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Pulses in FitzHugh–Nagumo systems
with rapidly oscillating coefficients

Pavel Gurevich, Sina Reichelt

Abstract

This paper is devoted to pulse solutions in FitzHugh–Nagumo systems that are coupled parabolic
equations with rapidly periodically oscillating coefficients. In the limit of vanishing periods, there
arises a two-scale FitzHugh–Nagumo system, which qualitatively and quantitatively captures the
dynamics of the original system. We prove existence and stability of pulses in the limit system
and show their proximity on any finite time interval to pulse-like solutions of the original system.

1 Introduction

The famous FitzHugh–Nagumo equations, first mentioned in [NAY62], model the pulse transmission
in animal nerve axons. The fast, nonlinear elevation of the membrane voltage u is diminished over
time by a slower, linear recovery variable v. The activator u and the inhibitor v are the solutions of a
nonlinear partial differential equation (PDE) coupled with a linear ordinary differential equation (ODE)

ut = uxx + f(u)− αv,
vt = −bv + βu,

(1.1.OG)

where the nonlinearity is typically given by the cubic function f(u) = u(1−u)(u− a) for a ∈ (0, 1).
The other parameters usually satisfy α = 1 and 0 < b ≤ β � 1. The existence of traveling wave
solutions, such as pulses and fronts, are well-known for system (1.1.OG), see e.g. [McK70, Has76,
Car77, Has82, JKL91, ArK15] for pulses and [Den91, Szm91] for fronts.

We are mainly interested in pulse solutions and consider the following FitzHugh–Nagumo system with
rapidly oscillating coefficients in space

uεt = uεxx + f(uε)− α(x
ε
)vε,

vεt =
(
ε2d(x

ε
)vεx
)
x
− b(x

ε
)vε + β(x

ε
)uε,

(1.2.Sε)

where x ∈ R and t > 0. All coefficients belong to the space L∞(S) with S = R/Z being the
periodicity cell, which means that they are 1-periodic on R. We imagine that these oscillations model
heterogeneity within an excitable medium and ε > 0 is the characteristic length scale of the periodic
microstructure. Moreover, in (1.2.Sε) we allow for a small (slow) diffusion of the inhibitor vε, as it is
also done in e.g. [Szm91]. In this paper we study pulse-type solutions in system (1.2.Sε), including the
case d ≡ 0.

To our best knowledge, there are no results in the literature on the existence of pulses in FitzHugh–
Nagumo systems with periodic coefficients. However, there exists an extensive literature on traveling
fronts in reaction-diffusion equations with periodic data, see e.g. [HuZ95, BeH02] for continuous peri-
odic media, [GuH06, CGW08] for discrete periodic media, and [Xin00] for a review and further refer-
ences to earlier works. The article [Hei01] investigates front solutions in perforated domains for single
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P. Gurevich, S. Reichelt 2

equations as well as monotone systems. Most of these results are based on the maximum principle,
which fails for the FitzHugh–Nagumo system. In [MSU07] reaction-diffusion systems are studied and
exponential averaging is used to show that traveling wave solutions can be described by a spatially
homogeneous equation and exponentially small remainders. The existence of generalized (oscillating)
traveling waves uε(t, x) = u(x+ct, x

ε
) and their convergence to a limiting waveU(t, x) = u0(x+ct)

is proved for parabolic equations in [BoM14]. In their approach, the authors reformulate the problem
as a spatial dynamical system and use a centre manifold reduction. In all previous results the limit
equation is always “one-scale”.

Our approach to find pulses in the FitzHugh–Nagumo system (1.2.Sε) is, first, to derive an effective
system for vanishing ε and, secondly, to study the existence of pulses in this new system. In the limit
ε→ 0, we obtain the following two-scale system

Ut = Uxx + f(U)−
∫ 1

0

α(y)V (t, x, y) dy,

Vt = (d(y)Vy)y − b(y)V + β(y)U,

(1.3.S0)

where (x, y) ∈ R×S and t > 0. Notice that U(t, x) only depends on the macroscopic scale x ∈ R,
whereas V (t, x, y) also depends on the microscopic scale y ∈ S. We prove that this system admits
two-scale pulse solutions (u(x + ct),v(x + ct, y)) under certain assumptions on the parameters
(α, β, b, d). The main idea of the proof is to decompose α into a sum of eigenfunctions of the differ-
ential operator LV = (d(y)Vy)y − b(y)V and to project the V -component onto the corresponding
eigenspaces. These projections yield a guiding system, which is of the form (1.1.OG) and is known to
possess a stable pulse solution, and a remaining guided part, for which we prove the existence and
stability of a pulse solution. Moreover, we show that the two-scale pulse (u,v) is exponentially stable
if the pulse of the corresponding guiding system is exponentially stable. Furthermore, we show that
solutions of the original system (1.2.Sε) satisfy

(uε(t, x), vε(t, x)) =
(
u(x+ ct),v(x+ ct, x

ε
)
)

+O(ε) as ε→ 0

for suitable initial conditions and finite times t ≤ T . These pulse-type solutions have a profile with
a periodic microstructure. In other words, the pulse (its inhibitor component) oscillates in time via
v(z, z+ct

ε
). Since our approach yields an explicit relation between two-scale pulses and pulses from

the guiding system, we are able to provide numerical examples for pulses in both systems, (1.2.Sε)
and (1.3.S0). Interestingly, in one example, a pulse exists, although the microscopic average over S of
the inhibitor v vanishes at every macroscopic point x ∈ R.

This paper is structured as follows. In Section 2 we derive the two-scale system and prove L2-error
estimates for the difference between the solutions (uε, vε) and (U, V ) of (1.2.Sε) and (1.3.S0), re-
spectively. Section 3.1 is devoted to the existence of two-scale pulses (u,v). The stability of these
pulses is studied in Section 3.2. Finally, we provide three numerical examples in Section 4.

2 Justification of the two-scale system

We aim to justify the two-scale FitzHugh–Nagumo system (1.3.S0) and derive error estimates for the
difference of (uε, vε) and (U, V ) being the solutions of the systems (1.2.Sε) and (1.3.S0), respectively.
Since we do not know whether there exist pulses for the original system, arbitrary solutions to coupled
parabolic equations are considered in this section. In order to compare the two inhibitors vε(t, x) and
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Pulses in FitzHugh–Nagumo systems 3

V (t, x, y), which depend on different variables, the macroscopic reconstructionRε is defined via

Rε : L2(R; C0(S))→ L2(R); (RεΦ)(x) := Φ(x, x
ε
). (2.1)

We require continuity with respect to at least one of the two variables (x, y) such that the function
Φ(x, x

ε
) is measurable on the null-set {(x, x

ε
) |x ∈ R} ⊂ R×S. The operatorRε : C0(R; L2(S))→

L2(R) is also well-defined, see e.g. [LNW02] for more details on the regularity of two-scale functions.
To derive quantitative error estimates, we postulate the following assumptions here and throughout the
whole text.

Assumption 2.1. 1 The coefficients satisfy α, β, b ∈ L∞(S) and d ∈ C1(S). Moreover, either

(a) ∃ d∗ > 0 : d(y) ≥ d∗ for all y ∈ S, or

(b) d(y) ≡ 0.

2 The nonlinear function f ∈ C1(R) admits the growth conditions

f(u) ≥ c1u− c2 if u ≤ 0 and f(u) ≤ c3u+ c4 if u ≥ 0

for some constants c1, c2, c3, c4 ≥ 0.

A prototype nonlinearity f : R→ R that we have in mind is

f(u) = u(1− u)(u− a) with a ∈ (0, 1). (2.2)

Of course, our theory also applies to other bistable nonlinearities f with similar properties.

