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Stability of spiral chimera states on a torus
Oleh E. Omel’chenko, Matthias Wolfrum, Edgar Knobloch

Abstract

We study destabilization mechanisms of spiral coherence-incoherence patterns known as spi-
ral chimera states that form on a two-dimensional lattice of nonlocally coupled phase oscilla-
tors. For this purpose we employ the linearization of the Ott–Antonsen equation that is valid in
the continuum limit and perform a detailed two-parameter stability analysis of a D4-symmetric
chimera state, i.e., a four-core spiral state. We identify fold, Hopf and parity-breaking bifurcations
as the main mechanisms whereby spiral chimeras can lose stability. Beyond these bifurcations
we find new spatio-temporal patterns, in particular, quasiperiodic chimeras, D2-symmetric spiral
chimeras as well as drifting states.

1 Introduction

Self-organization or spontaneous pattern formation is a fundamental property of spatially extended
nonlinear systems. The pioneering work of A. Turing led to increased interest in the emergence of var-
ious types of patterns and their stability properties. This paper is devoted to a study of self-organized
patterns of coherence and incoherence, called chimera states, that are present, under appropriate
conditions, in discrete media. In a continuum limit these patterns appear as relative equilibria but their
properties can differ from those of classical patterns in continuous media, such as reaction-diffusion
systems. In this paper, we investigate spiral chimera states [8, 26], which are found in two-dimensional
lattices of coupled phase oscillators. A spiral chimera consists of a coherent outer region resembling
the usual spiral wave familiar from reaction-diffusion systems, and an incoherent inner core that masks
the position of the phase defect. Spiral chimeras were discovered almost simultaneously with the sim-
pler and far better studied one-dimensional chimera states [7, 1, 24], but up to now their properties
have received much less attention.

Numerical simulations of coupled oscillator systems reveal that spiral chimeras can be found on two-
dimensional lattices with periodic [6, 17, 3, 29] as well as free [14, 12] boundary conditions. In some
cases one can study the existence of spiral chimeras using a self-consistency equation [14] similar
to that used for spot and stripe chimera patterns in [23, 24]. However, except for the recent work [10]
little is known about the stability of spiral chimeras and the more complicated solutions bifurcating
from them. In order to address this problem we use here a similar setting as in [28, 29]. Employing
periodic boundary conditions and a coupling kernel composed of two Fourier modes, we use the fi-
nite rank property of the corresponding convolution operator to facilitate the stability analysis. At the
same time, varying the parameters of the coupling kernel generates a variety of instabilities and hence
new solution types. Our stability analysis is performed in the continuum limit, using the Ott–Antonsen
procedure [21, 22] in the form suggested in [9, 19]. We expect that our results will be useful for inter-
pretating experimental data obtained in systems of coupled chemical oscillators [27, 16]. Moreover,
our techniques – with some modifications – are also applicable to more complicated three-dimensional
chimera patterns [13, 11].
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The paper is organized as follows. First, we present the two main systems studied in our investigation,
a two-dimensional system of nonlocally coupled phase oscillators and the corresponding continuum
limit equation, and summarize our main results in Figure 2. In Section 2 we recall the details of the sta-
bility analysis for relative equilibria of the Ott–Antonsen equation, which we use to determine stability
boundaries of symmetric four-core and 16-core spiral chimera states. In Section 3 we classify insta-
bilities of the symmetric four-core spiral chimera and discuss properties of the new solutions found in
the finite system (1) by numerical continuation. Some concluding remarks are given in Section 4.

Two Appendices at the end of the paper summarize the details of the mathematical steps that are
used in our treatment of the characteristic equation for the four-core and 16-core spiral chimeras to
optimize the efficiency of our numerical solvers.

1.1 Phase oscillator model

We consider a two-dimensional square lattice of nonlocally coupled phase oscillators {Ψjk(t)}Nj,k=1

evolving according to

dΨjk

dt
= −

N∑
m,n=1

G

(
2π

N
(j −m),

2π

N
(k − n)

)
sin (Ψjk −Ψmn + α) , (1)

where α ∈ (−π/2, π/2) is the phase lag parameter and G : R2 → R is the coupling function.
The function G is assumed to be 2π-periodic with respect to both arguments, a requirement that is
equivalent to imposing periodic boundary conditions on the boundary of the fundamental domain. We
choose, following [29], the parametrized coupling function

G(x, y) = cos x+ cos y + γ(cos 2x+ cos 2y), γ ∈ R. (2)

This coupling function has D4 symmetry, i.e., it is invariant under the pair of reflections (x, y) →
(−x, y) and (x, y)→ (x,−y), as well as reflections in the diagonal (x, y)→ (y, x), and represents
a generalization of the case with γ = 1 employed in [29]. In the following we explore the transitions in
this system in the (α, γ) parameter space.

1.2 Ott–Antonsen equation

In the largeN limit, the macroscopic dynamics of the system (1)–(2) is described by the Ott–Antonsen
equation [21, 22]

dz

dt
=

1

2
e−iαGz − 1

2
eiαz2Gz (3)

for the local order parameter z(·, t) ∈ Cper([−π, π]2;C), where

(Gϕ)(x, y) :=

∫ π

−π
dx′
∫ π

−π
G(x− x′, y − y′)ϕ(x′, y′)dy′ (4)

and z denotes the complex conjugate of z. Note that only solutions within the invariant manifold
|z(x, y)| ≤ 1 are physically meaningful solutions for the oscillator system (1)–(2) and that regions
with |z(x, y)| = 1 correspond to coherent regions of the system.

Many complex dynamical regimes observed in the oscillator system correspond to relative equilibria
of Eq. (3), given by the rotating wave Ansatz

z(x, y, t) = a(x, y)eiΩt = h(|w(x, y)|2)w(x, y)eiΩt, (5)
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Stability of spiral chimera states on a torus 3

where Ω ∈ R is the collective frequency and

h(s) :=


1−
√

1− s
s = 1

1 +
√

1− s
for 0 ≤ s < 1,

1− i
√
s− 1
s = 1

1 + i
√
s− 1

for s ≥ 1.

(6)

In terms of w(x, y) the boundary between coherence and incoherence is given by

|w(x, y)| = 1, (7)

since according to (6) we have |z(x, y)| = 1 iff |w(x, y)| ≥ 1.

One can easily verify that expression (5) does indeed determine a solution of Eq. (3) provided w ∈
Cper([−π, π]2;C) and that the parameters Ω and α then satisfy the self-consistency equation

µw(x, y) =

∫ π

−π
dx′
∫ π

−π
G(x− x′, y − y′)h(|w(x′, y′)|2)w(x′, y′) dy′, (8)

where
µ = iΩeiα = −Ωe−iβ and β :=

π

2
− α. (9)

1.3 Main results

As a primary state, we take the symmetric four-core spiral chimera (Figure 1, upper row). We determine
the stability of this state and investigate the new patterns emerging from its stability boundaries. The
state can be identified as a relative equilibrium (5) of the Ott–Antonsen equation (3), where

w(x, y) = wp(x, y) := p(cosx+ i cos y), p ∈ (0,∞), (10)

and the dependence of the solution parameters p and Ω on the system parameters β and γ is deter-
mined from Eq. (8).

The linearization of Eq. (3) around this solution allows us to determine its stability region in the (β, γ)
plane (Figure 2, shaded region). The boundary of this region consists of three curves, two of them
Hopf bifurcation curves (solid blue curves) and the third a line of symmetry-breaking bifurcation (black
dashed line). The two Hopf curves intersect at a codimension-two point corresponding to a nonreso-
nant double Hopf bifurcation. All three curves have been determined by numerically solving the char-
acteristic equation resulting from the linear stability problem arising from the Ott–Antonsen equation.

