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Towards computable flows and robust estimates for inf-sup
stable FEM applied to the time-dependent incompressible

Navier–Stokes equations
Philipp W. Schroeder, Christoph Lehrenfeld, Alexander Linke, Gerd Lube

Abstract

Inf-sup stable FEM applied to time-dependent incompressible Navier–Stokes flows are con-
sidered. The focus lies on robust estimates for the kinetic and dissipation energies in a twofold
sense. Firstly, pressure-robustness ensures the fulfilment of a fundamental invariance principle
and velocity error estimates are not corrupted by the pressure approximability. Secondly, Re-semi-
robustness means that constants appearing on the right-hand side of kinetic and dissipation en-
ergy error estimates (including Gronwall constants) do not explicitly depend on the Reynolds num-
ber. Such estimates rely on the essential regularity assumption ∇u ∈ L1(0,T ;L∞(Ω)) which is
discussed in detail. In the sense of best practice, we review and establish pressure- and Re-semi-
robust estimates for pointwise divergence-free H1-conforming FEM (like Scott–Vogelius pairs or
certain isogeometric based FEM) and pointwise divergence-free H(div)-conforming discontinu-
ous Galerkin FEM. For convection-dominated problems, the latter naturally includes an upwind
stabilisation for the velocity which is not gradient-based.

1 Introduction

We consider the time-dependent incompressible Navier–Stokes equations [64, 59, 26]
∂tuuu−ν∆uuu+(uuu ···∇)uuu+∇p = fff in (0,T ]×Ω,

∇ ···uuu = 0 in (0,T ]×Ω,

uuu = 000 on [0,T ]×∂Ω,

uuu(0,xxx) = uuu0(xxx) for xxx ∈Ω.

(1a)

(1b)

(1c)

(1d)

For the space dimension d ∈ {2,3}, Ω⊂Rd denotes a connected bounded Lipschitz domain. More-
over, uuu : (0,T ]×Ω→Rd indicates the velocity field, p : (0,T ]×Ω→R is the (zero-mean) kinematic
pressure, fff : (0,T ]×Ω→ Rd represents external body forces and uuu0 : Ω→ Rd stands for a suit-
able initial condition for the velocity. The underlying fluid is assumed to be Newtonian with constant
(dimensionless) kinematic viscosity 0 < ν � 1.

There are references regarding the historical development until 2016 of finite element methods (FEM)
for the Navier–Stokes problem (1); cf., for example, the monograph [38]. A summary of very recent
results for HHH1-conforming FEM, together with several open problems, can be found in the review paper
[39].

A relatively new aspect in the FE analysis applied to incompressible flows is “pressure-robustness”
[40]. This means that the following fundamental invariance principle transfers from the continuous
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level to the discretised case: Replacing the source term fff by fff +∇ψ changes the solution (uuu, p)
to (uuu, p+ψ). For example, in a potential flow, (uuu ···∇)uuu can be very large but it is a gradient and
therefore balanced by the pressure gradient and thus does not have any impact on the velocity field.
Only recently it has been shown that high Reynolds number potential flows are really challenging for
the numerical solution with standard Galerkin-FEM [48, 40]. However, this kind of flow problems can
be handled relatively easily by pressure-robust FEM without any kind of convection stabilisation.

Another important consequence of violating the fundamental invariance property is that the veloc-
ity error estimates for kinetic and dissipation energies are corrupted by the pressure approximability
multiplied by ν−1/2. Note that the mechanism of excitement of this kind of numerical error is a com-
pletely linear phenomenon. Exactly divergence-free FEM are naturally pressure-robust, but classical
inf-sup stable velocity-pressure pairs like Taylor–Hood FEM are usually not pressure-robust. Fortu-
nately, recent research allows to slightly modify such methods in order to make them pressure-robust
by so-called velocity reconstructions; for example for the Stokes problem, we refer to [46, 47, 40, 42].

However, in this article, we focus on a different important aspect in the continuous-in-time numerical
analysis; namely, the worst case behaviour of the velocity error due to the nonlinearity of the convec-
tion term in the time-dependent setting. This is reflected in the numerical error analysis by Gronwall
constants depending at least exponentially on time. Indeed, in case of 0 < ν � 1, in many estimates
available in the literature the constant C in the exponential growth exp(Ct) in fact depends on the
Reynolds number Re (respectively, on ν−1) or even powers of Re; see Subsection 4.1. Obviously,
such error estimates can describe a sensible error behaviour only for ultra short time intervals. The
value of these estimates is that they predict correctly the convergence behaviour of the velocity errors
with respect to space discretisation; although they involve huge constants in the estimates. In view
of this situation, numerical analysts frequently argue that these error estimates might not be sharp.
Following the original proposal by [58] for scalar diffusion-advection problems, error estimates where
the constants appearing on the right-hand side (including Gronwall constants) do not explicitly depend
on the Reynolds number are called ‘Re-semi-robust’.

Partially, the problems in the numerical analysis come from very weak assumptions on the exact solu-
tion uuu and the data. It turns out that error estimates can be improved considerably under the essential
regularity condition ∇uuu∈ L1(0,T ;LLL∞(Ω)). We summarise some physical implications of this stronger
regularity condition in Subsection 2.2. On the other hand, the numerical analysis will show that for this
class of flows the right-hand side of error estimates grows relatively mildly with exp(Ct), where C is
not explicitly dependent on the Reynolds number. Therefore, in this article, this class of flows is called
‘computable’.

The stronger regularity condition has been used frequently in the literature, even in the limit case of
incompressible Euler flow ν = 0; cf., for example, the monograph [50] or the review [4]. In order to
obtain Re-semi-robust error estimates for problem (1), [12] is presumably the first work which takes ad-
vantage of this regularity assumption in the analysis of a CIP-stabilised FEM with equal-order approx-
imation of velocity and pressure. For an equal-order method with local projection stabilisation (LPS),
we refer to the recent work [32]. However, pressure-robustness could not be achieved in [12, 32]. For
HHH1-conforming inf-sup stable FEM, in [2] the combination with grad-div stabilisation in some different
energy norm led to Re-semi-robust error estimates which were sharpened in [24]. The work in [31]
deepens the results; in particular for optimal pressure estimates.
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Computable incompressible flows and robust estimates for inf-sup stable FEM 3

The main purpose of the present paper is to review the state-of-the-art concerning error estimates for
exactly divergence-free FEM for problem (1). In particular, we concentrate on Re-semi-robustness and
pressure-robustness for the velocity estimates. Due to the inherent pressure-robustness, it is possible
to separate velocity and pressure completely in the error analysis. Therefore, we focus exclusively on
velocity estimates. In such a setting, this paper offers a unified approach to continuous-in-time error
estimates for exactly divergence-free HHH1-conforming and only HHH(div)-conforming FEM. In particular,
the extension to HHH(div)-conforming FEM for problem (1) with 0 < ν � 1 is original. Results for such
FEM in the case of the incompressible Euler equations with ν = 0 can be found in [34, 51].

Concerning numerical experiments we show exemplarily that for a planar standing vortex problem (or
periodic lattice flow), the exponential growth of the Re-semi-robust Gronwall-based error estimates
can be observed at least qualitatively also in practice.

Organisation of the article: In Section 2 the continuous Navier–Stokes problem is briefly recalled
and the meaningfulness of our essential regularity assumption is discussed. Afterwards, Section 3
lays the foundation for a unified treatment of FEM for the time-dependent Navier–Stokes problem.
For classical HHH1-conforming methods, a brief treatise and recollection of Galerkin-FEM and grad-
div stabilisation is provided in Section 4. Then, moving to exactly divergence-free FEM, Section 5
treats pressure- and Re-semi-robust error estimates for both HHH1- and HHH(div)-conforming methods in
a unified setting. Some numerical experiments are also conducted. After a brief survey about some
open problems in Section 6, the main part of this work is concluded in Section 7. Computational
aspects of HHH(div)-conforming methods are addressed in the Appendix.

