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A stochastic algorithm without time discretization error
for the Wigner equation
Orazio Muscato , Wolfgang Wagner

Abstract

Stochastic particle methods for the numerical treatment of the Wigner equation are consid-
ered. The approximation properties of these methods depend on several numerical parameters.
Such parameters are the number of particles, a time step (if transport and other processes are
treated separately) and the grid size (used for the discretization of the position and the wave-
vector). A stochastic algorithm without time discretization error is introduced. Its derivation is
based on the theory of piecewise deterministic Markov processes. Numerical experiments are
performed in a one-dimensional test case. Approximation properties with respect to the grid size
and the number of particles are studied. Convergence of a time-splitting scheme to the no-splitting
algorithm is demonstrated. The no-splitting algorithm is shown to be more efficient in terms of
computational effort.
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O. Muscato and W. Wagner 2

1 Introduction

The Wigner equation

∂

∂t
f(t, x, k) +

~
m

(k · ∇x) f(t, x, k) =

∫
Rd

VW (x, k − k′) f(t, x, k′) dk′ (1.1)

was introduced in [16] as an auxiliary tool for specific quantum mechanical calculations. The solution
f is real-valued, but not necessarily non-negative. It depends on the time t > 0 , the position x ∈ Rd

and the wave-vector k ∈ Rd , where Rd is the d-dimensional Euclidean space. Moreover, ~ is Planck’s
constant (divided by 2π), m is mass,∇ is the gradient and the central dot denotes the scalar product.
The Wigner kernel VW is determined via the relation

VW (x, k) =
1

i ~ (2π)d

∫
Rd

exp(−i k · y)
[
V
(
x+

y

2

)
− V

(
x− y

2

)]
dy , (1.2)

where V is potential energy and i denotes the imaginary unit. It is real-valued and anti-symmetric with
respect to k . The solution f is related to the solution ψ of the Schrödinger equation

i ~
∂

∂t
ψ(t, x) = − ~2

2m
∆x ψ(t, x) + V (x)ψ(t, x) , (1.3)

where ∆ is the Laplace operator. In particular, under some restrictions on ψ , the function f satisfies∫
Rd

f(t, x, k) dk = |ψ(t, x)|2 ∀ t ≥ 0 , x ∈ Rd . (1.4)

The initial condition is

f(0, x, k) = f0(x, k) , (1.5)

where f0 is an integrable function.

The Wigner equation turned out to be a convenient tool for modelling quantum effects in nanoelec-
tronic devices, since it can be coupled easily to the scattering part of the semiconductor Boltzmann
equation ([6], [5], [10]). Comprehensive presentations of the field and, in particular, of numerical ap-
proaches to the Wigner-Boltzmann equation (including extensive lists of references) are given in [12]
and [11]. Basic ingredients of the so-called Wigner Monte Carlo method are stochastic algorithms
for solving the Wigner equation. The most common algorithms are using signed particles (weights
±1) and treat the integral with respect to the Wigner kernel via the generation of pairs of particles
with opposite signs. Among the numerous recent studies related to this approach we mention [14]
(comparison with a deterministic Wigner solver) and [2] (distributed-memory parallelization).

The purpose of this paper is to present an algorithm based on the “random cloud model” intro-
duced in [15], which avoids any time discretization error. This approach via piecewise-deterministic
Markov processes is efficient due to the introduction of a majorant for the Wigner kernel, which makes
the corresponding rate function independent of the position. The idea with the majorant (leading to fic-
titious creation events) was used before in [8], where algorithms with splitting of transport and creation
processes were studied. The paper is organized as follows. The algorithm is introduced in Section 2.
Results of numerical experiments are provided in Section 3. Comments are given in Section 4.
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A stochastic algorithm for the Wigner equation 3

2 Algorithm

A “random cloud model” for the Wigner equation (1.1) was introduced in [15]. This is a class of piece-
wise deterministic Markov processes of the form(

uj(t), xj(t), kj(t)
)
, j = 1, . . . , N(t) , t ≥ 0 . (2.1)

Each process is a system of N(t) particles, which are characterized by a weight uj(t) , a position
xj(t) and a wave-vector kj(t) . We use the notations

z = (u, x, k) ∈ Z = R× Rd × Rd (2.2)

for the states of single particles and

z̄ = (z1, . . . , zN) ∈ Z = ∪∞N=1ZN (2.3)

for the states of the process.