Before we derive error estimates, we make sure that unique classical solutions exist. Therefore, the
differential operators Lε2 : D(Lε)→ L2(R) and L0

2 : D(L0)→ L2(R× S) are introduced via

(Lεϕ)(x) :=
(
ε2d(x

ε
)ϕx
)
x
− b(x

ε
)ϕ, D(Lε) := {ϕ ∈ L2(R) | Lεϕ ∈ L2(R)},

(L0Φ)(x, y) := (d(y)Φy)y − b(y)Φ, D(L0) := {Φ ∈ L2(R× S) | L0Φ ∈ L2(R× S)}.

Notice that in case (a) of Assumption 2.1.1 with microscopic diffusion of the inhibitor, we haveD(Lε) =
H2(R) and D(L0) = L2(R; H2(S)); in case (b), D(Lε) = L2(R) and D(L0) = L2(R × S). With
a slight abuse of notation, we identify the functions U(t) ∈ H2(R) and U(t, x), etc.

Definition 2.1. 1 We call (uε, vε) a classical solution of system (1.2.Sε), if (uε, vε) is continuous
on [0, T ], continuously differentiable on (0, T ), satisfies uε(t) ∈ H2(R) and vε(t) ∈ D(Lε)
for 0 < t < T , and solves on [0, T ] the equations

uεt = uεxx + f(uε)− α(x
ε
)vε, uε(0) = uε0,

vεt = Lεvε + β(x
ε
)uε, vε(0) = vε0.

2 We call (U, V ) a classical solution of system (1.3.S0), if (U, V ) is continuous on [0, T ], contin-
uously differentiable on (0, T ), satisfies U(t) ∈ H2(R) and V (t) ∈ D(L0) for 0 < t < T ,
and solves on [0, T ] the equations

Ut = Uxx + f(U)−
∫ 1

0

α(y)V (t)(x, y) dy, U(0) = U0,

Vt = L0V + β(y)U, V (0) = V0.
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P. Gurevich, S. Reichelt 4

We will take initial data for V in the two-scale space

VL0 := {Φ ∈ D(L0) |Φx,Φxx ∈ D(L0)} ∩ L∞(R× S).

Notice that for d > 0, there holds VL0 = H2(R; H2(S)) and all functions belonging to H2(R; H2(S))
are essentially bounded by the Sobolev embeddings H2(R) ⊂ L∞(R) and H2(S) ⊂ L∞(S). In
contrast, for d = 0, we need the additional restriction to the set of bounded functions and VL0 =
H2(R; L2(S)) ∩ L∞(R× S).

Assumption 2.2. 1 The two-scale initial conditions (U0, V0) for system (1.3.S0) satisfy U0 ∈
H2(R) and V0 ∈ VL0 .

2 The one-scale initial conditions (uε0, v
ε
0) for system (1.2.Sε) satisfy uε0 ∈ H2(R) and vε0 ∈

D(Lε) ∩ L∞(R), and fulfill the estimate

∃C ≥ 0 : ‖uε0 − U0‖L2(R) + ‖vε0 −RεV0‖L2(R) ≤ εC for all ε ∈ (0, 1].

Notice that V0 ∈ C1(R; L2(S)), thanks to the Sobolev embedding H2(R) ⊂ C1(R), so thatRεV0 is
indeed well defined. Under the above assumptions, we obtain the existence of classical solutions via
the semigroup theory.

Theorem 2.1. Let Assumptions 2.1 and 2.2 hold. Then the following is true.

(i) For every T > 0 and ε > 0, there exists a unique classical solution (uε, vε) of system (1.2.Sε).
Moreover,

‖(uε, vε)‖C1([0,T ];L2(R)) + ‖(uεx, εvεx)‖L2((0,T )×R)) + ‖(uε, vε)‖L∞((0,T )×R)) ≤ C (2.3)

for some constant C = C(T ) > 0 independent of ε.

(ii) For every T > 0, there exists a unique classical solution (U, V ) of the two-scale system (1.3.S0).
In addition, the inhibitor satisfies V ∈ C0([0, T ];VL0).

Proof. For arbitrary M > 0, we define the function fM : R→ R via

fM(u) :=


f(−M) + f ′(−M)u if u < −M,
f(u) if |u| ≤M,
f(M) + f ′(M)u if u > M.

Notice that fM ∈ C1(R) is globally Lipschitz continuous. Then for every T > 0, the existence of
unique classical solutions (uεM , v

ε
M) and (UM , VM) according to Definition 2.1 follows from the semi-

group theory, see e.g. [Paz83, Sec. 6.1, Thm. 1.5]. The higher regularity x 7→ V (t, x, y) ∈ H2(R)
follows by taking finite differences as in [Rei15, Prop. 2.3.17]. According to Lemma A.1 and Remark
A.1, the solutions uεM , v

ε
M , UM are bounded in C0([0, T ]; L∞(R)) and VM in C0([0, T ]; L∞(R×S))

uniformly with respect to ε and M . Hence, the result also holds for the unmodified function f .

The upper bound for ‖(uε, vε)‖C1([0,T ];L2(R)) + ‖(uεx, εvεx)‖L2((0,T )×R)) follows from testing the equa-
tions with the solution itself and applying Grönwall’s Lemma, see e.g. [Rei15, Sec. 2.1.2] or [MRT14,
Sec. 4.1]. The upper bound for ‖(uε, vε)‖L∞((0,T )×R)) is immediate from Lemma A.1.

Finally, we prove error estimates for the difference of the original solution (uε, vε) and the effective so-
lution (U,RεV ), which justifies our investigation of the two-scale system (1.3.S0) in the next section.
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Pulses in FitzHugh–Nagumo systems 5

Theorem 2.2. Let Assumptions 2.1 and 2.2 hold. Moreover, let (uε, vε) and (U, V ) denote classical
solutions of the original system (1.2.Sε) and the two-scale system (1.3.S0), respectively. Then for every
T > 0, there exists a constant C > 0 depending on (U, V ) but not ε such that

‖uε − U‖C0([0,T ];L2(R)) + ‖vε −RεV ‖C0([0,T ];L2(R)) ≤ εC, (2.4)

‖uεx − Ux‖L2((0,T )×R)) + ‖εvεx −RεVy‖L2((0,T )×R)) ≤ εC. (2.5)

Proof. For brevity, we write the coefficients as αε(x) := α(x
ε
), etc. Subtracting the equations for uε

and U and respectively vε and V in (1.2.Sε) and (1.3.S0), testing with uε−U , respectively vε−RεV ,
and integrating over R yields for all t ∈ [0, T ]∫

R
(uε − U)t(u

ε − U) dx =

∫
R

{
(uε − U)xx(u

ε − U) + [f(uε)− f(U)](uε − U)

−
[
αεv

ε −
∫ 1

0

α(y)V (t, x, y) dy

]
(uε − U)

}
dx (2.6)

as well as∫
R
(vε −RεV )t(v

ε −RεV ) dx =

∫
R

{(
(ε2dεv

ε
x)x −Rε[(dVy)y]

)
(vε −RεV )

− bε|vε −RεV |2 + βε(u
ε − U)(vε −RεV )

}
dx. (2.7)

In case (a) of Assumption 2.1.1, using the relation ε(RεV )x = Rε(εVx + Vy), we obtain(
ε2dε(RεV )x

)
x

= Rε[(dVy)y] + ∆ε,

∆ε := εRε[(dVy)x] + εRε[(dVx)y] + ε2Rε[(dVx)x]

with d = d(y) and by Theorem 2.1 (ii), we find the upper bound

‖∆ε‖L2(R) ≤ εC1(t) with C1(t) := ‖d‖C1(S)‖V (t, ·, ·)‖H2(R;L2(S))∩H1(R;H1(S)). (2.8)

In case (b) of Assumption 2.1.1, we set C1(t) := 0.

