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Abstract

We consider a system of independent particles on a finite state space, and prove a dynamic
large-deviation principle for the empirical measure-empirical flux pair, taking the specific fluxes
rather than net fluxes into account. We prove the large deviations under deterministic initial con-
ditions, and under random initial conditions satisfying a large-deviation principle. We then show
how to use this result to generalise a number of principles from Macroscopic Fluctuation Theory
to the finite-space setting.

1 Introduction

A well-known strengthening of the Second Law states that for thermodynamically closed systems not
only is the free energy non-increasing in time, but the system is driven by its free energy. Exactly how
the free energy drives the system can often be made precise by linear response theory, that is, a con-
stitutive relation between thermodynamic driving forces, defined as the derivative of the free energy,
and the thermodynamic velocities, that is, ρ̇(t) = −K

(
ρ(t)

)
DF

(
ρ(t)

)
. If the state-dependent op-

erator K(ρ) is symmetric and positive definite, then such equations are actually gradient flows on the
manifold with inverse metric tensor K(ρ), and the Second Law follows as a consequence. Moreover,
one then also has the free energy-dissipation balance, that is, the dissipation of free energy equals
the free energy production. Since the work of Onsager it is well-known that the symmetry of the oper-
ator K(ρ) is closely connected to detailed balance of an underlying microscopic system [Ons31] via
large-deviation principles. In a general setting, one can always derive free energy-dissipation balances
from microscopic systems satisfying detailed balance, although this may lead to non-linear response
theories, and non-quadratic dissipations, in particular on discrete spaces [MPR14].

For microscopic systems that are not in detailed balance with macroscopic systems that are not ther-
modynamically closed, this is no longer true. A detailed balance condition can be violated either due to
bulk forces, or due to boundary effects. Typical examples of the latter are the boundary-driven systems
studied in for example [BDSG+02, BDSG+03, DLE03]. We will focus our attention on bulk forces. The
typical example for such systems have a uniform stationary state and an external non-conservative
force field that causes mass to flow around in cycles, leaving the stationary state intact. Hence the
work done by the external force field may have no effect on the state, and an energy-dissipation bal-
ance as described above is not to be expected. Naturally, the work done is not simply lost, but the
resulting effect cannot be observed unless both state and the fluxes are taken into account. This idea
is the core of Macroscopic Fluctuation Theory (MFT), which still allows to derive many thermodynamic
properties for systems that are not in detailed balance, see the recent overview paper [BDSG+15] and
the references therein. The aim of the current paper is to provide a few steps towards a more general
Macroscopic Fluctuation Theory, in two ways.

Firstly, most known results in MFT are stated for systems on a continuous space (at least macroscop-
ically). Therefore the stochastic noise is usually driven by some white noise (at least approximately),
leading to large deviations that can be written as some squared Hilbert norm. This Hilbert structure
allows one to split all terms into orthogonal components: gradient parts and solenoidal parts. However,
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D.R.M. Renger 2

large deviations for jump processes on discrete spaces are often not quadratic. It is an open ques-
tion how to generalise orthogonal decompositions to structures with more general convex functionals.
Nevertheless, as a first step into generalising MFT, we will focus our attention to a simple system of
jump processes on a discrete space. In order not to blur the main ideas we study a system of indepen-
dent particles (more general jump processes on more general discrete spaces will be studied in the
subsequent paper [PR17]). We then prove a dynamic large-deviation principle for the state-flux pair,
and use these large deviations to generalise known principles from MFT to the discrete setting. Some
of these generalisations can also be found in the more formal, physics-oriented work [BMN09].

For the second generalisation, it should be noted that most known MFT studies net fluxes only. In
the current paper we take the specific fluxes into account. This has a few advantages. Firstly, there
could be forces that produce strong fluxes without changing the net flux; such forces speed up the
mixing behaviour of the system and can therefore be important quantities to study. Secondly, it turns
out that on discrete spaces the large deviation rate for the specific fluxes takes on a nice explicit form,
whereas the large deviations for the net fluxes is defined either via a convex dual, or via a minimisation
problem. Indeed, this minimisation comes from a simple contraction principle, which can always be
applied whenever only the net fluxes are of interest.

As a by-product, the large deviations of the empirical measure follows immediately from the large
deviations of the empirical fluxes by a contraction principle, and this might even be easier to prove
via a contraction than to prove directly. In particular, a number of assumptions like weak detailed
balance [PR16] and log-bounded jump rates [SW95, Ch. 5] are no longer needed.

1.1 Microscopic model

We consider a Markov chain with generatorQ ∈ RI×I on a finite state space I . LetX1(t), X2(t), . . .
be independent copies of the Markov chain with generator Q. We first assume the following initial
conditions:

Fix a 0 < µ ∈ P(I), and fix the initial positions X1(0) = x1, X2(0) = x2, . . . deter-

ministically such that ρ(n)(0) :=
1

n

∑n
k=1 1xk −−−→n→∞

µ. (1)

Later we will consider random initial conditions as well. Throughout this paper, all processes will be
of bounded variation, where we implicitly assume càdlàg representatives. Therefore the (random) set
jumpt(Xk) := {t̂ ∈ (0, t);Xk(t̂

−) 6= Xk(t̂)} of any Markov chain Xk will be at most countable
(actually finite a.s.). Define the empirical measure and the empirical (specific) flux by

ρ(n)(t) :=
1

n

n∑
k=1

1Xk(t), and W(n)(t) :=
1

n

n∑
k=1

∑
t̂∈jumpt(Xk)

1(
Xk(t̂−),Xk(t̂)

).
Then the pair

(
ρ(n)(t),W(n)(t)

)
is a Markov process in P(I)× l1+(I × I) with generator

(Q(n)φ)(ρ,w) := n
∑∑
i 6=j

ρiQij

[
φ(ρi→j,wij+)− φ(ρ,w)

]
,

and deterministic initial condition
(
ρ(n)(0),W(n)(0)

)
=
(
n−1

∑n
k=1 1xk , 0

)
, where ρi→j := ρ −

1
n
1i + 1

n
1j and wij+ := w + 1

n
1ij . This notation will only be used for fixed n, and so we can repress

the dependence on that parameter. Here, l1+(I × I) is the space of non-negative matrices RI×I
+

equipped with the norm |w|1 =
∑∑

i 6=j wij , which is conveniently compatible with the natural norm

on P(I) ⊂ RI
+. Note that by a slight abuse of notation we ignore diagonal elements in this space.
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1.2 Macroscopic model and large deviations

In the many-particle limit, the process converges to the solution of

ρ̇(t) = − div ẇ(t), (2a)

ẇ(t) = ρ(t)⊗Q, (2b)

with initial condition
(
ρ(0),w(0)

)
=
(
µ, 0
)
, using the notation (ρ⊗Q)ij := ρiQij and (divw)i :=∑

j∈I wij−wji. We will make this convergence result rigorous in Proposition 3.3. Observe that the net
flux through an edge (i, j) is just the anti-symetric matrix wij − wji, so that the specific fluxes really
encode more information. Equation (2a) is the continuity equation, or conservation law, and it plays an
important role in MFT. Naturally, the microscopic equation also satisfies the continuity equation, hence
microscopic fluctuations can only occur around (2b).