The initial state of the processes (2.1) is generated according to the initial condition (1.5) of the
Wigner equation. More precisely, the initial number of particles is deterministic, N(0) = Nini . For
j = 1, . . . , Nini , the positions xj(0) and wave-vectors kj(0) are generated independently according
to |f0| . The weights are obtained as uj(0) = signf0(xj(0), kj(0)) . Without loss of generality, we
assume that |f0| is a probability density.

The time evolution of the processes (2.1) is determined by a flow F̄ and a jump kernel Q .
Starting at state z̄ ∈ Z , the process performs a deterministic motion according to F̄ . The random
waiting time τ until the next jump satisfies

P(τ ≥ t) = exp

(
−
∫ t

0

λ(F̄ (s, z̄)) ds

)
, t ≥ 0 , (2.4)

where P denotes the probability measure and

λ(z̄) = Q(z̄,Z) . (2.5)

Then the process jumps into a new state κ̄ ∈ Z distributed according to

1

λ(F̄ (τ, z̄))
Q(F̄ (τ, z̄), dκ̄) .

The flow has the form (cf. (2.3))

F̄ (t, z̄) =
(
F (t, z1), . . . , F (t, zN)

)
, t ≥ 0 , z̄ ∈ Z ,

so that particles move independently of each other. The single particle flow F is (cf. (2.2))

F (t, z) = (u, x+ v(k) t, k), t ≥ 0 , z ∈ Z ,

where

v(k) =
~
m
k , k ∈ Rd , (2.6)

is the velocity corresponding to k .
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O. Muscato and W. Wagner 4

There is considerable freedom in choosing the jump kernel Q . The following choice is particularly
well suited for numerical purposes. We introduce a majorant V̂W such that

|VW (x, k)| ≤ V̂W (x, k) ∀x, k ∈ Rd (2.7)

and consider jump kernels of the form

Q(z̄, dκ̄) =
1

2

N∑
j=1

∫
Rd

dk V̂W (xj, k)× (2.8)[
|VW (xj, k)|
V̂W (xj, k)

δJ(z̄,j,k)(dκ̄) +
V̂W (xj, k)− |VW (xj, k)|

V̂W (xj, k)
δz̄(dκ̄)

]
,

where

J(z̄, j, k) =
(
z1, . . . , zN , z

′
1(z̄, j, k), z′2(z̄, j, k)

)
and

z′1(z̄, j, k) = (uj signVW (xj, k), xj, kj + k) ,

z′2(z̄, j, k) = (−uj signVW (xj, k), xj, kj − k) .

The majorant V̂W is a remaining degree of freedom. The kernel (2.8) without a majorant (or, with
V̂W = |VW |) was considered in [15]. The kernel (2.8) with a majorant was used in [8] in the context of
a class of time splitting algorithms (transport and creation steps were separated).

According to (2.8), the waiting time parameter (2.5) takes the form

λ(z̄) =
1

2

N∑
j=1

∫
Rd

V̂W (xj, k) dk

so that the random waiting time satisfies (cf. (2.4))

P(τ ≥ t) = exp

(
−

N∑
j=1

∫ t

0

γ̂(xj + v(kj) s) ds

)
, t ≥ 0 ,

where

γ̂(x) =
1

2

∫
Rd

V̂W (x, k) dk . (2.9)

When the majorant V̂W does not depend on x , then one obtains the following algorithm performing
the evolution of the particle system

(uj, xj, kj) , j = 1, . . . , N , (2.10)

on a time interval [0, T ] .
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A stochastic algorithm for the Wigner equation 5

No-splitting algorithm

0. The system time is denoted by t . The individual particle times tj , j = 1, . . . , N , indicate the
moments of the last update of the corresponding position. Put

t = 0 and tj = 0 , j = 1, . . . , N .