Applying partial integration with the boundary conditions

lim
x→±∞

uεx(t, x) = 0, lim
x→±∞

vεx(t, x) = 0, lim
x→±∞

Ux(t, x) = 0, lim
x→±∞

Vx(t, x, y) = 0,

for all t ∈ [0, T ] and almost all y ∈ S, and the chain rule 1
2

d
dt
‖u‖2L2(R) =

∫
R u̇u dx, we see that the

two equations (2.6) and (2.7) take the form

1

2

d

dt
‖uε − U‖2L2(R) =

∫
R

{
− |uεx − Ux|2 + [f(uε)− f(U)](uε − U)

−
[
αεv

ε −
∫ 1

0

α(y)V (t, x, y) dy

]
(uε − U)

}
dx (2.9)

as well as

1

2

d

dt
‖vε −RεV ‖2L2(R) =

∫
R

{
− ε2dε|vεx − (RεV )x|2 −∆ε(vε −RεV )

− bε|vε −RεV |2 + βε(u
ε − U)(vε −RεV )

}
dx. (2.10)
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Applying Hölder’s and Young’s inequality gives∫
R

∣∣∆ε(vε −RεV )
∣∣ dx ≤ 1

2
‖∆ε‖2L2(R) +

1

2
‖vε −RεV ‖2L2(R). (2.11)

According to Lemma A.2 we have for the dual norm

‖Rε(αV )−
∫ 1

0
α(y)V (t, x, y) dy‖H1(R)∗ ≤ εC2(t)

with C2(t) := ‖αV (t, ·, ·)‖H1(R;L2(S)).
(2.12)

UsingRε(αV ) = αε (RεV ) and (2.12), we obtain with Hölder’s and Young’s inequality∣∣∣∣∫
R

[
αεv

ε −Rε(αV ) +Rε(αV )−
∫ 1

0

α(y)V (t, x, y) dy

]
(uε − U) dx

∣∣∣∣
≤ 1

2
‖α‖L∞(S)

(
‖vε −RεV ‖2L2(R) + ‖uε − U‖2L2(R)

)
+ ε2

1

2
C2(t) +

1

2
‖uε − U‖2H1(R). (2.13)

Using the uniform L∞(R)-bound for uε, U and arguing as in the proof of Theorem 2.1, we can con-
sider f to be globally Lipschitz continuous. Adding (2.9) and (2.10), recalling that d(y) ≥ d∗ > 0, and
using (2.8), (2.11), and (2.13), we arrive at

1

2

d

dt

{
‖uε − U‖2L2(R) + ‖vε −RεV ‖2L2(R)

}
+ ‖uεx − Ux‖2L2(R) + ε2d∗‖vεx − (RεV )x‖2L2(R)

≤ L(t)
{
‖uε − U‖2L2(R) + ‖vε −RεV ‖2L2(R) + ε2

(
(C1(t))

2 + (C2(t))
2
)}

, (2.14)

where L(t) > 0 depends on the Lipschitz properties of f , the upper bound of ‖uε(t)‖L∞(R) +
‖U(t)‖L∞(R) in Lemma A.1 and Remark A.1, as well as max{‖α‖L∞(S), ‖β‖L∞(S), ‖b‖L∞(S)}. Ap-
plying Grönwall’s Lemma with Assumption 2.2.2 for the initial conditions gives for all t ≥ 0

max
0≤t≤T

{
‖uε(t)− U(t)‖2L2(R) + ‖vε(t)−RεV (t)‖2L2(R)

}
≤ ε2C3(t)e

∫ t
0 L(τ) dτ , (2.15)

where C3(t) > 0 is bounded on [0, T ] and independent of ε. Hence, estimate (2.4) follows by choos-
ing t = T on the right-hand side in (2.15) and taking the square root. Moreover, integrating (2.14) over
[0, T ] gives with (2.4) the gradient estimate (2.5).

Remark 2.1. Let us introduce the periodic unfolding operator Tε : L2(R) → L2(R × S) following
[CDG02]

(Tεv)(x, y) := v
(
ε[x
ε
] + εy

)
,

where [x] ∈ Z denotes the integer part of x ∈ R. Noting that (TεRεV )(x, y) = V (ε[x
ε
] + εy, y)

and x 7→ V (x, y) is Lipschitz continuous, yields the equivalence

‖vε −RεV ‖L2(R) ≤ εC ⇐⇒ ‖Tεvε − V ‖L2(R×S) ≤ εC.

In particular, (2.4) implies that the inhibitor vε converges to V strongly in the two-scale sense according
to the definition of two-scale convergence in [MiT07]. In the same manner, (2.5) yields the strong two-
scale convergence of εvεx to∇yV .
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3 Pulses in the two-scale system

We seek solutions (U, V ) of the two-scale system (1.3.S0) that are frame invariant with respect to the
co-moving frame z = x+ ct such that

U(t, x) = u(x+ ct) and V (t, x, y) = v(x+ ct, y),

where c ≥ 0 denotes the constant wave speed. Inserting this ansatz into (1.3.S0) yields the nonlocally
coupled system of an ODE and a PDE

cu′ = u′′ + f(u)−
∫ 1

0

α(y)v(·, y) dy,

cv′ = −Lv + β(y)u,

(3.1.Co-S0)

where u′ = uz. The differential operator L : D(L)→ L2(S) is given via

(Lϕ)(y) := −(d(y)ϕy)y + b(y)ϕ and D(L) := {ϕ ∈ L2(S) | Lϕ ∈ L2(S)}.

We denote by ‖ · ‖D(L) the graph norm and by spec(L) the spectrum of L. The unknowns of our
pulse solution in demand are

c ≥ 0, u : R→ R, v : R× S→ R. (3.2)

Definition 3.1. The triple (c,u(x + ct),v(x + ct, y)) is called a two-scale pulse solution of the
two-scale system (1.3.S0) if u ∈ C2(R), v ∈ C0(R;D(L)) ∩ C1(R; L2(S)), equations (3.1.Co-S0)
hold, and (u,v) is a homoclinic orbit of (3.1.Co-S0), i.e.,

lim
z→±∞

u(z) = 0, lim
z→±∞

‖v(z, ·)‖D(L) = 0. (3.3)

Throughout this section, we assume the following.

Assumption 3.1. There holds 0 /∈ spec(L). If d(y) ≡ 0, then b(y) ≡ b0 for some b0 > 0.

Assumptions 2.1.1 and 3.1 together imply that the spectrum ofL is discrete and we can find a spectral
gap around zero.

3.1 Existence of two-scale pulse solutions

In this section, we provide sufficient conditions under which pulse solutions exist and are determined
by what we will call a guiding system of finitely many ODEs. Our main assumptions that allow us to
reduce the nonlocally coupled PDE system (3.1.Co-S0) to a system of ODEs are as follows.

Assumption 3.2. The function α(y) is a finite sum of eigenfunctions of the operatorL, i.e., there exist
m ≥ 1, α̃i ∈ D(L), and λi ∈ R such that α̃1, ..., α̃m are linearly independent and

α(y) =
m∑
i=1

α̃i(y) with Lα̃i = λiα̃i.

To be definite, we assume that λi > 0.

DOI 10.20347/WIAS.PREPRINT.2413 Berlin 2017
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Notice that the eigenvalues λi in Assumption 3.2 are not assumed to be simple. With this, we introduce
the new parameters (for i = 1, ...,m)

αi := ‖α̃i‖L2(S) and βi :=
(β, α̃i)L2(S)

‖α̃i‖L2(S)
. (3.4)

Assumption 3.3. The ODE system

cu′ = u′′ + f(u)−
m∑
i=1

αivi,

cv′i = −λivi + βiu, i = 1, ...,m,

(3.5.GS)

whereαi, βi, λi ∈ R are given by (3.4) and Assumption 3.2, admits a homoclinic orbit (c, u, v1, ..., vm)
satisfying

c ≥ 0 and u, vi ∈ C∞(R). (3.6)

Moreover, there exists σ > 0 such that

lim
z→±∞

eσ|z|u(z) = 0, lim
z→±∞

eσ|z|u′(z) = 0, lim
z→±∞

vi(z) = 0. (3.7)

We will refer to system (3.5.GS) as to the guiding system.

