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On convergences of the squareroot approximation
scheme to the Fokker—Planck operator

Martin Heida

Abstract

We study the qualitative convergence properties of a finite volume scheme that
recently was proposed by Lie, Fackeldey and Weber [23] in the context of conforma-
tion dynamics. The scheme was derived from physical principles and is called the
squareroot approximation (SQRA) scheme. We show that solutions to the SQRA
equation converge to solutions of the Fokker-Planck equation using a discrete notion
of G-convergence. Hence the squareroot approximation turns out to be a usefull ap-
proximation scheme to the Fokker-Planck equation in high dimensional spaces. As
an example, in the special case of stationary Voronoi tessellations we use stochastic
two-scale convergence to prove that this setting satisfies the G-convergence property.
In particular, the class of tessellations for which the G-convergence result holds is
not trivial.

1 Introduction

In a recent work |23|, the so-called squareroot approximation (SQRA) operator has been
introduced, based on earlier related works [12, 22]. The SQRA-scheme was introduced
as a finite volume scheme on a random Voronoi discretization designed for numerical
simulation of large molecules in conformation dynamics. Hence it is interesting to know
whether the SQRA-operator converges in some sense to a physically reasonable continuous
operator as the discretization becomes finer and finer. A major contribution of this work
is a positive answer to that question, i.e. that the SQRA-operator converges to the
(physically expected) Fokker-Planck operator, which is also known as the Smoluchowski
operator in conformation dynamics. This will be considered for Dirichlet and for periodic
boundary conditions

The Voronoi discretization is essential for the SQRA method as it avoids the curse of di-
mensionality in high-dimensional spaces. Usually, the Voronoi-discretization of an elliptic
operator needs knowledge of the volume of the Voronoi cells as well as of the n — 1-
dimensional volume of the cell-interfaces. However, the phase spaces of molecules are of
very high dimension (order 103) and it is computationaly not feasible to compute the
respective volumes in reasonable time. Thus, in contrast to other numerical approaches,
the SQRA simply assumes that the Voronoi-cells are all of approximately equal size and
that the several interface are also of approximately the same size. This ansatz is thought
to mimic an almost optimal partition of the space by balls of equal size.

In order to introduce the SQRA operator, let @ be a bounded domain with a family

of points (Pn;),.; ,,- From these points we construct a Voronoi tessellation of cells
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M. Heida 2

G, that correspond to P, ; for every i. We write ¢ ~ j if the cells G,,; and G, ; are
neighbored. Thus, the finite volume space for the discretization (G, ;),_, ,, is isomorphic
to R™. Given a potential V € C2(Q) and writing v} := exp (—%BV(Pm,i)), the squareroot
approximation operator on P, ; is then defined as

(Fott), 5= oy Z(uj —UZ:) (1)

where C,, is a normalizing constant. It turns out that this normalizing constant can be
estimated from the case V =0, i.e. from the discrete Laplace operator L£,, which is given

(Lpu), :=Chy Z: (uj —u;) . (2)

More precisely, Theorem 1.5 states that the convergence behavior of F,, is mostly charac-
terized by the convergence behavior of L,,: If £,, is G-convergent (in the discrete sense)
to Lu = V- (ApomVu), the solutions u,, of the equation F,,u,, = f, converge to solu-
tions Fu := V- (Apom V) + div (uApemVV) = f, provided f,, - f in a weak sense. Note
that the opposite direction is trivial: If the SQRA converges for all V ¢ C2(Q) then
Em V- Ahomv.

1.1 Numerical and physical relevance of results

The discretization scheme (1) proposed in [23] is implemented and applied to alanine
dipeptide (Ac-A-NHMe) in |9]. The operator F,, has precisely one eigenvector u® to the
eigenvalue 0, namely u; = vZ. Hence, writing 77 := exp (-8V (P,,;)) = v?, we obtain

(F), CZ(WC ¢C

Hence, the coefficients can be written in terms of the square roots of the stationary
solution, which is the reason the method is called squareroot approrimation. As boundary
conditions one usually uses Dirichlet conditions in space variables on periodic boundary
conditions for angles.

) Fum™ =0.

)

The derivation of (1) in [23| was motivated by conformation dynamics. In short, a confor-
mation of a (large) molecule is a region R in the phase space of the molecule, such that the
exit time for the molecule to leave this region is large compared to the stochastic vibra-
tions. Thus, conformation dynamics deals with the “long time” behavior of the dynamics
of large molecules. The operator F,, is a short time transition matrix from which one can
identify the conformations using Perron cluster analysis [7]. The present result that (1)
converges to a physically meaningful operator is thus an important support for the square-
root approximation method. In particular, Theorem 1.5 proves that the limit operator F
is the generator of the Langevin dynamics in form of the Smoluchowski equation.

In contrast to the assumptions in Theorem 1.11, the underlying point process of the
Voronoi-discretization in |23] is usually not ergodic or stationary. However, the scheme in
[9] suggests that P, sometimes is “reasonably close” to such a stationary ergodic process.
Indeed, the results in [9] show that the discretization (1) has good properties in appli-
cation. A formal calculation in [9] shows that on the Voronoi-grid Z" the operator F,,
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On convergences of the squareroot approximation scheme 3

converges to the Fokker-Planck operator. Therefore, in the general Theorem 1.5 we prove
convergence of (1) under the assumption that the discrete Laplace operator G-converges.
Moreover, Theorem 1.5 tells us that the normalizing constants in (2) and (1) should be
the same. Hence, in numerical application, one can determine C), by comparing the first
eigenvalue of £,, with the first eigenvalue of A. On the other hand, this ansatz provides
us with a practical criteria to qualitatively validate the convergence of F,, apriori. More
precisely, we can expect that the numerical approximation is good if —£,,u ~ —C' Au for
the first & eigenvectors of —A on Q.

On the other hand, Theorem 1.11 yields G-convergence of the operator L,, to a homoge-
nized operator V - (Apom V) in the stationary ergodic case. From well known theory, one
can then obtain spectral convergence, see |21, Chapter 11|. Translated to the Dirichlet
case, Theorem 1.11 yields that the stationary ergodic setting satisfies all requirements for
the application of Theorem 1.5. This in turn provides us with the knowledge that the
class of Voronoi discretizations satisfying the G-convergence property is much bigger than
7.

1.2 Comparison to literature

In what follows, we briefly summarize some of the relevant literature on Voronoi finite
volume schemes and on stochastic homogenization.

The main purpose of this work, asymptotic behavior of the SQRA scheme, is actually a
homogenization result for a discretization of the Fokker-Planck operator. Although it is
likely that such a scheme has been proposed in the literature before, the first and only
work known to the author is due to Mielke [26], Section 5. He treated the 1-dimensional
case with cells of equal size. This work appeared simultaneously but independently with
the introduction of the SQRA in [23].

Voronoi finite volume schemes are used widely in literature. A first breakthrough for
those methods was the Scharfetter-Gummel scheme [28], which has been used extensively
in the simulation of semiconductor devices, though the idea even goes back to a work by
Macneal [24]. However, in the last years there has been an extensive mathematical study
of finite volume Voronoi discretizations of elliptic operators of which we representatively
mention the works [8, 10, 11, 27, 29]. These approximation schemes use the knowledge
on the volumes of the cells and the interfaces, as their aim is the approximation of a
particularly given elliptic operator, why the SQRA is a physically motivated method that
simply supposes that all cells are almost equal in size and shape. Hence, we cannot
use the results or the methods developed there. In contrast, we will use methods from
homogenization theory.

The stochastic homogenization of the discrete Laplace operator (also known as homoge-
nization in the random conductance model) has been studied very well in recent years, as
it is of great interest for physicists (see [3]) and mathematicians (see [2]). The motivation
originally comes from random walk theory, where the elliptic operator is the generator of
the semigroup generated by the random walk.

In view of the vast literature on stochastic homogenization of elliptic problems, Theorem
1.11 is not a surprising result. However, we are not aware of a suitable proof in literature
that applies to this particular setting. The method used in order to proof Theorem 1.11
is a weak* convergence method called two-scale convergence. It is based on the two-scale
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M. Heida 4

convergence introduced by Zhikov and Piatnitsky in [30] and generalized and applied in
the context of random walk theory in the works [13, 14]. In a slightly different way,
two-scale convergence has also been applied in [25].