1. Generate the random waiting time τ until the next creation event,

P(τ ≥ s) = exp(−γ̂ N s) , s ≥ 0 .

Put t := t+ τ .

2. If t ≥ T , then update all positions (up to T ),

xj := xj +
~
m
kj (T − tj) , j = 1, . . . , N .

Stop the algorithm.

3. Choose an index j ∈ {1, . . . , N} uniformly. Update the position and the individual time of the
corresponding particle (up to t),

xj := xj +
~
m
kj (t− tj) , tj := t . (2.11)

4. Generate a vector k̃ according to the probability density

1

2 γ̂
V̂W (k) , k ∈ Rd . (2.12)

5. Check if the creation event is fictitious. With probability

1− |VW (xj, k̃)|
V̂W (k̃)

, (2.13)

go to 1.

6. Create a pair of particles(
uj signVW (xj, k̃), xj, kj + k̃

)
,
(
− uj signVW (xj, k̃), xj, kj − k̃

)
. (2.14)

Put N := N + 2 and the individual times of these particles equal t .

7. If N ≥ Ncanc , then update all positions and individual times according to (2.11) and perform
cancellation. This means that pairs of particles with similar positions and wave-vectors, but
with opposite signs, are removed from the system. A detailed description of our cancellation
procedure is given in [8, Sect. 2.1.2]. Go to 1.

DOI 10.20347/WIAS.PREPRINT.2415 Berlin 2017



O. Muscato and W. Wagner 6

Functionals

The above algorithm performs the time evolution of the stochastic process. Another part of the numer-
ical procedure is taking measurements on the particle system. The connection between the particle
system and the Wigner equation is given by the formula (cf. [15, Theorem 2.1])

∫
Rd

∫
Rd

ϕ(x, k) f(t, x, k) dk dx =
1

Nini

E

N(t)∑
j=1

uj(t)ϕ(xj(t), kj(t))

 , (2.15)

where ϕ is an appropriate test function and E denotes mathematical expectation. The expectation in
(2.15) is approximated as the empirical mean over Nrep independent runs of the algorithm.

A functional of particular interest is the density (cf. (1.4))

%(t, x) =

∫
Rd

f(t, x, k) dk . (2.16)

In order to apply (2.15), the functional (2.16) is replaced by a spatially averaged version, with the test
function

ϕ(x, k) =
1

|D|
χD(x) , (2.17)

where D ⊂ Rd is a spatial cell, |D| denotes the volume and the symbol χA denotes the indicator
function of a set A .

Assumptions

The basic property (2.15) was established under the assumption (cf. (2.9))

sup
x
γ̂(x) < ∞ . (2.18)

According to (2.7), assumption (2.18) implies

sup
x∈Rd

∫
Rd

|VW (x, k)| dk < ∞ . (2.19)

Example 2.1 For the one-dimensional rectangular barrier,

V (x) = aχ[−b/2,b/2](x) , x ∈ R , for some a, b > 0 ,

the Wigner kernel has the form

VW (x, k) =
2 a

~ π k
sin(2 k x) sin(k b) , x, k ∈ R .

Assumption (2.19) is not fulfilled in Example 2.1, which is one of the common test cases. Therefore,
we mention a version of the no-splitting algorithm, which works also in this case. We assume that the
potential energy is integrable,

I(V ) :=

∫
Rd

|V (x)| dx < ∞ ,

DOI 10.20347/WIAS.PREPRINT.2415 Berlin 2017



A stochastic algorithm for the Wigner equation 7

which is fulfilled in Example 2.1. The modified algorithm is obtained by replacing the Wigner kernel
VW by its truncation

V
(c)
W (x, k) = VW (x, k)χBd(c)(k) ,

where

Bd(c) = {k ∈ Rd : ‖k‖ ≤ c}

and c > 0 is a cutoff parameter. With the majorant

V̂
(c)
W (x, k) =

2 I(V )

~ πd
χBd(c)(k) , (2.20)

one obtains

γ̂(c)(x) =
I(V ) |Bd(c)|

~ πd

so that assumption (2.18) is fulfilled.