2 Continuous Navier–Stokes problem

Notation: In what follows, for K ⊆ Ω we use the standard Sobolev spaces W m,p(K) for scalar-
valued functions with associated norms ‖·‖W m,p(K) and seminorms |·|W m,p(K) for m > 0 and p > 1.
Spaces and norms for vector- and tensor-valued functions are indicated with bold letters. We obtain
the Lebesgue space W 0,p(K) = Lp(K) and the Hilbert space W m,2(K) = Hm(K). Additionally, the
closed subspaces H1

0 (K) consisting of H1(K)-functions with vanishing trace on ∂K and the set
L2

0(K) of L2(K)-functions with zero mean in K play an important role. The L2(K)-inner product is
denoted by (·, ·)K and, if K = Ω, we usually omit the domain completely when no confusion can
arise. Furthermore, with regard to time-dependent problems, given a Banach space XXX and a time
instance t, the Bochner space Lp(0, t;XXX) for p ∈ [1,∞] is used. In the case t = T , we frequently use
the abbreviation Lp(XXX) = Lp(0,T ;XXX). The dual space of XXX is denoted by XXX∗.

2.1 Continuous problem

With VVV = HHH1
0(Ω) and Q = L2

0(Ω), we introduce the space

VVV div = {vvv ∈VVV : (q,∇ ···vvv) = 0, ∀q ∈ Q} (2)
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of weakly divergence-free velocities. If vvv ∈VVV div, then ∇ ···vvv = 0 almost everywhere in Ω. The largest
space in which one can work comfortably with the divergence is

HHH(div;Ω) =
{

vvv ∈ LLL2(Ω) : ∇ ···vvv ∈ L2(Ω)
}
. (3)

Analogously to VVV div, we define

HHHdiv =
{

vvv ∈ HHH(div;Ω) : ∇ ···vvv = 0, vvv ···nnn
∣∣
∂Ω

= 0
}
, (4)

where nnn denotes the outer unit normal vector to ∂Ω. For the following error analysis, velocity and
pressure solutions are assumed to belong to the spaces

VVV T =
{

vvv ∈ L2(0,T ;VVV ) : ∂tvvv ∈ L2(0,T ;LLL2(Ω)
)}

and QT = L2(0,T ;Q). (5)

Recently it has been shown for the solution uuus of the evolutionary Stokes problem with inhomogeneous
Dirichlet data and fff = 000 that ∂tuuus ∈ L2(LLL2) indeed holds [15]. Thus, provided fff ∈ L2(LLL2), the
following problem on the continuous level is obtained:{

?(uuu, p) ∈VVV T ×QT with uuu(0) = uuu0 ∈ HHHdiv s.t., ∀(vvv,q) ∈VVV ×Q,

(∂tuuu,vvv)+νa(uuu,vvv)+ c(uuu;uuu,vvv)+b(vvv, p)−b(uuu,q) = ( fff ,vvv).
(6a)

(6b)

Here, the multilinear forms are given by

a(www,vvv) =
∫

Ω

∇www :::∇vvvdxxx, c(βββ ;www,vvv) =
∫

Ω

(βββ ···∇)www ···vvvdxxx, (7a)

b(www,q) =−
∫

Ω

q(∇ ···www)dxxx. (7b)

REMARK 2.1 : Concerning the regularity of the forcing term, on the continuous level, the problem could
be posed using the less restrictive assumption fff ∈ L2(VVV ∗). However, in Section 5 we also deal
with discretisations which are not HHH1-conforming. In such a situation, rough right-hand sides lead to
technical difficulties which we omit by assuming fff ∈ L2(LLL2); cf. [25, Remark 4.9]. Another problem

with rough forcing terms, even for HHH1-conforming methods, is that energy estimates can generally not
be expected to be independent of ν−1; cf. [63, Remark 3.2]. N

REMARK 2.2 : The theory concerning existence and regularity of Navier–Stokes solutions gives the
following result; cf. [5, 9, 38]. To (6b), there exists a weak solution

uuu ∈ L2
(

0,T ;VVV div
)
∩L∞

(
0,T ;HHHdiv

)
. (8)

Its time derivative, however, can generally only be shown to fulfil

∂tuuu ∈ L4/d
(

0,T ;
(

VVV div
)∗)

. (9)

Therefore, (5) represents an assumption for the regularity of ∂tuuu both in time (only for d = 3) and
space. The reasons for this simplification are analogous to Remark 2.1. N
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2.2 Essential regularity assumption for computable flows

In addition to the above introduced regularity assumptions which have a direct impact on the weak
formulation of the Navier–Stokes problem, it is very common to assume that the solution uuu to (6) fulfils

∇uuu ∈ L1(0,T ;LLL∞(Ω)). (10)

This short section is aimed at highlighting that incompressible flows which have the essential regularity
(10) are relevant both from a theoretical and a practical viewpoint. Let us give a few arguments under-
lining this statement. At first, (10) guarantees unique solvability of the Navier–Stokes problem; cf. [63,
Lemma 2.2]. In fact, (10) ensures that the velocity field uuu is uniformly Lipschitz continuous on [0,T ]. As
a consequence, the characteristic curves of the dynamical system d

dt xxx(t) = uuu(t,xxx(t)) remain smooth
and never intersect within [0,T ]; cf. [4]. From a physical point of view, these characteristic curves are
the pathlines of the flow; cf. [26, Section 4.3.1]. Lastly, the symmetric part of the velocity gradient ∇uuu
encodes relevant information about the local structure of a flow; cf. [14, Section 2.5]. In particular, at
least in a periodic box and for fff = 000, the smallest scales of an incompressible Navier–Stokes flow
behave like

√
ν/‖∇uuu‖LLL∞ ; cf. [35].

3 Abstract discrete setting and FEM

In this chapter, we attempt to define an abstract discrete setting in which all of the FE methods under
consideration can be embedded. To this end, the discrete space-time velocity and pressure spaces
are

VVV T
h =

{
vvvh ∈ L2(0,T ;VVV h) : ∂tvvvh ∈ L2(0,T ;VVV h)

}
and QT

h = L2(0,T ;Qh). (11)

Contrary to the continuous setting in Section 2, we will not explicitly define the discrete spaces VVV h and
Qh at this point. Instead, only general assumptions for the FE pair VVV h/Qh are introduced. Before we
begin with the minimal global regularity requirements for the spaces, the following standard decompo-
sition of the domain is introduced.

Let Th be a shape-regular FE partition of Ω without hanging nodes and mesh size h = maxK∈Th hK ,
where hK denotes the diameter of the particular element K ∈ Th. The skeleton Fh denotes the set of
all facets with FK = {F ∈ Fh : F ⊂ ∂K} and N∂ = maxK∈Th card(FK). Moreover, Fh = F i

h∪F∂
h

where F i
h is the subset of interior facets and F∂

h collects all boundary facets F ⊂ ∂Ω. To any F ∈Fh

we assign a unit normal vector nnnF where, for F ∈F∂
h , this is the outer unit normal vector nnn. If F ∈F i

h,

there are two adjacent elements K+ and K− sharing the facet F = ∂K+∩∂K− and nnnF points in an
arbitrary but fixed direction. Let φ be any piecewise smooth (scalar-, vector- or tensor-valued) function
with traces from within the interior of K± denoted by φ±, respectively. Then, we define the jump J·KF
and average

{{
·
}}

F operator across interior facets F ∈ F i
h by

JφKF = φ
+−φ

− and
{{

φ
}}

F =
1
2
(
φ
++φ

−). (12)

For boundary facets F ∈ F∂
h we set JφKF =

{{
φ
}}

F = φ . These operators act componentwise for
vector- and tensor-valued functions. Frequently, the subscript indicating the facet is omitted.
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H1-FEM H(div)-FEM DG-FEM

Figure 1: Continuity/discontinuity of normal (red) and tangential (blue) components in different meth-
ods.

ASSUMPTION A

VVV h ⊂ HHH(div;Ω), Qh ⊂ L2
0(Ω) = Q (13)

Thus, as VVV ⊂ HHH(div;Ω), our considerations include both HHH1-conforming and HHH(div)-conforming
methods. Fully discontinuous DG-FEM, however, are excluded since LLL2(Ω) 6⊂HHH(div;Ω) and at least
continuity in normal direction is needed. In Figure 1 a sketch of how the normal and tangential velocity
components behave in different methods can be seen.
ASSUMPTION B

The global spaces VVV h and Qh form a discretely inf-sup stable FE pair. That is, there exists β ∗ > 0,
independent of the mesh size h, such that

inf
qh∈Qh\{0}

sup
vvvh∈VVV h\{000}

b(vvvh,qh)

|||vvvh|||e ‖qh‖L2
> β

∗. (14)

Here, |||·|||e denotes a suitable energy norm. Due to the HHH(div)-conformity of VVV h, the pressure-velocity
coupling b(·, ·) remains the same in the discrete setting. Note that (14) ensures that the space of
discretely divergence-free velocities, VVV div

h , is non-trivial, that is

VVV div
h = {vvvh ∈VVV h : b(vvvh,qh) = 0, ∀qh ∈ Qh} 6= {000}. (15)

ASSUMPTION C

The global spaces VVV h and Qh are divergence-conforming, that is

∇ ···VVV h ⊆ Qh. (16)

If Assumption C holds, the velocity approximation will be exactly divergence-free; cf. [40].