A novelty of the theory presented below is the application of two-scale convergence to
a grid that differs from Z”, which made it necessary to modify certain notions and con-
cepts. In this context, note that our spaces L2 and L2 indeed differ from the standard
definition in 2|, as we drop for example the covariance condition. Another approach to
unstructured grids has recently been followed by Alicandro, Cicalese and Gloria [1|. They
study homogenization of nonlinear elasticity problems and in the quadratic case their
result could also be applied to the elliptic operator L,,, yielding somehow a different con-
cept of notation (i.e. T'-convergence) and a formally different formulation of the limiting
matrix Apom.

For further reference to the random conductance model, we refer to the aforementioned
review by Biskup [2].

Let us finally comment on the convergence rate. We will only prove qualitative con-
vergence and the question of quantitative convergence is completely open. However, we
know from literature on stochastic homogenization of the continuous and the discrete
Laplace operator that the best convergence rate we can expect is 3 in presence of Dirich-
let boundary conditions, see the above mentioned literature for Voronoi FV-methods, and
e for unbounded domains or periodic boundary conditions, see the recent work [15] and
references therein. Since the Fokker-Planck equation is a linearly perturbed Laplace equa-
tion, we expect the same convergence rate for the SQRA-operator as for the underlying
discrete Laplace operator. However, for the discretization of the present work, the author
is not aware of results for the convergence rate of the discrete Laplace operator.

1.3 Main results

We now formulate the major results of this article in a rigorous way. For a definition of
the notions stationarity and ergodicity, we refer to Section 2.

For every ¢ > 0 let P¢ = U;eny P7 be a countable family of points in R™ with corresponding
Voronoi cells G¢ := U; G5. We denote by E¢ the set of all natural pairs (¢,j) € N? such
that G; and G5 are neighbored where we identify (7, j) with (j,i) and write 7 ~ j. For
(i,7) € E° we define T';; := 3 (Pf + P]’f)

Notation 1.1. We denote by S¢ the set of all functions (Ff), = R. For every u € §¢ we
write uf == u(Fy) and for every f: I'* > R we write f; := f(I'j;). Furthermore, we write
ug; = 5 (u5 +ug) such that u5, : [ - R.

We define R. : L? (R") - §¢ through
(R.0),=lGi1" [ 0.
G;

and the operator R?: 8¢ - L7 (R") through
(Riu) [x] =uw(P7)  if weGy,

such that (R.)* = R;.

DOIT 10.20347/WIAS.PREPRINT.2399 Berlin 2017



On convergences of the squareroot approximation scheme 5

If (i,7) € E¢, we denote JGf; the interface between Gf and G5 and v;; the unit vector
pointing from Pf to P;. Hence, we find v;; = —vj;. Furthermore, we define

<= (J I§ and  0G°:= |J 0Gj;.

(i,5)eEe (i.5)eE®

The jump operator on 9G;; for a function u € S¢ is given through [u];; == (u; —u;). Then,
for every ¢ € §¢ and 1 € C}(R™)" it holds:

(R;¢) V- ¢dﬁ Z Z szyw ¢dHn t=- Z IIgb]]m '¢dHn_1a (3)

i i~j JOGE; (i,j)eEe J OGE;

where we introduced [¢];; = [¢]i;v45 = [¢];iv4i, which is invariant under the transformation
(i,7) = (4,7). Hence, the operator [¢]dH" ! is a distributional gradient of R} ¢. Moreover,
for ¢ € §¢ the quantity [¢];; can be equally interpreted as a function on I

The general case

On a given bounded Lipschitz domain @ and for a given family of points . and a bounded
continuously differentiable function v € C'(Q) with v # 0 on Q, we consider the following
two operators on u € S¢:

(Cou) == 3 (w5,

€7 (ig)eEe
€ 1 E/UZE Evj
(Fou); = 2 > uj e Uiz ]
(ieBs \ Y i

where we use the Notation 1.1.

Condition 1.2. For a bounded Lipschitz domain Q and every € > 0 let (Pf);en be a
family of points in R™ and let (G¢);ey be all Voronoi cells that intersect with Q. We say
that (Pf);en is admissible if there exists a > 0 such that

Ve>0: ae< 1n1§ diam G5 < supdiam G5 < ¢, (4)
1€ 1eN

where diam G5 and diam G5 denote the minimal and the maximal diameter of the cell G5,
respectively.

Corollary 1.3. Let Q be a bounded domain and let sup;diam G5 < e, then for every
ue L2(Q) holds (RfR.u) - u in L?(Q) as e — 0.

In fact, Condition 1.2 is already sufficient to proof unique existence of solutions to the
SQRA scheme, as we will see in the proof of Theorem

Definition 1.4 (G-convergence). Let Q be a bounded Lipschitz domain. For every € > 0,
let P¢ be a family of points. We call (P?)_,, G-convergent if there exists a symmetric pos-
itive definite matrix Apoy, such that for every f e L2(Q) the sequence of unique solutions
uf € S§(Q) to the problem

Lou® =R f
satisfies R*u® — u strongly in L2(Q) where u € H2(Q) n H}(Q) solves
V- (AhomVu) = f. (5)
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M. Heida 6

The notion of G-convergence comes from homogenization theory, see [21, 5|. Our definition
coincides with the general definition of Dal Maso [5] applied to the particular setting of
this work. Note that the Dirichlet-version of Theorem 1.11 below guaranties that the class
of G-convergent point processes is not empty.

Theorem 1.5. Let Q c R™ be a bounded Lipschitz domain and for every € > 0 let
P be a distribution of points on R™ such that (P°¢).,, satisfies Condition 1.2. Let
v(z) = exp (—%BV(QE)) for some bounded and twice continuously differentiable function
V e C%(Q). Then, for every € >0 and f € S¢ there exists a unique solution u® € S5(Q)
to

—(Fous); = fi VP eQ. (6)

satisfying the estimate

* |2 * e e\|2 cl2 2
IRz G2y + IRE (£50) 2y < C (£ 10 lecay ) - (7)

If (P#)_.., additionally is G-convergent and R} f¢ — f weakly in L?(Q), then there exists
a function uw e HY(Q) such that Riu® — u strongly in L*(Q) and [uf|dH" ' - Vu in the
sense of distribution as € - 0. Furthermore, u is a solution to the problem

-V- (AhOva) -V (Ahomuﬂvv) = f (8)

Finally, we take a look on the time-dependent case.

Theorem 1.6. Let Q c R™ be a bounded Lipschitz domain and for every e >0 let P¢ be a
distribution of points on R™ such that (P?)_,, satisfies Condition 1.2 and is G-convergent.
Let v(z) = exp (—%BV(I‘)) for some bounded and twice continuously differentiable function

V e C%(Q) and for every e >0 let f< e L2(0,T;5°) and uj € S¢ with

sup  IRz08l gy 27 T, - 16,0 <o
i~

Then, there exists g >0 such that for every € < gy there exists a unique solution uc to
Opu — (Fu®); = f7 - (9)
If R:fe — f weakly in L2(0,T; L*(Q)), then

T
sub (102 yrsan * 1R E O orsian * [ 7T, 16)7) <o
i~
and there exists a function u € L2(0,T; Hy(Q)) with du € L2(0,T;L*(Q)) such that
Rius — u strongly in L?(0,7;L*(Q)), ORu — Owu weakly in L*(0,T;L?*(Q)) and
%[[us}]d’;’{”*l — Vu in the sense of distribulion as € - 0 and u is the unique solution
to the problem

Ot =V - (ApomVt) = V - (AomuBVV) = f . (10)

We will prove the Theorems 1.5 and 1.6 in Section 4.

Remark 1.7. Theorem 1.5 and 1.6 can also be formulated an proved with periodic bound-
ary conditions on a rectangular domain. The modification of the proofs are minor and
straight forward.

DOIT 10.20347/WIAS.PREPRINT.2399 Berlin 2017



On convergences of the squareroot approximation scheme 7

The stationary ergodic case

Let (£2,.#,P) be a probability space and let w » P(w) = (P;(w)),n be a stationary
random point process on R". We then define P*(w) := e P(w) and construct from P¢(w)
the sets G§;(w), I'*(w) and E*(w) according to the beginning of Section 1.3.