In Theorems 4.1 and 4.2 we prove large-deviation principles that characterise the dynamic microscopic
fluctuations around the macroscopic limit:

Prob
((
ρ(n)(·),W(n)(·)

)
≈ (ρ,w)

)
∼ e−nI0(ρ(0))−nI(0,T )(ρ,w) as n→∞,

I(0,T )(ρ,w) :=


∫ T

0
S
(
ẇ(t)|ρ(t)⊗Q

)
dt, if (ρ,w) ∈ W 1,1

(
0, T ;P(I)× l1(I × I)

)
and ρ̇+ div ẇ = 0,

∞, otherwise.

(3)

Here S(Q̂|Q) :=
∑∑

i 6=j λB(Q̂ij/Qij)Qij is the usual relative entropy and λB(z) := z log z −
z + 1 for z > 0 and λB(0) := 0 is the Boltzmann function. We first prove the large deviations under
initial condition (1.1), in which case

I0

(
ρ(0)

)
=

{
0, ρ(0) = µ,

∞, otherwise.
(4)

After that we will prove the large-deviation principle for more general initial conditions, where ρ(n)(0) is
assumed to be random, and satisfying a large-deviation principle with some given rate functional I0.

1.3 Overview

In Section 2 we introduce the space, the topology and the sigma algebra that will be used for the large
deviations. Section 3 we discuss well-posedness for the microscopic and macroscopic models, and
show that the microscopic process converges to the deterministic macroscopic equation. In Section 4
we rigorously prove the large-deviation principle (3), first under deterministic initial conditions and then
under random initial conditions. As common in dynamical large deviation theory, the difficulty lies in
showing that the rate functional can be approximated by a set of sufficiently regular paths in order
to prove the lower bound. It is also common to either regularise the perturbation factor [PR16], or
replace the probabilities by exponentially equivalent ones [SW95, Ch. 5]. However, in the current work
we directly regularise the paths (ρ,w), and exploit the explicit formulation (3) of the rate functional.
Finally, in Section 5 we discuss some implications of the large-deviation principles for MFT on discrete
spaces with specific fluxes.
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2 Preliminaries

2.1 Paths of bounded variation

Throughout this paper we consider paths of bounded variation on an arbitrary time interval (0, T ). For
any Banach space valued function f ∈ L1(0, T ;X∗), the essential pointwise variation is

epvar(f) := inf
g=f a.e.

sup
0<t1<...<tK<T

K∑
k=1

‖g(tk)− g(tk−1)‖X∗ ,

where the supremum runs over all finite partitions of the interval (0, T ). The space of paths of bounded
variation is defined as

BV(0, T ;X∗) :=
{
f ∈ L1(0, T ;X∗) : epvar(f) <∞

}
.

A function of bounded variation f always has a weak derivative ḟ ∈ M(0, T ;X∗) which is a X∗-
valued bounded measure on (0, T ) with total variation norm ‖ḟ‖TV = epvar(f) [AFP06, Prop. 3.6
& Th. 3.27]. In addition, if a function of bounded variation is absolutely continuous, then f lies in
W 1,1(0, T ;X∗) [AFP06, p. 139]. Moreover, any path of bounded variation f ∈ BV(0, T ;X∗) has a
càdlàgrepresentative, that satisfies f(t) = f(0) + ḟ

(
(0, t]

)
[AFP06, Th. 3.28].

We will be particarly concerned with the set

BVflux := BVflux

(
0, T ;P(I)×l1(I×I)

)
:=
{

(ρ,w) ∈ BV
(
0, T ;P(I)×l1(I×I)

)
: ρ̇ = − div ẇ

}
.

Observe that the continuity equation in this definition is in general a measure-valued equation in time,
i.e. ρ̇(dt) = − div ẇ(dt). In this sense both the microscopic model and the macroscopic model
satisfies the continuity equation.

Throughout the paper we will need the following three simple estimates for any (ρ,w) ∈ BVflux:

epvar(ρ) = ‖ρ̇‖TV = ‖div ẇ‖TV ≤ 2 ‖ẇ‖TV = 2 epvar(w), (5)

‖ρ‖L1(0,T ;P(I)) =

∫ T

0

|ρ(t)|1 dt = T, (6)

‖w‖L1(0,T ;l1(I×I)) =

∫ T

0

|w(t)|1 dt =

∫ T

0

|ẇ((0, t])|1 dt

≤
∫ T

0

|ẇ|1((0, T ]) dt = T ‖ẇ‖TV = T epvar(w). (7)

Remark 2.1. Inequality (5) actually becomes an equality if w does not have simultaneous jumps. For
microscopic paths (ρ(n),w(n)) with finite n this is indeed almost surely the case.

2.2 The hybrid topology and Borel sigma-algebra

In this paper we always equip the space of paths of bounded variation with the hybrid topology. This
topology is defined via the convergent nets as follows. We say that a sequence (or net) (ρn,wn)n in
BV
(
0, T ;P(I)× l1(I × I)

)
converges hybridly to a path of bounded variation (ρ,w) whenever

(ρn,wn)→ (ρ,w) strongly in L1
(
0, T ;P(I)× l1(I × I)

)
and (ρ̇n, ẇn)→ (ρ̇, ẇ) vaguely,
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that is, against all test functions in C0

(
0, T ;RI×I×I). It should be noted that this topology is mostly

known in the literature as the weak-* topology [AFP06, Def. 3.11]. The term hybrid topology was
recently introduced in [HPR16] to distinguish it from the functional analytical weak-* topology; strictly
speaking, the two topologies only coincide in finite dimensions and restricted to bounded variation
balls.

The space BV
(
0, T ;P(I) × l1(I × I)

)
equipped with the hybrid topology is not a Polish space -

it is not metrisable. This could make it difficult to do probability theory on this space. It is, however,
completely regular and perfectly normal [HPR16, Th. 3.15]. Therefore, the corresponding Borel sigma-
algebra ‘behaves nicely’, and the standard tools from probability theory that we will need are still valid
[HPR16, Sec. 4].

We choose to work with the space of paths of bounded variation rather than the usual Skorohod space
since the compactness criteria are very easy. This simplifies the proof of the exponential tightness,
Proposition 4.6, considerably. In particular, because of the estimates (5),(6) and (7) above,

Proposition 2.2 ([AFP06, Th. 3.23] and [HPR16, Th. 3.18]). Let F ⊂ BVflux be a subset of finite
variation: sup(ρ,w)∈F epvar(w) <∞. Then F is hybrid-compact.

A similar argument is used in [PR16] to prove large deviations for infinite chemical reaction networks,
and related approaches can be found in [Jak97] and [BFG15].

3 Well-posedness and many-particle limit

We now discuss the well-posedness of both the microscopic and macroscopic model, and provide a
short proof of the convergence from the micro to the macro model. The proofs of the results in this
section are fairly standard, but we include them for completeness. For the proof of the large deviations
in Section 4, we will in fact need these results for a slightly more general process, perturbed by an
abitrary u ∈ L∞

(
0, T ; l∞(I × I)

)
, with generator:

(Q(n)

u(t)φ)(ρ,w) := n
∑∑
i 6=j

ρiQijuij(t)
[
φ(ρi→j,wij+)− φ(ρ,w)

]
. (8)

3.1 Well-posedness

Since the jump rates nρiQijuij(t) are uniformly bounded in t and the hybrid sigma-algebra is uniquely
characterised by the finite-dimensional distributions [HPR16, Th. 4.5], the following result becomes
trivial:

Proposition 3.1 (Existence for the microscopic system). Let n ∈ N, ρ(n)(0) ∈ P(I) ∩ 1
n
NI , and

W(n)(0) = 0, and let the process (ρ(n),W(n)) be defined by the perturbed generator Q(n)

u(t). Then

there exists a unique probability measure for (ρ(n),W(n)) on the space BV
(
0, T ;P(I)× l1(I × I)

)
,

i.e. for any hybridly-measurable set U ⊂ BV
(
0, T ;P(I)× l1(I × I)

)
,

P(n)

u (U) := Prob
(
(ρ(n),W(n)) ∈ U

)
(9)

and similarly we define the measure P(n) whenever u ≡ 0. Moreover, the process (ρ(n),W(n)) lies
almost surely in BVflux.