Other types of spiral chimeras that can be given explicitly as relative equilibria (5) are the 16-core
spiral chimeras (Figure 1, lower row) with

w(x, y) = Wp(x, y) := p(cos 2x+ i cos 2y), p ∈ (0,∞), (11)

and the D2-symmetric four-core spiral chimeras (Figure 2, state (c)) with

w(x, y) = c1 cosx+ c2 cos 2x+ c3 cos y + c4 cos 2y, (12)

where the unknown solution parameters c1, c2, c3, c4 ∈ C can again be determined from (8). Perform-
ing the stability analysis for the 16-core spiral (see also Figure 1 (lower row)) we find it to be stable
in the large region above the red curve of Hopf bifurcations and to the right of the line β = β0. The
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Figure 1: Four-core (upper row) and 16-core (lower row) spiral chimeras. (a) Phase snapshots in the
system (1)–(2). (b) Modulus and (c) argument of the complex order parameter a(x, y) of the corre-
sponding rotating wave (5) in the Ott–Antonsen equation with w(x, y) determined by (10) and (11),
respectively.

D2-symmetric state exists only within the region bounded by the solid black curves, calculated as fold
bifurcations when solving for the free parameters in (12). Numerical simulation of the system (1)–(2)
shows that this state is stable only in part of this parameter region. Both these states therefore coexist
stably with the primary four-core spiral chimera for appropriate choice of parameters.

The side panels in Figure 2 show several other chimera states found by numerical simulation of the
system (1)–(2) at locations outside the dashed stability region of the primary spiral chimera indicated
with the black crosses. Each colored symbol refers to one type of pattern and indicates the parameter
values where patterns of this type have been observed. Except for state (c), these patterns can be
found numerically by starting with a stable primary spiral chimera and changing parameters quasistat-
ically so as to destabilize this state. These new spiral states turn out to have quasiperiodically evolving
local order parameters and we study them mostly numerically. Figure 2 does not show states obtained
by crossing the stability boundaries of the 16-core spiral. For example, when γ decreases through
the red Hopf curve the 16-core spiral evolves to a plane wave suggesting that this Hopf bifurcation
is subcritical. This state is not shown: in this paper we ignore all nonspiral chimera solutions such as
two-stripe chimera patterns with

w(x, y) = p cosx, p ∈ (0,∞),

or four-stripe chimera patterns with

w(x, y) = p cos 2x, p ∈ (0,∞),

which have also been observed in the system (1)–(2) [29]. In many cases these coexist stably with the
spiral chimera states we do discuss.

The symmetries of the system originate from the phase shift invariance of the form

z(x, y, ·)→ eiφz(x, y, ·), φ ∈ S1 (13)

DOI 10.20347/WIAS.PREPRINT.2417 Berlin 2017



Stability of spiral chimera states on a torus 5

Figure 2: Stability region (blue shaded) of the four-core spiral chimeras (10) shown in Figure 1 (upper
row) bounded by Hopf bifurcation curves (solid blue), and a vertical line of symmetry-breaking bifur-
cations (β = β0 ≈ 0.34, dashed black). Panels (a)–(f) show the numerically observed patterns at the
parameter values given by black crosses. Patterns similar to (a) are observed at locations indicated by
blue circles, with patterns similar to (b) indicated by red circles, (d) by red diamonds and (e) by green
triangles. For patterns of type (c), given by (12), the existence region is bounded by the solid black
curve. 16-core spiral chimeras are stable in the region above the red Hopf curve and to the right of the
dashed symmetry-breaking bifurcation.

DOI 10.20347/WIAS.PREPRINT.2417 Berlin 2017



O. E. Omel’chenko, M. Wolfrum, E. Knobloch 6

and the spatial symmetries of the fundamental domain. For the finite oscillator system (1)–(2), these
are the discrete shifts, reflections and rotations by π/2 of the square lattice. In the continuum limit
translations in the x and y direction are continuous symmetries as well. The phase shift symmetry
has been used to define the relative equilibria in Eq. (5). Solutions that are time-periodic modulo a
phase shift may possess spatio-temporal symmetries corresponding to invariance under a fixed time
shift commensurate with the period, together with a discrete spatial symmetry action. Consequently
the states shown in Figure 2 can be distinguished by the symmetries keeping them invariant. The
symmetric four-core state shown in Figure 1 (upper row) is invariant under the following symmetry
operations:

κ1 : z(x, y, ·) → z(x,−y, ·)
κ2 : z(x, y, ·) → z(−x, y, ·)
κ3 : z(x, y, ·) → e−iπ/2z(π − y, x, ·).

Note that κ1 and κ2 are both reflections and hence elements of order two (κ2
1 = 1, κ2

2 = 1), while κ3 is
a spatial rotation by π/2 together with a corresponding phase shift, providing a group element of order
four (κ4

3 = 1). These group actions are not independent, however, since κ2 = κ3κ1κ
−1
3 ≡ κ3κ1κ

3
3.

Thus, the instantaneous spatial symmetries of the state are represented by the group Γ generated
by the elements κ1 and κ3. It turns out that Γ is a 16 element nonabelian group of generalized
dihedral type. The 16-core spiral state (11) has additional symmetries given by translations by half
the length of the fundamental domain in both directions. In contrast, the state (12) shown in panel
(c) is invariant under κ1 and κ2 only and hence has D2-symmetry. The states in panels (a), (b),
(d) are all quasiperiodic states. Specifically, they are periodic in a reference frame rotating with the
collective frequency Ω, owing to the appearance of filaments of coherent oscillators that rotate with a
new frequency about each incoherent core. Such rotating filaments can be seen in panel (e) albeit in
a case where they rotate about a phase singularity rather than an incoherent core. In particular, the
state in panel (a) possesses a spatio-temporal symmetry where a time shift by half the new period
can be compensated by κ2

3. Finally, panel (f) shows a state with translational motion in time. Such a
state can be viewed as a periodic solution modulo a lateral translation by the width of the fundamental
domain.

We emphasize that the symmetries identified above are the symmetries associated with the continuum
limit; in the discrete case the symmetry will necessarily be only approximate, although departures from
continuous symmetry decrease as the number of oscillators increases, see [18]. We also note that if
the quasiperiodic states are time-averaged the D4-symmetry of the system is restored on average,
cf. [2].

2 Preliminaries

2.1 Stability

Starting from a solution w(x, y) of the self-consistency equation (8), which provides a rotating wave
of the form (5), we can analyze its stability by substituting

z(x, y, t) = (a(x, y)eiβ + v(x, y, t))eiΩt

DOI 10.20347/WIAS.PREPRINT.2417 Berlin 2017



Stability of spiral chimera states on a torus 7

into the Ott–Antonsen equation (3) and linearizing with respect to the small perturbation v(x, y, t).
This procedure results in the linear but nonautonomous eigenvalue problem

dv

dt
= −Ωη

(
|w(x, y)|2

)
v +

1

2
e−iα

(
Gv + a2(x, y)Gv

)
, (14)

where both w(x, y) and a(x, y) are given by the underlying rotating wave (5) and

η(s) = −i(h(s)s− 1) =

{
i
√

1− s for 0 ≤ s < 1,

−
√
s− 1 for s ≥ 1.