Condition 1.8. Using the notation of Condition 1.2, a Voronoi-tessellation (G;);cy, based
on a point process (P;);en is admissible if there exists a > 0 such that

a <infdiam G; <supdiam G; < 1. (11)

%

A similar condition has been imposed in [1]. Note that if P(w) satisfies 1.8, this implies
that P¢(w) satisfies the admissibility Condition 1.2.

If Q is a cuboid, we denote P5,., (Q,w) the periodization of QnP¢(w). From the Q-periodic
point process P5. (Q,w), we construct G5,.(Q,w), I'5..(Q,w) and Ef. (Q,w) according
to the beginning of Section 1.3. Furthermore, we set Sg.,(Q,w) the set of all functions

Pt (Q,w) — R that are Q-periodic. The operators R. and R are defined on S5, (Q,w)
in an obvious way. Furthermore, we denote H (Q) the set of all H'(Q)-functions with

periodic boundary conditions.

Remark 1.9. Note that for the periodized point process and the corresponding Voronoi
tessellation the Condition 1.8 is still satisfied with « in inequality (11) being replaced by

o

5
For the stochastic results, we will need the following Assumption.

Assumption 1.10. The random positive numbers a;;(w) are such that the measure

Hal(w) = Z Q5 (w)drij(w) (12)
(i,5)eE(w)

18 a stationary and ergodic random measure.

If a;;(w) = 1 for all (¢, j) and almost every w, this implies that the point process (P;(w) ),y
has to be stationary and ergodic. If we work on the periodized lattice, we set a;; = 1 for
every (i,7) € EZ. (w)\E?(w). Then, we define the following discrete elliptic operator:

(L), = % ) (uy- ). (13)

(1.3)eBger (w)

Since we work on periodic boundary conditions, we will restrict ourselves to the following
function space

Sger,O(va) = {u € Sger(Q7w) : Z u(P'LE) = O} :
PfePs,, (w)
The operator L, admits the following asymptotic behavior on &7 ,(Q,w).

Theorem 1.11. Let the point process PE(w) almost surely satisfy Condition 1.8 and let
the random numbers a;;(w) be such that 0 < ¢! < a;;(w) < ¢ < 0o almost surely for some
positive constant ¢ and such that Assumption 1.10 holds. For such w let f< € S5 ,(Q,w)

DOIT 10.20347/WIAS.PREPRINT.2399 Berlin 2017



M. Heida 8

be a sequence of functions such that R:fe — f weakly in L?>(Q) for some f € L*(Q).

Then for almost every w the sequence uc € Sger’O(Q,w) of solutions to the problems

Lot = (14)

has the following properties: There exists a function u € HJ., (Q) such that Riu® — u
strongly in L*(Q) and L[u?]dH"' - Vu in the sense of distribution and as ¢ — 0.
Furthermore, ue H! (Q) n H2(Q) is the unique solution to the problem

per

-V (Ahomvu) =f, / u=0, (15)
Q
where Apom s defined below in (32).

Theorem 1.11 evidently implies G-convergence. Note that it can also be formulated and
proved for Dirichlet boundary conditions. In the latter case, the proof turns out to be
simpler which is why the Theorem was formulated for the periodic case.

2 Ergodic Theorems for Voronoi-tessellations

In this work, we rely on the following assumptions.

Assumption 2.1. Let (2, %, P) be a probability space. We assume we are given a family
(72 )zern of measurable bijective mappings 7, : Q2 = ), having the properties of a dynamical
system on (Q, F,P), i.e. they satisfy (i)-(iii):

(1) Ty 0Ty =Tasy , To = id (Group property)
(ii)) P(t_.B)=P(B) VYreR" BeF (Measure preserving)

(i1i)) A: R"xQ - Q (z,w) ~ 1w is measurable (Measurability of evaluation)

We finally assume that the system (7, )zern is ergodic. This means that for every measur-

able function f:Q — R there holds

[f(w) = f(T,w) Ve eR", a.e. we Q] = [f(w) =const for P-a.e.weQ].  (16)

In what follows, we recapitulate parts of the theory from [6]. Given a stationary point
process (1), we define I';; (w) := 3 (Pf + Pf) the midpoint of the straight line connecting
Pf and P; and

rHw)y:= U TIHw).

(4,7)eE=(2)

The measure pup = Y, 0p, is stationary and the mapping w + pp(,)(B) is measurable for
every open set B c R". Similarly, we can define ur) = ¥(; j)ep(w) Or; (») having the same
properties as pp. Hence, ppwy, ptirw) and pere from (12) are random measures, i.e.
measurable mappings 2 - M, where M is the set of all Radon measures on R" equipped
with the vague topology and corresponding o-algebra.

DOIT 10.20347/WIAS.PREPRINT.2399 Berlin 2017



On convergences of the squareroot approximation scheme 9

Hence, for fixed w, the mapping w = p, = fiarw) + flpw) 15 a random measure and
therefore (u(2), u(F), u#P) is a probability space with respect to the vague topology.
Due to this observation, we may assume that 2 ¢ M and P is a probability measure on
M. This has the advantage that M with the vague topology is a complete separable
metric space. Hence the o-Algebra .% becomes separable and the set C,(£2) of bounded
continuous functions is dense in LP(2, 1) for any 1 < p < co and any finite measure u on
M. Finally, we observe that the mapping R" x M - M, (z,w) ~ 7T,w is even continuous
(see [16]).

Theorem 2.2 (Existence of Palm measure [6]). Let w — p, be a stationary random
measure. Then there exists a unique measure jp, called Palm measure of u, on Q such
that

/Q Rnf(x’wa)dM“(x)dP(w)z/Rn/Qf(%w)dup(w)dx

for all L ® pp-measurable non negative functions and all L ® up- integrable functions f.
Furthermore for all AcQ, uwe LY(Q, up) there holds

p(A) = //ng(x)XA(Tz )d i, (x)dP (17)
/Q wun = | [ gayutre)du()ap

Jor an arbitrary g € L*(R™, L) with [, g(x)dz =1 and pp is o-finite.

Definition. We denote ppp and prp the Palm measure of pp and pr respectively.

An application of the classical Radon-Nikodym theorem yields the following result. For
a proof, we refer to [16, Lemma 2.14].

Lemma 2.3. There ezists a measurable set P c Q with ]Ip(w)(x) I5(Taw) for L+ pp(w)-

almost every x for P-almost every w. Furthermore P(P) = 0 and upp(Q\P) = 0. The
same applies to I'(w).

Lemma 2.3 will not be used below, but it highlights the strong interaction between a point
process and its Palm measure. However, the same proof also yields the following result,
which we will use frequently.

Lemma 2.4. Let w — ji1,, and w — pi,, be two stationary random measures such that for
a.e. w it holds i1, << pio. Then the corresponding Palm measure p1p and pop satisfy
f1p << pop and there exists a measurable function f12: Q — R such that pip = fiap0p.

Hence, if pp denotes the Palm measure for p,,, we find ppp = Pup. Furthermore, we
find existence of measurable functions a : Q — R such that a;;(w) = a(mr,ww) and
tar,p = apip p. Finally, the following theorem is essential for all following calculations.

Theorem 2.5 (Ergodic Theorem [6]). Let the dynamical System 7, be ergodic and assume
that the Palm measure pp of the stationary random measure i, has finite intensity. Then,
with pe (B) = ey, (e1B), for all g€ L'(Q, up) it holds

t—o0

i [ g(re)dic (@) =1A4] | g(@)idur(e) (18)

for P almost every w and for all bounded Borel sets A that contain an open ball around

0.

DOI 10.20347/WIAS.PREPRINT.2399 Berlin 2017
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From the last result, one can derive the following generalization.