DOI 10.20347/WIAS.PREPRINT.2375 Berlin 2017



D.R.M. Renger 6

The well-posedness of the macroscopic system is a bit more involved:

Proposition 3.2 (Well-posedness of the macroscopic system). (i) Let u ∈ L∞
(
0, T ; l∞(I × I)

)
,

and let (µ, v) ∈ P(I) × l1(I × I) be given. Then there exists a unique solution (ρ,w) ∈
W 1,1

(
0, T ;P(I)× l1(I × I)

)
to the perturbed system of equations

ρ̇(t) = − div ẇ(t), t ∈ (0, T )

ẇ(t) = ρ(t)⊗Q⊗ u(t), t ∈ (0, T )

limt↘0 ρ(t) = µ,

limt↘0 w(t) = v.

(10)

Moreover, the solution (ρ,w) also lies in W 1,∞(0, T ; l1(I × I)
)
.

(ii) Let u ∈ L∞≥0

(
0, T ; l∞(I × I)

)
. For any t ∈ (0, T ) the solution operator ψ(t) :

(
µ, v
)
7→(

ρ(t),w(t)
)

for the initial value problem (10) is a linear and bounded operator mapping l1(I ×
I × I) into itself.

Proof. (i) The proof is by a standard Picard-Lindelöf fixed point argument.

We first prove existence and uniqueness of solutions for the slowed-down system{
ẇ(t) = α

(
µ− divw(t)

)
⊗Q⊗ u(t), t ∈ (0, T ),

limt↘0 w(t) = v,
(11)

where 0 < α ≤ 1 will be determined later. Observe that for α = 1 the problem (11) coincides with
(10) once we retrieve the variable ρ through the continuity equation (2a). Denote

W 1,1
v :=

{
w ∈ W 1,1

(
0, T ; l1(I × I)

)
: lim
t↘0

w(t) = v
}
,

and define the operator A : W 1,1
v → W 1,1

v by

A[w](t) := v + α

∫ t

0

(
µ− divw(s)

)
⊗Q⊗ u(s) ds.

Naturally, solutions of (11) are fixed points of A. We can estimate for any w, ŵ ∈ W 1,1
v :

‖A[w]− A[ŵ]‖BV ≤ α(T + 1)‖w − ŵ‖L1 |Q|1‖u‖L∞ .

Hence for α small enough, the Banach Fixed Point Theorem gives the existence and uniqueness of
a solution to the slowed-down system (11). By rescaling time we find a unique solution of the original
system (10) up to time αT . Repeating this process a finite number of times gives existence and
uniqueness in W 1,1 of the solution up to time T .

For the regularity in W 1,∞, observe that ẇ(t) = ρ(t) ⊗ Q ⊗ u(t) is uniformly bounded, and hence
so are ρ̇(t) = − div ẇ(t) and ρ(t) and w(t).

(ii) The linearity of ψ is immediate from the linearity of the system (10). The boundedness in the first
variable is also trivial since |ρ(t)|1 = |µ|1. For the boundedness in w, note that u ≥ 0 implies that
w(t) is non-negative and non-decreasing. Therefore d

dt
|w(t)|1 = |ẇ(t)|1 ≤ |µ|1|Q|1‖u‖∞, which

proves that |w(t)|1 ≤ t|µ|1|Q|1‖u‖∞.
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3.2 Many-particle limit

We now state that the microscopic system converges to the macroscopic system in the many-particle
limit. Of course, this limit is an immediate consequence of the law of the large numbers, see for
example [Dud89, Th. 11.4.1]. However, the proof below has a bit more structure that allows for gener-
alisations.

Theorem 3.3 (Many-particle limit). Fix (deterministic) (ρ(n)(0))n and µ in P(I) such that ρ(n)(0) →
µ, and W(n)(0) ≡ 0. Let 0 ≤ u ∈ L∞

(
0, T ; l∞(I × I)

)
be non-negative and bounded, and let

(ρ(n),w(n)) be the perturbed process with generator (8) starting from (ρ(n)(0), 0). Then (ρ(n),W(n))
converges in probability in BV

(
0, T ;P(I)× l1(I× I)

)
with the hybrid topology to the (deterministic)

solution (ρ,w) of the perturbed problem (10).

Proof. We first prove convergence of the finite-dimensional distributions by operator convergence. Let
Qu(t) : C1

b

(
P(I)×l1(I×I)

)
→ Cb

(
P(I)×l1(I×I)

)
be the deterministic generator corresponding

to the system (10), i.e.:

(Qu(t)φ)(ρ,w) =
∑∑
i 6=j

ρiQijuij(t)∇φ(ρ,w) · (1j − 1i,1ij). (12)

Naturally, the corresponding semigroup is simply
(
S(t)φ

)
(ρ,w) = φ

(
ψ(t)(ρ,w)

)
, where ψ(t) is the

solution operator. Because of Proposition 3.2(ii), the semigroup S(t) mapsC1
b

(
P(I)×l1(I×I)

)
into

itself, and henceC1
b

(
P(I)× l1(I×I)

)
is a core for the limit generatorQu(t) [EK05, Ch. 1, Prop. 3.3].

Moreover, for any test function φ in this core we clearly have ‖Q(n)

u(t)φ − Qu(t)φ‖Cb(P(I)×l∞(I×I)) →
0. Therefore, due to the Trotter-Kurtz Theorem [Kal97, Th. 17.25] all finite-dimensional distributions
convergence.

By the tightness of the process (ρ(n),W(n)) in BV
(
0, T ;P(I) × l1(I × I)

)
, which will be proven

in Proposition 4.6, we also have narrow convergence of the paths in BV
(
0, T ;P(I) × l1(I × I)

)
,

see [HPR16, Prop. 4.8]. Finally, narrow convergence to a deterministic limit implies convergence in
probability.

4 Large deviations

In this section we rigorously prove the dynamic large-deviation principle. First we prove the dynamic
large deviations under deterministic initial conditions:

Theorem 4.1 (Large-deviation principle I). Fix a µ ∈ P(I), µ > 0 (coordinate-wise) satisfying initial
condition (1.1). Then the pair (ρ(n),W(n)) satisfies a large-deviation principle in BV

(
0, T ;P(I) ×

l1(I × I)
)

with the hybrid topology, with good rate functional I(0,T ) from (3), where we implicitly set
I(0,T )(ρ,w) =∞ whenever limt↘0

(
ρ(t),w(t)

)
=
(
µ, 0
)

is violated.