3 Numerical experiments

Here we perform numerical experiments with the no-splitting algorithm introduced in the previous
section. First we introduce the test case and specify the various components of the algorithm. Then
we study the discretization error due to the cancellation procedure. Finally we consider a time-splitting
algorithm and illustrate its convergence with respect to the time step as well as its efficiency compared
to the no-splitting algorithm.

3.1 Test case

We consider the one-dimensional Gaussian barrier

V (x) = a exp

(
− x2

2σ2

)
, x ∈ R , for some a, σ > 0 . (3.1)

The Wigner kernel has the form (cf. Remark 3.1 below)

VW (x, k) =
2 a

~
M((2σ)−1, k) sin(2 k x) , x, k ∈ R , (3.2)

where

M(σ, k) =
1√

2 π σ
exp

(
− k2

2σ2

)
.

The initial state is

f0(x, k) =
1

π
exp

(
−(x− x0)2

2σ2
0

)
exp(−2σ2

0 (k − k0)2) , (3.3)

where x0, k0 ∈ R and σ0 > 0 . The corresponding initial state of the Schrödinger equation (1.3) is

ψ(0, x) =
1

(2 π σ2
0)

1
4

exp

(
−(x− x0)2

4σ2
0

)
exp(i k0 x) .

DOI 10.20347/WIAS.PREPRINT.2415 Berlin 2017



O. Muscato and W. Wagner 8

Algorithm

The generation of the initial set of particles is straightforward, since

f0(x, k) = M(σ0, x− x0)M((2σ0)−1, k − k0) . (3.4)

In particular, all initial particles are positive. We use the majorant (cf. (3.2))

V̂W (x, k) =
2 a

~
M((2σ)−1, k) , (3.5)

which corresponds to the rate

γ̂(x) =
a

~
. (3.6)

Note that condition (2.18) is fulfilled.

According to (3.2) and (3.5), the steps (2.12)–(2.14) of the no-splitting algorithm take the form

4. Generate a vector k̃ according to the probability density

M((2σ)−1, k) , k ∈ R .

5. With probability

1− | sin(2 k̃ xj)| ,

go to 1.

6. Create a pair of particles(
uj sign sin(2 k̃ xj), xj, kj + k̃

)
,
(
− uj sign sin(2 k̃ xj), xj, kj − k̃

)
.

Put the individual times of these particles equal t and N := N + 2 .

The approximation parameters of the no-splitting algorithm are related to the cancellation pro-
cedure (step 7). These parameters influence the accuracy and the frequency of the cancellations. The
main parameter is the “cancellation grid”. We use intervals [xmin, xmax] and [kmin, kmax] , which are
divided, respectively, intoNx andNk equal subcells. The first and last subcells are extended to infinity.
Further parameters are the initial number of particles Nini and the cancellation bound Ncanc .

Functionals

We introduce several functionals, which illustrate the time evolution of the system. These quantities
are the total average position (cf. (2.16))

xtot(t) =

∫
Rd

∫
Rd

x f(t, x, k) dk dx =

∫
Rd

x %(t, x) dx , (3.7)

the total average velocity (cf. (2.6))

vtot(t) =

∫
Rd

∫
Rd

v(k) f(t, x, k) dk dx =

∫
Rd

v(k) %wav(t, k) dk (3.8)

DOI 10.20347/WIAS.PREPRINT.2415 Berlin 2017



A stochastic algorithm for the Wigner equation 9

and the total average energy

εtot(t) =

∫
Rd

∫
Rd

ε(k) f(t, x, k) dk dx =

∫
Rd

ε(k) %wav(t, k) dk , (3.9)

where

ε(k) =
m

2
‖v(k)‖2 , k ∈ Rd ,

and

%wav(t, k) =

∫
Rd

f(t, x, k) dx (3.10)

is the density with respect to the wave-vector. According to (3.4), one obtains the initial values

%(0, x) = M(σ0, x− x0) , %wav(0, k) = M((2σ0)−1, k − k0)

and

xtot(0) = x0 , vtot(0) = v(k0) ,

εtot(0) =
~2

2m

(
1

4σ2
0

+ k2
0

)
= ε(k0) +

~2

8mσ2
0

.