Theorem 2.6 ([17], Section 2). Let the dynamical System 1, be ergodic and assume
that the stationary random measure p,, has finite intensity. Then, defining pé (B) :=
e"u,(e71B), it holds: for all g € LY (Q, up) we find for P-almost every w, and all ¢ €
C.(R™) that

in [ g(r)e@dic@) = [ [ a@)etinn()ds. (19)

t—o00

d R
Lemma 2.7. Let the point process Pe(w) be stationary and such that Condition 1.8 holds
almost surely and let Q be an open cuboid that contains 0. Then for P-almost every w it

holds for all ¢ € Cpher(Q) that

lime® 3" p(Thery) = / / p(z)dprpdx. (20)
QJo

0 (1)eBer (@)
Proof. Let n>0 and ¢, € C.(Q) such that 1 > ¢, >0, ¢, =0 on Q\(1-71)Q and ¢, =1 on
Q, = (1-21)Q. Define y,(B) = " pure(w)(B) and pige,  (B) = €"pirg,, () (B) -

Since sup, diamG; < oo, we can find ¢, > 0 such that for all € <, it holds pg, = us,, ,, on

suppg,. Due to Condition 1.8, the integral 5, , ((1 + 27])Q\Qn) is bounded from above
by Cn for some constant C' that does not depend on 7. Hence from Theorem 2.6 one

obtains
hHOl/ gp(m)d,u;ew(x)—/ /(’O(x)dﬂp dx
vJa QJ/Q
< |lim / POyt . (T) = / / pondpp dx
) QJ/Q
+ el limsup e, (1+20)Q\Q,) + ¢l [(1+21)Q\Q, |
< el Cn,
where C' does not depend on 7. As n >0 was arbitrary, statement follows. m

3 Function spaces and the effective matrix Ay,

3.1 The jump operator

Let ue H. (R") and ¢ € C}(R";R"). Then, ¢ and V- ¢ are uniformly continuous on the
support of ¢ and for € = 0 we find in view of Corollary 1.3

—/ [[Rau}]~¢d7-l”‘1 :/ (R;Rsu)ngﬁ
9Ge (w) G#(w)

»/nuv-qb:—/nvu'd)- (21)

This implies that [R.u]dH" ! — Vu in the sense of distributions as ¢ - 0.

The convergence (21) requires more attention, as this is the convergence behavior we
expect for the solutions of equations (6) or (14). We start denoting v;; = ¢'™"|0G5;| and
quoting a Poincaré inequality due to Hummel.
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Lemma 3.1 (Compactness property, see also [19]). Let Q be a bounded Lipschitz domain
in R™ with Lipschitz boundary and let the families of points (Pf);en satisfy Condition 1.2
Then, for every s €]0,

[ there exists a constant C independent from € such that for every
e >0 and every u® € S§(Q):

HR;UE| %{g(Q) < CS (€n2 Z [{ue:“wfy”) :

(1’7J)EE€

(22)

If Q is a cube and u® € S5,.(Q,w), the following relation holds:

2
@ SO 20 TuTlims( w)+(/ Réusdﬁ) : (23)
(Z'J)EE;E)er(w) Q

The constant Cs only depends on the constant « in (4) resp. (11) and the dimension

|RZuf

Sketch of proof. Inequality (22) is a direct consequence of [19, Proposition 3.16] (a peri-
odic version is given in [18]), noting that for functions u® € Sp(Q) it holds

5n—2 Z [U }]U,VZJ - [[us]]2 d%n—l .
o0G*#

(i,3)eE"

Inequality (23) now follows from [19, Proposition 3. 16] and Remark 1.9, since I'! . (w) and
G¢e(w) satisfy Condition 1.8 with a « replaced by §

per
[
Using Lemma 3.1, we obtain the following result

Lemma 3.2. Let Q be a cube, (G5(w))ien a random Voronoi-tessellation satisfying Con-
dition 1.8 and u* € S5, (Q,w) a sequence such that

2
(5"2 Z [[us}]z]’yper ij (w) + (/ R;usdﬁ) ) <C
(1.7)eBg e (Qw) Q

for some C independent from e.
ueH!

per

(24)

Then there exists a subsequence, not relabeled, and

(Q) such that R:u — u strongly in L?>(Q) and [uf]dH™ ' - Vu in the sense of
distributions as € - 0. Furthermore, it holds

2 e ome
”quHLz(Q) < CIHEILIOIleE 2 i) ; ( )[{ua]]m,yper z]( ) (25)
4,J)eE e (w

Jor C = NF,P(Q)% Sup;; |7ij|%-

Proof. Due to Lemma 3.1, we find u € L?(Q) such that R*u® - u strongly in L?(Q) along
a subsequence. Furthermore for every ¢ € CL..(Q;R™) we find

-/ [u€]-¢dﬂn-1=/ (R;uf)v-gb»/uv-qs.
QnIGS, (w) QNGE, (w)

(26)
Q
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Using first the Cauchy-Schwarz inequality with (24) and then the boundedness of 7;; and

equicontinuity of ¢ we have
1
2
<C2|e / PPdH"!
0G5 er(w)

/ [uf]- pdH"
QniGs, ()
2
SCQSuPI%jP(S” > q%) +C,

v (7;7j)€Ep€)er

where 17 as a modulus of continuity of ¢ is arbitrary small if ¢ is small enough. In the
limit £ - 0, Lemma 2.7 and (26) applied to the last inequality becomes

/qu-gb

Since C!..(Q) is dense in H

per

Proposition 9.3]).

< C7 sup |2 (ur,p(Q)/chz) : (27)
ij

(Q) this implies Vu € L?(Q) and (25) (see Brezis [4,

per

Equation (26) together with [, uV-¢ =~ [, Vu-¢ proves [u]dH"™' - Vu in the sense of
distributions as € = 0. ]

Lemma 3.3. Let Q be a cube, (G5)ien be a family of Voronoi-tessellations satisfying
Condition 1.2 and u® € S§§(Q) a sequence such that

(ij)eke

(6”‘2 > [[ua}]mj)

for some C independent from €. Then there exists a subsequence, not relabeled, and
ue HN(Q) such that Rius — u strongly in L*>(Q) and [uf]dH"' - Vu in the sense of
distributions as € - 0. Furthermore, it holds

|Vu® ”iz(Q) < C'limnf e > [l
(i.5)eE"

Proof. The proof follows the lines of the proof of Lemma 3.2, except for equation (27),
where ppp(€2) is replaced by n"a ™. O

The distributional gradients [-]dH" ! are vector-valued. However, at every edge (i,7) €
E#, the jump [u] of a function u € §¢ is oriented only along the direction v;; = —v;;. Hence,
for every (i,7) € E¢ the set {[u];; : uw eS¢} spans a 1-dimensional space, which suggests to
work with the scalar quantities [u];; - v;; instead of [u];;. However, the quantity [u];; - v
is not invariant under the permutation of ¢ and j. Thus, we introduce the following
definition.

Definition 3.4 (Normal Field). Let ¢y = 0 and (e;);-1.» be the canonical basis of R™.
Define:

={veS™ | 3Ime{l,n}:v-e,=0Vie{0,1,,m~-1} and v-e,, >0}

Thus, for every v € S™~! it holds v € D™ if and only if —v ¢ D"
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On convergences of the squareroot approximation scheme 13

For each (7,j) € E¢ let ;; = vy, if v;; € D" and ;; = vj; = v if v;; € D!, Hence,
v;j = Uj; is stationary and invariant under the transformation (7,7) - (j,7). Note that
v;; and 7;; do not have an index e for simplicity of notation as they will only be used in
context with other quantities having an index . In case E*(w) and Eg, (w) the normal
field is defined accordingly.

Using 7 we define the invariant field [u];; := [u]i; - 7. The operator [-]* then defines a
linear operator

8%~ L3, (%, 1f)

loc

or SSGI‘(Q7OJ) - LIQOC(F;EBI“(Q7W);/J’i:—‘(w),per)

with & defined in (29) below. We are interested in the adjoint operator (with respect to
the topological structure in Section 3.2), which we denote —divp := ([-]*)" and which can
be calculated as follows:

Given u € 8¢ and ¢ : I'* - R having compact support in Q, we use [u];; = ujv;; + wvj; =
[uli;7i; to get

(Z):E[{Uﬂ;j@g = (X):EHU]]:]% Ui Pij
i,7)€ i,7)€

i,j)eE

= QUi ) Vi Uigig = = )i ), Vig + Vigbig -
T e T g

Hence, we obtain

(divpe); = X vij - 71y (28)

The calculations for the case of periodic functions S5..(Q,w) and ¢ : ' (w) — R are
similar.