Next we derive the coupled large-deviation principle if the initial conditions satisfy a large-deviation
principle themselves:

Theorem 4.2 (Large-deviation principle II). Let the random variables ρ(n)(0) satisfy a large-deviation
principle in P(I) with rate functional I0, and assume that I0 is left-continuous at the lower boundary
{ρ ∈ P(I) : ρi = 0 for some i ∈ I}. Then the pair (ρ(n),W(n)) satisfies a large-deviation principle in
BV
(
0, T ;P(I)× l1(I×I)

)
with the hybrid topology, with good rate functional (ρ,w) 7→ I0

(
ρ(0)

)
+

I(0,T )(ρ,W), where we implicitly set I(0,T )(ρ,w) =∞ whenever limt↘0 w = 0 is violated.

DOI 10.20347/WIAS.PREPRINT.2375 Berlin 2017
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We largely follow the ideas from [SW95, Ch. 5] and [PR16]. The assumption that µ > 0 is believed to
be technical, and has to do with the construction of the approximation sequence in the lower bound. A
similar assumption is used in for example [BDSG+07, Th. 2.1], although the approximation argument
is very different. In our Theorem 4.2 above, this assumption is no longer needed.

In Subsection 4.2 we prove that the sequence is exponentially tight, in Subsection 4.3 we prove the
large-deviation lower bound, and in Subsection 4.4 we prove the large deviation upper bound on
compact sets. Together, these results imply the large-deviation principle Theorem 4.1, with a good rate
functional [DZ87, Lem. 1.2.18]. In order to prove both bounds, we first need some results about the
rate functional, which are proven in Subsection 4.1 below. In Subsection 4.5 we prove large-deviation
Theorem 4.2 for the coupled system with random initial conditions.

4.1 Analysis of the rate functional

As briefly mentioned above, we follow the ideas of [PR16], which studies the large deviations of the
empirical measure for a very general class of reactions. That general setting applies partially to the
setting of the current paper. To apply the general results to the current setting we need to consider
each jump as a chemical reaction in the space I × I × I , where each reaction, parametrised by
i, j ∈ I × I , causes a state change of γ(ij) := (1j −1i,1ij), and occurs with intensity ρiQij . Some
conditions from the paper [PR16] are violated, but the ones that we will need in this section are easily
verified. We can then use the following result:

Proposition 4.3. Let (ρ,w) ∈ BVflux such that I(0,T )(ρ,w) < ∞. Then (ρ,w) is absolutely con-
tinuous, that is, we can identify the path (ρ,w) with a function in W 1,1(0, T ;P(I) × l1(I × I)

)
.

Proof. For this theorem we can immediately apply [PR16, Prop. 4.1] after checking the following con-
ditions:

� 1 ≤ infi,j∈I:i 6=j|γ(ij)|1 = supi,j∈I:i 6=j|γ(ij)|1 = 3 <∞,

� sup(ρ,w)∈P(I)×l1(I×I)
∑∑

i 6=j ρiQij =
∑∑

i 6=j Qij <∞.

As often in large deviation theory it will be beneficial to have a dual formulation of the rate functional
at hand. For any ρ ∈ L1

(
0, T ;P(I)

)
, j ∈ L1

(
0, T ; l1(I × I)

)
and ζ ∈ L∞

(
0, T ; l∞(I × I)

)
, let

G(ρ, j, ζ) := L∞〈ζ, j〉L1 −
∫ T

0

H
(
ρ(t), ζ(t)

)
dt and H(ρ, ζ) :=

∑∑
i 6=j

ρiQij

(
eζij − 1

)
,

denoting L∞〈ζ, j〉L1 :=
∑∑

i 6=j
∫ T

0
ζij(t) jij(t) dt, again excluding the diagonal. We then have the

following:

Proposition 4.4. For any (ρ,w) ∈ W 1,1
(
0, T ;P(I) × l1(I × I)

)
∩ BVflux with initial condition

limt↘0(ρ(t),w(t)) = (µ, 0),

I(0,T )(ρ,w) = sup
ζ∈C2

b (0,T ;l∞(I×I))
G(ρ, ẇ, ζ).
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Moreover, if I(0,T )(ρ,w) <∞ then

I(0,T )(ρ,w) = sup
ζ∈C2

c ([0,T );l∞(I×I))
G(ρ, ẇ, ζ). (13)

Proof. Fix a ρ ∈ BV
(
0, T ;P(I)

)
. For any ζ ∈ L∞

(
0, T ; l∞(I × I)

)
there holds

sup
j∈L1(0,T ;l1(I×I))

L∞〈ζ, j〉L1 −
∫ T

0

S
(
j(t)|ρ(t)⊗Q

)
dt

≤
∫ T

0

sup
j(t)∈l1(I×I)

[
ζ(t) · j(t)− S

(
j(t)|ρ(t)⊗Q

)]
dt =

∫ T

0

H
(
ρ(t), ζ(t)

)
dt. (14)

The point-wise maximiser on the right-hand side is j : (i, j, t) 7→ ρi(t)Qij

(
eζij(t) − 1

)
, which lies

in L1
(
0, T ; l1(I × I)

)
. Hence the point-wise maximiser is also the global maximiser of the left-hand

side, and inequality (14) is in fact an equality. From the Moreau-Fenchel Theorem [Bré83, Th. I.10] it
follows that ∫ T

0

S
(
ẇ(t)|ρ(t)⊗Q

)
dt = sup

ζ∈L∞(0,T ;l∞(I×I))
G(ρ, ẇ, ζ).

We can now show that we can replace the supremum over L∞-functionals by a supremum over C2
b -

functions. To prove this, take any ζ ∈ L∞
(
0, T ; l∞(I × I)

)
and approximate it by ζ (ε) := ζ ∗ θ(ε)

where

θ(ε)(t) =
1

4πε
e−t

2/4ε, (15)

such that ζ (ε) ∈ C2
b

(
0, T ; l∞(I × I)

)
and ζ (ε) → ζ weakly in L∞

(
0, T ; l∞(I × I)

)
. Note that

by equality (14), the functional ζ 7→
∫ T

0
H
(
ρ(t), ζ(t)

)
dt is the supremum of weakly continuous

functionals, and hence it is itself weakly lower semicontinuous in L∞. Therefore we get

lim sup
ε→0

G(ρ, ẇ, ζ (ε)) ≤ lim sup
ε→0

L∞〈ζ (ε), ẇ〉L1 − lim inf
ε→0

∫ T

0

H
(
ρ(t), ζ (ε)(t)

)
dt ≤ G(ρ, ẇ, ζ),

which proves the claim.

Finally, we show (13), assuming I(0,T ) < ∞. Take a ζ ∈ C2
b

(
0, T ; l∞(I × I)

)
, and approximate it

by ζη(ε), where η(ε) : (0, T ) → [0, 1] is smooth such that η(ε)|(0,T−ε] = 1 and η(ε)|(T− 1
2
ε,T ] = 0. Let

gij(t, ζij) := ζijẇij(t)− ρi(t)Qij

(
eζij − 1

)
and sij(t) = λB

(
ẇij(t)/(ρi(t)Qij

)
ẇij(t). For almost

every t and any coordinate pair i 6= j, we can distinguish three different cases (see Figure 1):

(i) if ζij(t) < 0, then gij
(
t, ζij(t)

)
≤ gij

(
t, ζij(t)η

(ε)(t)
)
≤ 0 ≤ s

(
ẇij(t)|ρi(t)Qij

)
,

(ii) if ζij(t) ≥ 0 and gij
(
t, ζij(t)

)
≥ 0, then 0 ≤ gij

(
t, ζij(t)η

(ε)(t)
)
≤ s
(
ẇij(t)|ρi(t)Qij

)
,

(iii) if ζij(t) ≥ 0 and gij
(
t, ζij(t)

)
< 0, then gij

(
t, ζij(t)

)
≤ gij

(
t, ζij(t)η

(ε)(t)
)
≤ s
(
ẇij(t)|ρi(t)Qij

)
.