Remark 3.1. 1 System (3.5.GS) is known to possess a homoclinic orbit, e.g., for cubic functions
f as in (2.2) and certain parameter sets (αi, βi, λi)

m
i=1, c.f. [Car77] on “pulses in systems with

l fast and m slow equations”. Typically, these parameters are within the range

αi = 1, 0 < βi � 1, 0 ≤ λi � 1,

see also the numerical examples in Section 4.

2 Interestingly, neither α(y), β(y), nor their product α(y)β(y) need to be sign preserving. More-
over, the case

∫ 1

0
α(y) dy = 0 is not excluded in general, unless

∫ 1

0
α(y)β(y) dy = 0. In the

latter case, βi = 0 and the system (3.5.GS) decouples and has no homoclinics. The former
case is exemplarily treated in Section 4.1.

3 Let b(y) ≡ b0. Then, the two-scale system (3.1.Co-S0) takes the form

cu′ = u′′ + f(u)−
∫ 1

0

α(y)v(z, y) dy,

cv′ = −b0v + β(y)u.

(3.8)

Obviously, any α ∈ L2(S) satisfies Assumption 3.2 with λ0 = b0. This situation is illustrated by
a numerical example in Section 4.2.

The main result of this paper is the following theorem.

Theorem 3.1. Let Assumptions 2.1, 3.1, 3.2, and 3.3 hold. Then the two-scale system (1.3.S0) admits
a pulse solution (c,u,v) such that the pair (c,u) = (c, u) is the same as in (3.6) and v satisfies the
estimate

‖v(z, ·)‖D(L) + ‖vz(z, ·)‖L2(S) ≤ Ce−γ|z| for z ∈ R, (3.9)

where C, γ > 0 do not depend on z ∈ R. Moreover, if β ∈ D(L), then

‖Lv(z, ·)‖D(L) + ‖vz(z, ·)‖D(L) ≤ Ce−γ|z| for z ∈ R. (3.10)
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Proof. The proof is based on the spectral decomposition of the space L2(S) to recover the guiding
system and semigroup properties to derive the exponential decay in (3.9)–(3.10).

Step 1: spectral decomposition. Under Assumption 3.1, L is a sectorial self-adjoint operator. Its spec-
trum is bounded from below and consists of isolated real eigenvalues, which admit possible multiple
geometric multiplicity. The corresponding eigenfunctions form a basis for L2(S). We denote by e−Lt,
t ≥ 0, the analytic semigroup in L2(S) generated by L.

Set Σ− := spec(L) ∩ {λ < 0} and Σ+ := spec(L) ∩ {λ > 0}. Let Pi be the orthogonal projector
onto the eigenspace Span(α̃i), i = 1, ...,m, P− onto the eigenspace corresponding to Σ− and∑m

i=1Pi + P+ onto the eigenspace corresponding to Σ+. Set Yi := Pi(L2(S)), Y− = P−(L2(S)),
and Y+ = P+(L2(S)). The spaces Yi, Y+, and Y− are pairwise orthogonal and invariant under
L. Moreover, Yi and Y− are finite-dimensional. By Assumption 3.2, the restriction of L onto Yi is a
multiplication by λi. LetL± denote the restrictions ofL onto Y±. Then, we have (cf. [Hen81, Sec. 1.5])

L− : Y− → Y− is bounded, spec(L−) = Σ−,

D(L+) = D(L) ∩ Y+, spec(L+) ⊆ Σ+.

Notice that eigenvalues λi may but need not belong to spec(L+). Moreover, due to Assumption 3.1,
there exists σ± > 0 such that Σ− is below−σ− and Σ+ is above σ+. Therefore, there exists C1 > 0
such that

‖e−L−t‖Y− ≤ C1e
σ−t, t ≤ 0,

‖e−L+t‖Y+ ≤ C1e
−σ+t, t > 0,

(3.11)

as well as
‖L+e

−L+t‖Y+ ≤ C1t
−1e−σ+t, t > 0. (3.12)

Step 2: orthogonal projection. Further in the proof, we assume that c > 0 in Assumption 3.3, whereas
the modifications for the case c = 0 are obvious. We will show that the pulse solution for the two-scale
system (3.1.Co-S0) is given by (c,u,v), where (c,u) = (c, u) are as in (3.6), and the v-component
is represented via

v(z, ·) =
m∑
i=1

vi(z) · α̃i(·)
αi

+ v+(z) + v−(z) for z ∈ R, (3.13)

where vi(z) ∈ R and v±(z) ∈ Y±. Exploiting the orthogonal decomposition and setting βi := Pi(β)
as well as β± := P±(β), we obtain that the co-moving two-scale system (3.1.Co-S0) is equivalent to
the system

cu′ = u′′ + f(u)−
m∑
i=1

αivi,

cv′i = −λivi + βiu, i = 1, ...,m,

cv′± = −L±v± + β±u.

(3.14)

By Assumption 3.3, the first 1 + m equations admit a pulse solution with (c,u,v1, ...,vm) =
(c, u, v1, ..., vm) given by (3.6). Since λi > 0 and the vi’s are bounded, we have

vi(z) =
1

c

∫ z

−∞
e−

λi
c
(z−ξ)βiu(ξ) dξ. (3.15)

Moreover, we set

v+(z) :=
1

c

∫ z

−∞
e−
L+
c

(z−ξ)β+u(ξ) dξ,

v−(z) := −1

c

∫ +∞

z

e−
L−
c

(z−ξ)β−u(ξ) dξ.

(3.16)
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Since u ∈ C1(R), it follows from [Paz83, Sec. 4.3, Thm. 3.5] that v± ∈ C0(R;D(L±))∩C1(R;Y±).
Hence, v ∈ C0(R;D(L)) ∩ C1(R; L2(S)).

Step 3: exponential decay. Let C2 > 0 be according to (3.7) such that

|u(z)| ≤ C2e
−σ|z|, z ∈ R.

Then the estimate of (3.15) and (3.16) with the help of (3.11) shows that there exist C3 > 0 and
0 < γ < min(σ, λi/c, σ±/c) such that

|vi(z)| ≤ C3βie
−γ|z|, ‖v±(z)‖Y± ≤ C3‖β±‖Y±e−γ|z|, z ∈ R. (3.17)

Additionally using (3.14) and the boundedness of L−, we can find C4 > 0 such that

|v′i(z)| ≤ C4βie
−γ|z|, ‖L−v−(z)‖Y− + ‖v′−(z)‖Y− ≤ C4‖β−‖Y−e−γ|z|, z ∈ R. (3.18)

To control L+v+(z), we represent v+(z) as follows:

v+(z) =
1

c

∫ z

−∞
e−
L+
c

(z−ξ)β+[u(ξ)− u(z)] dξ +
1

c

∫ z

−∞
e−
L+
c

(z−ξ)β+u(z) dξ

=: v̄1(z) + v̄2(z).

According to (3.7), we have |u′(z)| ≤ C2e
−σ|z|, z ∈ R, and hence

(a) |u(z)− u(ξ)| ≤ C2e
−σ|z||z − ξ| for 0 ≥ z ≥ ξ,

(b) |u(z)− u(ξ)| ≤ C2e
−σ|ξ||z − ξ| for z ≥ ξ ≥ 0,

(c) |u(z)− u(ξ)| ≤ C2|z − ξ| for all z, ξ ∈ R.

First, let z ≤ 0 be fixed. Exploiting relation (3.12) and (a) yields C5 > 0 such that

‖L+v̄1(z)‖Y+ ≤
1

c

∫ z

−∞

∥∥L+e
−L+

c
(z−ξ)∥∥

Y+

∥∥β+(u(ξ)− u(z)
)∥∥

Y+
dξ

≤ C1C2‖β+‖Y+
∫ z

−∞

1

z − ξ
e−

σ+
c

(z−ξ)e−σ|z||z − ξ| dξ

≤ C5‖β+‖Y+e−γ|z|.