REMARK 3.1 : There are several FE pairs which fit into the above introduced framework. The probably
most frequently used elements fulfil Assumptions A with VVV h ⊂ HHH1 and Assumption B. For example,
the Taylor–Hood element of order k or the MINI element are well-known; cf. [38] also for different pairs.
If Assumption C has to be fulfilled additionally, the Scott–Vogelius element (with certain restrictions on
mesh and order) is known. Some other examples are mentioned in [63]. In the context of isogeometric
analysis, several HHH1-conforming and divergence-free FE spaces have been constructed using splines
on tensor-product meshes [10, 29, 30].

DOI 10.20347/WIAS.PREPRINT.2436 Berlin 2017



Computable incompressible flows and robust estimates for inf-sup stable FEM 7

Leaving the HHH1-conforming sector, several classical examples of inf-sup stable HHH(div)-conforming
spaces which also fulfil Assumption C can be found in [22, 8]. The corresponding methods are discon-
tinuous Galerkin (DG) methods since the tangential components are in general discontinuous across
interior facets. Let us specifically mention the family of Raviart–Thomas (RT) elements on simplicial
meshes which, for example, have been used in [62]. In this work, however, the family of Brezzi–
Douglas–Marini (BDM) elements (applicable on either simplicial or tensor-product meshes) is used
in Subsection 5.3. Let us mention that the computational efficiency of HHH(div)-conforming methods
can be improved drastically by hybridisation; cf., for example, [45]. Some computational aspects of
HHH(div)-conforming FEM are discussed in the Appendix. N

3.1 Finite element method

The space-semidiscrete (or continuous-in-time) weak formulation of (6) reads as follows:{
?(uuuh, ph) ∈VVV T

h ×QT
h with uuuh(0) = uuu0h s.t., ∀(vvvh,qh) ∈VVV h×Qh,

(∂tuuuh,vvvh)+νah(uuuh,vvvh)+ ch(uuuh;uuuh,vvvh)+b(vvvh, ph)−b(uuuh,qh) = ( fff ,vvvh).

(17a)

(17b)

Note that since the approximation uuuh ∈ VVV T
h to (17) does not necessarily have to be HHH1-conforming,

we introduce the broken Sobolev space

HHHm(Th) =
{

www ∈ LLL2(Ω) : www
∣∣
K ∈ HHHm(K), ∀K ∈ Th

}
. (18)

Define the broken gradient ∇h : HHH1(Th)→ LLL2(Ω) by (∇hwww)
∣∣
K = ∇

(
www
∣∣
K

)
. To be mathematically

more precise, the appearance of traces of velocity facet values and normal derivatives thereof dictates

that the velocities, at least, belong to HHH
3
2+ε(Th) for some ε > 0; cf. [57, Section 2.1.3].

For the discretisation of the diffusion term, we employ the standard symmetric interior penalty (SIP)
form [57, 25] (jump penalisation parameter σ > 0) with an additional grad-div term (parameter δ > 0):

ah(www,vvvh) =
∫

Ω

∇hwww :::∇hvvvh dxxx+
δ

ν

∫
Ω

(∇ ···www)(∇ ···vvvh)dxxx (19a)

− ∑
F∈Fh

∮
F

[{{
∇www
}}

nnnF ···JvvvhK+ JwwwK ···
{{

∇vvvh
}}

nnnF −
σ

hF
JwwwK ···JvvvhK

]
dsss (19b)

For HHH1-FEM (globally continuous), the summation over all facets terms F ∈ Fh disappears since
in this case all jumps vanish. Also, the broken gradient in the first volume term is simply the usual
gradient. Whenever the considered FE pair fulfils (16), the discrete velocity is pointwise divergence-
free and the grad-div term vanishes. In conjunction with the viscous term ah, the following norms are
used:

|||www|||2e = ‖∇hwww‖2
LLL2 + ∑

F∈Fh

σ

hF
‖JwwwK‖2

LLL2(F)
(20a)

|||www|||2e,] = |||www|||2e + ∑
K∈Th

hK ‖∇www ···nnnK‖2
LLL2(∂K)

(20b)

Here, |||·|||e denotes the discrete energy norm and the index ] indicates a stronger norm. Furthermore,
we define the following physically relevant quantities.

DOI 10.20347/WIAS.PREPRINT.2436 Berlin 2017
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DEFINITION 3.2 (Kinetic and dissipation energies)

The kinetic energy and the kinetic energy dissipation rate of a flow, represented by the velocity www, at
almost every t ∈ (0,T ) is given, respectively, by

1
2
‖www(t)‖2

LLL2 and ν |||www(t)|||2e . (21)

For the inertia term, we choose the following convection term [25] for βββ ∈ LLL∞ ∩HHH(div;Ω) with
βββ ···nnn

∣∣
∂Ω

= 0:

ch(βββ ;www,vvvh) =
∫

Ω

(βββ ···∇h)www ···vvvh dxxx+
1
2

∫
Ω

(∇ ···βββ )(www ···vvvh)dxxx (22a)

− ∑
F∈F i

h

∮
F
(βββ ···nnnF)JwwwK ···

{{
vvvh
}}

dsss+ ∑
F∈F i

h

∮
F

1
2
|βββ ···nnnF |JwwwK ···JvvvhKdsss (22b)

For HHH1-conforming FEM the second volume term represents a skew-symmetrisation (other choices
are possible; cf. [38]) which vanishes for ∇ ···βββ = 0. In the general case, the first three terms together
are skew-symmetric. HHH(div)-FEM, due to discontinuity in tangential direction, provide the opportunity
of including a natural upwind mechanism for stabilising high Reynolds number flows [22]. The corre-
sponding terms are the facet integrals in (22) where the last part is symmetric positive semidefinite.
Again, in the globally continuous case, all facet terms vanish. In order to highlight the impact of the
upwind term, we introduce the jump seminorm

|www|2
βββ ,upw = ∑

F∈F i
h

∮
F

1
2
|βββ ···nnnF ||JwwwK|2 dsss. (23)

REMARK 3.3 : As can be seen from (19) and (22), an exactly divergence-free and HHH1-conforming
method leads to a scheme which, in terms of multilinear forms, is identical to the continuous one
in (6b). In this sense, divergence-free HHH1-FEM represent, at least from a theoretical point of view, the
most simplified available FE methods. Hence, the numerical analysis for this class of methods is also
the most concise and compact. N

3.2 Energy estimate and well-posedness

Let us summarise the most important discrete coercivity properties; cf. [57, 25].

LEMMA 3.4 (Discrete coercivity of ah and ch)

Assume that σ > 0 is sufficiently large. Then, the bilinear form ah is coercive on VVV h w.r.t. the energy
norm |||·|||e. Moreover, the grad-div term allows for an additional control over the divergence of the
discrete velocity. The convective form ch is coercive on VVV h w.r.t. the upwind seminorm |·|upw. That is,
there exists Cσ > 0, independent of h, such that, for all vvvh ∈VVV h,

ah(vvvh,vvvh)>Cσ |||vvvh|||2e +
δ

ν
‖∇ ···vvvh‖2

LLL2 and ch(βββ ;vvvh,vvvh) = |vvvh|2βββ ,upw. (24)

As a consequence, and after applying standard arguments, we obtain the following corollary.
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Computable incompressible flows and robust estimates for inf-sup stable FEM 9

COROLLARY 3.5 (Well-posedness and velocity energy estimate)

Let fff ∈ L1(LLL2) and uuu0h ∈ LLL2. Then, there exists a solution uuuh ∈VVV T
h to (17) with

1
2
‖uuuh‖2

L∞(LLL2) +
∫ T

0

[
νCσ |||uuuh|||2e +δ ‖∇ ···uuuh‖2

LLL2 + |uuuh|2uuuh,upw

]
dτ (25a)

6 ‖uuu0h‖2
LLL2 +

3
2
‖ fff‖2

L1(LLL2) . (25b)

Provided fff is even Lipschitz in time, the solution uuuh is unique.