The observation parameters of the no-splitting algorithm influence the measurements on the
particle system. An “observation time step” ∆tobs is used for measuring the time evolution of the func-
tionals. “Observation grids” are used for measuring functionals depending on the position or/and the
wave-vector. They are determined by the parameters xobs

min , x
obs
max , N

obs
x and kobs

min , k
obs
max , N

obs
k .

The corresponding grid points are

xobs
j = xobs

min + j∆xobs , j = 0, 1, . . . , Nobs
x , (3.11)

and

kobs
j = kobs

min + j∆kobs , j = 0, 1, . . . , Nobs
k ,

where

∆xobs =
xobs

max − xobs
min

Nobs
x

and ∆kobs =
kobs

max − kobs
min

Nobs
k

.

In accordance with (2.17), we define piecewise constant versions of the densities (2.16) and (3.10),
namely

%̂(t, x) =
1

∆xobs

∫ xobs
j

xobs
j−1

∫
Rd

f(t, y, k) dk dy =
1

∆xobs

∫ xobs
j

xobs
j−1

%(t, y) dy (3.12)

and

%̂wav(t, k) =
1

∆kobs

∫
Rd

∫ kobsl

kobsl−1

f(t, y, k̃) dk̃ dy , (3.13)

where x ∈ [xobs
j−1, x

obs
j ) , j = 1, . . . , Nobs

x and k ∈ [kobs
l−1, k

obs
l ) , l = 1, . . . , Nobs

k . The functionals
(3.7)–(3.9) and (3.12), (3.13) are evaluated according to (2.15).

DOI 10.20347/WIAS.PREPRINT.2415 Berlin 2017
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A reference solution %ref for the density with respect to the position (2.16) is obtained using the
relation (1.4) and a finite-difference scheme for the Schrödinger equation (1.3). The solution %ref is
determined on a grid of the form (3.11), where Nobs

x is replaced by the parameter N ref , and then
extended by linear interpolation. For an accurate comparison, this piecewise linear function should be
adjusted to the piecewise constant function (3.12), which is evaluated by the stochastic algorithm. In
analogy with (3.12), the adjusted reference solution is defined as

%̂ref(t, x) =
1

∆xobs

∫ xobs
j

xobs
j−1

%ref(t, y) dy , (3.14)

where x ∈ [xobs
j−1, x

obs
j ) and j = 1, . . . , Nobs

x .

Remark 3.1 Recall the Fourier transform

(Ff)(y) =

∫
Rd

exp(−2π i y · z) f(z) dz , y ∈ Rd ,

where f ∈ L1(Rd) . With d = 1 and f(x) = exp(−π x2) , it follows that

(Ff)(y) = exp(−π y2) .

Using the substitution y + x =
√

2π σ z , one obtains∫ ∞
−∞

dy exp(−2 i k y) exp

(
−(y + x)2

2σ2

)
=

√
2π σ exp(2 i k x)

∫ ∞
−∞

dz exp(−2 i k
√

2 π σ z) exp(−π z2)

=
√

2π σ exp(2 i k x)F(
√

2/π σ k) =
√

2 π σ exp(2 i k x) exp(−2σ2 k2) . (3.15)

It follows from (1.2), (3.1) and (3.15) that

VW (x, k) =
1

i ~π

∫ ∞
−∞

dy exp(−2 i k y)
[
V (x+ y)− V (x− y)

]
=

a

i ~π
√

2π σ exp(−2σ2 k2)
[

exp(2 i k x)− exp(−2 i k x)
]

=
2
√

2 a σ√
π ~

exp(−2σ2 k2) sin(2 k x) ,

which implies (3.2).