Secondly, fix z > 0. Proceeding as in the previous estimate and using (b)–(c) yields

‖L+v̄1(z)‖Y+ ≤ C1C2‖β+‖Y+
{∫ 0

−∞

1

z − ξ
e−

σ+
c

(z−ξ)|z − ξ| dξ

+

∫ z

0

1

z − ξ
e−

σ+
c

(z−ξ)e−σ|ξ||z − ξ| dξ
}

≤ C5‖β+‖Y+e−γ|z|.

Next, we obtain similarly to [Paz83, Sec. 1.2, Thm. 2.4(b)]

L+v̄2(z) = −1

c
L+

(∫ ∞
0

e−
L+
c
ξβ+u(z) dξ

)
= β+u(z).

Hence, ‖L+v̄2(z)‖Y+ ≤ C5‖β+‖Y+e−σ|z| for all z ∈ R. Combining the estimates for L+v̄1 and
L+v̄2, and using once more (3.14) gives

‖L+v+(z)‖Y+ + ‖v′+(z)‖Y+ ≤ C4‖β+‖Y+e−γ|z|, z ∈ R. (3.19)
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Overall, relations (3.13) as well as (3.17)–(3.19) imply estimate (3.9).

If β ∈ D(L), then we have due to (3.16)

L+v+(z) =
1

c

∫ z

−∞
e−
L+
c

(z−ξ)L+β+u(ξ) dξ, L−v−(z) = −1

c

∫ +∞

z

e−
L−
c

(z−ξ)L−β−u(ξ) dξ.

Using the relation cL±v′± = −L±(L±v±)+L±u together with (3.18) and (3.19), yields the improved
estimate (3.10).

Remark 3.2. 1 Let b(y) ≡ b0 and
∫ 1

0
β(y) dy = 0. Then the two-scale inhibitor v is macroscop-

ically vanishing, i.e.,
∫ 1

0
v(z, y) dy ≡ 0 for all z ∈ R. This is immediate from integrating the

v-equation in (3.8) over S. The example in Section 4.1 illustrates this phenomenon.

2 Let the parameters (α, β, b, d) satisfy

|α(y)|2 ≡ 1, β(y) = β1α(y), b(y) ≡ λ1, d(y) ≡ 0.

Then the original system (1.2.Sε) admits indeed a generalized pulse solution (uε, vε) of the
form

uε(t, x) = u(x+ ct) and vε(t, x) = α(x
ε
)v1(x+ ct), (3.20)

where uε is independent of ε, whenever (c, u, v1) is a homoclinic orbit for the guiding system

cu′ = u′′ + f(u)− v1, cv′1 = −λ1v1 + β1u. (3.21)

Section 4.2 provides one example for such a generalized pulse solution.

3 The case of not exactly periodic coefficients such as α(x, x
ε
) with α ∈ C∞(R × S) is in

principle also manageable with our approach, however, the existence of homoclinic orbits for
guiding systems with heterogeneous coefficients is beyond the scope of the present paper.

4 In the case where β is orthogonal to all eigenfunctions α̃i, i = 1, ..,m, all coefficients βi
vanish and the equations for vi decouple from the activator u in the guiding system (3.5.GS).
Then the remaining u-equation is of Nagumo type and it is known to possess heteroclinic orbits
corresponding to traveling fronts, which can also be found in the two-scale system.

5 The guiding system may admit homoclinic orbits corresponding to multiple pulse solutions, in
the sense of [EFF82]. Since they all satisfy (3.7), our two-scale system (1.3.S0) admits multiple
pulse solutions as well.

3.2 Stability of two-scale pulse solutions

Let us turn our attention back to the full two-scale system (1.3.S0). By Theorem 3.1, it admits the family
of pulse solutions

(u,v)z0∈R :=
{(

uz0(x+ ct),vz0(x+ ct, y)
)
| z0 ∈ R

}
, (3.22)

where uz0(z) := u(z + z0) denotes the shifted function for any shift z0 ∈ R. Following [Eva72,
ArK15], we define exponential stability with respect to the supremum norm for the z-variable. For the
microscopic variable y ∈ S, we distinguish between weak exponential stability in L2(S) and strong
exponential stability in D(L).
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Definition 3.2. 1 Let (U, V ) denote a solution of the two-scale system (1.3.S0) with initial condi-
tion (U0, V0) and X denotes a real-valued Hilbert space. We say that the exponential stability
condition holds if there exist constants K1, K2, K3, κ > 0 such that for any

0 ≤ δ ≤ K1, z0 ∈ R : ‖U0 − uz0‖L∞(R) + ‖V0 − vz0‖L∞(R;X) ≤ δ,

there exists a shift z1 with |z0 − z1| ≤ δK2 such that for all t ≥ 0

‖U(t, ·)− uz1(·+ ct)‖L∞(R) + ‖V (t, ·)− vz1(·+ ct, ·)‖L∞(R;X) ≤ δK3e
−κt.

2 The family of pulse solutions (u,v)z0∈R in (3.22) is weakly (strongly) exponentially stable, if the
exponential stability condition holds with X = L2(S) (with X = D(L)).

We emphasize that our solutions are bounded according to Theorem 2.1, which justifies the supremum
norm in Definition 3.2. In the case d(y) ≡ 0 (no microscopic diffusion), the notions of weak and strong
exponential stability coincide.

Furthermore, notice that

(u, v1, ..., vm)z0∈R :=
{(
uz0(x+ ct), v1,z0(x+ ct), ..., vm,z0(x+ ct)

)
| z0 ∈ R

}
(3.23)

with u and (v1, ..., vm) given by Assumption 3.3 is a family of pulse solutions for the standard reaction-
diffusion FitzHugh–Nagumo-type system

Ut(t, x) = Uxx(t, x) + f(U)−
m∑
i=1

αiVi(t, x),

(Vi)t(t, x) = −λiVi(t, x) + βiU(t, x), i = 1, ...,m.

(3.24.GS-PDE)

We will refer to system (3.24.GS-PDE) as to the guiding PDE system.

Assumption 3.4. Let (u, v1, ..., vm)z0∈R be an exponentially stable family of pulse solutions for the
guiding PDE system (3.24.GS-PDE), i.e., the exponential stability condition in Definition 3.2.1 holds
with X = Rm.

For m = 1, it is well-known that the pulses of system (3.24.GS-PDE) are stable, see e.g. [Jon84] for
asymptotic stability and [Yan85, ArK15] for exponential stability. We expect a similar result to hold true
in the case of m > 1, however, this is beyond the scope of the present paper.

Theorem 3.2. Let Assumptions 2.1, 3.1, 3.2, 3.3, 3.4 hold, and let spec(L) ⊂ {λ > 0}. Then the
family of pulse solutions (u,v)z0∈R in (3.22) for the two-scale system (1.3.S0) is weakly exponentially
stable. If β ∈ D(L), then (u,v)z0∈R is also strongly exponentially stable.