In all cases we have the t-almost everywhere bounds

g−(t) :=
∑∑
i 6=j

gij(t, ζij(t)
)
∧ 0 ≤

∑∑
i 6=j

gij(t, ζij(t)η
(ε)(t)

)
≤
∑∑
i 6=j

sij(t).

The right-hand side lies in L1(0, T ) by the assumption that I(0,T )(ρ,w) < ∞, and the left-hand as
well since ‖g−(t)‖L1(0,T ) ≤ I(0,T ) − G(ρ, ẇ, ζ) < ∞ where G(ρ, ẇ, ζ) > −∞ as ζ is bounded.
Clearly ζη(ε) converges pointwise to ζ ; by dominated convergence it follows that G(ρ, ẇ, ζη(ε)) →
G(ρ, ẇ, ζ), which was to be proven.
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ζij

Sij
(
jij(t)|ρi(t)Qij

)
jij(t) > 0

ζij

Sij
(
jij(t)|ρi(t)Qij

)
jij(t) = 0

Figure 1: The function gij(t, ζij).

The functional G(ρ, ẇ, ζ) is generally not hybrid-continuous in (ρ,w), but all we will need is the
following:

Lemma 4.5. For any ζ ∈ C2
c

(
[0, T ); l∞(I × I)

)
, the functional (ρ,w) 7→ G(ρ, ẇ, ζ) is hybrid-

continuous on {I(0,T ) <∞}.

Proof. Paths for which I(0,T ) is finite satisfy the initial condition
(
ρ(0),w(0)

)
= (µ, 0). As ζ is

differentiable and 0 at the right boundary we can write:

G(ρ, ẇ, ζ) = −L∞〈ζ̇ ,w〉L1 −
∑∑
i 6=j

∫ T

0

ρi(t)Qij(e
ζij(t) − 1) dt,

which is strongly continuous in L1
(
0, T ;P(I)× l1(I × I)

)
and hence also hybrid-continuous.

4.2 Exponential tightness

As mentioned in the Preliminaries Section, with the choice of the hybrid topology, the proof for the
exponential tightness becomes very simple. Define the total-variation balls:

Br :=
{(
ρ,w

)
∈ BVflux : epvar(w) ≤ r

}
. (16)

Note that by (5) the variation epvar(ρ) is automatically uniformly bounded within such balls.

Proposition 4.6 (Exponential tightness). Let u ∈ L∞
(
0, T ; l∞(I × I)

)
. For any η > 0, and for

r := η + T e‖u‖L∞ |Q|1,
P(n)

u (Bc
r) ≤ e−nη,

and the balls Br are hybrid-compact in BV(0, T ;P(I)× l1(I × I)
)
.

Proof. Observe that the perturbed Markov jump process
∑∑

i 6=j W
(n)

i,j (t) is bounded by a Poisson

process 1
n
Nλ with intensity λ := n‖u‖L∞|Q|1 ≥ n

∑∑
i 6=j ρi(t)Qijuij(t). A standard Chernoff

bound therefore yields

P(n)(Bc
r) = P(n)

({
1
n
# jump(W(n)) > r

})
≤ Prob

(
Nλ > nr

)
≤ eλTe−nr = e−nη.

Moreover, by Proposition 2.2 the balls Br are automatically hybrid-compact.
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4.3 Lower bound

We now prove the large-deviation lower bound. As usual in dynamic large deviations, the proof is
based on a Girsanov transformation together with an approximation argument.

Lemma 4.7 (Girsanov transformation). Fix an n ∈ N, ρ(n)(0) ∈ P(I) ∩ 1
n
NI and a function ζ ∈

C2
b

(
0, T ; l∞(I× I)

)
. Let P(n)

eζ ,r
be the path measure for the process with initial conditions (ρ(n)(0), 0)

and generator

(Q(n)

eζ(t),r
φ)(ρ,w) := n

∑∑
i 6=j

ρiQije
ζij(t)1{wij(t)≤r− 1

n }
[
φ(ρ(i→j),wij+)− φ(ρ,w)

]
.

Then
1

n
log

dP(n)

eζ ,r

dP(n)
(ρ,w) = −Gr(ρ,w, ζ), (17)

where

Gr(ρ,w, ζ) :=
∑∑
i 6=j

∫ inf{t̂∈(0,T ):wij(t̂)≥r}

0

[
ζij(t)ẇij(dt)− ρi(t)Qij

(
eζij − 1

)
dt
]
.

Proof. We can apply the Girsanov Theorem for jump processes [KL99, Ch. A.1, Th. 7.3] to the func-
tional Ft(w) := n ζ(t) · (w ∧ r) for w ∈ l1(I × I), which lies in C2

b

(
0, T ;L∞(l1(I × I))

)
.

Remark 4.8. The right-hand side of (17) does not involve the particle number n due to the indepen-
dence of the particles.

The next lemma shows that the following set constitutes of sufficiently regular paths that can be re-
trieved via the Girsanov transformation:

A :=
{

(ρ,w) ∈ W 1,1
(
0, T ;P(I)× l1(I × I)

)
: I(0,T )(ρ,w) <∞ and

t 7→ log
ẇ(t)

ρ(t)⊗Q ∈ C
2
c

(
[0, T ); l∞(I × I)

)}
. (18)

Lemma 4.9. For any hybrid-open set U ⊂ BV
(
0, T ;P(I)× l1(I × I)

)
and any (ρ,w) ∈ U ∩ A,

lim inf
n→∞

1

n
logP(n)(U) ≥ −I(0,T )(ρ,w).

Proof. Let a hybrid-open U ⊂ BV
(
0, T ;P(I) × l1(I × I)

)
and a (ρ,w) ∈ U ∩ A be given,

and define ζ(t) := t 7→ log
ẇ(t)

ρ(t)⊗Q ∈ C2
c

(
[0, T ); l∞(I × I)

)
. For an arbitrary ε > 0, let

Uε(ρ,w) := {(ρ̂, ŵ) ∈ BV (0, T ;P(I)× l1(I × I)) : G(ρ̂, ŵ, ζ) < G(ρ, ẇ, ζ) + ε}. By applying
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the transformation Lemma 4.7,

1

n
logP(n)(U) ≥ 1

n
logP(n)

(
U ∩ Uε(ρ,w) ∩Bn

)
≥ 1

n
logP(n)

eζ ,n

(
U ∩ Uε(ρ,w) ∩Bn

)
+

1

n
log P(n)- ess inf

(ρ̂,ŵ)∈U∩Uε(ρ,w)∩Bn

dP(n)

dP(n)

eζ ,n

(ρ̂, ŵ)

≥ 1

n
logP(n)

eζ ,n

(
U ∩ Uε(ρ,w) ∩Bn

)
− sup

(ρ̂,ŵ)∈U∩Uε(ρ,w)∩Bn
Gn(ρ̂, ŵ, ζ)

≥ 1

n
logP(n)

eζ

(
U ∩ Uε(ρ,w) ∩Bn

)
− sup

(ρ̂,ŵ)∈U∩Uε(ρ,w)∩Bn
G(ρ̂, ŵ, ζ). (19)

To bound the first term, observe that the perturbed limit equation (10) with u = eζ = ẇ/(ρ ⊗
Q) yields the given path (ρ,w). Hence by the many-particle limit (Theorem 3.3), P(n)

eζ
⇀ δ(ρ,w).

