

λ≥0
sup

j(x,z)=1

{z∗ · (λz)− λj(x, z)}

= sup
λ≥0

sup
j(x,z)=1

λ(z∗ · z − 1) = sup
λ≥0

λ(j◦(x, z∗)− 1)

=

{
∞ if j◦(x, z∗) > 1,

0 if j◦(x, z∗) ≤ 1

}
= IAx(z∗),

which completes the proof.

Remark 3.3. From the proposition above if follows for j(x, z) = α(x)|z| that

j◦(x, z∗) =

{
|z∗|
α(x)

if α(x) 6= 0,

I{0}(z∗) else,

and hence Ax = {z∗ ∈ Rd : |z∗| ≤ α(x)}.

We note that by definition and density we have for u∗ ∈ Lq(Ω) with q = p
p−1

that

J∗(u∗) = sup
u∈Lp(Ω)

{(u∗, u)− J(u)} = sup
u∈BV(Ω)

{(u∗, u)− J(u)} = sup
u∈W 1,1(Ω)

{(u∗, u)− J(u)}.

Here we write (v, w) :=
∫

Ω
vw dx for v ∈ Lq(Ω) and w ∈ Lp(Ω). The next proposition follows the

lines of [12] and provides a characterization J∗, which also holds without the positive 1-homogeneity
assumption on j.

Proposition 3.4. Let p ∈ (1,∞). Then we have for all u∗ ∈ Lq(Ω) that

J∗(u∗) = min
g∈K(u∗)

∫
Ω

j∗(x, g(x)) dx,

where K(u∗) := {g ∈ W q
0 (div; Ω) ∩ L∞(Ω,Rd) : −divg = u∗}, and we set min ∅ := +∞.

Proof. We define the map F : L1(Ω,Rd) → R with F (p) :=
∫

Ω
j(x, p(x)) dx. Due to (J2), F is

well defined. Then, by [23, Theorem X.2.1], we get for F ∗ : L∞(Ω,Rd)→ R that

F ∗(p∗) =

∫
Ω

j∗(x, p∗(x)) dx.

Further, we define the unbounded operator Λ : Lp(Ω) → L1(Ω,Rd) by dom(Λ) = W 1,1(Ω) ∩
Lp(Ω) and Λu := ∇u. Then Λ is densely defined and closed. We note that J can be re-written as

J(u) =

{
F (Λu) if u ∈ dom(Λ),

+∞ else.

Due to |F (p)| ≤ γmeas(Ω) + γ‖p‖L1(Ω) by (J2), where meas(·) denotes the Lebesgue measure
of a set, J is bounded in a neighborhood of any Λu with u ∈ dom(Λ). Hence, it follows from [46,
Theorem 19] that

J∗(u∗) = min {F ∗(y∗) : y∗ ∈ dom(Λ∗), Λ∗y∗ = u∗}

= min

{∫
Ω

j∗(x, y∗(x)) dx : y∗ ∈ dom(Λ∗), Λ∗y∗ = u∗
}
.
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To complete the proof, it is left to show that we have for any u∗ ∈ Lq(Ω) that

{y∗ ∈ dom(Λ∗) : Λ∗y∗ = u∗} = {g ∈ W q
0 (div; Ω) ∩ L∞(Ω,Rd) : −divg = u∗}.

We first show the inclusion “⊃”: In case the set on the right-hand side above is empty, then the inclusion
holds trivially; otherwise take g ∈ W q

0 (div; Ω) ∩ L∞(Ω,Rd) with −divg = u∗ and v ∈ dom(Λ) ⊂
W 1,1(Ω). By density [24, Theorem 4.3] there exists a sequence (vn)n∈N in W 1,1(Ω) ∩ C∞(Ω)
converging to v in W 1,1(Ω) for which we can also assume that vn → v in Lp(Ω) since v ∈ Lp(Ω).
Then, by the Gauss-Green theorem for W q

0 (div; Ω), see (14), we get∫
Ω

divg v dx←
∫

Ω

divg vn dx = −
∫

Ω

g · Λvn dx→ −
∫

Ω

g · Λv dx.

Hence |(Λv, g)| ≤ Cg‖v‖Lp(Ω) with some Cg > 0, and thus g ∈ dom(Λ∗) and −divg = Λ∗g.
To show the reverse inclusion “⊂”, again assuming the set on the left-hand side to be non-empty,
we take y∗ ∈ dom(Λ∗) ⊂ L∞(Ω,Rd), for which we want to show that y∗ ∈ W q

0 (div; Ω) and
Λ∗y∗ = −divy∗. By definition of dom(Λ∗) the mapping v 7→

∫
Ω

Λ∗y∗v dx is a continuous linear
functional on Lp(Ω), hence there exists w ∈ Lq(Ω) such that∫

Ω

wv dx =

∫
Ω

Λ∗y∗v dx =

∫
Ω

y∗ · ∇v dx

for all v ∈ dom(Λ) ⊃ C∞(Ω) ⊃ C∞c (Ω). Hence, y∗ ∈ W q(div; Ω). Further, we also get that
y ∈ ker(τ), with τ being the normal trace operator of Proposition 2.4, and hence y∗ ∈ W q

0 (div; Ω),
which completes the proof.

Using positive 1-homogeneity, Proposition 3.2 immediately implies the following refinement.

Corollary 3.5. Under the assumption of Proposition 3.4 we get that

J∗(u∗) = Idiv(Q)(u
∗)

with
Q =

{
g ∈ W q

0 (div; Ω) ∩ L∞(Ω,Rd) : j◦(x, g(x)) ≤ 1 for a.e. x ∈ Ω
}
.

In particular, if j(x, z) = α(x)|z| then we get

Q =
{
g ∈ W q

0 (div; Ω) ∩ L∞(Ω,Rd) : |g(x)| ≤ α(x) for a.e. x ∈ Ω
}
.

3.1 Explicit representation of J∗∗

Now we study J∗∗ and aim at providing an explicit representation. Note that since J is convex, J∗∗

is equal to the lower semi-continuous envelope of J with respect to both the strong and weak Lp-
convergence. In other words, for every u ∈ Lp(Ω) we have

J∗∗(u) = inf
{

lim inf
n→∞

J(un) : un ∈ Lp(Ω), un → u in Lp(Ω)
}

= inf
{

lim inf
n→∞

J(un) : un ∈ Lp(Ω), un ⇀ u in Lp(Ω)
}
, (17)

where “→” refers to convergence with respect to the strong topology and “⇀” with respect to the weak
topology.
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In order to obtain an explicit representation of J∗∗, we will employ the representation of the L1-lower
semi-continuous envelope of J , denoted here by J , as derived in [2]. Note that for u ∈ Lp(Ω)

J(u) := inf
{

lim inf
n→∞

J(un) : un ∈ W 1,1(Ω), un → u in L1(Ω)
}

(18)

= inf
{

lim inf
n→∞

J(un) : un ∈ W 1,1(Ω), un ⇀ u in L1(Ω)
}
, (19)

with the last equality again being true due to convexity of J .

We show that, under suitable coercivity assumptions on j, the functionals J∗∗ and J coincide.

Lemma 3.6. Assume p ∈ [1, d∗] and that for some c > 0 we have c|z| ≤ j(x, z) for every z ∈ Rd

and for almost every x ∈ Ω. Then, J∗∗(u) = J(u) for all u ∈ Lp(Ω).

Proof. Since we assume Ω to be bounded, Lp convergence implies L1 convergence. Also, J(un) =
+∞ for u ∈ Lp(Ω) \W 1,1(Ω) and, consequently, J ≤ J∗∗. Hence we are left to show J∗∗(u) ≤
J(u) for all u ∈ Lp(Ω). To this aim, we first note that, due to the coercivity assumption on j,
c|Du|(Ω) ≤ J(u) for all u ∈ BV(Ω).

Now take a = limn→∞ J(un) with un ∈ W 1,1(Ω) ⊂ BV(Ω), un → u in L1(Ω). Without loss of
generality, we can assume a < ∞. From the continuous embedding of BV(Ω) into Ld

∗
(Ω), we get

for a generic constant C > 0 and for some K > 0

‖un‖Lp(Ω) ≤ C(‖un‖L1(Ω) + |Dun|(Ω)) ≤ C(‖un‖L1(Ω) + J(un)) < K <∞.

Hence, (un)n∈N also converges weakly (up to subsequences) in Lp(Ω), and thus also weakly in
L1(Ω). By uniqueness of the weak limit we get a = lim infi→∞ J(uni) with uni ⇀ u in Lp(Ω) and
the proof is complete.

Remark 3.7. Note that if the coercivity assumption of Lemma 3.6 holds, then due to the lower semi-
continuity of total variation with respect to weak L1-convergence we get u /∈ BV(Ω) if and only if
J(u) = J∗∗(u) = +∞.

We then get the following result, which is a direct consequence of [2, Theorem 1.1].

Proposition 3.8 (Integral representation of J∗∗). Assume that p ∈ [1, d∗] and one of the following
two assertions holds true:

(i) j(x, z) = α(x)b(z) with α ∈ BV(Ω) and b being a convex function such that (J1)–(J3) hold
for j.

(ii) There exists a constant c > 0 such that for every z ∈ Rd and for almost every x ∈ Ω,
c|z| ≤ j(x, z) and also j(·, z) ∈ BV(Ω).

Then, for any u ∈ BV(Ω) we have

J∗∗(u) =

∫
Ω

j(x,∇u(x)) dx+

∫
Ω

j−(x, σDcu) d|Dcu|+
∫
Ju∩Ω

((u+(x)−u−(x))j−(x, σDju) dHd−1.