Proof. Step 1: reduction to guiding system. Since spec(L) ⊂ {λ > 0}, it follows that P− =
0 and L− = 0. Therefore, v(z, y) is given via the sum in (3.13), where v−(z, y) ≡ 0, and
(u,v1, ...,vm)z0∈R is identical to the family of pulse solutions (u, v1, ..., vm)z0∈R in (3.23) for the
guiding PDE system (3.24.GS-PDE). Given the initial conditions U(0, x) = U0(x) and V (0, x, y) =
V0(x, y), we can decompose the two-scale system (1.3.S0). Again, the V -component is given via the
sum

V (t, x, ·) =
m∑
i=1

Vi(t, x) · α̃i(·)
αi

+ V+(t, z, ·), (3.25)
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where Vi(t, x) ∈ R and V+(t, x) := P+V (t, x) ∈ Y+. With this, the full two-scale system (1.3.S0)
reduces to the guiding part

Ut(t, x) = Uxx(t, x) + f(U)−
m∑
i=1

αiVi(t, x),

(Vi)t(t, x) = −λiVi(t, x) + βiU(t, x), i = 1, ...,m,

U |t=0 = U0(x), Vi|t=0 = V0,i(x) := PiV0(x, ·) =
(V0(x, ·), α̃i)L2

αi
,

(3.26)

and the guided part
(V+)t(t, x) = −L+V+(t, x) + β+U(t, x),

V+|t=0 = P+V0(x, ·).
(3.27)

By Assumption 3.4, there exist constants K1, K2, K3, κ > 0 such that for any

0 ≤ δ ≤ K1, z0 ∈ R : ‖U0 − uz0‖L∞(R) +
m∑
i=1

‖V0,i − vi,z0‖L∞(R) ≤ δ,

there exists a shift z1 with |z0 − z1| ≤ δK2 such that for all t ≥ 0

‖U(t)− uz1‖L∞(R) +
m∑
i=1

‖Vi(t)− vi,z1‖L∞(R) ≤ δK3e
−κt. (3.28)

It remains to prove that

‖P+(V0 − vz0)‖L∞(R;X) ≤ δ (3.29)

implies for some K∗, κ∗ > 0 and all t ≥ 0

‖V+(t)− P+vz1‖L∞(R;X) ≤ δK∗e
−κ∗t, (3.30)

where X = L2(S) (and if β ∈ D(L), then X = D(L)) according to Definition 3.2.

Step 2: exponential decay of guided part. System (3.27) is linear and V+ is given via

V+(t, x) = e−L+t
(
P+V0(x)

)
+

∫ t

0

e−L+(t−s)β+U(s, x) ds. (3.31)

Notice that P+v = v+ with v+ given in (3.16). Since v+ solves the v+-equation in (3.14), we have
for all t ≥ 0 the identity

v+(x+ ct+ z1) = e−L+t
(
P+vz1(x)

)
+

∫ t

0

e−L+(t−s)β+uz1(x+ cs) ds. (3.32)

Subtracting the equations in (3.31) and (3.32) as well as using (3.11) yields

sup
x∈R
‖V+(t, x)− v+(x+ ct+ z1)‖Y+

= sup
x∈R

∥∥∥e−L+t(P+[V0(x)− vz1(x)]
)

+

∫ t

0

e−L+(t−s)β+
[
U(s, x)− uz1(x+ cs)

]
ds
∥∥∥
Y+

≤ C1e
−σ+t

{
sup
x∈R
‖P+[V0(x)− vz0(x)]‖Y+ + sup

x∈R
‖P+[vz0(x)− vz1(x)]‖Y+

}
(3.33)

+ C1‖β+‖Y+
∫ t

0

e−σ+(t−s) sup
x∈R
|U(s, x)− uz1(x+ cs)| ds. (3.34)
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We estimate the first term in (3.33) by (3.29) and (3.34) by (3.28). For the second term in (3.33), we ex-
ploit the Lipschitz continuity ‖v+(z0)−v+(z1)‖Y+ ≤ L|z0−z1| ≤ δLK2 for v+ ∈ C1(R;Y+). The
Lipschitz constant L := supz∈R ‖(v+)z(z, ·)‖Y+ is bounded according to estimate (3.9). Choosing
κ∗ = min{σ+, κ}, we arrive at

sup
x∈R
‖V+(t, x)− v+(x+ ct+ z1)‖Y+ ≤ δC1

(
1 + LK2 +K3‖β+‖Y+

)
e−κ∗t. (3.35)

Hence, estimate (3.30) follows immediately and the weak exponential stability of the family of pulse
solutions (u,v)z0∈R in (3.22) is proven.

If β ∈ D(L), then v+ belongs according to (3.10) to the space C1(R;D(L+)). With this higher
regularity, the estimates (3.33), (3.34), and (3.35) also hold with D(L+) instead of Y+. Hence, the
family of pulse solutions (u,v)z0∈R in (3.22) is also strongly exponentially stable.

Remark 3.3. We point out that the constants K3 and κ in Definition 3.2 are in general not the same
for the guiding pulse (u, v1, .., vm)z0∈R and the two-scale pulse (u,v)z0∈R.

4 Numerical simulations

We provide numerical examples for three different parameter settings (α, β, b, d) and compare the
solutions of the original system (1.2.Sε) with those of the two-scale system (1.3.S0). In the first two
examples the spectrum of L is discrete and we know that stable two-scale pulses exist according to
Section 3. In the third example L has only a continuous spectrum and our guiding system approach
fails, because the two-scale system does not reduce to finitely many ODEs. However, we observe
stable pulse solutions in our simulations.

We numerically solve the FitzHugh–Nagumo equations on the bounded interval x ∈ [−300, 300] with
periodic boundary conditions. We emphasize at this point that the ε that is chosen in the numerical
simulations is in the range ε ∈ [2, 30]. At first glance, this is not a “small” number, however, recall that
the characteristic length scale of the microstructure εchar is given by the quotient of microscopic length
scale divided by macroscopic length scale. The role of the macroscopic length scale of our system is
played by the width of the activator spike, which is about 60, cf. Figure 4.1. With this, the characteristic
ratio εchar ∈ [0.03, 0.5] is indeed small.

To calculate the solutions, we implement a semi-implicit discretization scheme in MATLAB. Therein,
the diffusion parts are solved via fast Fourier transform and the reaction terms are treated with the
explicit Euler method. Therefore, we use the time step dt = 0.01. For the spatial discretization we
use for the ε-system (1.2.Sε) the step size dx ≈ 0.0366, and for the two-scale system (1.3.S0)
dx ≈ 1.1742 and dy ≈ 0.0020.

4.1 Macroscopically vanishing inhibitor v

We consider the case of a differential operator L with constant coefficients b(y) ≡ d(y) ≡ δ for
0 < δ � 1, i.e.,

(Lϕ)(y) = −δ(ϕyy − ϕ) and D(L) = H2(S).

The eigenfunctions of L are given via ϕsn(y) = sin(2πny), ϕcn(y) = cos(2πny), for n ≥ 1, and
ϕ0(y) ≡ 1. Therefore, Assumption 3.1 is satisfied. The corresponding eigenvalues λn = δ(1 +
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(2πn)2) are isolated, real, positive, and have double geometric multiplicity for all n ≥ 1, whereas
λ0 = δ is simple. In this example, α is the sum of two eigenfunctions, namely,

α = α̃1 + α̃2 with α̃1(y) =
√

2 sin(2πy), α̃2(y) =
√

2 sin(4πy),

β(y) = 0.001(α(y) + ϕ(y)), ϕ(y) =
√

2 sin(8πy), and δ = 0.0001.
(4.1)

Notice that ϕ is orthogonal to α in L2(S). We emphasize that β is not orthogonal to α but the signs
of α, β, and the product α(y)β(y) are not constant, cf. Remark 3.1.2.

For the choice of parameters in (4.1), the fully decomposed two-scale system of finitely many coupled
ODEs as in (3.14) reads 

ut = uxx + u(1−u)(u−0.15)− v1 − v2,
(v1)t = −λ1v1 + 0.001·u,
(v2)t = −λ2v2 + 0.001·u,

(4.2)

{
wt = −λ3w + β+u,
(v+)t = −L+v+.

(4.3)

The three-component system (4.2) is the guiding system, the w-equation in (4.3) corresponds to the
projection onto the eigenfunction ϕ, and the v+-equation captures the remaining projections onto
the complement of Span(α̃1, α̃2, ϕ). In view of (3.4), the parameters in the guiding system (3.5.GS)
satisfy α1 = α2 = 1 and β1 = β2 = β+ = 0.001. Recall that λ1 = 0.0001(1 + 4π2), λ2 =
0.0001(1 + 16π2), and λ3 = 0.0001(1 + 64π2).