4 Classical inf-sup stable H1-conforming FEM

In this section we briefly want to discuss non-divergence-free HHH1-conforming methods.

4.1 Classical H1-conforming mixed FEM are not Re-semi-robust

The application of the Gronwall lemma to continuous-in-time estimates of both kinetic and dissipation
energies for the Galerkin-FEM leads to an exponential factor on the right-hand side which may depend
in an unfavourable way on the length of the time interval (0,T ), norms of the solution, and on inverse
powers of the viscosity.

More precisely, for the skew-symmetric form (22) of the convective term and only assuming ∇uuu ∈
L4(LLL2), the argument of the exponential on the right-hand side is of the form Cν−3 ‖∇uuu‖4

L4(LLL2);

cf. [38, Theorem 7.35]. Following [38, Remark 7.39], under the assumptions ∇uuu ∈ L1(LLL∞) and uuu ∈
L2(LLL∞), one can improve the argument of the exponential to

1
2
‖∇uuu‖L1(LLL∞)+

4
ν
‖uuu‖2

L2(LLL∞) . (26)

Nevertheless, estimates with such strong exponential growth are useless in practice. Please note
that even a rough error estimate using the triangle inequality together with the stability estimates for
both discrete and continuous solution, see Corollary 3.5, provides asymptotically much better Re-
semi-robust bounds as opposed to exponential growth depending on ν−1. We refer to Subsection 5.3
where it can be observed that the error from a classical Taylor–Hood Galerkin computation actually
shows such an unfavourable exponential growth.

4.2 Improvements with grad-div stabilisation

To the best of our knowledge, it has been observed first in [49] that for inf-sup stable FE pairs, the com-
bination of the Galerkin-FEM with grad-div stabilisation can avoid entirely the explicit dependence of
the Gronwall factor on ν−1. For HHH1-conforming inf-sup stable FEM, this provides Re-semi-robust esti-
mates; see the results [2] which were improved in [24]. In particular, the dependence of the argument
of the Gronwall factor (26) can be replaced by

T +C1 ‖∇uuu‖L1(LLL∞)+C2
h2

δ
‖uuu‖2

L1(WWW 1,∞) , (27)
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where δ is the grad-div parameter. The work [31] deepens the results; in particular for optimal pres-
sure estimates. For the argument of the Gronwall factor, they obtain a Gronwall argument similar to
(27) where the third summand is replaced by 1

2δ
‖uuu‖2

L1(HHH2).

Our numerical experience shows that grad-div stabilisation can improve the results for classical inf-
sup stable HHH1-conforming Galerkin-FEM. For example, for the numerical simulation of a problem with
standing vortices in Subsection 5.3, we show that sometimes grad-div stabilisation dramatically im-
proves the behaviour of the Gronwall factor. However, recent research has clarified that these effects
are not really a stabilisation issue, but are related to some kind of consistency error, whenever the fun-
damental invariance property (replacing the source term fff by fff +∇ψ changes the solution (uuu, p) to
(uuu, p+ψ)) is violated on the discrete level. Therefore, grad-div stabilisation simply reduces the diver-
gence error of discrete velocity solutions, which involves the potential danger of the classical Poisson
locking phenomenon [37]. Also, further aspects of the numerical analysis of grad-div stabilisation of
such FEM can be found in the work [13]. These considerations made us choose inf-sup stable, exactly
divergence-free mixed FEM for this article; see Section 5.

5 Divergence-free H1- and H(div)-FEM

Under Assumption C, the following Galerkin orthogonality property in VVV div
h can be stated without any

contributions from the pressure. The most important ingredient is the consistency of both SIP formu-
lation of the viscous term and upwind formulation of the convective term [57, 25].
COROLLARY 5.1 (Galerkin orthogonality)

Let uuuh ∈ VVV T
h solve (17). Assume that the solution uuu ∈ VVV T of (6) satisfies the regularity condition

uuu ∈ L2
(

HHH
3
2+ε(Th)

)
for ε > 0. Then, for a.e. t ∈ (0,T ) and for all vvvh ∈VVV div

h ,

(∂t [uuu−uuuh],vvvh)+νah(uuu−uuuh,vvvh)+ ch(uuu;uuu,vvvh)− ch(uuuh;uuuh,vvvh) = 0. (28)

5.1 Stationary Stokes projection

In this section we want to consider the coupling of pressure and viscous effects only. With a sufficiently
smooth forcing term ggg, the well-known continuous weak formulation of the stationary Stokes problem
reads {

?(uuus, ps) ∈VVV ×Q s.t., ∀(vvv,q) ∈VVV ×Q,

νa(uuus,vvv)+b(vvv, ps)−b(uuus,q) = (ggg,vvv).
(29a)

(29b)

In order to obtain optimal LLL2-estimates for the velocity, we make the following assumption which is
called ‘elliptic regularity’, ‘Cattabriga’s regularity’ or ‘smoothing property’.
ASSUMPTION D

Assume that Ω is either a convex polygon for d = 2 or of class C1,1 for d ∈{2,3}. Then, for all ggg∈ LLL2,
the solution (uuus, ps)∈VVV ×Q of (29) additionally fulfils the regularity property (uuus, ps)∈HHH2×H1 and
the energy estimate

√
ν ‖uuus‖HHH2 +‖ps‖H1 6C‖ggg‖LLL2 ; cf. [9, Theorem IV.5.8].

Note that the following definition is stated directly in VVV div
h because this suffices for our considerations.
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DEFINITION 5.2 (Stationary Stokes projection)

Let www ∈HHH
3
2+ε(Th) for ε > 0 fulfil ∇ ···www = 0 pointwise. Then, we define the stationary Stokes projec-

tion πππswww ∈VVV div
h of www to be the unique FE solution to the problem

ah(πππswww,vvvh) = ah(www,vvvh), ∀vvvh ∈VVV div
h . (30)

As a consequence, the approximation properties of the projection operator πππs can be derived from
error estimates for the stationary Stokes problem. The following theorem holds true; cf. [63, 62].

THEOREM 5.3 (Stokes projection error estimate)

Let πππswww be the Stokes projection of www with ∇ ···www = 0 and Assumption D be fulfilled. Then, provided
www ∈ HHHr(Ω) with r > 3/2 and ruuu = min{r,k+1},

‖www−πππswww‖LLL2 +h|||www−πππswww|||e,] 6Ch inf
vvvh∈VVV div

h

|||www− vvvh|||e,] 6Chruuu|www|HHHruuu . (31)

ASSUMPTION E

In the setting of Theorem 5.3, depending on which method is used, we assume that

HHH1 : ‖∇hπππswww‖LLL∞ 6C‖∇hwww‖LLL∞ , (32a)

HHH(div) : ‖www−πππswww‖LLL∞ +h‖∇hπππswww‖LLL∞ 6Ch‖∇hwww‖LLL∞ . (32b)

REMARK 5.4 : In the HHH1-conforming context, an analogue to (32a) has been shown in [33] in the con-
text of non-divergence-free methods which involves also the pressure. The analysis in [33] simplifies
for divergence-free HHH1-conforming methods, thereby leading to (32a). The validity of (32b) is an open
problem although, in principle, similar techniques as in [33] seem to be applicable. We are not aware
of any literature where LLL∞ estimates for the HHH(div)-conforming Stokes projection have been dis-
cussed. Note that in [34] the assumption (32b) is circumvented by assuming a similar estimate for an
HHH(div)-conforming interpolation. N

5.2 Pressure- and Re-semi-robust error estimates

In this section, additionally to pressure and viscous effects, the dynamics of the Navier–Stokes prob-
lem are investigated; this means the evolutionary and inertia term. We use the Stokes projection to
introduce the error splitting

uuu−uuuh = [uuu−πππsuuu]− [uuuh−πππsuuu] = ηηη− eeeh. (33)

For the HHH(div)-conforming methods we additionally need to be able to bound facet norms by volume
norms:
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ASSUMPTION F

The velocity space VVV h satisfies the discrete trace inequality [25, Remark 1.47]

∀vvvh ∈VVV h : ‖vvvh‖LLL2(∂K) 6Ctrh
−1/2
K ‖vvvh‖LLL2(K) , ∀K ∈ Th. (34)

LEMMA 5.5 (Difference of convective terms)