(20)
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Proof. Denote by J the right-hand side of equation (20). If one of the two assumptions is satisfied,
then it follows from [2, Theorem 1.1] that J(u) = J (u) for every u ∈ BV(Ω). It hence remains
to show that J∗∗(u) = J(u) for any u ∈ BV(Ω). In case (ii) is satisfied, this is the assertion of
Lemma 3.6. Assume now that (i) holds true. In that case we will show directly that J∗∗(u) = J (u)
for every u ∈ BV(Ω). It follows from [2, Theorem 3.1] that J is lower semi-continuous with respect to
L1 convergence. Consequently it is also lower semi-continuous with respect to weak Lp convergence
and hence, for all u and (un)n∈N in W 1,1(Ω) with un ⇀ u in Lp we get

J (u) ≤ lim inf
n→∞

J(un).

This means that J (u) is a lower bound for the set{
lim inf
n→∞

J(un) : un ∈ W 1,1(Ω), un ⇀ u in Lp(Ω)
}

and since, by definition of the lower semi-continuous relaxation, J∗∗(u) is the infimum of this set, we
get

J (u) ≤ J∗∗(u).

Furthermore, in the proof of [2, Theorem 4.1] it is shown, with uh = u ∗ φh being a standard mollifi-
cation of u ∈ BV(Ω) and any A ⊂⊂ Ω with |Du|(∂A) = 0, that

lim inf
h→∞

J(uh, A) ≤ J (u),

where, for any A ⊂ Ω open, J(u,A) :=
∫
A
j(x,∇u(x)) dx if u ∈ W 1,1(Ω) and J(u,A) = +∞

otherwise. Denoting, for fixed A ⊂ Ω, J
d∗

(·, A) the lower semi-continuous relaxation of J(·, A) in
Ld
∗
, we get from convergence of uh to u in Ld

∗
(Ω) as h → +∞ (which holds, since by embedding

u ∈ Ld∗(Ω)) that

J
d∗

(u,A) ≤ lim inf
h→∞

J(uh, A) ≤ J (u).

Now by [12, Theorem 4.1], the function A 7→ J
d∗

(u,A) can be extended to a non-negative Borel
measure. We define the uncountable family of open sets (Ωε)ε>0 by Ωε := {x ∈ Ω : d(x, ∂Ω) > ε}.
Then Ωε ⊂⊂ Ω and ∂Ωε ∩ ∂Ωε′ = ∅. By sigma additivity and since J

d∗

(u,Ω) < +∞ we get that,
for any n ∈ N, the set

{ε > 0 : J
d∗

(u, ∂Ωε) > 1/n}

is finite. Hence, the set {ε > 0 : J
d∗

(u, ∂Ωε) > 0} is at most countable and we can extract a

sequence (Ωεi)i∈N such that J
d∗

(u, ∂Ωεi) = 0, (εi)i∈N is monotonically decreasing and
⋃
i Ωεi =

Ω. Hence we conclude (by p ≤ d∗ for the left-most inequality below)

J∗∗(u) ≤ J
d∗

(u,Ω) = lim
i→∞

J
d∗

(u,Ωεi) ≤ J (u)

and the proof is complete.

Remark 3.9. In the case j(x, z) = α(x)|z| with 0 ≤ α(x) ≤ C and α ∈ BV(Ω), the assumptions
of the above proposition are fulfilled. Using that, in this case (j−) = α−| · |, we get that

J∗∗(u) =

∫
Ω

α−|∇u(x)| dx+

∫
Ω

α−|σDcu| d|Dcu|+
∫
Ju∩Ω

((u+ − u−)α−|σDju| dHd−1

=

∫
Ω

α− d|Du|.

We provide further remarks concerning the case j(x, z) = α(x)|z| in Section 4 below.
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3.2 Subdifferential characterization

From Proposition 3.4 and Corollary 3.5 we directly obtain an integral characterization of the subd-
ifferential for a wide class of structural total variation type functionals. The corresponding result is
established in Proposition 3.10 below. Also, we refer to [4, 13, 16] for more elaborate results in that
direction.

Proposition 3.10. Let p ∈ (1,∞). Then, for u ∈ Lp(Ω) we have u∗ ∈ ∂J∗∗(u) ⊂ Lq(Ω) if and
only if

(i) J∗∗(u) < +∞, and

(ii) there exists a vector field g ∈ W q
0 (div; Ω) ∩ L∞(Ω,Rd) such that

u∗ = divg, J∗∗(u) =

∫
Ω

u divg dx, j◦(x, g(x)) ≤ 1 for a.e. x ∈ Ω.

Proof. Let u ∈ Lp(Ω). We have (see, e.g., [23])

u∗ ∈ ∂J∗∗(u) ⇐⇒ J∗∗(u) + J∗∗∗(u∗) =

∫
Ω

u∗u dx

⇐⇒ J∗∗(u) + J∗(u∗) =

∫
Ω

u∗u dx

⇐⇒ J∗∗(u) + Idiv(Q)(u
∗) =

∫
Ω

u∗u dx,

where Q is defined in Corollary 3.5 as

Q =
{
g ∈ W q

0 (div; Ω) ∩ L∞(Ω,Rd) : j◦(x, g(x)) ≤ 1 for a.e. x ∈ Ω
}
.

Hence the result follows immediately.

Recall that if j satisfies the coercivity assumption c|z| ≤ j(x, z), then Remark 3.7 implies that
J∗∗(u) < +∞ is equivalent to u ∈ BV(Ω).

4 Some refinements for weighted TV

For the special case j(x, z) = α(x)|z| we next investigate alternative dual definitions of the structural
total variation functional. This will provide some density results for pointwise bounded W d

0 (div; Ω)-
functions, which are of interest in a variety of applications [31, 32, 33, 34].

Given u ∈ Lp(Ω) with p ∈ (1, d∗], consider the following two extended-valued weighted TV-
functionals:

TVW
α (u) := sup

{∫
Ω

u divg dx : g ∈ W q
0 (div; Ω), |g(x)| ≤ α(x), for a.e. x ∈ Ω

}
, (21)

TVC
α (u) := sup

{∫
Ω

u divφ dx : φ ∈ C∞c (Ω,Rd), |φ(x)| ≤ α(x), ∀x ∈ Ω

}
, (22)

Recall that TVW
α = J∗∗ by Corollary 3.5.

We commence by stating a preparatory result whose proof can be found in [31].
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Lemma 4.1. Let φ ∈ Cc(Ω,Rd). Then for every ε > 0 there exists a function φε ∈ C∞c (Ω,Rd) such
that

‖φ− φε‖∞ < ε and |φε(x)| ≤ |φ(x)| for all x ∈ Ω.

Using this density result, the following result can be shown for a continuous weight function α.

Proposition 4.2. Let α ∈ C(Ω) with α ≥ 0 and u ∈ BV(Ω). Then

TVC
α (u) =

∫
Ω

α d|Du|. (23)

Proof. From [3, Prop. 1.47] we have that∫
Ω

α d|Du| = sup

{
d∑
i=1

∫
Ω

φiα dDiu : φ ∈ Cc(Ω,Rd), |φ(x)| ≤ 1, ∀x ∈ Ω

}

= sup

{
d∑
i=1

∫
Ω

φi dDiu : φ ∈ Cc(Ω,Rd), |φ(x)| ≤ α(x), ∀x ∈ Ω

}
(24)

≤ sup

{∫
Ω

|φ |d|Du| : φ ∈ Cc(Ω,Rd), |φ(x)| ≤ α(x), ∀x ∈ Ω

}
≤
∫

Ω

α d|Du|.

The proof will be completed by showing that (24) is equal to

sup

{
d∑
i=1

∫
Ω

φi dDiu : φ ∈ C∞c (Ω,Rd), |φ(x)| ≤ α(x), ∀x ∈ Ω

}
. (25)

Indeed, if φ ∈ C∞c (Ω,Rd), then
∑d

i=1

∫
Ω
φi dDiu = −

∫
Ω
u divφ dx and thus (25) is equal to

the right-hand side of (23). Lemma 4.1 now allows to approximate any term in (24) by a term in (25)
satisfying the pointwise constraint, which completes the proof.

As we show next, (21) and (22) are equivalent for u ∈ BV(Ω) and a continuous weight function.

Proposition 4.3. Let α ∈ C(Ω) with α ≥ 0 and u ∈ BV(Ω). Then

TVC
α (u) = TVW

α (u) =

∫
Ω

α d|Du|. (26)

Proof. We have that for every u ∈ BV(Ω) there exists a sequence (un)n∈N ⊂ C∞(Ω)∩W 1,1(Ω)∩
Ld
∗
(Ω) that converges to u in Ld

∗
(Ω) and also

∫
Ω
α d|Dun| →

∫
Ω
α d|Du|; see for instance [3,

Thm. 3.9 & Prop. 3.15]. This, together with the fact that
∫

Ω
α d|D · | is lower semi-continuous with

respect toLd
∗
-convergence, and also that J∗∗ is theLd

∗
-lower semi-continuous envelope of J implies

that

TVC
α (u) =

∫
Ω

α d|Du| = J∗∗(u) = TVW
α (u),

where the first equality is due to Proposition 4.2 and the last equality is due to Corollary 3.5.

Note that in the proof above, we are not able to directly use the result of [2] or its corollaries proven in
the previous section, as α ∈ C(Ω) does not imply α ∈ BV(Ω). For smooth (but not necessarily with
integrable gradient) u the following analogous result holds true; see Appendix A for its proof.
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Proposition 4.4. Let α ∈ C(Ω) with α ≥ 0 and u ∈ C1(Ω). Then TVC
α (u) =

∫
Ω
α|∇u| dx.

We now reduce the regularity of α by assuming the following property for the function α− ≥ 0:

There exists (αn)n∈N ⊂ C(Ω), 0 ≤ αn(x) ≤ α−(x) such that αn(x)→ α−(x), ∀x ∈ Ω.
(Plsc)

Observe that the above requirement slightly generalizes lower semi-continuity.