Furthermore, because of Lemma 4.5 the sets Uε(ρ,w) are hybrid-open, so that the Portemanteau
Theorem gives lim infn P(n)

eζ

(
U ∩ Uε(ρ,w)

)
≥ 1. Then we also have, exploiting the exponential

tightness (Proposition 4.6),

lim inf
n→∞

P(n)

eζ

(
U ∩ Uε(ρ,w) ∩Bn

)
≥ lim inf

n→∞

[
P(n)

eζ

(
U ∩ Uε(ρ,w)

)
− P(n)

eζ

(
Bc
n

)]
≥ 1,

which shows that the first term in (19) vanishes in the limes inferior.

For the second term, we use the definition of the set Uε(ρ,w) together with the fact that ζ maximises
G(ρ, ẇ, ·). Putting everything together we find:

lim inf
n→∞

1

n
logP(n)(U) ≥ lim inf

n→∞

1

n
logP(n)

eζ

(
U ∩ Uε(ρ,w) ∩Bn

)
−G(ρ, ẇ, ζ)− ε

≥ −G(ρ, ẇ, ζ)− ε = I(0,T )(ρ,w)− ε.

Since ε was arbitrary the claim follows.

The next three approximation lemmas show that the rate fuctional can be approximated by taking
paths inA.

Lemma 4.10 (Lower bound approximation I). Let (ρ,w) ∈ W 1,1
(
0, T ;P(I) × l1(I × I)

)
with

I(0,T )(ρ,w) <∞. Then there exists a sequence (ρ(ε),w(ε))0<ε<ε̂ ⊂ W 1,1
(
0, T ;P(I)× l1(I × I)

)
such that I(0,T )(ρ

(ε),w(ε)) −−→
ε→0

I(0,T )(ρ,w) and ‖ẇ(ε)

ij ‖L1(0,T ) = 0 =⇒ ‖ρ(ε)

i Qij‖L1(0,T ) = 0 for

all i 6= j ∈ I × I and for all 0 < ε < ε̂.

Proof. If ‖ẇij‖L1(0,T ) = 0 =⇒ ‖ρiQij‖L1(0,T ) = 0 for all i, j ∈ I then the construction is
trivial. Now assume that there is one and only one pair i 6= j ∈ I × I for which ‖ρi‖L1|Qij| =
‖ρiQij‖L1 > 0 but ‖ẇij‖L1 = 0. If there would be more pairs with this property then we can simply
repeat the construction below for each such pair separately.

Since I(0,T )(ρ,w) < ∞, by Proposition 4.3 the path ρ must be continuous, and so there exists an
ε̂ > 0 and a t̂ ∈ (0, T ) such that, see Figure 2:

0 ≤ (t− t̂)1(t̂,t̂+ε)(t) ≤ (t− t̂)1(t̂,t̂+ε̂)(t) ≤ ρi(t)− ε̂ for all 0 < ε < ε̂.

Define the sequence:

w(ε)(t) := w(t) + (t− t̂)1(t̂,t̂+ε)(t)1ij, and

ρ(ε)(t) := µ− divw(ε)(t) = ρ(t)− (t− t̂)1(t̂,t̂+ε)(t)1i,
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and note that by construction ρ(ε)(0) = µ, the continuity equation is satisfied, and we have that both
ẇ(ε)

ij (t) > 0 and ρ(ε)

i (t)Qij > 0, as required. To prove the convergence of the rate functional, we will
use formulation (3) which is equal to I(0,T ) by Proposition 4.4. Recall that ẇij ≡ 0 and note that the
continuous function ρi(t) is uniformly bounded by some C > 0 on the compact interval [t̂, t̂ + ε̂], so
that 0 < ε̂ ≤ ρ(ε)

i (t) = ρi(t)− t+ t̂ ≤ C on [t̂, t̂+ ε̂]. It follows that

∣∣I(0,T )(ρ
(ε),w(ε))− I(0,T )(ρ

(ε),w(ε))
∣∣ ≤ ∫ t̂+ε

t̂

∣∣∣1 log
1

ρ(ε)

i (t)Qij

− 1 + ρ(ε)

i (t)Qij − ρi(t)Qij

∣∣∣ dt
≤
∫ t̂+ε

t̂

(
|log(ρ(ε)

i (t)Qij)|+ 1 + t̂− t
)
dt→ 0.

0 T
t

t̂ t̂+ ε̂

ε̂

ρi(t)

Figure 2: There exists a small triangle below the graph of ρi(t).

Lemma 4.11 (Lower bound approximation II). Let (ρ,w) ∈ W 1,1
(
0, T ;P(I)×l1(I×I)

)
with µ > 0,

I(0,T )(ρ,w) <∞, and ‖ẇij‖L1(0,T ) = 0 =⇒ ‖ρiQij‖L1(0,T ) = 0 for all i 6= j ∈ I×I . Then there
exists a sequence (ρ(ε),w(ε))ε>0 ⊂ W 1,1

(
0, T ;P(I)× l1(I × I)

)
such that I(0,T )(ρ

(ε),w(ε)) −−→
ε→0

I(0,T )(ρ,w) and log ẇ(ε)

ρ(ε)⊗Q ∈ C
2
b

(
0, T ; l∞(I×I)

)
for all ε > 0 (with the convention that log 0

0
≡ 0).

Proof. Let θ(ε) be the heat kernel (15) and define the approximating sequence (coordinate-wise):

w(ε)(t) :=
µ

(ρ ∗ θ(ε))(0)

[
(w ∗ θ(ε))(t)− (w ∗ θ(ε))(0)

]
, and

ρ(ε)(t) := µ− divw(ε)(t) =
µ

(ρ ∗ θ(ε))(0)
(ρ ∗ θ(ε))(t). (20)

Here the convolutions run over the whole real line, where we extended (ρ(t),w(t)) = (µ, 0) for
t < 0 and

(
ρ(t),w(t)

)
=
(
ρ(T ),w(T )

)
for t > T ; these values are well-defined since func-

tions of bounded variation have left and right limits. Observe that by construction, the initial condition(
ρ(ε)(0),w(ε)(0)

)
= (µ, 0) and the continuity equation are satisfied, ρ(ε)(t) and ẇ(ε)(t) are non-

negative, and so is w(ε)(t).

We first prove that log
ẇ

(ε)
ij

ρ
(ε)
i ⊗Qij

∈ C2
b (0, T ) for all ε > 0 and i, j ∈ I . We distinguish between two

cases. If the path ρi(t)Qij = 0 for almost every t ∈ (0, T ), then also ẇij(t) = 0 for almost every
t, since I(0,T ) < ∞ implies ẇ(t) � ρ(t) ⊗ Q. Then we also have ρ(ε)

i (t)Qij = 0 and w(ε)

ij (t) = 0

for almost every t ∈ (0, T ), and hence log
ẇ

(ε)
ij

ρ
(ε)
i Qij

= log 0
0

:= 0 ∈ C2
b (0, T ). For the second case
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we can assume that ‖ρi‖L1(0,T ) > 0 and Qij > 0, and so by the main assumption of the lemma also
wij(T ) = ‖ẇij‖L1(0,T ) > 0. Clearly (ρ(ε),w(ε)) ∈ C∞b

(
0, T ;P(I)× l∞(I × I)

)
, and in particular,

the function and all its derivatives are uniformly bounded. More precisely, we have the following bounds
from below, uniformly in t:

ρ(ε)

i (t) ≥ µ

(ρ ∗ θ(ε))(0)
θ(ε)(T )‖ρi‖L1(0,T ) > 0 and ẇ(ε)

ij (t) ≥ µ

(ρ ∗ θ(ε))(0)
θ(ε)(T )wij(T ) > 0.