Remark 3.5. The definitions of the operators [-]~ and divp are coupled to the choice of
the point process P¢ and also vary with scaling e. However, they do not scale with the
parameter €. More precisely, for u € §'(w) and u# := u(%) we have u¢ € §¢(w) and

[ul"(2) = [w] (@),

while for functions ¢ € C1(R™) and the usual gradient we have Vo (%) = eV (z).

3.2 Function spaces

In the rest of this paper, we will frequently use the following measures

€ ._ o n
ILLP = /Lpa =& deis s
€N
pp = pre =€ Y0 O
(i,5)eEe

(29)
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and use them to introduce the following scalar products:

<U7U>P6,Q = <U7'U>557Q r=e” Z u(FP7)v(Fy)
Pfe@Q

= / u(x)v(x) dups(x)
Q

(UﬂJ)rs,Q r=e” Z U(F%) U(ng)
l"fjeQ

- / u(z)v(x) dpre(x)
Q

with the corresponding norms |[-| p. o and || o on §5(Q) = L*(Q; pupe) and L*(Q; pire).
By an abuse of notation, we also write (u,v)s. o resp. (u,v)p. o for the pairing of L!-
and L> functions. We emphasize that due to the discrete character of the measures pipe
and pupe every integral with respect to one of these measures over a bounded domain
corresponds to a finite sum and we will frequently make use of this duality. In particular,
we emphasize that for u e C(Q):

3 uP) = [ u@dun (), 2 ¥ ()= [ ) dpe (o),

PFeQ IseQ
and we choose the notation depending on what aspect seems suitable for presentation.

If the point process P(w) is stationary, so is the measure w = pog(w) := H* 1 (-n 0G(w))
and the measure fiyrw) = X(ij)epw) Vi (W), w), Where v;(w) = [0G;(w)|. Then, by
Lemma 2.4 there exists a measurable function v : Q — R such that v;(w) = 7(7r,;@w)w)-
Furthermore, by Condition 1.8, 0 < v;;(w) < C < oo for some constant C' independent from
w. By Lemma 2.4 we find

7:Q—>R" such that  7(w) = (7, @yw) - (30)

In the periodic case we similarly construct I'5,,(Q,w) 0G5, and 75, ;;(w), where 75 .. (w)

are the interface volumes of e7'0G¢,, on the torus Q/e.

For every f e Cp(f2) and fixed w € 2 for the functions f,(z) := f(rw) and f,(z) :=
f(rzw) it holds f, € Cp(R™). Furthermore, by the Ergodic Theorem, for every f €
Lr(Q, ppp) it holds f, . € L} (R™; ppe(.)) for almost every w € Q and every . The same

holds for f e LP(Q, pur p) where f, . € LY (R™; uire(,)) for almost every w € Q and every e.

Hence, for every f e Cy(€2) and fixed w € Q2 and the expression [ f[.(w) = [f,]7(0) is well
defined provided 0 € I'(w). Therefore, [f],,(w) is purp-almost everywhere well defined.
In a similar manner, we may define divo,, as an operator on C(€2;R™) via the realizations
and equation (28). We observe that [-]g, is a linear operator from Cy,(£2) to L2(€2; pur p)
and like for the operator [-]~ on R™ we claim that —divom, = ([-]g,,)" also holds on Q.

Similar to the above scalar products for function spaces on R", we define the following
scalar products for function spaces on €:

(anp,p::/uvd,uP,Pa
Q

(uawnp |= / uwvdprp .
Q
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Lemma 3.6. For every u € Cy,(Q), f € LY(Q, prp;R™) with divomf € LY(Q, upp) and
every ¢ € C.(R™) it holds for almost every w e Q

g_r)rolsn (divp (fucp), “wa)Pe(w) = /Rn o(x) (divomf, u)RP dx .
The same holds if ue LY(Q, ppp), fe Co(;R™).
Lemma 3.6 can be understood in the sense of the following formal calculation:
(dive (furep) s Uue) pe(y = = Uoets [oe] Vrey = = {fore?s [ulbmue)pe o
== [ (Fe@). b da

= /n e(z) (divom [, u)pp dz

However, since we do not know whether —divo, = ([-]g,,)", the calculation becomes
slightly more involved. Once Lemma 3.6 is proved, one easily obtains the following corol-
lary.

Corollary. The operator —divom : L*(Q, prp; R™) = L2(Q, pupp) is the adjoint of [-]5,,-
Proof of Lemma 3.6. We define f;;(w) := f(7r,;@)w) = f(7r5,@yw) and u;i(w) = u(rp,w)

as well as ¢f (w) = o(F5 (w)) and ¢f;(w) := p(I'j;(w)). For readability, we omit w whenever
possible and observe that

(dive (fuep) s Uoe)pey =" D Wi ), figliy - Ui
PfeQ i~y
=" Z U; Zfijl/ij . ﬁljgaf +en Z Us; Z fijVij : ﬁij I:(pij - 905] : (31)
PfeQ  i~j Pfe@Q  ing

For the first sum on the right hand side of (31) we obtain

e" Z UZ(CU) Zfij(w)yij . I;U(p(PZE) = (diVP (fw,a) ’ (puwﬁ)ps(w) = <(diVOmf)w7g7 (’Ouw’5>P€(w)

PreQ i
- / o(x) (divom f, U>P,7> )

Thus it only remains to estimate the second term on the right hand side of (31).

Due to Condition 1.8 and the uniform continuity of ¢, for every n > 0 there exists ¢y such
that for all € < gy and all 4, j it holds ‘gp(l“%) - gp(Pf)‘ <n. We distinguish two cases.

Case 1: Let u € Cy(Q), f e LN, urp;R?). We write @ == L(u; +u;) and fij := fi;
and obtain (omitting the w)
e" Zuz Z fij  Vij [@% - SOf]

i iy

- 1 -
=" Z [Uijfz‘j "Vij (905 - SDf) + ) (ui = ;) fij - vij (280% — ¢~ 905)]
(i:5)e = (w)

n _ o1 .
=—€ Z [uijfij H@Eﬂij - §[Uw]]z‘jfij (290% o 2 ‘P;)] .
(1,5)eEe (w)
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The first term on the right hand side becomes arbitrarily small since [¢°];; < 7 and
|ul,, < oo. The second term on the right hand side becomes small since |2gpfj — - goj‘ <2n
and H[[u}];]Hoo <2|ul,,-

Case 2: Let u e LY(Q,upp), f € C(Q;R"). For the limit of the second sum, we define
Pg(a}) = P¢(w) nsuppy and obtain for € > gy that

e Y ui(w) Y fiy (W) [¢(T5) = ()]

]

SCL N NI

6 (

> lsuppel Cfl.. [ Jul dur.
Q
Again, since 7 is arbitrarily small, the statement follows. O]

We use the definition of [u]~ to define the following subspace of L2(S2, parp), where
dptar p(w) = a(w)dprp(w):

Lgot(F) = closure 2 .1 ) {[f]7 : feCy()}

Lia(T) = Ly (1)

pot
and make the following observation:

Lemma 3.7. For every f € L2 (T") it holds divow (fa) = 0 pr p-almost surely. Hence, for
almost every realization f, holds divp (a,f,) =0 locally on P(w).

Proof. Let f e L2 (T') and let ¢ € C.(R™). Then, for every u € Cy(2) we obtain from
Theorem 2.6 and Lemma 3.6 for some w € ) that

0= [ e(lulon: af hrp

= 1:1_{% (@fw,aaw,a ) ([[u]]ém)w,a)rew)

= _}:IE(} <diVP (fw,aaw,e(zp) ) uw,S)Pe(w)
= —/ ¢(z) {divom (fa), u)pp -

Since this holds true for every ¢ € C.(R") and every u € Cy(2), the claim follows. O

3.3 The homogenized matrix in the stationary ergodic setting

Let (ei),;. , be an orthonormal basis of R",  from (30) and let x; € L2, (") be the
unique minimizers of the functional

E;: Liot(F) - R
X~ / ale; — xoI durp .
Q

We define the matrix Ay, through

......

. _ _ (32)
with A= / a(e;—xiv) - (e; — x;7) dur p.
Q
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On convergences of the squareroot approximation scheme 17

As usual in random conductance theory, the matrix Ay, and the space Lgol(F) satisfy
the following properties.