3.2 Cancellation error

Here we study the approximation error in the no-splitting algorithm. This error is due to the cancellation
of particles. We consider the test case (3.1), (3.3) with the parameters (as in [14])

a = 0.3 eV , σ = 1 nm (3.16)

and

x0 = −15 nm , k0 = 0.7 nm−1 , σ0 = 2.825 nm . (3.17)

DOI 10.20347/WIAS.PREPRINT.2415 Berlin 2017
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Figure 1: Density (3.12) (calculated with parameters (3.19)) and reference solution (3.14).

The observation parameters are

−xobs
min = xobs

max = 30 nm , Nobs
x = 200 , −kobs

min = kobs
max = 5 nm−1 , Nobs

k = 200 . (3.18)

These parameters, which influence the measured quantities, are fixed during the error study. The
reference solution (3.14) is obtained with N ref = 1000 . The number of independent runs is Nrep =
100 .

First we consider a set of cancellation parameters, for which the measured density (3.12) matches
the reference solution (3.14) in the sense that there is no visible systematic error. These parameters
are

−xmin = xmax = 30 nm , Nx = 400 , −kmin = kmax = 10 nm−1 , Nk = 400 ,

Nini = 160000 , Ncanc = 480000 . (3.19)

Figure 1 shows the position density (3.12), which is very close to the deterministic reference solution
(3.14).

Next we illustrate the dependence of the approximation error on the cancellation parameters.
In these tests the measured position densities (3.12) are compared with the deterministic reference
solution (3.14). Other functionals are compared with the corresponding results for the parameters
(3.19), which provide a stochastic reference solution.

Grid in the wave-vector space

For the parameters (3.19) there is ∆k = 0.05 . Now we choose the parameters (3.19) withNk = 100
so that ∆k = 0.2 . The error for this set of approximation parameters is illustrated using several
functionals.

Figure 2 shows the position density (3.12), which differs quite significantly from the deterministic
reference solution (3.14).

DOI 10.20347/WIAS.PREPRINT.2415 Berlin 2017
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Figure 2: Density (3.12) (calculated with parameters (3.19) and Nk = 100) and reference solution
(3.14).

Figure 3 shows the wave-vector density (3.13) and the stochastic reference solution (parameters
(3.19)). The error is quite significant, though the qualitative behaviour is described correctly.

Figures 4-6 show the total average position, velocity and energy (3.7)–(3.9) as well as the cor-
responding stochastic reference solutions (parameters (3.19)). These quantities are measured at the
cancellation times, with only one repetition. The figures show how the error accumulates with time.
Moreover, one can see the behaviour of the cancellation times (in particular, in Figure 6).

Grid in the position space

For the parameters (3.19) there is ∆x = 0.15 . Now we choose the parameters (3.19) withNx = 100
so that ∆x = 0.6 . Figure 7 shows the position density (3.12), which in some region fluctuates around
the deterministic reference solution (3.14).

Initial number of particles and cancellation bound

Finally we study the influence of the parameters Nini and Ncanc . Figure 8 shows the curves for the
numbers of particles before and after cancellations versus the number of calls to cancellation for the
parameters (3.19). The lower curve depends on Nini and on the cancellation grid, while the upper
curve is determined by Ncanc . The corresponding curves for other sets of parameters are not shown,
but the relevant information is collected in Table 1.

The position density (3.12) was measured for the parameters (3.19), with Nini = 40000 and
Ncanc = 960000 , respectively. We do not show the corresponding figures, since they are rather
similar to Figure 1. In the first case there is a certain increase in fluctuations. Some other properties
for these sets of parameters are provided in the last two lines of Table 1.

We conclude with some general remarks concerning the choice of the parametersNini andNcanc .
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Figure 3: Wave-vector density (3.13) (calculated with parameters (3.19) andNk = 100) and stochastic
reference solution (Nk = 400).
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Figure 4: Total average position (3.7).
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Figure 5: Total average velocity (3.8).
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Figure 6: Total average energy (3.9).