Assume that uuu ∈ L1(WWW 1,∞). Then, for all finite εi > 0, i ∈ {1,2,3,4}, we obtain

ch(uuu;uuu,eeeh)− ch(uuuh;uuuh,eeeh)6−|eeeh|2uuuh,upw (35a)

+ ε
−1
1 ‖uuu‖LLL∞ ‖∇hηηη‖2

LLL2 +
[
ε
−1
2 +C

(
ε
−1
3 + ε

−1
4
)
h−1]‖∇uuu‖LLL∞ ‖ηηη‖2

LLL2 (35b)

+
[
ε1 ‖uuu‖LLL∞ +

(
C+ ε2 +C(ε3 + ε4)h−1)‖∇uuu‖LLL∞

]
‖eeeh‖2

LLL2 . (35c)

PROOF : We basically follow the ideas from [34]. At first, insert the definition of ch, use JuuuKF = 000 for
all facets F ∈ F i

h and reorder:

ch(uuu;uuu,eeeh)− ch(uuuh;uuuh,eeeh) =
∫

Ω

[
(uuu ···∇h)uuu ···eeeh− (uuuh ···∇h)uuuh ···eeeh

]
dxxx (36a)

− ∑
F∈F i

h

∮
F
(uuuh ···nnnF)Juuu−uuuhK ···

{{
eeeh
}}

dsss+ ∑
F∈F i

h

∮
F

1
2
|uuuh ···nnnF |Juuu−uuuhK ···JeeehKdsss (36b)

= T1 +T2 +T3 (36c)

Note that in the HHH1-conforming case, T2 = T3 = 0. For the volume term T1, we subtract and add
(uuu ···∇hπππsuuu,eeeh)Ω

, replace uuuh = πππsuuu+eeeh and use triangle, Hölder’s and Young’s (ε1,ε2 > 0) inequal-
ity:

T1 +(uuuh ···∇heeeh,eeeh)Ω
= (uuu ···∇hηηη ,eeeh)Ω

+([uuu−uuuh] ···∇hπππsuuu,eeeh)Ω
(37a)

6 ‖uuu‖LLL∞ ‖∇hηηη‖LLL2 ‖eeeh‖LLL2 +‖ηηη− eeeh‖LLL2 ‖∇hπππsuuu‖LLL∞ ‖eeeh‖LLL2 (37b)

6 ε
−1
1 ‖uuu‖LLL∞ ‖∇hηηη‖2

LLL2 + ε
−1
2 ‖∇hπππsuuu‖LLL∞ ‖ηηη‖2

LLL2 (37c)

+[ε1 ‖uuu‖LLL∞ +(1+ ε2)‖∇hπππsuuu‖LLL∞]‖eeeh‖2
LLL2 (37d)

For HHH1-conforming methods, (uuuh ···∇heeeh,eeeh)Ω
= (uuuh ···∇eeeh,eeeh)Ω

= 0 and the proof is already com-
plete at this point. For HHH(div)-FEM, this term is balanced by the facet terms. In fact, for these facet
terms inserting the error splitting leads to

T2 =− ∑
F∈F i

h

∮
F
(uuuh ···nnnF)JηηηK ···

{{
eeeh
}}

dsss+ ∑
F∈F i

h

∮
F
(uuuh ···nnnF)JeeehK ···

{{
eeeh
}}

dsss (38a)

= T2,1 +T2,2 (38b)

T3 = ∑
F∈F i

h

∮
F

1
2
|uuuh ···nnnF |JηηηK ···JeeehKdsss− ∑

F∈F i
h

∮
F

1
2
|uuuh ···nnnF |JeeehK ···JeeehKdsss (38c)

= T3,1−|eeeh|2uuuh,upw (38d)
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Here, due to the discrete coercivity of ch (Lemma 3.4), we can conclude that T2,2 = (uuuh ···∇heeeh,eeeh)Ω

and thus, in the end, the term cancels out with its corresponding part from the volume term T1. For the
remaining two facet terms, apply Hölder’s inequality after again inserting the relation uuuh = eeeh +πππsuuu:

∣∣T2,1
∣∣6 ∑

F∈F i
h

∮
F

∣∣(eeeh ···nnnF)JηηηK ···
{{

eeeh
}}∣∣dsss+ ∑

F∈F i
h

∮
F

∣∣(πππsuuu ···nnnF)JηηηK ···
{{

eeeh
}}∣∣dsss (39a)

6 ‖ηηη‖LLL∞ ∑
F∈F i

h

∥∥{{eeeh
}}∥∥2

LLL2(F)
+‖πππsuuu‖LLL∞ ∑

F∈F i
h

‖JηηηK‖LLL2(F)

∥∥{{eeeh
}}∥∥

LLL2(F)
(39b)

= T2,1,1 +T2,1,2 (39c)

Using the bound 1
2(a+b)2 6

(
a2 +b2) for a,b ∈R and the discrete trace inequality (Assumption F)

we observe that

∑
F∈F i

h

∮
F

∣∣{{eeeh
}}∣∣2 dsss6 ∑

F∈F i
h

[∥∥eeeh
+
∥∥2

LLL2(F)
+
∥∥eeeh
−∥∥2

LLL2(F)

]
(40a)

6 ∑
K∈Th

‖eeeh‖2
LLL2(∂K)

6C2
trh
−1 ‖eeeh‖2

LLL2 . (40b)

The same estimate can be obtained when the average is replaced by the jump over facets. Together
with the LLL∞ approximation properties of πππsuuu (Assumption E), this results in

∣∣T2,1,1
∣∣6C‖∇uuu‖LLL∞ ‖eeeh‖2

LLL2 . (41)

Similarly, with Young’s inequality (ε3 > 0),

∣∣T2,1,2
∣∣6 ‖πππsuuu‖LLL∞

 ∑
F∈F i

h

‖JηηηK‖2
LLL2(F)

1/2 ∑
F∈F i

h

∥∥{{eeeh
}}∥∥2

LLL2(F)

1/2

(42a)

6C‖πππsuuu‖LLL∞ h−1/2 ‖ηηη‖LLL2 h−1/2 ‖eeeh‖LLL2 (42b)

6Cε
−1
3 ‖πππsuuu‖LLL∞ h−1 ‖ηηη‖2

LLL2 +Cε3 ‖πππsuuu‖LLL∞ h−1 ‖eeeh‖2
LLL2 . (42c)

The estimate of the upwind term T3,1 is completely analogous after using the triangle inequality in the
form |uuuh ···nnnF |6 |eeeh ···nnnF |+ |πππsuuu ···nnnF |. With ε4 > 0, we obtain

∣∣T3,1
∣∣6C|uuu|WWW 1,∞ ‖eeeh‖2

LLL2 +Cε
−1
4 ‖πππsuuu‖LLL∞ h−1 ‖ηηη‖2

LLL2 +Cε4 ‖πππsuuu‖LLL∞ h−1 ‖eeeh‖2
LLL2 . (43)

Finally, Assumption E implies stability of the Stokes projection in the form ‖πππsuuu‖LLL∞ +‖∇hπππsuuu‖LLL∞ 6
C|uuu|WWW 1,∞ . Combining the above estimates concludes the proof. �
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THEOREM 5.6 (Velocity discretisation error estimate)

Let uuu ∈ VVV T solve (6) and uuuh ∈ VVV T
h solve (17). If additionally uuu ∈ L2

(
HHH

3
2+ε(Th)

)
for ε > 0, uuu ∈

L1(WWW 1,∞) and uuuh(0) = πππsuuu0, we obtain the following error estimate:

1
2
‖eeeh‖2

L∞(LLL2) +
∫ T

0

[
νCσ |||eeeh|||2e + |eeeh|2uuuh,upw

]
dτ (44a)

6 eGuuu(T )
∫ T

0

[
‖∂tηηη‖2

LLL2 +‖uuu‖LLL∞ ‖∇hηηη‖2
LLL2 +

(
1+Ch−2)‖∇uuu‖LLL∞ ‖ηηη‖2

LLL2

]
dτ (44b)

Here, the Gronwall constant is given by

Guuu(T ) = T +‖uuu‖L1(0,T ;LLL∞(Ω))+C‖∇uuu‖L1(0,T ;LLL∞(Ω)) . (45)

PROOF : Corollary 5.1 with vvvh = eeeh(t) ∈VVV div
h and the error splitting (33) yields