(15)

Equation (14) can be studied in a similar manner to that described in detail for Eq. (63) in [19]: the
linear operator appearing in Eq. (14) is a sum of the multiplication operator −Ωη (|w(x, y)|2) and
a compact integral operator. The essential spectrum of this operator depends on the multiplication
operator only and is given by the expression

σess =
{
−Ωη

(
|w(x, y)|2

)
: (x, y) ∈ [−π, π]2

}
∪ {c.c.} ⊂ R ∪ iR. (16)

Note that the operator in Eq. (14) includes complex conjugation of its argument and hence cannot
be treated immediately as a complex operator. Instead, in order to obtain the point spectrum it is
convenient to solve for eigenmodes of the form

v(x, y, t) = v+(x, y)eλt + v−(x, y)eλt. (17)

This provides a solution to Eq. (14), if the eigenvalue λ and the components (v+, v−)T of the eigen-
mode satisfy

λ

(
v+

v−

)
=

(
−Ωη(|w|2)v+ + 1

2
e−iα (Gv+ + a2Gv−)

−Ωη(|w|2)v− + 1
2
eiα (Gv− + a2Gv+)

)
,

or equivalently (
v+

v−

)
=

1

2

 e−iα (λ+ Ωη(|w|2))
−1

(Gv+ + a2Gv−)

eiα
(
λ+ Ωη(|w|2)

)−1

(Gv− + a2Gv+)

 . (18)

Applying the integral operator G to both sides of Eq. (18), we obtain the nonlocal eigenvalue problem

(
V+

V−

)
=

1

2

 e−iαG
[
(λ+ Ωη(|w|2))

−1
(V+ + a2V−)

]
eiαG

[(
λ+ Ωη(|w|2)

)−1

(V− + a2V+)

]
 (19)

for the components

V+(x, y) := (Gv+)(x, y), V−(x, y) = (Gv−)(x, y), (20)

of the eigenmode of the local mean field V := Gv. Note that if (λ, V+, V−) is a solution of the problem
(19) so is (λ, V −, V +). It follows that the eigenvalues λ are either real or occur in complex-conjugate
pairs. Further structural properties of the solutions of (19), equivalently of (18), are the following:

DOI 10.20347/WIAS.PREPRINT.2417 Berlin 2017
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Proposition 1 Suppose Eq. (3) has a solution of the form (5) with coherent and incoherent domains
DC ∪DI = [−π, π]2, such that

|a(x, y)| = 1 iff (x, y) ∈ DC.

Moreover, suppose that (λ, v+(x, y), v−(x, y)) is a solution of the nonlocal eigenvalue problem (18).
Then the corresponding eigenmode v(x, y, t) given by (17) has the following properties:
(i) there exists a function C : DC → R such that

v(x, y, t) = iC(x, y, t)a(x, y)eiβ, (21)

(ii) if λ = iω0, where ω0 ∈ R\{0}, then for all t the eigenmode v(x, y, t) is unbounded along the
contour determined by the equation

|w(x, y)|2 = 1− (ω0/Ω)2. (22)

This singularity contour lies completely in the incoherent domain DI.

Proof: (i) From Eqs. (18) and (20) we obtain

v(x, y, t) = v+(x, y)eλt + v−(x, y)eλt =
1

2
e−iα

[
(λ+ Ωη(|w|2))−1

(
V+ + a2V−

)
eλt

+ (λ+ Ωη(|w|2))−1
(
a2V + + V −

)
eλt
]
. (23)

For (x, y) ∈ DC we have |a(x, y)| = 1, and expressions (5) and (6) therefore imply that

a−1(x, y) = a(x, y) for all (x, y) ∈ DC.

Similarly, formula (15) yields

η(|w(x, y)|2) = η(|w(x, y)|2) for all (x, y) ∈ DC.

Inserting this result into (23) we obtain

v(x, y, t) = e−iαa(x, y)Re
(

(λ+ Ωη(x, y))−1 (a(x, y)V+ + a(x, y)V−) eλt
)
,

which is equivalent to the claim (21).

(ii) Expression (18) shows that the functions v+(x, y) and v−(x, y) are singular for λ+Ωη(|w|2) = 0
and λ + Ωη(|w|2) = 0, respectively. When λ = iω0 their linear combination v(x, y, t) is therefore
singular along the curve/curves determined by the condition∣∣iω0 + Ωη

(
|w(x, y)|2

)∣∣ ∣∣∣iω0 + Ωη (|w(x, y)|2)
∣∣∣ = 0.

Because of the definition (15), this equation has no solutions for |w| ≥ 1, whereas for |w| < 1 it can
be rewritten in the form

ω2
0 + Ω2η2(|w|2) = ω2

0 − Ω2(1− |w|2) = 0. (24)

This conditions is equivalent to (22) and implies |w|2 < 1, and hence incoherence.

DOI 10.20347/WIAS.PREPRINT.2417 Berlin 2017



Stability of spiral chimera states on a torus 9

Remark 1 The geometry behind assertion (i) of Proposition 1 is as follows. Let v(l) ∈ C be a smooth
function such that |v(l)| = 1 in the interval l ∈ (l0 − ε, l0 + ε) for some l0, ε > 0. This assumption
is equivalent to the identity v(l)v(l) = 1. Differentiating with respect to l we obtain

v′(l0)v(l0) + v(l0)v′(l0) = 2Re (v′(l0)v(l0)) = 0.

Hence there exists a constant c0 ∈ R such that v′(l0) v(l0) = ic0. Multiplying this identity by v(l0)
and taking into account that |v(l0)| = 1 we obtain

v′(l0) = ic0v(l0). (25)

Now, interpreting the complex numbers v(l) as planar vectors we see that the necessary condition for
|v(l)| = 1 in the vicinity of l = l0 is that the tangent vector v′(l0) is perpendicular to the vector v(l0).

2.2 Finite-rank operator

Solving the integral equations for the chimera states and their stability properties typically requires
substantial computational effort. However, reformulating the equations in terms of the local mean fields
leads to significant reduction in computational complexity whenever the coupling kernel (2) is such that
the corresponding convolution operator G is of finite rank. In this case, one can search for the unknown
profile of both the chimera state and its perturbation within a finite-dimensional space. This approach
has been elaborated for the self-consistency equation determining the chimera profiles in [1] and was
extended to the stability problem in [19]. For the two-dimensional problem with the kernel function used
here, this method was used already in [28, 29]. Here, it means that we can solve for the perturbations
V = (V+, V−)T of the local mean field as linear combinations

V =

(
V+

V−

)
=

8∑
k=1

V̂kψk(x, y), (26)

of eight basis functions

(ψ1(x, y), . . . , ψ8(x, y))T = (cosx, cos y, cos 2x, cos 2y, sinx, sin y, sin 2x, sin 2y)T (27)

spanning the range of G. Collecting the eight pairs of complex coefficients V̂k ∈ C2, k = 1, . . . , 8,
into a single vector V̂ ∈ C16, we can rewrite Eq. (19) as an equivalent matrix equation

V̂ =
1

2
B(λ)V̂ , (28)

where we solve for the eigenvalue λ and the corresponding kernel vector V̂ ∈ C16. The matrix B(λ)
consists of 2× 2 blocks:

Bmn(λ) =

 e−iα
〈

(λ+ Ωη(|w|2))
−1
ψmψn

〉
e−iα

〈
(λ+ Ωη(|w|2))