Lemma 3.8. The matriz Anom 1S positive definite.

Proof. The proof is standard (see [14, Lemma 5.5]) and we provide it here for complete-
ness.

Step 1:Recall the definition of 7;; at the beginning of Section 3.1. We first prove that

every v e L2 (T') satisfies

VEeR™ : / v -Eydprp =0. (33)
0

In order to prove (33) let u € Cp(£2) and choose a bounded open ball B around 0 with
normal vector vg. Let 4 (Ff) = u(7pew) such that a° € §¢(w). We obtain

BI| | (11w €3

“til [ ([l 9) ()€
&=V [ Bars(w)

e—=0

lim |e / [REE] - cdHm!
BnoGe (w)

=lim |e / RIGEE -vgdH™
oB

e—0

<lime ful,, [§[[0B]=0.

Hence (33) follows from the density of [u]~ in L2 (T).

Step 2: Let £ € R*"\0. Using (33) and the Cauchy-Schwarz inequality we find with
Cy = fQ vdprp >0

€2 =607 / ¢ erydpr
Q

= &C! / er- Y. (&ei - &xav) vdprp
Q i=1
<&l C (/ vat dMF,P) ( >, fifinj) -
Q ig=1

Summing up the last inequality over k =1,...,n yields

%chg'Ahomg'
1

The Lemma now follows from the equivalence of norms in R”. O]
Lemma 3.9. It holds R" = sp&m{fQ fodurp : fe LSOI(F)}.
Proof. We follow the proof of [13, Lemma 4.5]. Due to the minimizing properties of x; in
L2,(T) we have (e; — x;7) - € L2 (T'), i.e.
Vi, g / ((e; = xiv) -0) xjadurp = 0. (34)
Q
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Defining V := span{ [;, fodurp : f e L2,(T')} we choose & € V1\{0}. Then, for all i =
1,...,n it holds

/Q €5 ((ei - xi?) - 7) adurp = 0. (35)

Combining (34) and (35) implies that

/Qifj (ej-7+x;)((ei—xil?)-V)adurp=0.

j=1
Multiplying the last equality by & and summing over ¢ yields
gAhomg =0.

Due to Lemma 3.8 this implies £ = 0, a contradiction. O

4 Proof of Theorems 1.5 and 1.6

We first observe the following behavior.

Lemma 4.1 (L? - G-convergence). Let the family (P.).., be G-convergent in sense of
Definition 1.4 and let Condition 1.2 be satisfied. Let f. € S¢(w) and f € L?>(Q) such that
R:fe— f weakly in L?(Q) and let the sequence uf € S5(Q) be solutions of the problems

ey uf—us = ff (36)

i~
and let we HY(Q) n H*(Q) be the unique solution to
-V- (Ahomvu) = f (37)

Then Riu® — u strongly in L*(Q) and [us]dH"' - Vu in the sense of distribution as
e —0.

Proof. The operator —L¢ is strictly positive definite and symmetric as follows from
—(Luf uf) = "2 Z (uj - uf)2 )
i~j

Due to Lemma 3.1, the family £¢ is uniformly elliptic in ¢ and we obtain the apriori
estimate

e (38)

- I3 2 13
[ 5 =™ 2 (u)* < Ce2 Y (u§ — uf)” < O | f¥] pe
% i~g
By the Lax-Milgram Lemma, the solution to (36) exists and is unique. Let ¢ be the
unique solution of —£¢u¢ = R: f. Then 4° satisfies (38) with f¢ replaced by R f and we
find
* ~ 2 n 1 ~
HRE (uE_u€)HL2(Q)§5 C Z 6—2[{u5_us ?j
(i,5)eE* (w)

O Y (ff - (RF)) (u —i°)
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Due to Lemma 3.1, Ruf and R:uf are both precompact sequences in L2(Q). Since P¢
is G-convergent and

R:(R-f)-R:ff ~0 weakly in L*(Q), (39)
we obtain from Lemma 3.3 and the above estimates that
: * (€ ~EY]2 1
lim | 1R: (0 =) g+ 3 Sl =iy | =0
(id)eFe () €

and hence Riuf — u strongly in L?(Q) and 1[u®]dH"! - Vu in the sense of distribution.
Since P¢ is G-convergent, we obtain that u solves (37). O

Lemma 4.2. Let the family (P.).., be G-convergent in sense of Definition 1.4 and let
Condition 1.2 be satisfied. Then, there exists a constant C' > 0 such that for every ¢ > 0
and every ¢,u € 8¢ it holds

& ol Xy — il < C ol pe [l -
% g~

Proof. We obtain

e S lul Sl =l ¢ Il (snzzczm u|)

]

1
2
pe (En Z |Uj - U1|2) N

i~j

<4C v

where C' denotes the maximum number of neighbors of a cell, which is bounded due to
Condition 1.2. O

Lemma 4.3. Let let the sequence u® € S§(Q) satisfy Riu® — u strongly in L?(Q) and

supe” Y

2
0 (ij)eBe(w) €

2

[us]; +5"Z(5_22(u§—u§)) < 00. (40)
5 i~

Then u e HY(Q) and for every ¢ € CH(Q) with ¢ = ¢(PF) it holds

e lz[[uaﬂz‘j[[fﬂij—’/szu'(AhomV¢)~

(4.7)eEs (w)

Proof. The regularity v ¢ H}(Q) follows from (40) and Lemma 3.1. Writing f¢ :=
€2 (uj - uf) we find sup,, | f¢] p < oo and hence along a subsequence we find R} f¢ —~
f e L*(Q) and G-convergence implies f =V - (AhomVu). Therefore

" Z HU€HZJ [¢°] ij=—€" Z f6¢€

(i)eB= (w) €

_/V.(Ahomvu)gb:/QVu-(Ahome)-

O
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Proof of Theorem 1.5

We define UF := u¢/ (v5)” satisfying
1
—g—QZvaj(Uj—Uf) = ff. (41)
g~

Step 1: Apriori estimates on U¢. Testing (41) with Uf and using boundedness of
v > C >0 from below we obtain similar to the proof of Lemma 4.1 that

Y (U) < e Y (U - UF) < C | f# e

i~j

and hence the sequence R:U*¢ is precompact and
1 ~[2 2 2
S IV e + U pe < C U1 - (42)

Next, we recall the definition of £ and test (41) with ¢ = (LU7) =e72%,. ( - Uf)

and use
>oviv (UF = U7) = ()" 2 (U5 - UF) + 07 3 (v5 - 05) (U5 - UF)

i~j i~j i~j
and Lemma 4.2 to obtain

”Z(UE) (L°Uf) < €"Zf€(E€U5)+HWHoo—H[[Uaﬂ e 1£°U%] -

<[ flpe 1£°U%] pe + Vol 5 MU e 1207 e -

Using (42) we obtain that
1 e~ £ 3 )
TR 0+ 10 < O (11 By - (43)

Step 2: Apriori Estimates on u<. In what follows, we write ¢ := (v¢)®. From uf = #U?
we obtain

1 ~e  ~g € € 1 ~E | ~E € €
u‘?—u§=§(vj—vi)(Uj +Ui)+§(vj+vi)(Uj —Ui)

J 3

which gives an estimate on % I[uf]~|2.. In order to proof the estimate on Leuf, we
multiply £5u® with an arbitrary test function ¢ € C(Q) and obtain

(L7, @) pe =" Y (U7 - 707 (65 - 65)

i~j

~en2 3 (5 55+ 90) (U5 - UF) (65 - 60) + 5 (55 - 50) (U5 +UF) (05 - 7))

&\2
- HZ%(( Uz) (5565 - o56) + (05 - %) (6305 - 0707))
( o) (U5 - U7) (65 + &)
—gnzqﬂﬁz QZ(U — ) + " Zqﬁsff
S (5 (U5 -UF) 05+ )

i~j

1
92

% (05-0)
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Hence, we obtain with help of Lemma 4.2

(L5, 0) pel < U] p= |l p= C [0l 2y + 1£°U* [ pe 0] pe C 0]l
1 -
+olp-Clve?|, ZITT I

where C' does not depend on e. Together with (43), it follows

v

“loegy < o

fm st [R: £ ) < Hmstup C 11+ 1] gy )

This concludes the proof.