(∂teeeh,eeeh)+νah(eeeh,eeeh) = (∂tηηη ,eeeh)+νah(ηηη ,eeeh)+ ch(uuu;uuu,eeeh)− ch(uuuh;uuuh,eeeh). (46)

We use (∂teeeh,eeeh) =
1
2

d
dt ‖eeeh‖2

LLL2 and discrete coercivity of ah (Lemma 3.4) on the left-hand side (note
that ∇ ···eeeh = 0). On the right-hand side, apply Cauchy–Schwarz plus Young (ε5 > 0) and use Definition
5.2. Then, we obtain

1
2

d
dt
‖eeeh‖2

LLL2 +νCσ |||eeeh|||2e 6 ε
−1
5 ‖∂tηηη‖2

LLL2 + ε5 ‖eeeh‖2
LLL2 + ch(uuu;uuu,eeeh)− ch(uuuh;uuuh,eeeh). (47)

The application of Lemma 5.5 results in

1
2

d
dt
‖eeeh‖2

LLL2 +νCσ |||eeeh|||2e + |eeeh|2uuuh,upw 6 ε
−1
5 ‖∂tηηη‖2

LLL2 + ε
−1
1 ‖uuu‖LLL∞ ‖∇hηηη‖2

LLL2 (48a)

+
[
ε
−1
2 +C

(
ε
−1
3 + ε

−1
4
)
h−1]‖∇uuu‖LLL∞ ‖ηηη‖2

LLL2 (48b)

+
[
ε5 + ε1 ‖uuu‖LLL∞ +

(
C+ ε2 +C(ε3 + ε4)h−1)‖∇uuu‖LLL∞

]
‖eeeh‖2

LLL2 . (48c)

The next step is choosing the εi. Note that in this step, numerous different error estimates can be
obtained. In the end, everything multiplying ‖eeeh‖2

LLL2 will enter the Gronwall exponent and since we do
not want to have negative exponents of h there, choosing ε3 and ε4 such that ε3 = ε4 = O(h) is a
valid strategy. For the remaining variables, we simply set ε1 = ε2 = ε5 = 1. This results in

1
2

d
dt
‖eeeh‖2

LLL2 +νCσ |||eeeh|||2e + |eeeh|2uuuh,upw 6 ‖∂tηηη‖2
LLL2 +‖uuu‖LLL∞ ‖∇hηηη‖2

LLL2 (49a)

+
(
1+Ch−2)‖∇uuu‖LLL∞ ‖ηηη‖2

LLL2 +[1+‖uuu‖LLL∞ +C‖∇uuu‖LLL∞]‖eeeh‖2
LLL2 . (49b)

The essential regularity assumption uuu ∈ L1(WWW 1,∞) ensures that

Guuu(t) =
∫ t

0
[1+‖uuu(τ)‖LLL∞ +C‖∇uuu(τ)‖LLL∞ ]dτ < ∞. (50)

Application of Gronwall’s lemma [27, Lemma 6.9] together with uuuh(0) = πππsuuu0 concludes the proof. �
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REMARK 5.7 : The assumption (10) has also been used for the incompressible Euler equations (ν = 0);
cf. [34, 51] where HHH(div)-FEM are considered. However, it has to be mentioned that (10) is very strict
in case of ν = 0 as there exists no inherent smoothing mechanism from the incompressible Euler
operator in crosswind direction. N

REMARK 5.8 : In contrast to the Gronwall constants (26) and (27) for non-divergence-free FEM, the
Gronwall constant (45) for divergence-free methods does not imply an explicit dependence on either
ν−1 or any discretisation parameter (as for example the grad-div parameter δ ) which may involve
classical Poisson locking. In this regard the results from Section 5 represent a step forwards. However,
to the best of our knowledge, there does not exist numerical evidence for the sharpness of these
improved estimates, thereby leaving room for further research. N

COROLLARY 5.9 (Velocity discretisation error convergence rate)

Under the assumptions of the previous theorem, assume a smooth solution according to

uuu ∈ L∞(0,T ;HHHr(Ω)), ∂tuuu ∈ L2(0,T ;HHHr(Ω)), r >
3
2
. (51)

Then, with ruuu = min{r,k+1} and a constant C independent of h and ν−1, we obtain the following
convergence rate:

1
2
‖eeeh‖2

L∞(LLL2) +
∫ T

0

[
νCσ |||eeeh|||2e + |eeeh|2uuuh,upw

]
dτ (52a)

6Ch2(ruuu−1)eGuuu(T )
∫ T

0

[
h2|∂tuuu|2HHHruuu +

[
‖uuu‖LLL∞ +

(
h2 +C

)
‖∇uuu‖LLL∞

]
|uuu|2HHHruuu

]
dτ (52b)

PROOF : Due to Theorem 5.3, we obtain the estimates
‖∂tηηη‖2

LLL2 6Ch2ruuu|∂tuuu|2HHHruuu , ‖∇hηηη‖2
LLL2 6Ch2(ruuu−1)|uuu|2HHHruuu and ‖ηηη‖2

LLL2 6Ch2ruuu|uuu|2HHHruuu .
The claim follows directly. �

5.3 Numerical experiments

We consider the flow of four vortices which are oppositely rotating at a fixed position in the periodic
domain Ω = (0,1)2. A freely-decaying exact solution of (1) with fff = 000 which describes such a flow
is given by

uuu0(xxx) =
[

sin(2πx1)sin(2πx2)
cos(2πx1)cos(2πx2)

]
, uuu(t,xxx) = uuu0(xxx)e−8π2νt . (53)

This example represents a potential flow and has already been investigated in detail, also qualitatively,
in [63, 62] and is called ‘planar lattice flow’ as well [7]. The initial velocity uuu0 induces a flow structure
which, due to its saddle point character, is "dynamically unstable so that small perturbations result in a
very chaotic motion"[50]. The corresponding pressure level has to be fixed; for example, by imposing
the zero-mean condition. Here, we choose ν = 10−5 which leads to a flow where both viscous and
inertia effects are present. Note that ‖∇uuu(t)‖LLL∞ = 2π exp

(
−8π2νt

)
.
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Figure 2: Initial velocity and triangular meshes without singular vertices for the high-order FEM applied
to the standing vortices problem. Left: Coarse mesh (34 triangles) with h = 0.25 and first component
of uuu0; middle: fine mesh (902 triangles) with h = 0.05 and second component of uuu0; right: vorticity
computed from uuu0.

Our aim is to demonstrate the role of the Gronwall factor for simulations over (0,T ) for ‘large’ T ; we
choose T = 20. This examples proves that the estimates are qualitatively sharp in the sense that the
theoretically predicted exponential growth of the errors can actually be observed in practice. Note that
this is not a convergence study. Related exact solutions, for example the 2D Taylor–Green problem,
can also be used to show h convergence at fixed (small) time instances.

All subsequent computations have been carried out using the high-order finite element library
NGSolve [60]. The main new aspect in this work is that we use high-order FE pairs of order k = 8
whereas previous work in [63, 62] considered only lower order methods with k ∈ {2,3}. Also, we
now choose a different time integration procedure; namely an implicit-explicit Runge–Kutta method of
order 2 (IMEX-RK2) with constant time step size ∆t = 10−4; cf. [3, Subsection 2.6]. The small time
step makes it possible to neglect errors stemming from the time discretisation. As the implicit part we
choose the Stokes-like terms (Laplacian and pressure-velocity coupling) and denote the correspond-
ing system matrix by M∗. The convection part is applied explicitly and therefore the nonlinearity is
shifted to the right-hand side.

We compare results on the two meshes shown in Figure 2. Note that the meshes are unstructured and
therefore do not exploit the saddle-point structure of the flow. On these meshes, the HHH1-conforming
methods under comparison are the pure Galerkin formulation of the Taylor–Hood method, Taylor–Hood
with additional grad-div stabilisation δ = 0.1 (both non-divergence-free) and the Scott–Vogelius ele-
ment (divergence-free). The chosen HHH(div)-conforming methods are based on the Brezzi–Douglas–
Marini (BDM) element where one is an HHH(div)-conforming DG method as in [22] and the other is
a hybridised variant introduced in [45]. For the DG variant we choose σ = 4 in (19) and make a
corresponding choice for HDG. In terms of our analysis, both methods share the same discretisation
properties but differ in computational aspects that are discussed in more detail in the Appendix.