Proposition 4.5. Suppose that α ∈ BV(Ω) ∩ L∞(Ω), with α ≥ 0, and α−satisfies (Plsc). Then for
all u ∈ BV(Ω) we have

TVC
α−(u) = TVW

α (u) =

∫
Ω

α− d|Du|. (27)

Proof. Since α− satisfies (Plsc), we have α−(x) = sup {α̃(x) : α̃ ∈ C(Ω), α̃ ≤ α}, which yields

sup
α̃≤α−
α̃∈C(Ω)

∫
Ω

α̃ d|Du| =
∫

Ω

α− d|Du|. (28)

Moreover, we find

sup
α̃≤α−
α̃∈C(Ω)

∫
Ω

α̃ d|Du| = sup
α̃≤α−
α̃∈C(Ω)

sup

{∫
Ω

u divψ dx : ψ ∈ C∞c (Ω,Rd), |ψ(x)| ≤ α̃(x), ∀x ∈ Ω

}

≤ sup

{∫
Ω

u divφ dx : φ ∈ C∞c (Ω,Rd), |φ(x)| ≤ α−(x), ∀x ∈ Ω

}
= TVC

α−(u).

But, the above inequality is, in fact, an equality as for every element
∫

Ω
u divφ dxwith φ ∈ C∞c (Ω,Rd)

and |φ| ≤ α−, we have∫
Ω

u divφ dx ≤ sup

{∫
Ω

u divψ dx : ψ ∈ C∞c (Ω,Rd), |ψ(x)| ≤ |φ(x)|, ∀x ∈ Ω

}
.

From this, (28), Corollary 3.5 and Remark 3.9, we get that

TVC
α−(u) = TVW

α (u) =

∫
Ω

α− d|Du|,

which ends the proof.

Under a uniform positivity assumption on the weight, we obtain a density result, which is of use,
e.g., when predualizing the renowned Rudin-Osher-Fatemi model; see [47], and [29, 33, 34] for its
dualization.

Proposition 4.6. Let the assumptions of Proposition 4.5 hold true, and assume in addition that α >
c > 0 a.e. in Ω. Then we have for q ∈ [d,+∞) that

{divφ : φ ∈ C∞c (Ω,Rd), |φ| ≤ α−}
Lq(Ω)

=
{

divg : g ∈ W q
0 (div; Ω), |g| ≤ α−, a.e.

}
.
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Proof. For every u ∈ BV(Ω) we have

TVC
α−(u) =

∫
Ω

α−d|Du| = J(u) = J∗∗(u) = TVW
α (u),

where the first equality stems from Proposition 4.5, the second one is due to [2], the third equality
comes from Proposition (3.6), and Corollary 3.5 yields the final relation.

As α > c > 0 a.e. in Ω, we have TVC
α−(u) = TVW

α (u) = +∞ for every u ∈ Lp(Ω) \ BV(Ω).
Hence, we have TVC

α− = TVW
α in all of Lp(Ω) which is equivalent to

I∗{divφ:φ∈C∞c (Ω,Rd), |φ|≤α−}(u) = I∗{divg:g∈W q
0 (div;Ω), |g|≤α−, a.e.}(u), for all u ∈ Lp(Ω).

After dualization and using the fact that the second set in the equation above is closed in Lq(Ω)
(compare [13] for a proof for scalar α which readily carries over to the present setting), we obtain for
all u∗ ∈ Lq(Ω) that

I
{divφ:φ∈C∞c (Ω,Rd), |φ|≤α−}

Lq(Ω)(u∗) = I{divg:g∈W q
0 (div;Ω), |g|≤α−, a.e.}(u

∗),

which proves the claimed density.

Density results of the above type have recently gained attention in the literature [31, 32, 33, 34] and
enjoy a variety of applications. In the context of variational regularization in image reconstruction, an
analogous density result for continuous weights α was used in [33] in order to show equivalence of
a weighted TV-regularization problem and a corresponding predual problem; see [29] for a scalar
weight. We emphasize that the result of Proposition 4.6 allows for the dualization for a larger class of
weights rather than continuous functions. In the following section, we discuss an even more general
duality result.

5 A general duality result

In this section we consider the variational regularization of linear inverse problems using structural
total variation regularization. Our goal is to show existence of a solution as well as equivalence to
a saddle-point formulation in the continuous setting under mild conditions that are naturally satisfied
by the applications of our interest. The saddle-point problem will be formulated in a way that it only
requires an explicit form of J∗, but not of J∗∗, and such that its numerical solution by duality-based
optimization algorithms is direct.

Since we aim to capture diverse applications, such as structural-TV-regularized MR and PET recon-
struction, our main duality result will be rather general with technical assumptions. In order to better
demonstrate the essence of our result, we first consider the particular case where data fidelity will be
guaranteed by a norm discrepancy. For this purpose, consider

inf
u∈Lp(Ω)

J∗∗(u) + λ‖Ku− f‖S, (29)

where p ∈ (1, d∗], (S, ‖ · ‖S) is a Banach space with f ∈ S, K : Lp(Ω) → S is a bounded linear
operator (i.e., K ∈ L(Lp(Ω), S)), J∗∗ corresponds to the structural TV functional as defined above,
and λ > 0 is a regularization parameter.
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Note that, without further assumptions (see Propositions 3.4 and 3.8), we only have J∗ = J∗∗∗, but
J∗∗ is not available explicitly. Hence we are interested in showing equivalence of (29) to an appropriate
predual problem which only requires J∗. We will see that, for general J , this is possible if either
c|z| ≤ j(x, z) for every z ∈ Rd and for almost every x ∈ Ω, or the inversion of K is essentially
well-posed, i.e., K has a closed range and a finite dimensional kernel. Regarding the latter, we note
that this is in particular true if we assume K∗K to be invertible, with K∗ being the adjoint of K . A first
result for the particular setting of (29) is stated next.

Proposition 5.1. Let p ∈ (1, d∗], (S, ‖ · ‖S) a Banach space with f ∈ S, K ∈ L(Lp(Ω), S) and
λ > 0. Assume that at least one of the following two conditions holds:

(i) There exists c > 0 such that c|z| ≤ j(x, z) for every z ∈ Rd and for almost every x ∈ Ω.

(ii) Rg(K∗) is closed and ker(K) is finite dimensional.

Then there exists a solution to the primal problem

inf
u∈Lp(Ω)

J∗∗(u) + λ‖Ku− f‖S, (30)

to a corresponding predual problem, and to the saddle-point problem

inf
p∈W q

0 (div;Ω)
p∈Q

sup
u∈Lp(Ω)

(divp, u)− λ‖Ku− f‖S, (31)

where Q = {g ∈ W q
0 (div; Ω) ∩ L∞(Ω,Rd) : j◦(x, g(x)) ≤ 1 for a.e. x ∈ Ω}. They all coincide

and are equivalent in the sense that the pair (p, u) is a solution to the saddle-point problem if and only
if u is a solution to (30) and p is a solution to the predual problem.

Proof. This is a special case of Theorem 5.4 below. We, hence, refer to the corresponding proof.

We mention that the above result readily carries over to data fidelities of the type ‖Ku − f‖rS , with
r ∈ [1,∞). Here, often r = 2 is of interest when S is a Hilbert space, or r = p when S = W k,p(Ω),
with k ∈ N0 and p ∈ [1,∞).

Note that the coercivity assumption (i) of Proposition 5.1 excludes the case where J∗∗(u) =
∫

Ω
α d|Du|

with vanishing weight α. The following example shows that if the weight is not bounded uniformly away
from zero, existence for (30) is not guaranteed, in general (not in BV(Ω) but also not even in L2(Ω)).
This observation justifies assumption (i) very well.

Proposition 5.2. There exists Ω ⊂ Rd, α ∈ C(Ω) with α vanishing only at one point, a Banach
space S, data f ∈ S and an injective, bounded linear operator K : L2(Ω) → S such that the
minimization problem

inf
u∈L2(Ω)

∫
Ω

α d|Du|+ ‖Ku− f‖S, (32)

does not have a solution.

Proof. Let d = 2 and define Ω = [−L,L] × [−L,L]. Moreover, let α be a positive continuous
function on Ω that vanishes only at the origin and which satisfies

α(x) ≤ 1

n2
, for all x ∈Mn :=

{
y ∈ Ω : |y| = 1

n

}
. (33)
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Define S :=
(
C∞c (Ω)

‖·‖)∗
, where ‖ · ‖ := ‖ · ‖∞ + ‖∇ · ‖∞, and K : L2(Ω)→ S with

Ku(φ) =

∫
Ω

uφ dx, for all φ ∈ C∞c (Ω)
‖·‖
.

Note that K is injective, linear and bounded. In fact, concerning the latter observe

‖Ku‖S = sup
‖φ‖≤1

Ku(φ) = sup
‖φ‖≤1

∫
Ω

uφ dx ≤ sup
‖φ‖≤1

C‖φ‖∞‖u‖L2(Ω)

≤ sup
‖φ‖≤1

C‖φ‖‖u‖L2(Ω) ≤ C‖u‖L2(Ω),

for an appropriate constant C > 0. Finally choose f = δ0, i.e., the Dirac measure at zero. We
claim that with this set-up the infimum in (32) is zero. Indeed, define un := 1

meas(Nn)
XNn where

Nn :=
{
x ∈ R2 : |x| ≤ 1

n

}
. Given that meas(Nn) = π

n2 , we have∫
Ω

α d|Dun| ≤
1

n2
|Dun|(Mn) ≤ 1

n2

n2

π
H(Mn) =

1

n2

n2

π
2π

1

n
=

2

n
→ 0.