Nk Nx Nini Ncanc calls Nafter CPU (sec)
400 400 160k 480k 20 358k 256
100 400 160k 480k 14 273k 218
400 100 160k 480k 15 301k 229
400 400 40k 480k 7 174k 151
400 400 160k 960k 9 402k 345

Table 1: Properties of the algorithm for various sets of cancellation parameters. The quantity “calls”
denotes the number of calls to the cancellation procedure andNafter is the average number of particles
after the last cancellation.
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Figure 7: Density (3.12) (calculated with parameters (3.19) and Nx = 100) and reference solution
(3.14).
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Both parameters should not be below a certain level (depending on the cancellation grid). Decreasing
the parameter Nini leads to larger fluctuations. Decreasing the parameter Ncanc makes cancellation
inefficient and finally leads to a blow-up of the algorithm. Increasing these parameters leads to more
effort.

3.3 Comparison with a time-splitting algorithm

Here we compare the no-splitting algorithm with a time-splitting algorithm. We study convergence with
respect to the time step as well as the effort in terms of the CPU time. We consider the test case (3.1),
(3.3) with the parameters (3.16), (3.17). The observation parameters are given in (3.18).

For reference purposes we provide an algorithm with time splitting (from [8]). In this algorithm a
time step ∆t is used in order to separate the transport and the creation processes. The algorithm
performs the evolution of the system (2.10) on the time interval [0,∆t] according to the following
steps:

1. Transport step

The positions change according to

xj := xj +
~
m
kj ∆t , j = 1, . . . , N . (3.20)

2. Creation step

For j = 1, . . . , N , new particles are created according to the following rules:

2.1. With probability

1− γ̂∆t , (3.21)

do not create anything.

2.2. Otherwise, generate a random vector k̃ according to the probability density (2.12).

2.3. With probability (2.13), do not create anything.

2.4. Otherwise, create a pair of particles (2.14). Put N := N + 2 .

3. Cancellation step

If N ≥ Ncanc , then perform cancellation.

The time step should satisfy the condition (cf. (3.6), (3.16), (3.21))

∆t ≤ 1

γ̂
=

~
a

=
6.58

3
fs ∼ 2.2 fs .

The time-splitting algorithm is applied with the cancellation parameters (3.19) and various time
steps. Figure 9 shows the position density (3.12), which approaches (for a decreasing time step) the
deterministic reference solution (3.14). Further measurements are collected in Table 2, where the last
line corresponds to the no-splitting algorithm. In particular, the data (third and fourth column) show that
the error of the time-splitting algorithm quantitatively approaches the error of the no-splitting algorithm,
when the time step decreases.
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Figure 9: Density (3.12) (calculated with parameters (3.19) and various ∆t) and reference solution
(3.14).

∆t (fsec.) CPU (sec.) err-max err-aver canc. times
1 278 0.0106 0.0024 3.0000, 6.0000, 8.0000

0.4 395 0.0053 0.0009 2.4000, 4.4000, 6.4000
0.1 928 0.0019 0.0004 2.0000, 3.8000, 5.4870
0.05 1628 0.0018 0.0003 1.9500, 3.6700, 5.2730
0.025 3028 0.0017 0.0003 1.9222, 3.6222, 5.2182

no-splitting 256 0.0013 0.0002 1.8927, 3.5716, 5.1428

Table 2: Properties of the time-splitting algorithm and the no-splitting algorithm. The quantities “err-
max” and “err-aver” denote, respectively, the maximum and the average (over the cells) of the absolute
differences between the measured density and the reference solution. The last column provides the
measurements of the first, second and third cancellation time.
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Figure 10: Function (3.22).

The last column of Table 2 provides the measurements of the first, second and third cancellation
time. It is rather obvious that the convergence cannot be better than of the order ∆t , which is indeed
observed. The value of the first cancellation time for the no-splitting algorithm is very close to the
prediction 1.8925, which is obtained according to Remark 3.2. The prediction is so accurate, since
the function γ is constant in most of the region, where the solution is concentrated. The function γ is
shown in Figure 10. Note that γ(∞) ∼ 0.29 . Taking into account the average numbers of particles
after the first and second call to cancellation, one might also make (less accurate) predictions for the
second and third cancellation time.