−1
a2ψmψn

〉
eiα
〈(

λ+ Ωη(|w|2)
)−1

a2ψmψn

〉
eiα
〈(

λ+ Ωη(|w|2)
)−1

ψmψn

〉


for first harmonic components, m = 1, 2, 5, 6, and

Bmn(λ) =

 γe−iα
〈

(λ+ Ωη(|w|2))
−1
ψmψn

〉
γe−iα

〈
(λ+ Ωη(|w|2))

−1
a2ψmψn

〉
γeiα

〈(
λ+ Ωη(|w|2)

)−1

a2ψmψn

〉
γeiα

〈(
λ+ Ωη(|w|2)

)−1

ψmψn

〉
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O. E. Omel’chenko, M. Wolfrum, E. Knobloch 10

for second harmonic components, m = 3, 4, 7, 8. Here the angled brackets 〈·〉 denote the integral

〈ϕ〉 :=

∫ π

−π
dx

∫ π

−π
ϕ(x, y)dy,

where ϕ ∈ C([−π, π]2;C) is an arbitrary function. The eigenvalues λ can be found as solutions of
the characteristic equation

det

[
I16 −

1

2
B(λ)

]
= 0,

where In denotes the n× n identity matrix. Having solved in this way for the eigenvalue λ the kernel
vector (V̂1, . . . , V̂8) ∈ C16 can be transformed into the components of the corresponding eigen-
mode (v+(x, y), v−(x, y)) using the formulas (18), (20) and (26).

Note that according to (16) the incoherent core always generates an essential spectrum on the imag-
inary axis. Hence, critical eigenvalues can interact with the essential spectrum and classical center-
manifold theory is not applicable. This fact is related to the fact that eigenmodes become singular
when the corresponding eigenvalue approaches the imaginary axis. Despite this complication we re-
fer in the following to the associated bifurcations according to their critical point spectrum, e.g. as Hopf
bifurcations.

3 Results

3.1 Symmetric four-core spiral chimera

Recall that for a symmetric four-core spiral chimera the local mean field wp, given by expression (10),
the inequalities |wp(x, y)| ≥ 1 and |wp(x, y)| < 1 identify the coherent and incoherent regions
DC and DI, respectively. These regions are both nonempty for p > 1/

√
2 only and the coherence-

incoherence boundary is then determined by the equation

cos2 x+ cos2 y = p−2. (29)

The discrete symmetries of such a pattern, which we discussed in Section 1.3, leads to a block-
diagonal structure of the matrix B(λ):

B(λ) =



B11(λ) B12(λ) 0 0 0 0 0 0

B21(λ) B22(λ) 0 0 0 0 0 0

0 0 B33(λ) B34(λ) 0 0 0 0

0 0 B43(λ) B44(λ) 0 0 0 0

0 0 0 0 B55(λ) 0 0 0

0 0 0 0 0 B66(λ) 0 0

0 0 0 0 0 0 B77(λ) 0

0 0 0 0 0 0 0 B88(λ)


.

This allows us to factorize the eigenvalue problem (28) into six independent subsystems. We checked
carefully the characteristic equations for all these subsystems and found that only three of them can
lead to unstable eigenvalues. Among these are the two subsystems given by the blocks B55(λ)
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and B66(λ) corresponding to symmetry related eigenvectors V = V̂5 sinx and V = V̂6 sin y, re-
spectively. Their characteristic equations coincide and take the form

det

(
I2 −

1

2
B55(λ)

)
≡ det

(
I2 −

1

2
B66(λ)

)
= 0. (30)

Since these equations arise from the first harmonic components in (27), the associated eigenvalues
are independent of the parameter γ governing the contribution of the second harmonics. The other
subsystem providing unstable eigenvalues has the form(

V̂3

V̂4

)
=

1

2

(
B33(λ) B34(λ)

B43(λ) B44(λ)

)(
V̂3

V̂4

)
with the characteristic equation

det

[
I4 −

1

2

(
B33(λ) B34(λ)

B43(λ) B44(λ)

)]
= 0. (31)

The corresponding eigenvectors can be found from the expression

V = V̂3 cos 2x+ V̂4 cos 2y, (32)

where (V̂3, V̂4)T ∈ C4 is the eigenvector corresponding to Eq. (31).

Figure 3: Unstable real eigenvalue determined by Eq. (30) (black curve) and the real part of the un-
stable eigenvalues determined by Eq. (31) (blue curve) for γ = 1. Bifurcation points: β0 ≈ 0.34,
β1 ≈ 0.42, β2 ≈ 0.82 and β3 ≈ 1.54.

For our numerical treatment of the characteristic equations, we employed elliptic integrals to simplify
the double integrals. The details of this procedure are given in the Appendices A and B. For Eq. (30),
the resulting numerics show that in the interval β ∈ (0, β0), where β0 ≈ 0.34, there is an unstable
double real root, given by the black curve in Figure 3. This root corresponds to a parity-breaking
bifurcation.

In contrast to the eigenvalue from Eq. (30), eigenvalues determined by Eq. (31) depend on γ. For
example, for γ = 1, Eq. (31) determines a pair of complex conjugate eigenvalues of double multiplicity
that are unstable in two disjoint intervals β ∈ (0, β1) ∪ (β2, β3) (blue curves in Figure 3) where
β1 ≈ 0.42, β2 ≈ 0.82 and β3 ≈ 1.54 correspond to Hopf bifurcation points. Varying the parameter γ
we obtain the two Hopf curves shown in blue in Figure 2. These Hopf bifurcations are responsible for
the instability of the spiral chimeras at larger values of γ, whereas for smaller γ the chimeras lose
stability in a steady state symmetry-breaking bifurcation as β decreases below β0. This bifurcation
leads to chimera states that drift, i.e., the bifurcation along the line β = β0 is a parity-breaking
bifurcation. Note that owing to the symmetry-induced degeneracy this bifurcation produces a pair of
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Figure 4: Marginal eigenmodes v(x, y, 0) determined by expression (17) for the symmetric four-core
spiral chimera pattern at the four bifurcation points β = β0, β1, β2, β3 when γ = 1. Columns (a), (b)
and (c) show arg v(x, y), |(λcr + Ω(|w(x, y)|2))v(x, y)| and |λcr + Ω(|w(x, y)|2)|, respectively,
where λcr denotes the critical eigenvalue at the corresponding bifurcation point. Dashed lines show
the position of the coherence-incoherence boundary and of the singularity contour (for β = β3 these
lines are hardly visible because of their small size).
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Stability of spiral chimera states on a torus 13

solution branches, one consisting of solutions that drift in the x direction and the other with symmetry-
related solutions that drift in the y direction. However, in the present case both drifting states are
unstable and the system evolves to another state.

In Figure 4 we show the eigenmodes corresponding to the four critical eigenvalues from Figure 3.
Proposition 1(ii) implies that the eigenmodes (17) corresponding to a critical eigenvalue λ = iωcr has
a singularity along the line

cos2 x+ cos2 y = p−2
(
1− (ωcr/Ωp)

2
)
. (33)

However, the corresponding quantities V+, V− remain well-defined.

3.2 Quasiperiodic spiral wave chimeras

Figure 5: (a) Snapshot of the top-right core of the symmetric four-core spiral chimera pattern to the left
of the left Hopf bifurcation. (b) Mean phase velocities and (c) a one-dimensional section corresponding
to the dashed line in panel (b). Parameters: N = 256, γ = 1.3 and β = 0.475. The two dashed
curves in panel (b) show the coherence-incoherence boundary (29) and the singularity curve (33) for
β = 0.483, the value of β corresponding to the left Hopf bifurcation when γ = 1.3. Vertical dashed
lines in panel (c) denote position of the singularity curve for β = 0.483.