Step 3: Convergence. We use the above estimates in order to pass to the limit in (41).
We choose a countable dense family @ := (¢*), y ¢ H}(Q) of functions ¢* € C=(Q) for
every k € N and use these as test functions in (41).

We write vf; := v(T;), recall (29) and define

I[:=e" ) v [{UE}]U [W]”

(ij)eke

-t Y () Il + .

(ij)eke

Since v is uniformly continuous, for every n > 0 there exists gq such that for € < g4 it holds

|(vfj)2 - vjvs5| <n for every (7,7) € <. Hence with

51 < nV61 U7
< V6] sup |[U°] 1.

Hence, we remain with
lim| 15| < nC' V4.

Due to Lemma 4.3, we obtain for every ¢ € ® that

1 1

N LUl > [ Ve (A v0) (44)
(i,j)eE* € Q

Furthermore, we note that

1
supe” ). [{ T 2[[cb}]zj—l\vcbll supe” 3, S[UY; <0

e>0 (i,j)GEs e>0 (i,j)eEe

Hence, for every ¢ € ®, the pair ( [[Uﬂ]w . [[gb}]w, ,ups) is a measure-function pair w.r.t. the
quadratic function in the sense of Hutchinson and we can apply |20, Theorem 4.4.2]. In
particular, since ® is countable, we obtain from [20, Theorem 4.4.2] that

v¢ €d: e 2 Z( zy) - zg [¢ﬂzj e /QUQVQS' (Ahova) .

i~
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Furthermore, we obtain from the above apriori estimates and Lemma 3.2 that U - U
and uf - u strongly in L2(Q) and due to UF := u/ (vF)* we find u = v2U. From the weak
convergence of f¢ we finally obtain that u solves

A)u2v¢-(Ahomv(%)):/C?f¢,

/Qws-(Ahomw)—z/Q%w-(Ahomw)=/Qf¢-

Using that v = exp (—gV), we obtain that u solves (8).

or equivalently

Proof of Theorem 1.6
Due to the first part of Theorem 1.5 the operator F¢ is invertible for € small enough and

unique existence of solutions to (9) follows. Let us first note that writing V¢ := V(z5) and
using the Taylor formula we obtain

and hence

(1% —ug) B (v - v)" (45)

Testing (9) with ¢, using (45) and Lemma 4.2 yields

T

1 /T ) oo ) 1 T
A O R T P T e L N S A

o € Jo 0 € 0

£ P & S

+Ce|vul | < T T pe | < 1] P

0o € €
From this inequality, the apriori estimate on |uf]%. and > fUT |[us]~||?. follows using the
Gronwall inequality, provided ¢ is small enough. Furthermore, the last inequality yields

uf =01if f¢ =0 and u§ = 0. Next, we test (9) with d,u® and use once more (45) and Lemma,
4.2 to obtain

SV RS I T
i |Oyu Hpe+€—2§ 1K

1
2

2
[u[p-

re + [Juf

T g 2 2 1 g .
0 S/O |1 e ||3tu€Hps+Cg IWIW/O 1T pe 10| p
1 1
+Ce ol [ 21T I (100w e+ 0] )

Hence the the apriori estimate on [ 9,u¢|%. follows from the Gronwall inequality. From the
apriori estimates, Lemma 3.1 and the Aubin-Lions Theorem, we obtain strong convergence
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Rius - w in L2(0,T;L2*(Q)) for some u € L2(0,7;L*(Q)). From Lemma 3.2 we infer
that u e L2(0,7; H(Q)) and [us]dH"' - Vu in the sense of distribution. The weak
convergence O;R;u® — Oy in L2(0,7;L?(Q)) as well as dyu € L2(0,T; L?(Q)) is straight
forward.

Integrating the right hand side f¢ and the solutions u¢ of (9) over time intervals (s,t) c
(0,T") and applying Theorem 1.5 it follows that u solves (10).

5 Two-scale Convergence

We recall the notation (29). Since C(€2) lies densely in the separable space L2(€2; urp),
we can chose a countable dense family ®q = (¢;),. € L?(2; urp) of Cp(2)-functions and
a countable dense family of functions ®q = (¢4),y € Co(Q) of functions 1; € C.(Q).
We furthermore assume that ®q = @, ® Py, for dense subsets Py Lzol(F) and @y C
L2,(T) where @0 is such that v € @ if and only if v = [ulg,, for some u € Cy(€2).
Finally, let Q2 c €2 be the set of all w such that the Ergodic Theorems 2.7-2.5 hold for all
vedg and ¢ € Pg.

Definition 5.1 (Two-scale convergence). Let @ be a bounded open domain, w € Qg and
let v® € L2(Q; ,u%(w)) be a sequence such that

sup [v° | pe ) < 00

e>0
and let v e L2(Q; L2(; urp)). We say that v® converges in two scales to v, written
Ve ﬁw v if for every ¢ € @ and every 1) € ®¢ it holds

111’% <U€7 ¢w,e¢aw,€>rs(w) = /Q (U(l’, ')7 ¢G>F7P @D(l") dl’

E—>

This definition makes sense in view of the following result.

Lemma 5.2 (Existence of two-scale limits). For every w € Qg it holds: Let v¢ € L*(Q)
be a sequence of functions such that sup.. [|[v°|ps(y g < C for some C' > 0 independent

from €. Then there exists a subsequence of (u)oo and v e L2(Q; L*>(; ur.p)) such that

; 2s
V& =, v and

(46)

. . !
HU||L2(Q;L2(Q;MFJ>)) < hgl_}glf HUE

r<'(w),Q
The proof of Lemma 5.2 is standard. However, we provide it here for completeness.
Proof. Let w € Qq, let (¢1) 4y be an enumeration of ®q and (1), an enumeration of ®q

and for € > 0 we write ¢y () = ¢p(72w). For fixed j,k € N, we obtain from Theorem
2.6 that

/Q 0 ()0 (2) e () (o) i ()

lim S&lp |(v5, ¢j¢k7w75aw7a)rs(w) | =lim soup
E—> E—>

e—0

< C'limsup (/ij(m)2 (¢k(T§W))2 @(Tﬁw)dﬂ%(w)r

=C H% ||L2(Q) | P ”LZ(Q;MRP) :
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Therefore, we can use Cantor’s diagonalization argument to construct a subsequence of
ve, not relabeled in the following, such that

Vj, keN <U€7 wj(bk,w,eaw,e)Fa(w) - Lj,k as € —0

and Lj  is linear in ¢ ¢, € L2(Q; L?(€2; urp)). Therefore, there exists v € L2(Q; L*(2; urp))
such that

Ljvk = / <U(x7 ) Y w](x)¢ka>r7fp dx Vk' € N .
Q
Since the span of the ;¢ is dense in L2(Q; L?(€2; urp)), the function w is unique. O

The next result provides a kind of generalization of Theorem 2.6. It is needed in order to
proof the main result of this section.

Lemma 5.3. For a random tessellation (G(w),T'(w)) that fulfills the compactness prop-
erty 8.1 in R™ with Q c R™ bounded Lipschitz domain and fized w € Q) let u® € S*(w) and
ue HY(Q) such that R:u® — u strongly in L>(Q). Then for every b e L2(Q; urp) such
that the Ergodic Theorems 2.7-2.5 are valid for b it holds that for every ¢ € CH(Q) and
(o)

0 (g)eBE (w)
—& ._ 1 5 €
where ug; =5 (ui +uj).

Remark 5.4. Lemma 5.3 is also valid for the space S5, (w,Q) and H], (Q) if Q is a
cuboid.

Proof. The proof follows closely the lines of Step 2a in the proof of Theorem 1.5. However,
we provide the full proof for completeness. For § > 0 let 5 be a smooth mollifier with
support in Bs(0) and let u§ := (Rfuf) * @5 and ul = u + @s. Since (Rruf) — u strongly in
L?(Q) we obtain that for every fixed § > 0 the family (ug) , together with uY is uniformly

e>

equicontinuous and u§ — uf in C(Q). This follows from the fact that us € O (2Q) and
V45l < 97 0] 2 < O9™ 5]y IR 2

due to the Sobolev inequality and the convolution inequality.

For shortness of notation, we write |-z := || () o and define

. -
I;=¢e" Z Uij¢ijbijg[¢ﬂ¢j .