(21)

Therefore the three functions

log
ẇ(ε)

ij (t)

ρ(ε)

i (t)Qij

d

dt
log

ẇ(ε)

ij (t)

ρ(ε)

i (t)Qij

=
ẅ(ε)

ij (t)

ẇ(ε)

ij (t)
− ρ̇(ε)

i (t)

ρ(ε)

i (t)

d2

dt2
log

ẇ(ε)

ij (t)

ρ(ε)

i (t)Qij

=
ẇ(ε)

ij (t)
...
w(ε)

ij (t)− ẅ(ε)

ij (t)2

ẇ(ε)

ij (t)2
− ρ(ε)

i (t)ρ̈(ε)

i (t)− ρ̇(ε)

i (t)2

ρ(ε)

i (t)2

are all bounded and continuous which was to be shown.

We now show that I(0,T )(ρ
(ε),w(ε)) −−→

ε→0
I(0,T )(ρ,w). Because (ρ,w) ∈ W 1,1

(
0, T ;P(I)× l1(I×

I)
)

we surely have (ρ(ε),w(ε))
W 1,1

−−−→
ε→0

(ρ,w). Since I(0,T ) is the supremum over W 1,1-continuous

functionals, I(0,T ) is lower semi-continuous, and so

lim inf
ε→0

I(0,T )(ρ
(ε),w(ε)) ≥ I(0,T )(ρ,w). (22)

We use the relative entropy formulation of I(0,T ) to prove the inequality in the other direction. Since
S(·|·) is jointly convex one finds by a two-dimensional Jensen inequality that∫ T

0

S
(
ẇ(ε)(t)|ρ(ε) ⊗Q(t)

)
dt

=
µ

(ρ ∗ θ(ε))(0)

∫ T

0

S
(∫ ∞
−∞

ẇ(t− s) θ(ε)(s) ds
∣∣∣ ∫ ∞
−∞

ρ(t− s)θ(ε)(s) ds⊗Q
)
dt

≤ µ

(ρ ∗ θ(ε))(0)

∫ T

0

∫ ∞
−∞
S
(
ẇ(t− s)|ρ(t− s)⊗Q

)
θ(ε)(s) ds dt

−−→
ε→0

∫ T

0

S
(
ẇ(t)|ρ(t)⊗Q

)
dt = I(0,T )(ρ,w),

where the convergence follows from (ρ ∗ θ(ε))(0) → µ together with the fact that the non-negative
mapping t 7→ S(ẇ(t)|ρ(t) ⊗ Q) lies in L1(0, T ) since I(0,T )(ρ,w) < ∞ (see for example [Eva98,
App. C.4, Th. 6]).

Lemma 4.12 (Lower bound approximation III). Let (ρ,w) ∈ W 1,1
(
0, T ;P(I) × l1(I × I)

)
with

I(0,T )(ρ,w) < ∞ and log ẇ
ρ⊗Q ∈ C

2
b

(
0, T ; l∞(I × I)

)
(with the convention that log 0

0
≡ 0). Then

there exists a sequence (ρ(ε),w(ε))ε>0 ⊂ W 1,1
(
0, T ;P(I)×l1(I×I)

)
such that I(0,T )(ρ

(ε),w(ε))→
I(0,T )(ρ,w) and log ẇ(ε)

ρ(ε)⊗Q ∈ C
2
c

(
[0, T ); l∞(I × I)

)
for all ε > 0.
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Proof. Let ψ(t) be the solution map from Proposition 3.2(ii), (where the perturbation factor u ≡ 0),
and define

(ρ̂(ε)(t), ŵ(ε)(t)) :=

{
(ρ(t),w(t)), t ∈ (0, T − ε),
ψ(t− T + ε)

[
ρ(T − ε),w(T − ε)

]
, t ∈ (T − ε, T ).

Then clearly log
˙̂w(ε)

ρ̂(ε)⊗Q hasC2
b -regularity on (0, T−ε], and it is constant 0 on (T−ε, T ). To deal with

the lack of regularity at time t = T − ε, we again mollify like in (20), but now with smooth, compactly
supported bump functions η(ε) ∈ C∞c (−1

2
ε, 1

2
ε),
∫
η(ε)(t) dt = 1, i.e.

w(ε)(t) :=
µ

(ρ̂(ε) ∗ η(ε))(0)

[
(ŵ(ε) ∗ η(ε))(t)− (ŵ(ε) ∗ η(ε))(0)

]
, and ρ(ε)(t) := µ− divw(ε)(t).

Due to the small compact support, we still have that (ρ(ε),w(ε)) follows the macroscopic flow on (T −
1
2
ε, T ), and so log ẇ(ε)

ρ(ε)⊗Q has the desired regularity.

We now prove that the rate functional converges. The convolution with the smooth kernel can be
dealt with in exactly the same manner as in the proof of Lemma 4.11, so we only need to prove the
convergence of I(0,T )(ρ̂

(ε), ŵ(ε)). This follows immediately by monotone convergence:

I(0,T )(ρ̂
(ε), ŵ(ε)) =

∫ T−ε

0

S
(

˙̂w(ε)(t)|ρ̂(ε)(t)⊗Q
)
dt→

∫ T

0

S
(

˙̂w(ε)(t)|ρ̂(ε)(t)⊗Q
)
dt.

Proposition 4.13 (Large-deviation lower bound). Assume µ > 0. For any hybrid-open set U ⊂
BV
(
0, T ;P(I)× l1(I × I)

)
,

lim inf
n→∞

1

n
logP(n)(U) ≥ − inf

(ρ,w)∈U
I(0,T )(ρ,w).

Proof. Take an arbitrary hybrid-open U ⊂ BV
(
0, T ;P(I) × l1(I × I)

)
. As a consequence of

Lemmas 4.10, 4.11 and 4.12, any path with I(0,T )(ρ,w) < ∞ can be approximated by paths in the
set A from (18) such that the rate functional also converges. In particular, due to this denseness, the
set U ∩ A is never empty. Combining this approximation with Lemma 4.9 yields

1

n
logP(n)(U) ≥ − inf

(ρ,w)∈U∩A
I(0,T )(ρ,w) = − inf

(ρ,w)∈U
I(0,T )(ρ,w).

4.4 Upper bound

We now prove the large-deviation weak upper bound via a standard covering technique.