Finally, the second column of Table 2 provides some insight into the important efficiency issue.
The effort consists of three components: “transport and creation”, “cancellation” and “measuring func-
tionals”. For the time-splitting algorithm, the first component is (roughly) inversely proportional to the
time step. Thus, for small time step, this component is responsible for the major part of the effort. This
gives the no-splitting algorithm a rather significant advantage.

Remark 3.2 According to [8, (3.16)], the rate function

γ(x) =
1

2

∫ ∞
−∞
|VW (x, k)| dk (3.22)

satisfies

γ(∞) := lim
x→±∞

γ(x) = lim
x→∞

a

~

∫ ∞
−∞

M((2σ)−1, k) | sin(2 k x)| dk

= lim
x→∞

a

2 ~

∫ ∞
−∞

M((2σ)−1, k/2) | sin(k x)| dk

=
a

π ~

∫ ∞
−∞

M((2σ)−1, k/2) dk =
2 a

π ~
. (3.23)

According to [8, (3.36)], (3.16) and (3.23), one obtains

E τ1 =
1

2 γ(∞)
log(Ncanc/Nini) fs =

6.58 π

12
log(Ncanc/Nini) fs .
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Remark 3.3 For our time-splitting algorithm (cf. (3.20), (3.21)) there is convergence towards the ref-
erence solution (and, thus, to the results provided by the no-splitting algorithm). In [14] the authors
report that “bigger time steps bring to higher accuracy solutions” and claim that “this can be explained
in terms of the physical processes involved”. In fact, this strange behaviour (error increasing with de-
creasing time step) is due to a wrong splitting rule. According to the algorithm in [14, p.173], each
particle always creates some offspring during a time step.

4 Comments

The no-splitting algorithm introduced in Section 2 provides numerical results without any time dis-
cretization error. This is a rather pleasant feature, since the problem of choosing an appropriate time
step is avoided. Moreover, in many cases the no-splitting algorithm is more efficient compared to time-
splitting algorithms, as illustrated in Section 3.3. Algorithms with similar properties were studied in
other areas before. In the direct simulation Monte Carlo method for semiconductor device simulation
there are the self-scattering technique (no-splitting) and the constant-time technique (see, e.g., [7],
[9]). There is an analogy with the “no-splitting scheme” for the heated inelastic Boltzmann equation
(see [4], [13]). Our algorithm has some more special features compared to other signed-particle algo-
rithms for the Wigner equation (cf., e.g., [2]). In particular, a discretization of the state space is used
only in the cancellation procedure, while transport and creation are treated with a continuous state
space. An efficiency gain is obtained by the introduction of fictitious creation events via appropriate
majorants and by using |VW | instead of V +

W in the creation procedure (cf. (2.12), (2.13)). Some of
these aspects, including the advantages of our cancellation procedure, were discussed in [8] for the
corresponding time-splitting schemes.

The no-splitting algorithm is convenient for being combined with scattering processes in the con-
text of the Wigner-Boltzmann equation. In this case a constant majorant has to be used (cf. (2.20)). In
a similar way it should be possible to extend the algorithm towards the Wigner-Fokker-Planck equation
(cf., e.g., [3], [1]). Here a Wiener process is added to the transport part, in analogy with the heated
inelastic Boltzmann equation mentioned above. An interesting direction of further studies concerns
more sophisticated cancellation procedures. A straightforward idea is to use a self-adjusting cancella-
tion grid. This means that, given ∆x and ∆k , the parameters kmin, kmax, xmin, xmin are adapted to
the (evolving in time) cloud of particles. Another opportunity would be using a non-uniform cancella-
tion grid, i.e., taking a finer grid in regions with high densities or/and large gradients. This might be of
particular importance in multi-dimensional situations.
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