Beyond the Hopf stability boundaries of the symmetric four-core spiral chimera (see Figure 2) we
expect solutions of the Ott–Antonsen equation (3) that are quasiperiodic, i.e. relative periodic orbits
with respect to the phase shift symmetry (13). However, as we mentioned above, due to the presence
of continuous spectrum on the imaginary axis we cannot get results from classical center manifold
theory about the leading order expansion of the bifurcating branch. But we can obtain some insight
from the critical Hopf frequency ωcr and the singular contour of the eigenmode.

Emergence of quasiperiodic spiral wave chimeras at Hopf bifurcations: In Figure 5(a) we show a
quasiperiodic spiral wave chimera of the oscillator system (1) directly after a supercritical Hopf bifur-
cation. It turns out that this solution is characterized by a secondary region of coherence located in a
narrow annular neighborhood of the singular contour of the eigenmode. Indeed, along with the large
plateau corresponding to the primary region of coherence at frequency Ω the averaged frequencies in
panels (b) and (c) show a small plateau located around the singular contour with a frequency close to
Ω + ωcr. Note that according to Proposition 1 the secondary region of coherence has to be located
inside the incoherent region of the pattern on the primary branch and for the symmetric four-core spi-
ral chimera this region has the shape of a circular annulus centered on the singularity contour (33)
around the phase defect inside each incoherent core. We expect that the corresponding solutions of
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the Ott–Antonsen equation (3) are relative periodic orbits with respect to the phase shift symmetry (13)
and have the form

z(x, t) = b(x, t)eiΩt,

where b(x, t) is periodic in t with period 2π/ω, where the new frequency ω ≈ ωcr. This frequency
differs from Ω.

Figure 6: (a) Snapshot of a quasiperiodic spiral chimera in the system (1)–(2) for N = 256, γ = 1.4
and β = 0.45. (b) Indicator function f(t) for (m,n) = (61, 30) (cross in panel(a)) as defined in (34),
showing periodic modulation with new period ∆t, where ∆t is the time interval between consecutive
minima. (c) Mean phase velocities. (d) Modulus and (e) argument of the local order parameter Zjk
evaluated from expression (35).

Poincare section: In order to study the solutions along the branch that bifurcates from the Hopf bi-
furcation at these values of γ we solve the oscillator system (1)–(2) numerically. The system exhibits
extensive chaos in the incoherent core regions, modulated by the new frequency ω. To extract this fre-
quency from the numerics we choose an arbitrary oscillator inside the secondary region of coherence
and compare its phase Ψmn(t) to the phase of the neighboring oscillator, which we also assume to
be located inside the secondary region of coherence. In this way, the quantity

f(t) ≡ (2π/N)−1 sin(Ψmn(t)−Ψmn−1(t)) (34)

isolates the new oscillation period that sets in at the Hopf bifurcation. Figure 6(b) shows that f(t)
has nearly periodic behavior. We therefore average the intervals ∆t between successive local minima
over many periods, and use the resulting average, ∆tav, to obtain the secondary frequency of the
profile b(x, t) via

ω = 2π/∆tav.

The successive minima can also be used to construct a Poincaré section and to obtain the pro-
file b(x, t) itself by calculating its average over sufficiently many snapshots taken at the crossings.
In order to filter out the primary oscillation with the collective frequency Ω we have to employ phase
differences between an oscillator in the core and an oscillator from the primary coherent region with
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phase Ψcoh. Denoting by S the set of instants at which f(t) attains a local minimum we define the
following expression for the local mean field at the grid points:

Zjk =
1

|S|
∑
tl∈S

ei(Ψjk(tl)−Ψcoh(tl)), (35)

where |S| is the number of elements in S. In Figs. 6(d,e) we show the modulus and argument of Zjk,
representing the modulus and argument of the amplitude b(x, t), respectively. We see that |b(x, t)| =
1 in both the primary and the secondary frequency synchronized regions. indicating coherence as
supposed. On the other hand, if we compute the difference ∆ω = ω−Ω in the quasiperiodic chimera
state and plot it as a function of β, we find that as β → βcr this difference tends to ωcr (see Figure 7).

Figure 7: Difference between the secondary frequency ω and the collective frequency Ω measured for
different values β. Parameters: N = 256 and γ = 1.3.

Numerical examples: Outside of the stability region of the symmetric four-core spiral chimera (shaded
in Figure 2) we performed a numerical study of the oscillator system (1)–(2). In a dynamical continua-
tion procedure we varied the parameter β for various fixed choices of γ and recorded the value of the
classical Kuramoto order parameter

r(t) =

∣∣∣∣∣ 1

N2

N∑
m,n=1

eiΨmn(t)

∣∣∣∣∣ .
Whereas for the basic symmetric four-core spiral chimeras this parameter stays close to zero (blue
shaded regions), it turns out to stay away from zero for most of the new states observed beyond the
Hopf stability boundaries. In Figure 8 we show the behavior of r(t) for β (a) decreasing through the
left Hopf curve and (b) increasing through the right Hopf curve.

The transition across the left Hopf boundary corresponds to a transition from a simple spiral wave
chimera, Figure 1(upper row), to a quasiperiodic spiral state similar to that shown in Figure 2(a).
For larger values of γ this transition is supercritical as seen by the continuous behavior of the order
parameter in Figure 8(a) but changes into an abrubt transition for smaller values of γ (Figure 8(c)). In
particular, below the kink in the left Hopf bifurcation curve in Figure 2 located at (β, γ) ≈ (0.40, 1.14)
we reach a quasiperiodic spiral chimera with a different shape (Figure 2(b)). Instead of a coherent
region appearing in the incoherent core, the original coherent region breaks into several parts with
several equidistant frequencies, Figure 9.

Drifting state: We also have identified a small region in parameter space with a drifting symmetry-
broken state. Figure 2(f) and file beta0_4gamma0_95.avi show a snapshot and a movie of such a
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Figure 8: Time-averaged Kuramoto order parameter rav (dots) for spatio-temporal patterns in sys-
tem (1)–(2) with N = 1024. (a) γ = 1.3 and β decreasing from 0.55 to 0.3, (b) γ = 1.1 and β
increasing from 0.55 to 0.9, (c) γ = 0.9 and β decreasing from 0.5 to 0.25. The dashed vertical lines
show the position of the theoretically predicted Hopf bifurcations. In (a) the abrupt jump near β = 0.38
corresponds to a transition to a coherent twisted state.

Figure 9: (a) Mean phase velocities 〈Ψ̇jk〉 averaged over 200 time units for the spiral chimera state
shown in Figure 2(b). (b) Cross-section of the same plot along the dashed line from panel (a).
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drifting state: the state is a four-core state in which the cores are no longer incoherent but instead
consist of coherent oscillators. These cores exhibit subtle but unambiguous differences resulting in
the breaking of the Γ-symmetry of the state. This is most easily seen in the contours connecting the
two cores on the left and those on the right. There is also an asymmetry between the two top cores and
the two bottom cores. Consequently both κ1 and κ2 symmetries are broken, and as a result the state
drifts simultaneously in both x and y directions. Typically the magnitude of the nonsymmetric part of
the profile fluctuates in time leading to drift whose speed and direction also fluctuate in time. As in other
problems of this type these drifts are a consequence of the nonzero projection of the solution profile on
the Goldstone mode present due to the translation invariance of the system. In one spatial dimension
the speed of such a drifting coherent state can be found from a nonlocal nonlinear eigenvalue problem
[28] but this procedure does not apply when the drift changes direction in response to time-dependent
asymmetry. A detailed study of this interesting state will be undertaken in a future publication.