Now for the fidelity term we have

‖Kun − δ0‖S ≤ sup
‖φ‖≤1

∣∣∣∣∫
Ω

unφ dx− φ(0)

∣∣∣∣ ≤ sup
‖φ‖≤1

1

meas(Nn)

∫
Nn

|φ(x)− φ(0)| dx

≤ sup
‖φ‖≤1

‖∇φ‖∞
meas(Nn)

∫
Nn

|x|2 dx ≤
1

meas(Nn)

∫
Nn

1

n
dx→ 0.

Hence, if there was a minimizer ũ ∈ L2(Ω), then Kũ should be equal to δ0 in the sense that∫
Ω
ũφ dx = φ(0) for every φ ∈ C∞c (Ω). But this is impossible and hence there is no minimizer

for the problem (32).

Observe that the operator K in the proof of Proposition 5.2 has no closed range. This can be seen
easily as for the sequence (un)n∈N, in the proof above, we have ‖Kun−δ0‖S → 0 and δ0 /∈ Rg(K).
From the closed range theorem we also get that the range ofK∗ is not closed. AsK is injective, and, in
particular, it then has finite dimensional kernel, all other assumptions of Proposition 5.1 are satisfied.
Hence the closed range assumption is tight in the sense that, for non-closed range operators we
cannot expect a similar result without further assumptions on the integrand j.

Motivated by the particular case of a norm discrepancy as data fidelity, we now consider a more
general setting. In fact, let p ∈ (1, d∗], λ > 0, K ∈ L(Lp(Ω), S) with S being a Banach space, and
assume D : S → R to be convex and lower semi-continuous. We aim to solve

inf
u∈Lp(Ω)

J∗∗(u) + (λD ◦K)(u), (34)

where J∗∗ again corresponds to the structural TV functional as defined above. We recall first the
following result which follows from [46, Theorem 19].

Lemma 5.3. Let S be a Banach space and D : S → R convex, lower semi-continuous, and con-
tinuous and finite at zero. Further, let K : Lp(Ω) → S be a bounded linear operator. Then for all
x∗ ∈ Lq(Ω) we have

(D ◦K)∗(x∗) = min
s∗∈S∗

K∗s∗=x∗

D∗(s∗),

where the minimum is attained. Consequently, it holds that dom((D ◦K)∗) = K∗ dom(D∗).
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We will also need the following generalization of an orthonormal decomposition of Lq(Ω) (see for
instance [37, Corollary 6.1]): For q ∈ (1,∞), we denote the space of constant functions in Lq(Ω) by
ker(∇). Then, with

ker(∇)⊥ := {u ∈ Lq(Ω) : (v, u) = 0 for all v ∈ Lp(Ω), with v a constant function},

we get that ker(∇)⊥ is closed, Lq(Ω) = ker(∇) + ker(∇)⊥ and ker(∇) ∩ ker(∇)⊥ = {0}.
In particular, we denote by Pker(∇) : Lq(Ω) → ker(∇) the continuous linear projection such that
Rg(Pker(∇)) = ker(∇) and ker(Pker(∇)) = ker(∇)⊥.

Having these prerequisites at hand, we now arrive at the main duality result of the paper.

Theorem 5.4. Let p ∈ (1, d∗], λ > 0, S a Banach space, and K ∈ L(Lp(Ω), S). Further let
D : S → R be convex, lower semi-continuous, and continuous and finite at zero. Also, assume that
at least one of the following two conditions hold:

(i)


There exists c > 0 such that c|z| ≤ j(x, z) for every z ∈ Rd and for almost every x ∈ Ω,

Pker(∇)

(
K∗
[ ⋃
µ≥0

µ dom((λD)∗)
])

is a vector space and 0 ∈ dom((λD)∗).

(ii)

{
Rg(K∗) is closed, ker(K) is finite dimensional and D is coercive.

Then there exists a solution to the primal problem

inf
u∈Lp(Ω)

J∗∗(u) + (λD ◦K)(u) (P)

as well as to the predual problem

inf
p∈W q

0 (div;Ω)
p∈Q

(λD ◦K)∗(divp), (pD)

where Q = {g ∈ W q
0 (div; Ω) ∩ L∞(Ω,Rd) : j◦(x, g(x)) ≤ 1 for a.e. x ∈ Ω}, and to the

saddle-point problem
inf

p∈W q
0 (div;Ω)
p∈Q

sup
u∈Lp(Ω)

(divp, u)− (λD ◦K)(u). (sp)

Further, these problems all coincide at their optimal values and are equivalent in the sense that the
pair (p, u) is a solution to the saddle-point problem (sp) if and only if u is a solution to (P) and p is a
solution to (pD).

Before we provide the proof, let us motivate the rather technical assumptions by showing that they
exactly reduce to the setting of Proposition 5.1 if the discrepancy term D is a norm: In this setting,
we have D(v) = ‖v − f‖S , which is obviously finite and continuous at zero, and it is coercive
in S. Furthermore, from [11, Theorem 4.4.10], coercivity (i.e., the first ingredient of assumption (i))
implies that Bε(0) ⊂ dom((λD)∗) for some ε > 0. Hence the union over all positive factors times
dom((λD)∗) is all of S∗ and since Pker(∇) is linear, the second part of (i) also holds. Thus, the
remaining assumptions correspond exactly to the assumptions of Proposition 5.1. We remark that
the rather technical assumptions above allow to also cover settings like the one for structural TV-
regularized PET reconstruction with positivity constraints.
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Proof of Theorem 5.4. We first show strict duality. Note that convex conjugation is always carried out
in the space where the functional is defined. Define X = W q

0 (div; Ω), Y = Lq(Ω), the bounded
linear operator T : X → Y , Tp = divp, and the functionals F : X → [0,∞], F (p) = IQ(p), and
G : Y → [0,∞], G(u∗) = (λD ◦K)∗(u∗). Our goal is to show the following duality relation, which
also asserts existence of a minimum for the right-hand side:

inf
x∈X

F (x) +G(Tx) = −min
y∈Y ∗

F ∗(−T ∗y) +G∗(y).

For the right-hand side we get

−min
y∈Y ∗

F ∗(−T ∗y) +G∗(y) = − min
u∈Lp(Ω)

I∗Q(−(div)∗u) + (λD ◦K)(u)

= − min
u∈Lp(Ω)

sup
z∈W q

0 (div;Ω)

{(−divz, u)− IQ(z)}+ (λD ◦K)(u)

= − min
u∈Lp(Ω)

J∗∗(u) + (λD ◦K)(u).

To show the duality relation, according to [6], it suffices to show that

U :=
⋃
µ≥0

µ

[
dom((λD ◦K)∗)− T dom(F )

]
=
⋃
µ≥0

µ

[
K∗ dom((λD)∗)− div(Q)

]
⊂ Lq(Ω)

(35)
is a closed vector space. Note that the second equality holds true due to Lemma 5.3. Now first consider
the case that assumption (i) holds. We claim that in this case

U = Pker(∇)

(
K∗
[ ⋃
µ≥0

µ dom((λD)∗)
])

+ ker(∇)⊥

and hence, by assumption (i), U is a closed vector space for being the sum of a finite dimensional
and a closed vector space. It is clear that U is a subset of the right-hand side since⋃

µ≥0

µ

[
K∗ dom((λD)∗)− div(Q)

]
⊂
⋃
µ≥0

µK∗ dom((λD)∗)−
⋃
µ≥0

µ div(Q)

⊂ K∗
[ ⋃
µ≥0

µ dom((λD)∗)
]

+ ker(∇)⊥

⊂ Pker(∇)

(
K∗
[ ⋃
µ≥0

µ dom((λD)∗)
])

+ Pker(∇)⊥

(
K∗
[ ⋃
µ≥0

µ dom((λD)∗)
])

+ ker(∇)⊥

⊂ Pker(∇)

(
K∗
[ ⋃
µ≥0

µ dom((λD)∗)
])

+ ker(∇)⊥.

For the reverse inclusion, we employ a result of [37] which states that for any δ > 0 there is an ε > 0
such that Bε(0) ∩ ker(∇)⊥ ⊂ {divg : g ∈ W q

0 (div; Ω), |g(x)| ≤ δ for a.e. x ∈ Ω}. In fact, this
was shown in [37] for p = d∗, but the extension to 1 < p < d∗ is direct.

Take any u = Pker(∇)(µK
∗v) + w with µ ≥ 0, v ∈ dom((λD)∗) and w ∈ ker(∇)⊥. We re-write

u = µK∗v − (Pker(∇)⊥(µK∗v) − w) = µK∗v − w̃ with w̃ ∈ ker(∇)⊥. By assumption (i), we
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get that J∗(u∗) ≤ cTV∗(c−1u∗) for all u∗ ∈ Lq(Ω), which means that if c−1u∗ ∈ dom(TV∗),
i.e., u∗ = divg1 with ‖g1‖L∞(Ω) ≤ c then u∗ ∈ dom(J∗) = div(Q), i.e., u∗ = divg2 with
j◦(x, g2(x)) ≤ 1. Taking hence ε sufficiently small such that εw̃ = divg with ‖g‖L∞(Ω) ≤ c, we get
that εw̃ ∈ div(Q). Now define η = min{1/µ, ε}. Then ηµv ∈ dom((λD)∗) by convexity of (λD)∗

and assumption (i). Consequently we get

u =
1

η
(ηµK∗v − ηw̃) ∈ U,

as claimed.

Before considering condition (ii), we show that V :=
⋃
µ≥0−µ div(Q) is a vector space. To see

this, take λ ∈ R and y1 := −µ1T (z1) and y2 := −µ2T (z2) with z1, z2 ∈ Q and µ1, µ2 ≥ 0.
We show that λy1 + y2 ∈ V . We note that, by definition, Q is convex and also λz ∈ Q for z ∈ Q
and λ ∈ [0, 1]. Further, from assumption (J3) on j, one can check that −z ∈ Q for z ∈ Q. Define
η = max{µ1, µ2}max{|λ|, 1}. Then λµ1z1

η
∈ Q and µ2z2

η
∈ Q. Hence by convexity of Q, we have

λy1 + y2 = −(λµ1Tz1 + µ2Tz2) = 2η

(
−T

(
λµ1z1 + µ2z2

2η

))
∈ V.