A visualisation of the performance of the different methods can be seen in Figure 3. Let us comment
on some aspects of the results. For classical Taylor–Hood elements, one observes a blow-up of the
Gronwall factor due to the term 4ν−1 ‖uuu‖2

L2(LLL∞), see (26). Grad-div stabilisation with δ = O(1) can
considerably improve the results of the Galerkin variant. Non-div-free grad-div stabilised Taylor–Hood,
div-free Scott–Vogelius FEM and div-free BDM-(H)DG show the theoretical qualitative behaviour of the

DOI 10.20347/WIAS.PREPRINT.2436 Berlin 2017



Computable incompressible flows and robust estimates for inf-sup stable FEM 17

BDM8 hBDM8 SV8 grad-div-TH8 Galerkin-TH8

0 2 4 6 8 10 12 14 16 18 20 22 24 26
10−13
10−12
10−11
10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1
100

∼ exp(0.86t)

∼ exp(20t)

time t

‖[u
−

u
h
](
t)
‖ 0

0 2 4 6 8 10 12 14 16 18 20 22 24 26
10−11
10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1
100
101

∼ exp(0.86t)

∼ exp(20t)

time t

‖∇
h
[u
−

u
h
](
t)
‖ 0

Figure 3: Evolution of LLL2-norm and (broken) HHH1-seminorm errors for different methods. Computations
on the coarse mesh are shown by solid lines whereas the fine mesh is indicated by dashed lines. The
HHH(div)-HDG method on the coarse mesh is shown with black dots.

exponential Gronwall factor. No immediate blow-up occurs. On the coarse mesh, HHH(div)-conforming
FEM provide much better results than HHH1-conforming FEM. Note that this behaviour is consistent with
the lower order case as has been observed in [62]. On the fine mesh, all Re-semi-robust methods
perform similarly.

6 Open problems

Let us comment on some open problems we deliberately circumvented in this work.

Maximum norm estimates for HHH(div) Stokes projection: Assumption E has been important in
our analysis and yet, no rigorous mathematical proof is available. We further comment on this point in
Remark 5.4.

Sufficient conditions for the regularity assumption on ∇uuu: As the regularity assumption

∇uuu ∈ L1(0,T ;LLL∞(Ω)) (54)

is crucial for a Re-semi-robust error analysis, sufficient conditions for this are desired. In [33, Section
7], sufficient conditions for the regularity ∇u∈ LLL∞ have been derived for the stationary incompressible
Navier–Stokes problem. There, in case of no-slip boundary conditions and convex polyhedral domains,
a condition on the forcing term of the form fff ∈ LLL3+ε(Ω) with 0 < ε 6 3/2 is sufficient; cf. [33, Lemma
9].

Optimality of velocity error estimate in L∞
(
LLL2): The velocity error estimate in Theorem 5.6 is

optimal with respect to the spatial discretisation regarding the dissipation energy error∫ T

0
νCσ |||uuu−uuuh|||2e dτ, (55)
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but suboptimal regarding the kinetic energy error 1
2 ‖uuu−uuuh‖2

L∞(LLL2). A similar result has been ob-

served in [2, 24] for inf-sup stable LPS-stabilised methods and in [31] for inf-sup stable grad-div sta-
bilised FEM. For exactly divergence-free and HHH1-conforming methods, corresponding suboptimal re-
sults can be found in [63]. Let us remark that the formally quasi-optimal results for some variants of
divergence-free (pressure-robust) isogeometric FEM in [28, 30] are not Re-semi-robust. Conversely,
in the equal-order case (stabilised by CIP or LPS), optimal h-convergence rates are proved in [12, 32]
but they are not pressure-robust.

For exactly divergence-free HHH(div)-FEM, a similar suboptimal result has been derived for the incom-
pressible Euler problem (ν = 0) in [34]. Analogously to the present work, the condition ∇uuu∈ L1(LLL∞) is
crucial; see also [51]. This is a very strong regularity assumption on the solution of the Euler problem
as there is no crosswind diffusion in the continuous problem. A corresponding result for the time-
dependent Oseen problem (ν > 0) can be found in [62], which has been extended in the present
paper to problem (1) with ν > 0.

For DG-FEM applied to scalar convection-diffusion problems, certain techniques can be applied to
the convective term which allows an additional error order 1/2 in case of sufficiently small viscosity
ν 6Ch; cf. [25]. It remains an open problem whether similar techniques can be used for inf-sup stable
FEM in the Navier–Stokes case. On the other hand, the suboptimality with respect to h becomes less
important in case of high-order FEM.

Practically relevant boundary conditions: In this work as well as in most of related work, the error
estimates for problem (1) usually are derived under the no-slip condition uuu = 000 for the velocity. This
excludes, for example, channel-like problems with in- and outflow which are important, for example
for biomedical flows (see the review [6]). Therefore, an extension of the error estimates to such more
practically relevant flow problems is desired. A first attempt to grad-div stabilised FEM can be found in
[1].

Additional stabilisation and turbulence modelling: The numerical results for the problem in Sub-
section 5.3 suggest that an additional stabilisation term can help to improve the results for non-
divergence-free HHH1-FEM. Indeed, the blow-up for standard Taylor–Hood elements can be reduced
dramatically by adding grad-div stabilisation. This can be explained by the fact that grad-div stabilisa-
tion can counteract problems which result from a lack of pressure-robustness; cf. [40]. Furthermore,
for both Scott–Vogelius and Taylor–Hood elements, it is shown in [63, 62] that an additional explicit
convection stabilisation leads to some improvements as well. For HHH(div)-(H)DG methods, the natural
upwind mechanism takes care of dominant convection and no additional convection stabilisation is
required.

However, in case of turbulent flows, an additional turbulence model for example via subgrid-viscosity
terms is unavoidable. Potential candidates are a local projection stabilisation based on the Smagorin-
sky model [38], or residual-based eddy-viscosity methods [52]. We again want to emphasise that for
HHH(div)-conforming (H)DG methods with an upwind discretization for the convection, there is no need
for an additional stabilisation. Therefore, the effect of explicit turbulence modelling, which usually has a
dissipative character, can be distinguished neatly from convection stabilisation. This is, in our opinion,
a good starting point to assess explicit turbulence models.
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Refined Gronwall estimates: Let us return to the velocity error estimates where an exponential
Gronwall factor with argument depending on ∇uuu ∈ L1(LLL∞) occurs. In boundary layers, the latter term
may typically depend on ν−1/2. It remains an open problem whether it is possible to refine the analysis,
for example, based on a variational multiscale decomposition of the solution. Such an approach has
been considered in [11] for two-dimensional problems (1) in case of high Reynolds numbers.

7 Summary and outlook

The regularity assumption ∇uuu ∈ L1(LLL∞), which represents a class of flows frequently discussed in
both physical and mathematical literature, leads to computable flows for exactly divergence-free FEM.

Classical inf-sup stable mixed FEM are in general not suitable for long-time integration of the time-
dependent incompressible Navier–Stokes problem. This can be caused by the linear phenomenon of
a lack of pressure-robustness. The nonlinear effects may reduce the computable time intervals to ultra
short times.

Exactly divergence-free inf-sup stable FEM may serve as best practice examples for the time-dependent
incompressible Navier–Stokes problem. In particular, the excessive growth of the exponential Gron-
wall factor with respect to ν−1 is circumvented.

Drawbacks of exactly divergence-free, inf-sup stable HHH1-conforming FEM stem from technical prob-
lems. Scott-Vogelius requires barycentre-refined meshes if the element order is not high-enough. Iso-
geometric based FEM are probably not available in standard FEM packages.

Exactly divergence-free, inf-sup stable HHH(div)-conforming FEM can be constructed using Raviart–
Thomas or BDM elements on arbitrary meshes. An upwind stabilisation of the convective term based
on DG-FEM can be incorporated in a very natural way.

Due to their discontinuous nature, exactly divergence-free, inf-sup stable HHH(div)-conforming DG-FEM
can be hybridised. Such HDG-based HHH(div) methods allow highly efficient discrete solvers and, in
particular, massively parallel implementation with very favourable scalability can be achieved.

Summarising, we believe that exactly divergence-free, inf-sup stable HHH(div)-conforming FEM provide
the most promising approach from both a theoretical and a practical point of view.