Genesis of filamented structures: For γ ≥ 1 Figure 8(b) indicates that the Hopf bifurcation along the
right stability boundary in Figure 2 is also supercritical. However, the resulting quasiperiodic spiral
chimera undergoes a sequence of further transformations which we call a ’synchronization cascade’.
This notion is explained in Figure 10 for γ = 1.1.

The original spiral wave chimera, Figure 1 (upper row), has four symmetrically located incoherent
cores with no internal structure. For β = 0.65, i.e., just outside the right stability boundary, there is a
thin ring of coherent (phase-locked) oscillators that appears in the incoherent core along the singular
contour (33) whose common frequency ω differs from the frequency Ω of the coherent oscillators
outside of the incoherent cores. For increasing β the coherent ring widens, while the outer incoherent
ring separating the new coherent ring from the coherent spiral state outside it gradually narrows and
for β ≥ 0.70 disappears altogether (Figure 10, top row). The figure shows that although the two
coherent regions now meet they nevertheless remain distinct. This is because the oscillators in the
two coherent regions continue to rotate with different effective frequencies, a fact that manifests itself
as a rotating filament outside of the remaining incoherent core. In fact, for β = 0.70 another coherent
ring has already appeared in the remaining incoherent core and is beginning to grow. For increasing β
this ring gives rise to a second rotating filament. A similar scenario repeats for β = 0.75 and again
for β = 0.80. Thus, for β = 0.90 (Figure 10, last row) we have a four-core spiral wave chimera
whose incoherent cores are surrounded by four rotating filaments. During this process the incoherent
core decreases in size and for sufficiently large β it disappears altogether, leaving a purely coherent
filamented structure (Figure 2, red triangles and panel (e)). For reasons we do not understand this
sequence of events does not take place to the left of the left stability boundary.

Additional information about the localization of the filaments is obtained when we calculate and plot
the phase velocity 〈Ψ̇jk〉 of the oscillators. The graph corresponding to the middle row of Figure 10 is
shown in Figure 11. It contains three circular regions with nearly constant mean velocities and a central
region where mean phase velocities vary smoothly. This behavior appears to be the consequence of
the presence of three filaments that originate from the defects on the boundary of the incoherent
core (the innermost black curve). Each filament in turn terminates at a defect that rotates around the
incoherent core along one of the three outer black curves.

The coherent rings corresponding to different filaments are phase-locked to each other so that the
resulting solution contains only a single new frequency. This frequency is localized in a bounded
region inside the original incoherent core. However, because different filaments terminate at different
distances from the center of the spiral there will always be radius intervals containing only one rotating
filament, two such filaments etc. As a result, averaging the state in time leads to a discontinous order
parameter, albeit with D4-symmetry, as found in [29].
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Figure 10: (a) Phase snapshots of quasiperiodic chimeras and the corresponding local order param-
eters: (b) modulus |z(x, t)| and (c) argument arg z(x, t). Parameters N = 256, γ = 1.1. The
black cross in each of the left panels indicates the oscillator index (n,m) used in the definition of the
corresponding indicator function f(t), similar to Figure 6(a).
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Figure 11: (a) Mean phase velocities 〈Ψ̇jk〉 averaged over 200 time units for the spiral chimera state
shown in the third row of Figure 10. (b) Cross-section of the same plot along the dashed line from
panel (a).

3.3 D2-symmetric four-core spiral chimera

In Figure 2(c) we show aD2-symmetric four-core spiral chimera state with local mean field of the form
(12). From the self-consistency equation (8), we obtain for the coefficients cj the system

µc1 =

∫ π

−π
dx

∫ π

−π
h
(
|w(x, y)|2

)
w(x, y) cosx dy,

µc2 = γ

∫ π

−π
dx

∫ π

−π
h
(
|w(x, y)|2

)
w(x, y) cos 2x dy,

µc3 =

∫ π

−π
dx

∫ π

−π
h
(
|w(x, y)|2

)
w(x, y) cos y dy,

µc4 = γ

∫ π

−π
dx

∫ π

−π
h
(
|w(x, y)|2

)
w(x, y) cos 2y dy,

with w(x, y) given by (12). Solving this system numerically when γ = 1.4, we obtain the isola shown
in Figure 12. Stable solutions are found along the lower branch between the two folds at either end.
Varying γ, we obtain the existence region for this solution type enclosed by the fold curves shown in
black in Figure 2. For the stability analysis one can establish a matrix problem as in Section 3.1, but
with a different block structure due to the different symmetry properties of the D2-symmetric four-core
spiral chimera. However, the reduction of the double integrals by elliptic integration as elaborated in
the Appendix A for the fully symmetric four-core spiral chimera does not apply here. By this reason, we
did not undertake an explicit calculation of Hopf bifurcations of this state which numerical simulations
suggest are present. These restrict the stability region of this state to γ ≤ 1.35.

3.4 16-core spiral chimera

The 16-core spiral chimera is also determined from the corresponding self-consistency equation. To
compute this type of solution we substitute the Ansatz (11) into Eq. (8) and project the resulting identity
onto the cos 2x direction. We obtain

µ =
γ

p

∫ π

−π
dy

∫ π

−π
h(|Wp(x, y)|2)Wp(x, y) cos 2x dx. (36)
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Figure 12: Stable (black) and unstable (gray) parts of an isola of D2-symmetric solutions of the self-
consistency equation (8) corresponding to the D2-symmetric pattern in Figure 2(c). Circles show
numerical data obtained by dynamical continuation of solutions of the system (1)–(2). Parameter:
γ = 1.4.

This expression determines the pair of parameters (β,Ω) for every γ > 0, p > 0 and hence the
rotating wave (5) with w(x, y) given by (11). For p > 1/

√
2 this rotating wave corresponds to a

coherence-incoherence pattern with the coherence-incoherence boundary determined by equation

cos2 2x+ cos2 2y = p−2.

Employing the symmetries of Wp we find that the matrix B(λ) has block-diagonal structure,

B(λ) =



B11(λ) 0 0 0 0 0 0 0

0 B22(λ) 0 0 0 0 0 0

0 0 B33(λ) B34(λ) 0 0 0 0

0 0 B43(λ) B44(λ) 0 0 0 0

0 0 0 0 B55(λ) 0 0 0

0 0 0 0 0 B66(λ) 0 0

0 0 0 0 0 0 B77(λ) 0

0 0 0 0 0 0 0 B88(λ)


and use this fact to factorize the eigenvalue problem (28) into seven independent subsystems. Four of
these generate unstable eigenvalues.

The subsystems corresponding to blocks B11(λ) and B22(λ) are identical. Their characteristic equa-
tions read

det

(
I2 −

1

2
B11(λ)

)
≡ det

(
I2 −

1

2
B22(λ)

)
= 0. (37)

These conditions determine a pair of complex-conjugate eigenvalues of double multiplicity which lie
apart from the corresponding essential spectrum. Figure 13 shows that these eigenvalues are respon-
sible for two intervals of instability, β4 < β < β5 and β6 < β < π/2, bounded by three Hopf
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Figure 13: Real part of the eigenvalues determined by Eq. (37) for γ = 0.63. Hopf bifurcation points:
β4 ≈ 0.18, β5 ≈ 0.44 and β6 ≈ 1.24.

bifurcations, at β = β4, β5 and β6. Because the multiplicity of the eigenvalues at the Hopf bifurcation
is doubled, one expects oscillations aligned with either the x or the y axes, or along the diagonals.