First, we solve the guiding system (4.2)–(4.3), see Figure 4.1, so that we can use the pulse (u, v1, v2)
and the additional decoupled component w to compute the initial conditions for the original system
(1.2.Sε) and the two-scale system (1.3.S0).

Secondly, we solve the original system (1.2.Sε) for various ε > 0, see Figure 4.2,

uεt = uεxx + uε(1− uε)(uε − 0.15)− α(x
ε
)vε, vεt = δ

(
ε2vεxx − vε

)
+ β(x

ε
)uε, (4.4)

supplemented with the initial condition uε0(x) = u(x) and vε0(x) = α̃1(
x
ε
)v1(x) + α̃2(

x
ε
)v2(x) +

ϕ(x
ε
)w(x). According to the homogenization results in Section 2, the solutions behave asymptotically

like uε(t, x) = U(t, x)+O(ε) and vε(t, x) = V (t, x, x
ε
)+O(ε). One can observe in Figure 4.2 that

the amplitude of the oscillations of uε decrease as ε decreases. However, the amplitude of oscillations
of vε does not vanish, while, smaller ε lead to higher frequencies. In Figure 4.2, we also observe
oscillations of the inhibitor vε, which correspond to the different modes α̃1, α̃2, and ϕ.

Figure 4.1: Solution (u, v1, v2, w) of the guiding system (4.2)–(4.3). Here and in what follows, the
pulse always propagates from the right to the left.
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Finally, we compare our results to the solution of the two-scale system (1.3.S0), see Figure 4.3. We
choose the initial conditions U0(x) = u(x) and V0(x, y) = α̃1(y)v1(x) + α̃2(y)v2(x) +ϕ(y)w(x).
In order to plot the one-scale component U(t, x) in one diagram with the two-scale component
V (t, x, y), see Figure 4.3 (left), we average the solution V over the periodicity cell S. In our case∫ 1

0

v(x+ ct, y) dy = 0 for all x ∈ R, t ≥ 0,

since
∫ 1

0
β(y) dy = 0, cf. Remark 3.2.1. In this sense we actually found an exemplary pulse solution

with macroscopically vanishing inhibitor.

Figure 4.2: Solution (uε, vε) of the original system (4.4) with parameters (4.1). Left: ε = 10. Right:
ε = 2.

Figure 4.3: Solution (U, V ) of the two-scale system (1.3.S0) with α and β as in (4.1) and b = d = δ.
Left: the components U and

∫ 1

0
V (t, x, y) dy. Right: the V -component in xy-plane (rotated by 180◦)

and its average.

4.2 Generalized pulse solution for the original system (1.2.Sε)

In this example there is no inhibitor diffusion, d(y) ≡ 0, and b(y) ≡ b0 > 0 is constant such that
Assumption 3.1 is satisfied and the spectrum of L = b0 Id consists of the only eigenvalue b0. With
this, any α ∈ L2(S) is an eigenfunction of L and we choose

b0 = 0.00001, α(y) =

{
+1 if y ∈ [0, 0.7),
−1 if y ∈ [0.7, 1),

β(y) = 0.003α(y). (4.5)
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According to Remark 3.2.2, the inhibitor vε of the generalized pulse solution (uε, vε) of the original
system

uεt = uεxx + uε(1−uε)(uε−0.15)− α(x
ε
)vε, vεt = −b0vε + β(x

ε
)uε (4.6)

exhibits oscillations, whereas the activator uε is independent of ε, see Figure 4.4.

Again, we observe a nice agreement with the two-scale pulse solution of the limit system (1.3.S0), see
Figure 4.5. In this case the average of V does not vanish, since

∫ 1

0
β(y) dy 6= 0. Due to (3.20) and

the relation
∫ 1

0
α(y) dy = 0.4, we have∫ 1

0

V (t, x, y) dy = 0.4 v1(x+ ct) for all x ∈ R, t ≥ 0,

where v1 is given via the guiding system (3.21).

Figure 4.4: Solution (uε, vε) of the original system (4.6) with parameters (4.5). Left: ε = 25. Right:
ε = 5.

Figure 4.5: Solution (U, V ) of the two-scale system (1.3.S0) with parameters (4.5) and d = 0. Left:
the components U and

∫ 1

0
V (t, x, y) dy. Right: the V -component in xy-plane (rotated by 180◦) and

its average.

4.3 Continuous spectrum of L

Let us consider the case where L has only a continuous spectrum, which does not fit into the scope
of our assumptions in Section 3. In this case Theorem 2.2 still holds, but our method for the proof
of two-scale pulses fails. However, we are able to present a numerical example which indicates that
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stable pulses also exist in this situation. Let us study the operator (Lϕ)(y) = b(y)ϕ, where b(y) is a
positive and bounded non-constant function. The data are

b(y) = 0.001(5+3 sin(2πy)), α(y) ≡ 1, β(y) ≡ 0.003. (4.7)

We solve the original system for various ε, see Figure 4.6,

uεt = uεxx + uε(1−uε)(uε−0.15)− vε, vεt = −0.001
(
5+3 sin(2π x

ε
)
)
vε + 0.003·uε. (4.8)

The solution (U, V ) of the two-scale system (1.3.S0) reproduces the effective behavior of the pulse
(uε, vε), see Figure 4.7. In this case we do not have a suitable guiding system at hand, however,
we choose as initial condition the pulse solution of the guiding system (3.21) with the parameters
β1 = 0.003 and λ1 = 0.005. Since the pulse has to evolve from the non-matching initial condition,
we solve this example on the bigger interval x ∈ [−700, 700]. The step sizes are dx ≈ 0.0427 for
the ε-system and dx ≈ 1.3685 for the limit system.

Figure 4.6: Solution (uε, vε) of the original system (4.8). Left: ε = 30. Right: ε = 3.

Figure 4.7: Solution (U, V ) of the two-scale system (1.3.S0) with parameters (4.7). Left: the compo-
nents U and

∫ 1

0
V (t, x, y) dy. Right: the V -component in xy-plane and its average.

A Auxiliary estimates

The following lemma gives a standard proof for L∞-boundedness for solutions of parabolic equations.

Lemma A.1. Let Assumptions 2.1 and 2.2 hold. Any solution (uε, vε) of (1.2.Sε) satisfies

‖uε(t)‖L∞(R) + ‖vε(t)‖L∞(R) ≤ Ceκt for t ≥ 0,
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where the constants C, κ ≥ 0 are independent of ε and t. Indeed, C depends on ‖uε0‖L∞(R) and
‖uε0‖L∞(R), and κ depends on max{‖α‖L∞(S), ‖β‖L∞(S), ‖b‖L∞(S)} as well as the growth conditions
of f in Assumption 2.1.2.