(6.5)e B (w)

For (i,7) € E5(w) we introduce us;; = us(I'5;(w)) and s = 3 (ug(Pf(w)) + ug(Pf(w)))
Then, we write

J R
If =€ Z usijebigiy =[5 + 13 (48)
(i,)€B (w) <

with
1< CIVol ¥l lus =] 12 6] 2

< C 19l 1l 1002 (i — 502 + 1§~ 51 13 + 5~ )
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Since HU5 - — 0 as e — 0, we obtain from the Ergodic Theorem 2.5 that Hua - ugHLQ -

Ulow)
0 as € = 0. Furthermore, uniform equicontinuity of (ug)oo and the existence of a maximal
cell diameter from Condition 1.8 imply that for every n > 0 there exists ¢y > 0 such that
for all € < g9 we find Huf; —ﬂ;HLQ <n |l = nl@Qlprp(2). Furthermore, Condition 1.8
implies that the number of neigflbors of a cell is bounded from above by n"a™". Hence,

we remain with

lim| 5] < 1im C |96, [¢]... [Pl |7 - &

Lz

1
2
<im C V6. 9] 101 2 ( > (- u) + (ug, - U§)2])

Ffj €suppe¢

2
3 n € 3 2
<l C [vol.. [l Jol,; ( S (- u) 21)
i Ffj €suppe g~

=C HngHoo “1/}”00 HbHLQ(Q;MF’p) Hug - UHL2(Q) :

For the first term on the right hand side of (48) we find by Theorem 2.6 that
. n 1 ~ . n ~ €

~lime" ) Ué,z‘j%bijg[mij =-lime Y. usithigbii; - Vo(T5;(w))

0 (j)eBE(w) (i.)eBe (w)

—~ [ usuwo- [ bodurpa.
Q Q

Hence we obtain

lim[f+/u(;1pv¢-/b17d,up,pdx
e—=0 Q 0

< C HVQSHOO HwHoo ”bHLQ(Q;,u,F,'p) Hug - uHLQ(Q) )
which finally yields (47). O

The following proposition is our main two-scale convergence result and is at the heart of
the proof of Theorem 1.11.

Proposition 5.5. For a random tessellation (G(w),T'(w)) that fulfills Condition 1.8 with
Q c R” bounded and open cuboid and fired w € Qg let u® € S5, (w, Q) with

per

<C

1 ~
?H[“Eﬂ H%Q(Q;ﬂ?perw) -

Then there are u € H..(Q) and v € L*(Q; L2, (")) such that:

per

Riu® - u in L*(Q) (19)

[uf]” R Vu-+v

Proof. By Lemma 3.2 there exists u € H}, (Q) such that Riu® — u strongly in L*(Q)
and [uf]dH" ! — Vu in the sense of distributions along a subsequence as € - 0. From
Lemma 5.2 it follows that there exists w € L?(Q; L*(T', ur p)) such that along a further
subsequence

luEN X, w.
c w
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Now take ¢ := ¢v with ¢ € C(Q) and v € L? (T"). Introducing the notation b;;(w) =
v;j(w)a;;(w) we obtain

1 . 1 )
g <|Iu8]] ) d)vw,eaw,e)Fs(w),Q = _g (uea (leP¢Uw,€aw,€)>Ps(w)7Q

S () by (@)o(T)

PzeQ i~j
=—€" ! Z E(PE)¢(P€ szj(w Vz] Vij
PfeQ
SRDIN P6>me<w>vm vij (6(T5) - o(FY)) -
PfeQ i~j

Since divpb =0 by Lemma 3.7, the first term on the right hand side vanishes. We denote
the second term as I7 and obtain

I5 = =™ 3 wf(PF) Y by (w) by - vy (6(T5) = 6(PF))

PFeQ i~j

In what follows, we simplify notations. We write uf = u(Fy), uj; = %(uf+u§), bi; = bij1ij,
= ¢(I'5;) and ¢; = ¢(F;) and obtain

€l_nlg = Z wa Vz] (¢(F ) ¢(P€))

PfeQ i~j
~ 1 -
== 2 [afjbij i (5= 00) + 5 (uf = u5) by -3 (205 — i - ¢j)]
(i,5)eb= (w) 2
1
=— ) [ufjbij[[ébﬂi} = lu ity (264 = di - ¢j)] : (50)
(i.5)els (w)

Due to the uniform size of the Voronoi-cells, we obtain that for every § >0

1
e Z 2_5[[u€]z‘wjbij (205 — pi— Pj)| <6

(1,7)eEs (w)

lim
e—0

Using the last estimate and (50), Lemma 5.3 yields

hmIE— /uV(b /bl/d,uppdx

Hence, we obtain in the limit:

//Wwdunpdx:—/ uV¢-/bﬁdup,pd:1:.
QJTI Q Q

Since u € H}  (Q) we can apply integration by parts to obtain

per

//(Wﬂ—VU)Qb'bDadunpdlL‘:O.
QJr

This implies that for almost every x the function (w - vVu-7)(x,-) lies in L2 (T), i.e.
w—Vu-veL2(Q; L3, (T)). O
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6 Proof of Theorem 1.11

Multiplying (13) by a function ¢ €
arrive at

Sier(w, @), and summing up over PS5 (w,Q), w

- Z (‘Ci)u)z Gi = — Z Z 12 Qjj (w) (u] u;) b

Pe o (@.Q) P o @.Q) (i) B ()
1

= e_gaij(w)(uj_ui)(¢j_¢i) :
(i,§)€eE5er (w)
Hence, the equation (14) is equivalent with the discrete weak formulation

Vo e 8o (. Q) Y la@@-u)@G-0)= Y fe (D)

(i:1)€Bger (w) € P (@0.Q)

Let w € Qg be fixed. Due to the Poincaré inequality (23) we find that

lulse, =2 Y [

0 ..
e (i.)€Eer (w)

is a norm on the subspace &5, ,. Since 7 is bounded from above, this norm has the
property that

2 % 2
022 . < [ REW] Lo ()

@ 0 Y W e (@) < C uf

(6:5)€Ef er (w)

The Lax-Milgram Lemma hence yields a unique solution u® € St , to problem (51).
Testing (51) with ¢ = u® and using (52) and the lower bound on «a yields the estimate

2 2
o< Clclyy,, <0 [ pudig
e Ser (Q)

and hence

2 n—
[ by +e™® X [ <Clf s -
(1,)€Efer (W)

By Proposition 5.5 there exists a subsequence, not relabeled, and u ¢ Hl, (Q), v
L2(Q; L2,,(2)) such that

u® — u strongly in L*(Q) and —[u "2, vu-v+v.

We choose ¢ € &g and w € Py with ¢y, € Cp(Q) such that w = [¢y]g,, and define
Pew() = ep(2)hy (Tew). We use @, as a test-function in (51) recall that ¢ € C.(Q)
and obtain for £ small enough that

> a0l (e Lleln(me) + oPOw(, @) <2 P (P ().

(1.0)e By () e, (@.Q)

As € — 0, we find that e7'[]7; is uniformly bounded by |V¢|,,. Hence, the first term on
the left hand side vanishes as € — 0 and using two-scale convergence of %[[u‘f]]N7 we obtain
the following limit equation:

Voedg, wedpyy - / (Vu(z) -v+v(z,), awp(x))p pdr=0. (53)
Q
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Given u € H(Q), equation (53) admits the solution
v =) dux;, (54)
i1

where y; are the same as in (32). Since @ is dense in L*(Q) and @ is dense in L2 (T'),
equation (53) also has to hold for all ¢ € L2(Q) and w € L2 (Q). The Lax-Milgram
Lemma then yields that the solution v is unique for given u € H'(Q).

Next, we use a test-function ¢ € ®g in (51) and obtain the limit equation
Vpedg : / (Vu(z) -7 +v(x,), aVe(x) U)ppdr = ,upvp(Q)/ fo. (55)
Q Q

We can use 0;¢y; as a testfunction in (53) and add the resulting equation to (55). Using
(54) and (32), this yields

/Q/QVU'Ahomv¢dﬂF,de:UP,P(Q)/(2f¢>

and hence u € H2(Q) and u is a strong solution of (15).
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