Suppose now condition (ii) holds. We will show that in this case U can be written as a sum of
ker(K)⊥ and a finite dimensional space. Indeed, first note that, following [14, Section 2.4, Example
2], ker(K)⊥ is of finite codimension and, consequently, there exists a finite dimensional space Ũ ⊂
Lq(Ω) such that Lq(Ω) is the direct sum of ker(K)⊥ and Ũ . Thus we can define the canonical
continuous linear projection onto Ũ , PŨ : Lq(Ω)→ Ũ . We claim now that

U = ker(K)⊥ + PŨ(V ),

which is again a closed vector space for being the sum of a closed and a finite dimensional vector
space. First we note that by the close range theorem we have ker(K)⊥ = Rg(K∗), and hence U is
included in the right-hand side since

U ⊂ Rg(K∗) + V ⊂ Rg(K∗) + Pker(K)⊥(V ) + PŨ(V ) = ker(K)⊥ + PŨ(V ).

To show the other subset inclusion, take u = K∗v+ PŨ(−µw) with w ∈ div(Q). Again we re-write
u = K∗v − Pker(K)⊥(−µw) − µw = K∗ṽ − µw with ṽ ∈ S∗. Again by [11, Theorem 4.4.10],

coercivity of λD implies continuity of (λD)∗ at 0. Hence there exists ε > 0 such that Bε(0) ⊂
dom((λD)∗). Setting λ = min{ε/‖ṽ‖, 1/µ} we can write

u =
1

λ
(K∗(λṽ)− λµw) ∈ U

since ηw ∈ div(Q) for η ∈ [0, 1]. This shows strict duality and existence for (P) under assumption
(i) or (ii).

Now we show existence for the predual problem. From the continuity ofD at 0 and sinceK is bounded,
λD ◦K is continuous at 0 and again by [11, Theorem 4.4.10] (λD ◦K)∗ is coercive in Lq(Ω). We
show that the setQ is bounded with respect to theLq-norm. For this purpose, we defineC = 2γ > 0,
where γ is the constant from assumption (J2), and observe that, for any g ∈ Q and almost every
x ∈ Ω,

C−1|g(x)| = sup
z̃∗∈Rd

|z̃∗|≤(C/γ)−1

C−1g(x) · z̃∗
(∗)
≤ sup

z̃∗∈Rd
j(x,z̃∗)≤C

g(x) · C−1z̃∗

= sup
z∗∈Rd

j(x,z∗)≤1

g(x) · z∗ = j◦(x, g(x)) ≤ 1.
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Indeed, since by (J2), j(x, z) ≤ γ(1+|z|), (∗) holds true forC > γ since then, for |z∗| ≤ (C/γ)−1,
j(x, z∗) ≤ γ(1+|z∗|) ≤ C . This implies that ‖g‖L∞(Ω) ≤ C and hence alsoQ is bounded inLq(Ω).

Now taking (pn)n∈N an infimizing sequence for the predual problem, we get by boundedness of Q
and coercivity of (λD ◦ K)∗ that there exist p̂ ∈ Lq(Ω,Rd) and w ∈ Lq(Ω) such that, up to
subsequences, pn ⇀ p̂ and div(pn) ⇀ w. This implies that p ∈ W q(div; Ω) and divp = w. Further
we note that {(g, divg) : g ∈ W q

0 (div; Ω)∩Q} is a convex and closed subset ofLq(Ω,Rd+1), hence
it is also weakly closed. By weak convergence of (pn, divpn) to (p̂, div p̂) and lower semi-continuity
of (λD ◦K) with respect to weak convergence in Lq(Ω,Rd) it follows that p̂ is a solution to (pD).

Finally, [23, Proposition III.3.1] guarantees equivalence to the saddle-point problem (sp) as claimed
and the proof is complete.

This concludes the main existence and duality result of the paper, from which the application to linear
inverse problems with norm discrepancy follows as a special case. A second situation we want to
consider in more detail is an inverse problem where the measured data describes the physical density
of some quantity and is corrupted by Poisson noise. The main application we have in mind for this
setting is PET image reconstruction, where the Poisson log-likelihood and positivity constraints are
used for data fidelity.

5.1 A Poisson noise model.

We are now interested in the problem

min
u∈Lp(Ω)

J∗∗(u) + λ

∫
Σ

(Ku)(σ)− f(σ) log((Ku)(σ) + c0(σ)) dσ + I[0,∞)(u), (36)

where K is a linear operator (a slightly modified Radon transform), f ≥ 0 is the given data, c0 > 0
is an estimate for measurements due to scattering and random events and Σ is a subset of Rnd with
some nd ≥ 1. The function I[0,∞) constrains the unknown to the non-negative reals. Note that in
PET imaging with real data, the estimate c0 of scatter and random events is an integral part of the
(so-called) reconstruction pipeline, as it describes a non-negligible part of the data. Such an estimate
is typically delivered by the scanner software as preprocessing step.

More specifically, in what follows we invoke the following data assumptions:
(i) meas(Σ) < +∞, f, c0 ∈ L1(Σ), f ≥ 0, c0 > 0,

(ii) σ 7→ f(σ) log(c0(σ)) ∈ L1(Σ), σ 7→ f(σ)
c0(σ)

∈ L∞(Σ),

(iii)K ∈ L(Lp(Ω), L1(Σ)), Ku ≥ 0 whenever u ≥ 0,

(iv) the constant functions are contained in Rg(K∗).

(AP)

When reading the above integrability assumptions on the data and the scatter and random events,
one has to keep in mind that typically f describes the Radon transform of some density which is
supported in the interior of Ω and c0 some defects that increase with the density, but are present on
every measurement line. We believe that in such a context, the posed assumptions are realistic and
not very restrictive. Clearly, they are satisfied if we assume f and c0 to be bounded and c0 to be
uniformly bounded away from zero, which is often assumed in the literature for the measured data in
order to obtain stability results [48]. In this respect one has to keep in mind, however, that the Radon
transform of any function which is bounded above will converge to zero for measurement lines whose
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length converges to zero. Hence we believe that there is a benefit in using the assumption (AP) rather
than uniform boundedness away from zero.

Regarding the assumptions on the forward operatorK , we recall in the following some basic properties
of the Radon transform, which in particular show that for such a K assumption (AP) is fulfilled. In fact,
the classical Radon transform R is a bounded linear operator from L1(Rd) to L1(Sd−1 × R); see
for instance [42]. Here Sd−1 × R is equipped with the measure µ := Hd−1bSd−1 × L. In this
context, dσ denotes integration with respect the measure µ. Define now the bounded linear operator
E : Lp(Ω) → L1(Rd) as the extension-by-zero outside Ω. Then, if K := R ◦ E we have that K is
linear, it maps Lp(Ω) to L1(Σ), with Σ a bounded subset of Sd−1 × R, and it is bounded, since for
every u ∈ Lp(Ω)

‖Ku‖L1(Σ) = ‖(R ◦ E)(u)‖L1(Σ) ≤ C‖Eu‖L1(Rd) = C‖u‖L1(Ω) ≤ C̃‖u‖Lp(Ω).

According to [28], the adjoint R∗ : L∞(Σ)→ L∞(Rd) of the Radon transform is given by

R∗v(x) =

∫
Sd−1

v(θ, θ · x) dHd−1(θ), x ∈ Rd.

One can easily see now that K∗ : L∞(Σ) → Lq(Ω) is simply the restriction of R∗ in Ω, since for
every u ∈ Lp(Ω) and every v ∈ L∞(Σ) we have∫

Ω

uR∗v dx =

∫
Rd
EuR∗v dx =

∫
Σ

R(Eu)v dσ =

∫
Σ

(Ku)v dσ.

In this case, the constant functions belong to Rg(K∗). Moreover, from the definition of the Radon
transform it follows immediately that Ku ≥ 0 for u ≥ 0 with both inequalities to be understood in the
almost everywhere sense. Hence, assumption (AP) holds true when K is the Radon transform. Note
also that the assumption on Σ is valid since due to Ω being bounded, for every u ∈ L1(Ω), we have
that Ku is supported in a fixed compact subset of Σ.

Now considering the formal minimization problem for Poisson-corrupted data (36) in view of our gen-
eral duality result, some issues arise. First of all we need to rigorously define the data discrepancy
term as a function from Lp(Ω) to the extended reals, and secondly neither the data discrepancy nor
the positivity constraint will be continuous in Lp(Ω) around 0.

The following modification of the data term resolves some of these issues without changing the original
problem. For f ∈ [0,∞) and c0 ∈ (0,∞) we define the integrand

lf,c0(t) :=

{
t− f log(t+ c0) if t ≥ 0,

−f log(c0) +
(
1− f

c0

)
t if t < 0,

and for f : Σ→ [0,∞) and c0 : Σ→ (0,∞) the functional

DKL : L1(Σ)→ R, v 7→
∫

Σ

lf(σ),c0(σ)(v(σ)) dσ + L‖v−‖L1(Σ),

where we set L := ‖1 − f
c0
‖∞ + 1 and v− := min{v, 0} in a pointwise almost everywhere sense.

The point in the definition ofDKL is that we change the original data fidelity only in points whereKu is
negative, which, however, can never occur due to the positivity constraint in u and Ku ≥ 0 for u ≥ 0.
Hence, when considering the minimization problem

inf
u∈Lp(Ω)

J∗∗(u) + λDKL(Ku) + I[0,∞)(u), (37)

it is immediate that the set of optimal solutions is exactly the same as for (36). The modified fidelity
DKL enjoys the following properties.