Two other subsystems with unstable eigenvalues are those corresponding to blocksB77(λ) andB88(λ).
The characteristic equations are

det

(
I2 −

1

2
B77(λ)

)
≡ det

(
I2 −

1

2
B88(λ)

)
= 0. (38)

By a simple rescaling argument one can show that the block B77(λ) of a 16-core spiral chimera
with w(x, y) = Wp(x, y) is equal to the matrix block B55(λ/γ) of the four-core spiral chimera with
w(x, y) = wp(x, y) defined in Section 3.1. This means that the zeros of Eq. (38) coincide with those
of Eq. (30) and so appear for identical parameter values (β, γ). Thus every solution to Eq. (38) is
a multiplicity-two real eigenvalue, this time with the eigenvectors shown in Figure 14 (top row). The
resulting bifurcation λ = 0 is a parity-breaking bifurcation and takes place along the straight line
β = β0 ≈ 0.34 (Figure 2).

4 Discussion and Conclusion

In this paper we have carried out a detailed analysis of the stability properties of four-core spiral
chimera states present in the system (1)–(2) with periodic boundary conditions in the plane, following
earlier work by Xie et al [29]. These four-core states are expected because the coupling function used,
Eq. (2), has D4-symmetry. We have performed a detailed two-parameter stability analysis of the D4-
symmetric state in the (β, γ) plane using the linearization of the Ott–Antonsen equation valid in the
continuum limit. The stability analysis showed that this state can either lose stability at a parity-breaking
bifurcation or via a Hopf bifurcation. The results are summarized in the stability diagram in Figure 2.
We used numerical integration of the system (1)–(2) to study the evolution of each of the instabilities
identified by the linear stability analysis. The results led to the discovery of quasiperiodic four-core
chimera states, characterized by a coherent filament or filaments that rotate about an incoherent core
with a new frequency. We have shown that these states are responsible for the discontinuous time-
averaged order parameter profile noticed by Xie et al [29]. Our work shows explictly how the properties
of this profile relate to the number and termination of the coherent filaments present in this regime and
describes the sequence of transitions that take place as β increases whereby the incoherent cores
gradually shrink, leading to a four-core state with no incoherence within the cores.

Our work also identified a parity-breaking bifurcation as a second mechanism whereby the four-core
chimera state can lose stability, but numerical simulations showed that the expected steadily drifting
states were not in fact stable. These simulations did show, however, that the D4-symmetric chimera
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Figure 14: Marginal eigenmodes v(x, y, 0) determined by expression (17) for 16-core basic chimera
spiral at the four bifurcation points β = β0, β4, β5, β6 and γ = 0.63. Columns (a), (b) and (c)
show arg v(x, y), |(λcr + Ω(|w(x, y)|2))v(x, y)| and |λcr + Ω(|w(x, y)|2)|, respectively, where λcr

denotes the critical eigenvalue at the corresponding bifurcation point. Dashed lines show position of
the coherence-incoherence boundary and of the singularity contour.
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state coexists with a number of additional states. Of these we focused here on a D2-symmetric four-
core chimera state and a 16-core chimera state. For each of these states we carried out a similar
linear stability analysis the results of which are also summarized in Figure 2.

These stability calculations form the highlight of this work (some key technical advances are sum-
marized in Appendices A and B) and open the subject of spiral chimera states to the techniques of
bifurcation analysis [19, 20]. Our results also point to the need for a clearer mathematical understand-
ing of the role played by the singular contour |wp(x, y)|2 = 1− (ωp/Ω)2 (Eq. (33)) in determining the
origin of the coherent filaments that appear whenever the state loses stability via a Hopf bifurcation
and their interaction with the coherence-incoherence boundary (Eq. (29)).

Appendix A: Characteristic equations (30) and (31) for symmetric
four-core spirals

Each element of the matrix B(λ) is defined as a double integral, therefore numerical solution of the
characteristic equation (28) turns out to be an extremely time-consuming process. In this section we
show that after an appropriate coordinate transformation these double integrals can be analytically
integrated with respect to one variable and thus significantly simplified. This allows us to increase the
speed of all numerical routines by several orders of magnitude without loss of accuracy.

First, we recall the standard definition of the complete elliptic integral of the first and the second kinds

K(m) =

π/2∫
0

dϕ√
1−m sin2 ϕ

, E(m) =

π/2∫
0

√
1−m sin2 ϕ dϕ, where m ∈ [0, 1). (39)

These integrals cannot be expressed in terms of elementary functions, but they are usually imple-
mented as standard functions in most programming languages (C/C++, FORTRAN etc) and mathe-
matical computing environments (MATLAB, Mathematica etc).

We explain the coordinate transformation approach for the self-consistency equation (8).

Proposition 2 Equation (8) can be rewritten in the form

µ = 8

∫ 1

0

(
h(p2(2− s))− s

s− 2
h(p2s)

)
K

(
s2

(s− 2)2

)
ds. (40)

Proof: Substituting expression (10) into Eq. (8) and taking into account the obvious identity∫ π

−π
dx

∫ π

−π
h
(
p2(cos2 x+ cos2 y)

)
cosx cos y dy = 0

we obtain

µ =

∫ π

−π

∫ π

−π
h
(
p2(cos2 x+ cos2 y)

)
cos2 x dx dy

=
1

2

∫ π

−π

∫ π

−π
h
(
p2(cos2 x+ cos2 y)

)
(cos2 x+ cos2 y) dx dy.
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Figure 15: Etalon domain D1 ∪D2.

Using the symmetries of the integrand we can replace the integration domain [−π, π]2 with another
domain consisting of the two squares D1 and D2 shown in Figure 15. This yields

µ = 2

∫∫
D1∪D2

h
(
p2(cos2 x+ cos2 y)

)
(cos2 x+ cos2 y) dx dy.

In the square D1 we rewrite the integrand using modified polar coordinates{
x = arccos(q cos t),
y = arccos(q sin t),

(41)

with new variables (q, t) ∈ [0, 1]× [0, 2π]. The Jacobian of this transformation reads

J(q, t) =
∂x

∂q

∂y

∂t
− ∂x

∂t

∂y

∂q
=

2q√
4(1− q2) + q4 sin2 2t

. (42)

In the square D2 we rewrite the integrand applying a slightly different coordinate transformation,{
x = arcsin(q cos t),
y = arcsin(q sin t),

(43)

which turns out to have the same Jacobian as in Eq. (42). Altogether we obtain

µ = 2

∫ 1

0

dq

∫ 2π

0

h(p2q2)q2 · 2q√
4− 4q2 + q4 sin2 2t

+ 2

∫ 1

0

dq

∫ 2π

0

h(p2(2− q2))(2− q2) · 2q√
4− 4q2 + q4 sin2 2t

= 2

∫ 1

0

ds

∫ 2π

0

h(p2s)s+ h(p2(2− s))(2− s)√
4− 4s+ s2 sin2 2t

dt

= 8

∫ 1

0

ds
(
h(p2s)s+ h(p2(2− s))(2− s)

) ∫ π/2

0

dϕ√
4− 4s+ s2 sin2 ϕ

.