Proof. For brevity we set αε(x) := α(x
ε
), etc., and define

M(t) := max{1, ‖uε0‖L∞(R), ‖vε0‖L∞(R)}e2κt,

where κ ∈ R is to be determined later. We prove the lower bound min{uε(t, x), vε(t, x)} ≥ −M(t)
and the upper bound max{uε(t, x), vε(t, x)} ≤ M(t) simultaneously. First, we introduce the nega-
tive part for ϕ ∈ C0([0, T ]; L2(R))

(ϕ+M)−(t, x) :=

{
−(ϕ(t, x) +M(t)) if ϕ(t, x) ≤ −M(t) for a.a. x ∈ R,
0 else

and test the uε- and vε-equations in (1.2.Sε) with−(uε+M)− and−(vε+M)−, respectively. Using
Mt = 2κM and Mx = 0, integrating over R, and applying partial integration gives

1

2

d

dt

(
‖(uε +M)−‖2L2(R) + ‖(vε +M)−‖2L2(R)

)
≤
∫
R

{
− (f(uε) + κM) (uε +M)− − (−αεvε + κM) (uε +M)−

− (−bεvε + κM) (vε +M)− − (βεu
ε + κM) (vε +M)−

}
dx. (A.1)

Secondly, we introduce the positive part

(ϕ−M)+(t, x) :=

{
ϕ(t, x)−M(t) if ϕ(t, x) ≥M(t) for a.a. x ∈ R,
0 else

and note that (ϕ + M)− ≥ 0 and (ϕ −M)+ ≥ 0 for all functions ϕ ∈ C0([0, T ]; L2(R)). Testing
(1.2.Sε) with (uε −M)+ and (vε −M)+ yields

1

2

d

dt

(
‖(uε −M)+‖2L2(R) + ‖(vε −M)+‖2L2(R)

)
≤
∫
R

{
(f(uε)− κM) (uε −M)+ + (−αεvε − κM) (uε −M)+

+ (−bεvε − κM) (vε −M)+ + (βεu
ε − κM) (vε −M)+

}
dx. (A.2)

Adding the estimates in (A.1) and (A.2) gives

1

2

d

dt

(
‖(uε +M)−‖2L2(R) + ‖(vε +M)−‖2L2(R) + ‖(uε −M)+‖2L2(R) + ‖(vε −M)+‖2L2(R)

)
≤
∫
R

{
− (f(uε) + κM) (uε +M)− + (f(uε)− κM) (uε −M)+ (A.3)

− (−αεvε + κM) (uε +M)− + (−αεvε − κM) (uε −M)+ (A.4)

− (−bεvε + κM) (vε +M)− + (−bεvε − κM) (vε −M)+ (A.5)

− (βεu
ε + κM) (vε +M)− + (βεu

ε − κM) (vε −M)+
}

dx. (A.6)

The first term in (A.3) is controlled as follows: (uε + M)− > 0 implies u < 0 and according to
Assumption 2.1.2 f(u) ≥ c1u− c2 with c1, c2 ≥ 0. If κ ≥ max{2c1, 2c2}, then we have

− (f(uε) + κM) (uε +M)− ≤ −(c1u+ κ
2
M)(uε +M)− + (c2 − κ

2
M)(uε +M)−

≤ κ|(uε +M)−|2.
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Analogously, the second term in (A.3) is bounded by κ|(uε −M)+|2 for κ ≥ max{2c3, 2c4}. In the
same manner we obtain that, if κ ≥ ‖b‖L∞(S), then the sum of both terms in (A.5) is bounded by
κ|(vε +M)−|2 + κ|(vε −M)+|2. The mixed terms in (A.4) can be controlled for κ ≥ ‖α‖L∞(S) via

− (−αεvε + κM) (uε +M)− + (−αεvε − κM) (uε −M)+

≤ κ(|vε| −M)
(
(uε +M)− + (uε −M)+

)
≤


0 if |vε| < M,
κ(vε +M)−

(
(uε +M)− + (uε −M)+

)
if vε ≤ −M,

κ(vε −M)+
(
(uε +M)− + (uε −M)+

)
if vε ≥M

≤ κ
(
|(vε +M)−|2 + |(vε −M)+|2 + |(uε +M)−|2 + |(uε −M)+|2

)
.

The mixed terms in (A.6) are treated analogously.

Overall, choosing κ = max{2c1, 2c2, 2c3, 2c4, ‖α‖L∞(S), ‖β‖L∞(S), ‖b‖L∞(S)} gives

1

2

d

dt

(
‖(uε +M)−‖2L2(R) + ‖(vε +M)−‖2L2(R) + ‖(uε −M)+‖2L2(R) + ‖(vε −M)+‖2L2(R)

)
≤ 3κ

(
‖(uε +M)−‖2L2(R) + ‖(vε +M)−‖2L2(R) + ‖(uε −M)+‖2L2(R) + ‖(vε −M)+‖2L2(R)

)
.

By construction, the initial conditions satisfy (uε + M)−(0, x) = (uε −M)+(0, x) = 0 and (vε +
M)−(0, x) = (vε−M)+(0, x) = 0 almost everywhere in R. Therefore, the application of Grönwall’s
lemma implies (uε+M)−(t, x) = (uε−M)+(t, x) = 0 and (vε+M)−(t, x) = (vε−M)+(t, x) =
0 for all t ≥ 0 and almost all x ∈ R. Hence, the desired L∞(R)-bound holds uniformly with respect
to ε.

Remark A.1. With the same argumentation as in the proof of Lemma A.1, we obtain that any solution
(U, V ) of (1.3.S0) satisfies

‖U(t)‖L∞(R) + ‖V (t)‖L∞(R×S) ≤ Ceκt for t ≥ 0,

where C depends on ‖U0‖L∞(R) and ‖V0‖L∞(R×S), and κ is as in Lemma A.1.

For completeness, we give the proof of the next lemma, which follows along the lines of [Eck05,
Lem. 4.1].

Lemma A.2. For every g ∈ H1(R; L2(S)), we set ḡ(x) :=
∫ 1

0
g(x, y) dy. Then, the dual norm of

Rεg − ḡ is bounded via

‖Rεg − ḡ‖H1(R)∗ ≤ ε‖g‖H1(R;L2(S)).

Proof. We consider for arbitrary ϕ ∈ C∞c (R)∫
R
(Rεg − ḡ)ϕ dx =

∑
n∈Z

∫ ε(n+1)

εn

(Rεg − ḡ)ϕ dx.

Without loss of generality we set n = 0. Using the variable substitutions x = εy and x = εỹ gives∫ ε

0

g(x, x
ε
)ϕ(x) dx = ε

∫ 1

0

g(εy, y)ϕ(εy) dy = ε

∫ 1

0

∫ 1

0

g(εy, y)ϕ(εy) dy dỹ,∫ ε

0

ḡ(x)ϕ(x) dx =

∫ ε

0

∫ 1

0

g(x, y)ϕ(x) dy dx = ε

∫ 1

0

∫ 1

0

g(εỹ, y)ϕ(εỹ) dy dỹ.
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Subtracting both integrals and rearranging the integrands yields∫ ε

0

(Rεg − ḡ)ϕ dx = ε

∫
(0,1)2

(g(εy, y)− g(εỹ, y))ϕ(εy) + g(εỹ, y) (ϕ(εy)− ϕ(εỹ)) dy dỹ.

Exploiting the fundamental theorem of calculus

g(εy, y)− g(εỹ, y) = ε

∫ 1

0

gx(εyt+ (1− t)εỹ, y)(y − ỹ) dt

as well as the variable transform

(t, ξ, η) = (t, ty + (1− t)ỹ, y − ỹ) with

∣∣∣∣det

(
∂(t, ξ, η)

∂(t, y, ỹ)

)∣∣∣∣ = 1,

where (t, ξ) ∈ (0, 1)2 and η ∈ (−1, 1), yields with the Cauchy–Bunyakovsky–Schwarz inequality∣∣∣∣∫ ε

0

(Rεg − ḡ)ϕ dx

∣∣∣∣ ≤ ε2
(∫

(0,1)2

∫ 1

−1
|gx(εξ, ξ + (1− t)η)η|2 dt dξ dη

) 1
2
(∫ 1

0

|ϕ(εy)|2 dy

) 1
2

+ ε2
(∫ 1

0

∫ 1

−1
|ϕx(εξ)η|2 dξ dη

) 1
2
(∫

(0,1)2
|g(εỹ, y)|2 dỹ dy

) 1
2

≤ ε24‖g‖H1((0,ε);L2(S))‖ϕ‖H1(0,ε).

Summing up over all n ∈ Z and recalling the dense embedding of C∞c (R) into H1(R) gives the
desired estimate.
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