DOI 10.20347/WIAS.PREPRINT.2437 Berlin 2017



A function space framework for structural total variation regularization 23

Lemma 5.5. Assume that (AP) holds. Then DKL is convex and continuous in L1(Σ). Further there
exist constants M,N > 0 such that

‖v‖L1(Σ) ≤MDKL(v) +N for all v ∈ L1(Σ).

Proof. Regarding convexity, we note that v 7→ ‖v−‖L1(Σ) is convex and hence it suffices to show
convexity of the integrand z 7→ lf(σ),c0(σ)(z) for σ ∈ Σ fixed. To this aim, we note that convexity is
equivalent to the derivative of lf(σ),c0(σ) being monotonously increasing. The latter is indeed true since
for z > 0 and z < 0 the integrand is convex and since, as can be readily checked, the left and right
derivative of lf(σ),c0(σ)(·) at z = 0 coincide.

Regarding continuity, for v ∈ L1(Σ) we denote Σ1 = {σ ∈ Σ : v(σ) ≥ 0}, Σ2 = Σ \ Σ1 and
estimate

DKL(v) ≤
∫

Σ1

v(σ)− f(σ) log(c0(σ)) dσ +

∫
Σ2

−f(σ) log(c0(σ))

+

(
1− f(σ)

c0(σ)

)
v(σ) dσ + L‖v−‖L1(Σ)

≤ L‖v‖L1(Σ) + ‖f log(c0)‖L1(Σ) +

(
1 +

∥∥∥ f
c0

∥∥∥
∞

)
‖v−‖L1(Σ)

≤
(

1 +
∥∥∥ f
c0

∥∥∥
∞

+ L

)
‖v‖L1(Σ) + ‖f log(c0)‖L1(Σ).

Hence DKL is bounded above in a neighborhood of any point and, for being a convex function [11,
Prop. 4.1.4] it is also continuous at any point.

To show the coercivity estimate, first pick any v ∈ L1(Σ) with v ≤ 0. Choosing c = ‖1 − f
c0
‖∞ we

get∫
Σ

−f log(c0) +

(
1− f

c0

)
v dσ + L‖v‖L1(Σ) ≥ −‖f log(c0)‖L1(Σ) − c‖v‖L1(Σ) + L‖v‖L1(Σ)

= −‖f log(c0)‖L1(Σ) + ‖v‖L1(Σ).
(38)

Further, for v ∈ L1(Σ) with v ≥ 0 the Poisson log-likelihood can be estimated below as follows
[10, 44]: It is easy to check by differentiating that the function

t 7→
(

4

3
+

2t

3

)
(t log(t)− t+ 1)− (t− 1)2, t ≥ 0,

is convex and attains its minimum value of 0 at t = 1. Setting t = f(σ)
v(σ)+c0(σ)

we get that

(v(σ) + c0(σ)− f(σ))2 ≤
[

2

3
f(σ) +

4

3
(v(σ) + c0(σ))

]
×(

f(σ) log(
f(σ)

v(σ) + c0(σ)
)− f(σ) + v(σ) + c0(σ)

)
=

[
2

3
f(σ) +

4

3
(v(σ) + c0(σ))

](
v(σ)− f(σ) log(v(σ) + c0(σ))

+ c0(σ)− f(σ) + f(σ) log(f(σ)

)
.
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Now taking the square root on both sides, integrating and using the Cauchy-Schwarz inequality we
get that

‖v + c0 − f‖2
L1(Σ) ≤

[
2

3
‖f‖L1(Σ) +

4

3
‖v + c0‖L1(Σ)

]
×(∫

Σ

v − f log(v + c0) dσ +

∫
Σ

c0 − f + f log(f) dσ

)
.

Further, using that ‖v+ c0‖2
L1(Σ) ≤ 2‖v+ c0−f‖2

L1(Σ) + 2‖f‖2
L1(Σ) and denoting byM,N generic

constants with M > 0 we get

‖v + c0‖L1(Σ)

(
‖v + c0‖L1(Σ) −

8

3

(∫
Σ

v − f log(v + c0) dσ

)
−N

)
≤M

(∫
Σ

v − f log(v + c0) dσ

)
+N.

Now in case

(
‖v + c0‖L1(Σ) − 8

3

( ∫
Σ
v − f log(v + c0) dσ

)
−N

)
≤ 1 we get

‖v + c0‖L1(Σ) ≤
8

3

(∫
Σ

u− f log(u+ c0) dσ

)
+N + 1.

In the other case we get

‖v + c0‖L1(Σ) ≤M

(∫
Σ

v − f log(v + c0) dσ

)
+N.

Hence in any case there exists constants M > 0, N ∈ R such that

‖v‖L1(Σ) ≤M

(∫
Σ

v − f log(v + c0) dσ

)
+N. (39)

Now splitting an arbitrary v ∈ L1(Σ) into its positive and negative parts, and using the estimates (38),
(39) accordingly, we get that there exists M > 0, N ∈ R such that

‖v‖L1(Σ) ≤MDKL(v) +N,

which completes the proof.

Using these properties of the data discrepancy, we obtain the following existence result by standard
arguments.

Proposition 5.6. Assume that (AP) is fulfilled and there exists c > 0 such that c|z| ≤ j(x, z) for
every z ∈ Rd and for almost every x ∈ Ω. Then there exists a solution to

inf
u∈Lp(Ω)

J∗∗(u) + λDKL(Ku) + I[0,∞)(u). (40)

Proof. We only provide a sketch: Let (un)n∈N be an infimizing sequence for (40). Since ker(K) =
Rg(K∗)⊥ [14, Corollary 2.18], K does not vanish on constant functions. Hence, we get from the
equivalence of J∗∗ to TV and the coercivity of DKL (Lemma 5.5) as well as norm equivalence in
finite dimensional spaces that (un)n∈N is bounded in Lp(Ω). Hence there exists a weakly convergent
subsequence and from weak lower semi-continuity of all terms appearing in the objective functional,
existence follows readily.
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For applying the general duality result of Theorem 5.4 to the situation of Poisson noise, the only issue
that remains is the fact that functional realizing the positivity constraint is not continuous at zero. To
overcome this, we will introduce a slight modification of this functional as follows. We define the penalty
term

H(u) = M‖u−‖L1(Ω).

The following properties of H are immediate.

Lemma 5.7. The functional H : Lp(Ω) → R is convex, lower semi-continuous, bounded above in a
neighborhood of zero and H∗(u∗) = I[−M,0](u

∗).

Replacing I[0,∞) by H obviously is modification of the original problem for which, in general, we
cannot expect that the set of solution coincides with the one of the original problem. However, H
is chosen in the spirit of exact penalty functions. For the latter it can be shown that for sufficiently
large penalty parameter, the solution of the original problem also solves the penalized one. We also
note that our goal is to show equivalence of (37) to a saddle-point problem, which is then numerically
solved with a primal-dual algorithm. For the original problem, the positivity constraint would then result
in a projection of the unknown to the positive reals in every iteration. The modified objective results
in a soft-shrinkage operation for the negative values at each iteration, i.e., u is unchanged at positive
values and replaced by u(x) = min{u(x) +M, 0} for negative values.

We finally get the following result for the modified PET problem:

Proposition 5.8. Assume that (AP) is satisfied, and that there exists c > 0 such that c|z| ≤ j(x, z)
for every z ∈ Rd and for almost every x ∈ Ω. Then there exists a solution to the primal problem

inf
u∈Lp(Ω)

J∗∗(u) + λDKL(Ku) +H(u), (P-PET)

to the corresponding predual problem (pD-PET), and to the saddle-point problem

inf
p∈W q

0 (div;Ω)
p∈Q

sup
u∈Lp(Ω)

(divp, u)− λDKL(Ku)−H(u).

The optimal values of all of these problems coincide, and the problems are equivalent in the sense
that a pair (p, u) is a solution to the saddle-point problem if and only if u is a solution to (P-PET) and
p is a solution to (pD-PET).

Proof. We apply the results of Theorem 5.4 with the data term being u 7→ (λD̃ ◦ K̃)(u), where
K̃ : Lp(Ω) → L1(Σ) × Lp(Ω) with K̃u = (Ku, u), and D̃ : L1(Σ) × Lp(Ω) → R, (v, u) 7→
D̃(v, u) = DKL(v) + λ−1H(u).

Since both DKL and H are continuous and finite at 0, also D̃ is continuous and finite at 0. It is hence
only left to show that the condition (i) of Proposition 5.4 holds true. For this purpose, we first note that
dom((λD̃)∗) = dom((λDKL)

∗)× dom(H∗). Hence

K̃∗
[ ⋃
µ≥0

µ dom((λD̃)∗)
]

= K̃∗
[ ⋃
µ≥0

µ(dom((λDKL)
∗)× dom(H∗))

]
⊃ K̃∗

[ ⋃
µ≥0

µ(Bε(0)× {0})
]

= Rg(K∗).
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Now, since the constant functions are contained in Rg(K∗), we get that

Pker(∇)

(
K̃∗
[ ⋃
µ≥0

µ dom((λD̃)∗)
])

= ker(∇).

Further it is easy to see that (0, 0) ∈ dom((λD̃)∗). Hence, all assumptions of Theorem 5.4 hold and
the result follows.

Remark 5.9. Summarizing, both for norm and Poison-log likelihood discrepancies, in the situation
where the underlying inverse problem is indeed ill-posed, coercivity of the integrand as it appears in
the definition of the structural TV prior is necessary for showing existence and for establishing our
main duality result. As in this situation the structural TV prior is topologically equivalent to isotropic TV,
we note that also classical stability and convergence results for vanishing noise levels can be shown
by standard techniques. We refer, for instance, to [36] for the norm-discrepancy case and to [48] for
the case of a Poison-log likelihood discrepancy.