Appendix: Computational aspects of HHH(div)-conforming methods
for Navier–Stokes

Improving the efficiency of HHH(div)-conforming methods: In this section we explain how HHH(div)-
conforming FE methods, that are often seen as too complicated and inefficient for real application, can
be made efficient. We restrict the discussion here to BDM elements as they are computationally more
efficient in the context of incompressible flows compared to RT elements since they have less degrees
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of freedom (DOFs) for the same velocity approximation.

Choosing the pressure space Qh as the space of (discontinuous) piecewise polynomials of one degree
less than the HHH(div)-conforming velocity space VVV h renders (16) an equality, that is, ∇ ···VVV h = Qh. A
special property of this velocity-pressure pair is that the inf-sup constant is robust in the polynomial
degree leading to hp-optimal convergence; cf. [43] for a rigorous analysis in 2D. The strong rela-
tion ∇ ···VVV h = Qh can further be exploited with a smart choice of the basis functions for VVV h and Qh; cf.
[61, 65]. The a priori knowledge that the discrete solution will be pointwise divergence-free then allows
to remove some DOFs for the velocity and all pressure unknowns except for the piecewise constants;
cf. [45, Remark 1] and [44, Section 2.2.4.2]. We make use of this in our numerical experiments.

To account for the tangential discontinuity in the HHH(div)-conforming FE space, a DG formulation has
to be applied. This aspect can be regarded ambivalently. On the one hand, the discontinuous nature
of the tangential component offers the possibility of applying an upwind discretisation for the convec-
tion, cf. (22), which results in stable discretisations also in the convective limit [34] without adding too
much dissipation compared to most convection stabilisations of HHH1-FEM. On the other hand, the DG
formulation results in computationally less attractive features. Due to the break-up of the tangential
continuity, several DOFs for the velocity are multiplied compared to HHH1-conforming methods. Even
worse, the number of couplings in a corresponding system matrix increases which results in much
higher computational costs for (direct and iterative) solvers of linear systems.

Several measures can be taken to compensate for these costs. To this end, we briefly discuss the
concept of hybridisation in the context of DG methods [21]. To reduce the couplings of neighbouring
elements, additional unknowns on the facets are introduced (which typically approximate the trace of
the unknown field). These additional unknowns are used to replace the direct couplings of neighbour-
ing elements with couplings between element unknowns and the facet unknowns. Due to the lower
dimension of the facets, this reduces the overall amount of couplings especially in the higher order
case. More importantly, it allows for static condensation, i.e. the elimination of interior unknowns by a
local Schur complement strategy which reduces the number of DOFs for which a global linear system
needs to be solved.

Depending on the problem at hand there are many ways to make use of hybridisation. For an overview
we refer to the review article [17]. For Stokes and Navier–Stokes discretisations many variants have
been considered; see, for instance, [20, 18, 19]. Exactly divergence-free HDG methods have also
been considered in [16] and [56, 55] where additional facet unknowns can be used to enforce nor-
mal continuity on a standard DG space which circumvents the construction of HHH(div)-conforming FE
spaces. Here, we use the formulation presented in [45] where, additionally to an HHH(div)-conforming
FE space VVV h for the velocity and a discontinuous pressure space Qh, facet unknowns are introduced
only for the tangential component of the velocity. The DG terms in the variational formulation are then
adjusted correspondingly. Finally, the element unknowns of the HHH(div)-conforming FE space couple
with neighbour elements only through facet unknowns. These facet unknowns are either the DOFs for
the normal continuity of VVV h or the additional facet unknowns. All remaining velocity unknowns, as well
as the pressure unknowns, have only element local couplings such that these—except for the mean
element pressure—can be eliminated during static condensation; cf. Figure 4 for a sketch.

In the viscosity dominated case hybridisation can be optimised further so that only facet unknowns of
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Figure 4: Sketch of fourth order FE discretisations with different types of unknowns for velocity and
pressure: unknowns that can be remove beforehand if a suitable basis is used, local unknowns that
can be eliminated by static condensation and the remaining global unknowns. The space FFF3 in the
HHH(div)-HDG method is the space of vector-valued functions that are tangential polynomials up to
degree three on every facet.

one degree less need to be considered; cf. [45, 53, 54]. A similar optimisation can also be made for
the unknowns for the normal continuity by relaxing the HHH(div)-conformity slightly. We do not treat this
here but instead refer to [41]. To make use of these superconvergence properties of HDG methods
we apply—as suggested in [45]—an operator splitting time integration method where the convection
operator is treated only explicitly while the remaining time-independent operators are treated implicitly.
Note that such an operator splitting is not only desirable for hybrid DG discretisations. Several time
integration methods allow for such a splitting; cf. [45, Section 3]. For the experiments in Section 5.3 a
second-order implicit-explicit Runge–Kutta method has been used.

Some performance comparisons for the numerical study in Section 5.3: In Section 5.3 the er-
rors for Taylor–Hood, Scott–Vogelius, BDM and the hybridised BDM FE discretisation on two different
meshes are compared. At this point, this study shall be complemented with information on the compu-
tational costs of the methods. The results are shown in Table 1 where we make this comparison only in
terms of the following measures. Firstly, the numbers of DOFs for velocity and pressure (#{uuuDOFs},
#{pDOFs}, #{DOFs}) are compared. Secondly, we consider the same numbers that remain in a
global linear system after static condensation and a potential reduction of the basis (in brackets).
Thirdly, the non-zero entries in the global matrix M∗ before (#{nz(M∗)}) and after reduction and
static condensation (in brackets) are considered. Note that these numbers can only give an indication
of the computational efficiency of the methods. Many different practically relevant aspects, as for ex-
ample parallelisability or the availability and performance of suitable preconditioners, are not reflected
in these numbers.

Regarding static condensation in the Taylor–Hood method, independent of the grad-div stabilisation,
we can eliminate all interior unknowns for velocity and pressure. On general meshes, the pressure
unknowns for the Scott–Vogelius element cannot be eliminated and hence, static condensation is only
applied with respect to the interior velocity DOFs. We note that on barycentre refined meshes static
condensation can also be applied for the pressure unknowns; cf. [23]. In case of a DG formulation with
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Table 1: Overview of meshes, DOFs and non-zero entries of M∗. Abbreviations of different methods
with k = 8: Non-div-free HHH1 Taylor–Hood (TH8), div-free HHH1 Scott–Vogelius (SV8) and div-free
HHH(div) Brezzi–Douglas–Marini (BDM8) together with the hybridised variant (hBDM8). In brackets are
the numbers after reduction of the basis and static condensation.

Mesh Method #{uuuDOFs} #{pDOFs} #{DOFs} #{nz(M∗)}
Coarse (h = 0.25) TH8 2306 ( 748) 890 ( 323) 3196 ( 1071) 465K ( 128K)

34 triangles SV8 2306 ( 748) 1224 ( 1224) 3530 ( 1972) 479K ( 223K)
BDM8 2673 ( 1483) 1224 ( 34) 3897 ( 1517) 1.93M ( 327K)

hBDM8 3204 ( 867) 1224 ( 34) 4428 ( 901) 779K (77.2K)

Fine (h = 0.05) TH8 58370 (19844) 22380 ( 8569) 80750 (28413) 12.3M (3.38M)
902 triangles SV8 58370 (19844) 32472 (32472) 90842 (52316) 12.7M (5.93M)

BDM8 69363 (37793) 32472 ( 902) 101835 (38695) 51.3M (8.70M)
hBDM8 81900 (23001) 32472 ( 902) 38695 (23903) 20.7M (2.05M)

BDM elements we utilise the special basis introduced in [61, 65] to eliminate some velocity unknowns
and all pressure unknowns except for the mean element pressure. However, static condensation can-
not be applied to any additional DOFs due to the DG couplings. Note that this could potentially be
improved slightly by choosing a nodal basis similar to the one in [36] where interior unknowns only
couple with the boundary nodes of neighbouring elements. To the best of the authors’ knowledge,
such a basis has not yet been proposed for an HHH(div)-conforming FE space. For the hybridised DG
method we can apply the reduction of the basis for the HHH(div)-conforming FE space as well as static
condensation. Note that in this work, the formulation from [45] is used which only involves tangential
facet unknowns of degree 7. The results are shown in Table 1.

We observe that the effect of the basis reduction and especially the hybridisation reduces the compu-
tational costs of the HHH(div)-conforming methods drastically, thereby rendering them competitive not
only in terms of accuracy, cf. Section 5.3, but also in terms of computing time; see also the benchmark
results in [45, Section 4.5].
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