The integral with respect to ϕ can be expressed in terms of the complete elliptic integrals (39) and we
obtain the desired formula (40).
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We next show that the elements of the matrices appearing in the characteristic equations (30) and (31)
can all be expressed in terms of just five independent functions. For the sake of brevity we introduce
the notation

Mp(s, λ) := (λ+ Ωpη(s))−1 and Np(s, λ) := (λ+ Ωpη(s))−1h2(s)p2,

where the functions h(s) and η(s) are defined in Eqs. (6) and (15). The index p in Ωp (and also
in αp below) indicates that parameters p, Ω and α are functionally dependent, namely they satisfy the
self-consistency equation (40) with µ = iΩeiα.

Recalling that ψ3(x) = cos 2x, ψ4(x) = cos 2y and using the expressions

|wp(x, y)|2 = p2(cos2 x+ cos2 y),

a2
p(x, y) = h2

(
|wp(x, y)|2

)
w2
p(x, y)

= h2(p2(cos2 x+ cos2 y))p2(cos2 x− cos2 y + 2i cosx cos y),

which follow from Eqs. (5) and (10), we obtain

(
B33(λ) B34(λ)

B43(λ) B44(λ)

)
=



A1(λ, p) A2(λ, p) A3(λ, p) 0

A2(λ, p) A1(λ, p) 0 A3(λ, p)

A3(λ, p) 0 A1(λ, p) −A2(λ, p)

0 A3(λ, p) −A2(λ, p) A1(λ, p)

 , (44)

where

A1(λ, p) = e−iαp

〈(
λ+ Ωpη

(
|wp|2

))−1
ψ2

3

〉
= e−iαp

〈(
λ+ Ωpη

(
|wp|2

))−1
ψ2

4

〉
=

1

2
e−iαp

〈
Mp

(
p2(cos2 x+ cos2 y), λ

)
(cos2 2x+ cos2 2y)

〉
,

A2(λ, p) = e−iαp

〈(
λ+ Ωpη

(
|wp|2

))−1
a2
pψ

2
3

〉
= −e−iαp

〈(
λ+ Ωpη

(
|wp|2

))−1
a2
pψ

2
4

〉
=

1

2
e−iαp

〈
Np

(
p2(cos2 x+ cos2 y), λ

)
(cos2 x− cos2 y)(cos2 2x− cos2 2y)

〉
,

A3(λ, p) = e−iαp

〈(
λ+ Ωpη

(
|wp|2

))−1
ψ3ψ4

〉
= e−iαp

〈
Mp

(
p2(cos2 x+ cos2 y), λ

)
cos 2x cos 2y

〉
.

The anti-diagonal elements on the right-hand side of Eq. (44) vanish because for any continuous
function f : [0, 1]2 → R we have∫ π

−π
f
(
cos2 x, cos2 y

)
cosx dx =

∫ π

−π
f
(
cos2 x, cos2 y

)
cos y dy = 0.

The same identity also explains the absence of the term proportional to〈
Np

(
p2(cos2 x+ cos2 y), λ

)
cosx cos y(cos2 2x− cos2 2y)

〉
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on the right side of the expression for A2(λ, p).

Similarly, using the definition ψ5(x) = sin x and the explicit form of the functions wp and ap, we
rewrite the matrix B55(λ) from Eq. (30) in the form

B55(λ) =

(
A4(λ, p) A5(λ, p)

A5(λ, p) A4(λ, p)

)
, (45)

where

A4(λ, p) = e−iαp

〈(
λ+ Ωpη

(
|wp|2

))−1
ψ2

5

〉
=

1

2
e−iαp

〈
Mp

(
p2(cos2 x+ cos2 y), λ

)
(sin2 x+ sin2 y)

〉
,

A5(λ, p) = e−iαp

〈(
λ+ Ωpη

(
|wp|2

))−1
a2
pψ

2
3

〉
=

1

2
e−iαp

〈
Np

(
p2(cos2 x+ cos2 y), λ

)
(cos2 x− cos2 y)(sin2 x− sin2 y)

〉
= −1

2
e−iαp

〈
Np

(
p2(cos2 x+ cos2 y), λ

)
(cos2 x− cos2 y)2

〉
.

The coordinate transformation approach described in the proof of Proposition 2 can again be used to
simplify the double integrals in the definition of the functions Ak(λ, p), k = 1, . . . , 5. This yields

A1(λ, p) = 16e−iαp

∫ 1

0

(
Mp(p

2s, λ) +Mp(p
2(2− s), λ)

)
×
(

(s− 2)E

(
s2

(s− 2)2

)
− 2s2 − 6s+ 5

s− 2
K

(
s2

(s− 2)2

))
ds, (46)

A2(λ, p) = 32e−iαp

∫ 1

0

(
Np(p

2s, λ)−Np(p
2(2− s), λ)

)
× (s− 1)(s− 2)

(
E

(
s2

(s− 2)2

)
−K

(
s2

(s− 2)2

))
ds, (47)

A3(λ, p) = −16e−iαp

∫ 1

0

(
Mp(p

2s, λ) +Mp(p
2(2− s), λ)

)
×
(

(s− 2)E

(
s2

(s− 2)2

)
+

2s− 3

s− 2
K

(
s2

(s− 2)2

))
ds, (48)

A4(λ, p) = −8e−iαp

∫ 1

0

Mp(p
2s, λ)(2− s) +Mp(p

2(2− s), λ)s

s− 2
K

(
s2

(s− 2)2

)
ds, (49)

A5(λ, p) = 8e−iαp

∫ 1

0

(
Np(p

2s, λ) +Np(p
2(2− s), λ)

)
× (s− 2)

(
E

(
s2

(s− 2)2

)
−K

(
s2

(s− 2)2

))
ds. (50)

Computing the functions Ak(λ, p) from the formulas (46)–(50) significantly accelerates our numer-
ical routine for solving the nonlinear characteristic equations (30) and (31) obtained from Eqs. (44)
and (45).
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Appendix B: Characteristic equations (37) for symmetric 16-core
spirals

Applying the procedure used above for the four-core spiral state leads to the following form of the
self-consistency equation for the 16-core spiral state:

µ = 8γ

∫ 1

0

(
h(p2(2− s))− s

s− 2
h(p2s)

)
K

(
s2

(s− 2)2

)
ds.

The characteristic equation describing the lower stability boundary of this state (red curve in Figure 2)
can likewise be written in simpler form. This instability arises from the block

B11(λ) =

(
A6(λ, p) A7(λ, p)

A7(λ, p) A6(λ, p)

)
, (51)

where

A6(λ, p) = e−iαp

〈(
λ+ Ωpη

(
|Wp|2

))−1
ψ2

1

〉
=

1

2
e−iαp

〈
Mp

(
p2(cos2 2x+ cos2 2y), λ

)
(cos2 x+ cos2 y)

〉
,

= −8e−iαp

∫ 1

0

Mp(p
2s, λ) +Mp(p

2(2− s), λ)

s− 2
K

(
s2

(s− 2)2

)
ds,

A7(λ, p) = e−iαp

〈(
λ+ Ωpη

(
|Wp|2

))−1
a2
pψ

2
1

〉
=

1

2
e−iαp

〈
Np

(
p2(cos2 2x+ cos2 2y), λ

)
(cos2 2x− cos2 2y)(cos2 x− cos2 y)

〉
= −1

4
e−iαp

〈
Np

(
p2(cos2 x+ cos2 y), λ

)
(cos2 2x− cos2 2y)(cos 2x− cos 2y)

〉
= 0.

The characteristic equation can thus be rewritten in the form

det

(
I2 −

1

2
B11(λ)

)
=

(
1− 1

2
A6(λ, p)

)(
1− 1

2
A6(λ, p)

)
= 0.
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