6 Numerical examples

The goal of this section is to exemplary show the numerical realization of two applications of the above
general setting. The first one considers a pure denoising problem. This example is included to provide
a setting where the inversion of the forward operator, in this case the identity, is well-posed and hence,
using the second assumption of Proposition 5.1, the duality result also holds for integrands which
vanish on non-trivial sets. The second problem considers the practically more relevant application of
MR-guided PET reconstruction and shows how recently proposed regularization approaches [49, 21]
can be realized within our framework.

In an abstract setting, the variational problem setting of the previous section can be written as follows:

min
u∈Lp(Ω)

J∗∗(u) + G(u) +H(u),

where G and H are smooth and “simple” functions, respectively, that are to be specified for the con-
crete problem setting, e.g., one chooses G(u) = ‖u − f‖2

2, H ≡ 0 for denoising. We have shown
that, under suitable assumptions, this problem is equivalent to the saddle-point problem

min
p∈W q

0 (div;Ω)
p∈Q

max
u∈Lp(Ω)

(divp, u)− G(u)−H(u).

The main point in this reformulation is that it allows to solve the variational problem without requiring
explicit knowledge of J∗∗. We recall that our main results contains a saddle-point formulation whose
numerical realization is directly amenable to first-order primal-dual algorithms; see, e.g., [17, 18]. In
fact, since for p = 2 the saddle-point problem is defined in a Hilbert space, a corresponding for-
mulation of algorithm can even be shown to be convergent in the infinite dimensional setting [18]. In
practice, however, a proper infinite-dimensional version of the algorithm would require the computation
of some proximal mappings in H(div; Ω) space, which in turn requires the solution of a non-trivial
problem (essentially TV denoising) on its own.

For the derivation of an implementable algorithm, we first discretize and change to the Euclidean norm
for both underlying spaces. The iteration steps of the algorithm presented in [18] for solving the saddle-
point problem above can then be specified in a general form as follows: Given some triple (u, p, p̄),
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the updates u+, p+, p̄+ are computed as
u+ = proxσ,H

(
u+ σdivp+ σ∇G(u)

)
,

p+ = projQ

(
p+ τ∇u+

)
,

p+ = 2p+ − p.

(41)

Here, proxσ,H denotes the proximal mapping defined as proxσ,H(u) = arg miny
‖u−y‖22

2σ
+ H(y),

which is well-defined by convexity of H. The term projQ is a projection onto the set Q and results
from the proximal mapping of IQ, and σ, τ > 0 need to be suitably chosen. This iteration is then
repeated with (u, p, p̄) := (u+, p+, p̄+) until some stopping rule is satisfied.

6.1 Weighted TV with vanishing weight

For the case of weighted TV denoising one can simply chooseH ≡ 0 and G(u) := λ
2
‖u− f‖2

L2(Ω),

with f ∈ L2(Ω) some given data. This results in the saddle-point problem

inf
p∈W 2

0 (div;Ω)
p∈Q

sup
u∈L2(Ω)

(divp, u)− λ

2
‖u− f‖2

L2(Ω), (42)

where Q = {g ∈ W 2
0 (div; Ω) ∩ L∞(Ω,Rd) : |g(x)| ≤ α(x) for a.e. x ∈ Ω}. For a proof

of concept, we compute a weighted TV-based denoising example, with vanishing continuous weight
function α, i.e., j(x, z) = α(x)|z|, with α ∈ C(Ω), α ≥ 0. This fits into the regime of condition (ii)
of Theorem 5.4, i.e., K = id, hence Rg(K∗) is closed and ker(K) is finite dimensional and the fact
that α vanishes implies that the coercivity assumption (i) of the same theorem does not hold. Notice
that because of this lack of coercivity we cannot expect the solution u to be in BV(Ω). Thus, the
characterization J∗∗(u) =

∫
Ω
α d|Du| is not valid here. This deficiency, however, can be overcome

by solving the corresponding saddle-point problem.

After a standard discretization procedure the saddle-point problem (42) can be solved straightfor-
wardly with the algorithm in (41), where the involved proximal mappings proxσ,H and projQ can be
computed explicitly and pointwise. We use standard forward differences for the discrete gradient with
pixel replication at the boundary. The discrete divergence operator is defined by the adjoint relation
∇ = −divT. We use an accelerated version of the primal-dual algorithm of [17], as described in
[18], where for the step-sizes τ and σ, the update rule τn = 1/(n+ 1), σn = 8/τ is employed, with
τ0 = 10−4 and σ0 = 8×104. Here, n is the iteration number and 8 is an upper bound for the squared
norm of the discrete gradient operator, i.e., ‖∇‖2 ≤ 8. The primal and dual variables were initialized
as u0 = f and p0 = 0 respectively. As a stopping rule we used a maximum number of iterations
(n = 2000), after which no considerable change in the iterates was observed.

Regarding the weight function α, we note that our purpose here is not to determine a procedure
for automatically selecting it – for that we refer the reader to [33, 35]. Nevertheless, in order to pro-
duce the weight function α needed for the examples in Figure 1 we enable the following procedure:
Initially we detect the edges of the noisy image in Figure 1b (Gaussian noise of zero mean and stan-
dard deviation σ = 0.5) by using an edge detection algorithm such as Canny algorithm [15]; com-
pare Figure 1c. For that we used the MATLAB’s built-in Canny function using the parameter values
Thresh = [0.275, 0.55] and Sigma = 1.8.

Then we construct a positive continuous weight function α which takes the value zero exactly on the
edges of the image. This can be done by computing the distance function to the edge set, which can
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be achieved for instance by solving the Eikonal equation [50]; see Figure 1d. The fact that α vanishes
exactly at the edge set leads to a piecewise constant reconstruction with less loss of contrast and
better edge preservation when compared to the standard scalar TV-regularization; compare Figures
1e and 1f. See also [30] for a theoretical justification of this experimental observation.

(a) Original. (b) Noisy, SSIM=0.1717,
MSE=0.0821.

(c) Detected edge set.

(d) Weight function α van-
ishing on the edge set.

(e) Scalar TV, where
the scalar parameter α
is optimized for best SSIM,
(SSIM=0.7759, MSE=0.0255).

(f) Weighted TV using as
weight the function α of
Figure 1d, (SSIM=0.9408,
MSE=0.0182).

Figure 1: Weighted TV-based denoising via solution of the saddle-point problem (sp) for K = id and
j(x, z) = α(x)|z|, with α ∈ C(Ω), α ≥ 0.
Image source: https://pixabay.com, (licence Creative Commons CC0).

6.2 MR-PET reconstruction

Magnetic resonance imaging (MRI) and positron emission tomography (PET) are two complementary
imaging techniques that are both intensively used in clinical applications. While MRI allows to resolve
soft tissue contrast with comparably high spatial resolution, standard MRI techniques deliver qualita-
tive information only. In contrast, PET imaging suffers from a poor spatial resolution, but it is able to
deliver quantitative information (the distribution of a radioactively marked tracer). In the past years, and
recently particularly motivated by the availability of joint MR-PET scanners, there has been a substan-
tial research effort towards combining MR and PET data in order to obtain benefits for the ill-posed
image reconstruction process; see for instance the references provided in [21]. While some works
aim at a simultaneous reconstruction of MR and PET [22, 40, 43], aiming to obtain mutual benefits
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for both modalities, most approaches employ an MR-based structural prior to improve upon the poor
spatial resolution of PET [21, 49, 52]. Our work here provides an analytical basis for the latter. We note
that our theory covers different priors that were proposed for structure-guided PET reconstruction in
[21, 49]. In particular, it allows to conclude that well-posedness of the PET reconstruction problem can
only be expected if the prior satisfies the coercivity condition stated in Proposition 5.8.

We now exemplary work out the application of our framework to one particular prior, that is motivated
by [20, 49]. Assume that we are given an already reconstructed MR image v defined on a joint image
domain Ω. We supppose that ∇v ∈ L1

loc(Ω,R2). We then define the structural TV-based prior for
PET reconstruction as follows. For parameters η, ν > 0 with η ∈ (0, 1) and ν small we define

w(x) =
∇v(x)√
|∇v(x)|2 + ν

,

the matrix-field
A(x) =

√
I − η2w(x)⊗ w(x),

where
√
· refers to the matrix square root, and the integrand

j(x, z) = |A(x)z|.

It is easy to see that j fulfills the assumptions (J1)–(J3). Hence, we can define the structural prior

J(u) =

{∫
Ω
|A(x)∇u(x)| dx if u ∈ W 1,1(Ω),

+∞ else,

and consider its lower semi-continuous relaxation for regularization. The effect of this prior can be
understood by re-writing

j(x, z) =
√
zTAT (x)A(x)z =

√
|z|2 − η2(z, w(x))2 = |z|

√
1− η

( z
|z|
, w(x)

)2
.

This shows that, at any point x ∈ Ω, the cost of j(x, z) depends on the extent to which z is aligned
with w(x). In particular, the smallest cost will appear if z and w(x) are parallel. Regarding the param-
eters η and ν, we note that ν is used to carry out a regularized division in the normalization of w, as
suggested for instance in [21]. The parameter η ∈ (0, 1) does not appear in previous works and we
use it to ensure coercivity of j, and hence that J∗∗ indeed has a regularizing effect. In fact, noting that

j(x, z) =
√

(|z|2 − (z, w(x))2)η2 + (1− η2)|z|2 ≥
√

1− η2|z|,

we obtain coercivity of j and hence, by Proposition 5.8, well-posedness of the structural-prior based
PET reconstruction problem given as

min
u∈Lp(Ω)

J∗∗(u) + λDKL(Ku) +H(u). (43)

Further, equivalence and well-posedness of a corresponding saddle-point problem can be concluded
in function space and, due to topological equivalence of J∗∗ with TV, standard stability results can be
expected; see Remark 5.9.

Algorithmic realization. In order to derive a numerical algorithm for solving the structural-prior-based
PET reconstruction problem in two dimensions, we now replace the image domain Ω and the data
domain Σ by a discretized pixel grid, that is, we set Ω = RNΩ×MΩ and Σ = RNΣ×MΣ with
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NΩ,MΩ, NΣ,MΣ ∈ N. For simplicity, we keep the notation of the continuous setting, where now
all involved operators, integrals and norms are replaced by their discrete counterparts, using standard
discretizations. In particular, for the forward operator for PET, we use the implementation of [41], which
is designed to work with real scanner data and includes resolution modeling by a convolution with a
Gaussian kernel.

In order to carry out the iteration steps as described in (41) and obtain a convergent algorithm in
the discretized setting, we need that the derivative of the data term, on which we perform an explicit
descent step, is Lipschitz continuous. To achieve this, we carry out a C2 instead of a C1 interpolation
of the Poisson-log-likelihood in regions with negative data. In fact, for f ∈ [0,∞) and c0 ∈ (0,∞),
we define the modified integrand

l̃f,c0(t) :=

{
t− f log(t+ c0) if t ≥ 0,

−f log(c0) +
(
1− f

c0

)
t+ f

2c20
t2 if t < 0,

and a modified data term

D̃KL(v) :=

∫
Σ

l̃f(σ),c0(σ)(v(σ)) dσ + L

∫
Σ

g(v(σ)) dσ,

where, for a small parameter ε > 0, g is a smoothed 1-norm for the negative values given by

g(x) =


0 if x ≥ 0,

−x3

ε2
− x4

2ε3
if x ∈ [−ε, 0],

|x|+ ε
2

if x ≤ −ε.

In this context, it is important to remember that any change of DKL that only affects negative values of
v does not change the optimal solutions as long as Au is constrained to be positive at every point.

In order to simplify the computation of projQ in the iteration (41), we further carry out a change of
variables in the saddle-point reformulation of (43) as p = AT q, where AT q is defined as pointwise
matrix-vector multiplication AT q(x) = AT (x)q(x). The resulting saddle-point problem then reads

min
q:‖q‖∞≤1

max
u

(divAT q, u)− λD̃KL(Ku)−H(u),

and the iteration steps in (41) can be stated in explicit form as
u+ = proxσ,H

(
u+ σdivAT q − σλ∇D̃KL(u)

)
,

q+ = proj{‖·‖≤1}

(
q + τA∇u+

)
,

q+ = 2q+ − q,

(44)

where (proxσ,H(u))(x) = max{u(x),min{u(x) + σM, 0}} is a soft-thresholding operator and
(proj{|·|2≤1}(q))(x) = q(x)/max{1, |q(x)|2}. Following [18], convergence of the algorithm can be
guaranteed under the step-size constraints 1

τ
( 1
σ
− L) ≥ ‖ divKT‖. Hence, we analytically estimate

both ‖ divAT‖ and L, with the latter being the Lipschitz constant of the derivative of λD̃KL. However,
in order to accelerate convergence in practice, we multiply the analytical estimate of L by 10−3, which
increases the admissible step-size. Even tough convergence naturally cannot be guaranteed for this
increase step-size choice, we did not experience any convergence issue in practice, which might
indicate that our analytical estimate of L are too conservative.
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Figure 2: Left: Ground truth PET image. Right: MRI MPRAGE contrast image used as structural prior.
Note that, in addition to the phantom from [8], we have added two separate lesions (PET: Top right,
MRI: Top left) and a linear gray-value gradient in non-background regions (PET: Increasing from top
left to bottom right, MRI: Increasing from bottom left to top right).

To evaluate the effect of structural coupling compared to standard TV-regularization, we simulated a
2D PET and MR scan using a slightly modified version of the brain phantom of [8]; see Figure 2. In
fact, we used the software provided in [8] to simulate an MR image with MPRAGE contrast and a FDG-
PET image. Both images share similar structures, but they also contain separate features. In addition,
a separate lesion was added to each image, in the top right area for the PET image and in the top
left area for the MR image, see corresponding red squares, (see [40] for more details on quantitative
values for the PET phantom). Further, to avoid a bias resulting from piecewise constancy, we added
two different linear grayscale gradients in the non-background region of both images.

The MR image was then used as structural prior to define the regularization term J as above. PET
data, denoted above by f , was generated by forward-projecting the PET phantom, adding simulated
random and scatter events (denoted above by c0) and adding multiplicative Poisson-noise. Two differ-
ent noise levels (strong and medium) were simulated. For comparison, we also carried out a standard
TV-regularized reconstruction. The reconstructions for both methods were obtained by iterating the
steps provided in (44), where for standard TV-regularization A was replaced by the identity. In order
to ensure optimality, we carried out 104 iterations for each method, while in practice about 1000 iter-
ations seem sufficient to obtain close-to-optimal results. For both TV- and structural TV-regularization
we tested a range of different regularization parameters (λ) and provide here the results with the
lowest mean-squared error.

The resulting images can be seen in Figure 3. As one would expect, for both noise levels, the structural-
prior based reconstruction is able to recover sharper edges whenever they are aligned with the prior
image. This results also in improved MSE values. In the PET only lesion, it can be observed that both
TV and structural TV obtain similar results. In the region of the PET image where the MR prior has an
additional feature, no particular feature transfer can be observed. This indicates a certain robustness
of the approach with respect to non-aligned features between the prior and the reconstructed image.
We emphasize again that the results presented here should be understood as a proof-of-concept only,
and we refer to [21, 49] for a detailed evaluation of this kind of prior for PET reconstruction, also on 3D
PET patient data.
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Figure 3: Standard TV versus structural TV-reconstruction. Top: Strong noise, Bottom: Medium noise.
Left: TV regularized reconstruction, Middle: Structural-TV regularized reconstruction, Right: Close up
views: Ground truth, standard TV and structural TV (from top to bottom). Mean-squared errors are
as follows. Top: 0.3992 (standard TV), 0.3813 (structural TV). Bottom: 0.3445 (standard TV), 0.3209
(structural TV).
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7 Conclusion

In this work, we have analyzed a particular class of structural-prior-based regularization approaches
for linear inverse problems in function space. While these approaches have recently been successfully
applied to several practically relevant inverse problem settings, an analysis in function space was still
missing. Our results show that, in function space, a certain regularity of the prior information in space
is necessary in order to obtain an explicit representation of the regularizer. To account for this fact,
we have shown how the original minimization problem can alternatively be solved using a saddle-point
reformulation that does not require explicit knowledge of the prior. In that context, our main message is
that coercivity of the prior is necessary in order to obtain well-posedness (and, consequently, stability
by standard results) in non-trivial inverse problem settings. Ultimately, we have shown how to numeri-
cally solve the proposed saddle-point reformulation for two proof-of-concept applications including the
practically relevant application of structure-guided PET reconstruction.

A

Proof of Proposition 2.6. It follows by definition of W 1,p(Ω) and W q
0 (div; Ω) that W q

0 (div; Ω) ⊂
ker(τ). In order to prove ker(τ) ⊂ W q

0 (div; Ω) we show that C∞c (Ω,Rd) is dense in ker(τ).
Based on an idea according to [25, Theorem I.2.6], this is done by showing that any functional
L ∈ ker(τ)∗ vanishing on C∞c (Ω,Rd) is zero on ker(τ). So let L ∈ ker(τ)∗ with L(φ) = 0 for all
φ ∈ C∞c (Ω,Rd). Since ker(τ) is a linear subspace ofW q(div; Ω), there exists by the Hahn-Banach
extension theorem a continuous extension L ∈ W q(div; Ω)∗. Similarly to the space H(div; Ω) [25],
we can show that there thus exist l = (l1, ..., ld+1) ∈ Lp(Ω,Rd+1) such that

L(g) =
d∑
i=1

∫
Ω

ligi dx+

∫
Ω

ld+1divg dx

for g = (g1, ..., gd) ∈ W q(div; Ω). Now, for φ ∈ C∞c (Ω,Rd) we have

0 = L(φ) =
d∑
i=1

∫
Ω

liφi dx+

∫
Ω

ld+1divφ dx

from which we conclude that ld+1 ∈ W 1,q(Ω) and ∇ld+1 = (l1, ..., ld). Thus we can apply the
Gauss-Green formula for W q(div; Ω) to ld+1 and h ∈ ker(τ) arbitrary and get:

0 =

∫
Ω

(∇ld+1, h) dx+

∫
Ω

ld+1divh dx = L(h)

which concludes the proof.

Proof of Proposition 4.4. Note first that since u ∈ C1(Ω), a simple integration by parts yields

TVC
α (u) = sup

{∫
Ω

∇u · φ dx : φ ∈ C1
c (Ω,Rd), |φ(x)| ≤ α(x) for all x ∈ Ω

}
.

This shows that TVC
α (u) ≤

∫
Ω
α|∇u| dx and we are left to show

∫
Ω
α|∇u| dx ≤ TVC

α (u). In order
to do so, it suffices to prove that for every δ > 0∫

Ωδ

α|∇u| dx ≤ TVC
α (u). (45)
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where Ωδ := {x ∈ Ω : dist(x, ∂Ω) > δ}. Note that since u ∈ C1(Ω), for every δ > 0,∫
Ωδ
α|∇u| dx < +∞ and hence u ∈ BV(Ωδ) with Du = ∇uLdbΩδ. Now if

Vα(u,Ωδ) = sup

{∫
Ωδ

u divφ dx : φ ∈ C∞c (Ωδ,Rd), |φ(x)| ≤ α(x), for all x ∈ Ωδ

}
,

we have that Vα(u,Ωδ) ≤ TVC
α (u), and in order to establish (45), it suffices to show that∫

Ωδ

α|∇u| dx = Vα(u,Ωδ). (46)

This follows directly from Proposition 4.2 and the fact that u ∈ BV(Ωδ).
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