Proposition 4.14. For any compact set K ⊂ BV
(
0, T ;P(I)× l1(I × I)

)
and any r > 0,

lim inf
n→∞

1

n
logP(n)

(
K ∩Br

)
≤ − inf

(ρ,w)∈K∩Br
I(0,T )(ρ,w).

where Br is the bounded-variation ball (16).
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Proof. Fix an ε > 0, and observe that because of (13) one can find for any (ρ,w) ∈ BV
(
0, T ;P(I)×

l1(I × I)
)

a ζ[ρ,w] ∈ C2
c

(
[0, T ); l∞(I × I)

)
such that G(ρ, ẇ, ζ[ρ,w]) ≥ I(0,T )(ρ,w) − ε. Now

define for each (ρ,w) ∈ BV
(
0, T ;P(I) × l1(I × I)

)
the sets Vε(ρ,w) :=

{
(ρ̃, w̃) ∈ BVflux :

G(ρ̃, w̃, ζ[ρ,w]) > G(ρ, ẇ, ζ[ρ,w])−ε
}

, which are open by Lemma 4.5. Surely
⋃

(ρ,w)∈K Vε(ρ,w) ⊃
K and so by compactness there exists a finite subcovering ∪Kk=1Vε(ρ(k),w(k)) ⊃ K. We can then use
Lemma 4.7 together with the fact that Gr = G on Br, to estimate for every k = 1, . . . , K ,

lim sup
n→∞

1

n
logP(n)

(
Vε(ρ(k),w(k)) ∩Br

)
≤ lim sup

n→∞

1

n
logP(n)

eζ[ρ
(k),w(k)],r

(
Vε(ρ(k),w(k)) ∩Br

)
︸ ︷︷ ︸

≤0

+
1

n
log P(n)- ess sup

(ρ̃,w̃)∈Vε(ρ(k),w(k))∩Br

dP(n)

dP(n)

eζ[ρ
(k),w(k)],r

(ρ̃, w̃)

≤ − inf
(ρ̃,w̃)∈Vε(ρ(k),w(k))∩Br

Gr(ρ̃, w̃, ζ[ρ(k),w(k)])

= − inf
(ρ̃,w̃)∈Vε(ρ(k),w(k))∩Br

G(ρ̃, w̃, ζ[ρ(k),w(k)])

≤ −G(ρ(k), ẇ(k), ζ[ρ(k),w(k)])χ(ρ(k),w(k))(Br) + ε

≤ −I(0,T )(ρ
(k),w(k))χ(ρ(k),w(k))(Br) + 2ε,

with the usual characteristic function χ(ρ(k),w(k))(Br) = 0 whenever (ρ(k),w(k)) ∈ Br and∞ other-
wise. Due to the finiteness of the covering one can use the Laplace Principle to get:

lim sup
n→∞

1

n
logP(n)(K ∩Br) ≤ max

k=1,...,K
lim sup
n→∞

1

n
logP(n)

(
Vε(ρ(k),w(k)) ∩Br

)
≤ max

k=1,...,K
−I(0,T )(ρ

(k),w(k))χ(ρ(k),w(k))(Br) + 2ε

≤ − inf
(ρ,w)∈K∩Br

I(0,T )(ρ
(k),w(k)) + 2ε.

Since ε was arbitrary, this proves the claim.

Corollary 4.15 (Large-deviation weak upper bound). For any compact set K ⊂ BV
(
0, T ;P(I) ×

l1(I × I)
)
,

lim inf
n→∞

1

n
logP(n)(K) ≤ − inf

(ρ,w)∈K
I(0,T )(ρ,w).

Proof. This is a consequence of the exponential tightness Proposition 4.6 and Proposition 4.14, as
follows. Note that the balls Br are defined as subsets of BVflux, and that I(0,T )|BVc

flux
= ∞. For any

η > 0 and r := η + T e|Q|1 we can apply Laplace’s principle:

lim sup
n→∞

1

n
logP(n)(K) ≤ lim sup

n→∞

1

n
log
(
P(n)(K ∩Br) + P(n)(Bc

r)
)

≤ −
(

inf
K∩Br

I(0,T ) ∧ η
)
≤ −

(
inf
K
I(0,T ) ∧ η

)
.

Since η was arbitrary the claim follows.
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4.5 Coupled large deviations

We can now use the conditional large deviations to prove the coupled large deviations.

Proof of Theorem 4.2. The coupled probabilities can be disintegrated as

Prob
(
ρ(n),W(n) ∈ dρ dw)

=

∫
Prob

(
ρ(n),W(n) ∈ dρ dw | ρ(n)(0) = ρ(0)

)
Prob

(
ρ(n)(0) ∈ dρ(0)

)
,

where initial probabilities satisfy a large-deviation principle with rate I0, and the conditional proba-
bilities satisfy a large-deviation principle with rate I(0,T ) whenever ρ(0) > 0. Therefore, apart from
the condition ρ(0) > 0, we can immediately apply [Big04] to get the large deviations for the coupled
system. Observe that the condition ρ(0) > 0 is not needed in the conditional upper bound, Corol-
lary 4.15, and hence by [Big04] the coupled large-deviation upper bound holds. However, for the lower
bound we only get for any hybrid-open set U ⊂ BV

(
0, T ;P(I)× l1(I × I)

)
that

lim inf
n→∞

1

n
logP(n)(U) ≥ − inf

(ρ,w)∈U :
ρ(0)>0

I0

(
ρ(0)

)
+ I(0,T )(ρ,w).

In order to replace the infimum above by − inf(ρ,w)∈U I0

(
ρ(0)

)
+ I(0,T )(ρ,w), we need to show

that any (ρ,w) ∈ BV
(
0, T ;P(I)× l1(I × I)

)
can be approximated by trajectories (ρ(ε),w(ε)) with

ρ(ε)(0) > 0 such that I(0,T )(ρ
(ε),w(ε))→ I(0,T )(ρ,w).

Take an arbitrary (ρ,w) ∈ BV
(
0, T ;P(I) × l1(I × I)

)
where ρ(0) lies on the boundary {ρ ∈

P(I) : ρi = 0 for some i ∈ I}. We apply two approximations. The first approximation is similar
to (20) but slightly different since ρ(0) might be zero:

w(ε)(t) := (w ∗ θ(ε))(t)− (w ∗ θ(ε))(0),

ρ̂(ε)(t) := (ρ ∗ θ(ε))(0)− divw(ε)(t) = (ρ ∗ θ(ε))(t),

where as before we extend the functions constantly outside (0, T ). By the same argument as in
Lemma 4.11 we have I(0,T )(ρ̂

(ε),w(ε)) → I(0,T )(ρ,w); we will use this below. Moreover by the
assumed continuity on the boundary we also have I0

(
ρ̂(ε)(0)

)
= I0

(
(ρ ∗ θ(ε))(0)

)
→ I0

(
ρ(0)

)
.

For the second approximation, let î ∈ I be such that ρî(0) > 0. For this coordinate, we have, similarly
to (21), the lower bound ρ̂(ε)

î
(t) ≥ θ(ε)(T )‖ρî‖L1(0,T ) > 0. We can then define

ρ(ε)(t) := ρ(ε)(0)− divw(ε)(t), where

ρ(ε)

i (0) :=

{
ρ̂(ε)

î
(0)− εθ(ε)(T )‖ρî‖L1(0,T ), i = î,

ρ̂(ε)

i (0) + ε
|I|−1

θ(ε)(T )‖ρî‖L1(0,T ), i 6= î.

Observe that by construction ρ(ε)(0) > 0 and ρ(ε)(t) remains positive. Moreover ρ(ε)(0) → ρ(0)
and hence I0

(
ρ(ε)(0)

)
→ I0

(
ρ(0)

)
. To prove convergence of I(0,T )(ρ

(ε)), we exploit the lower

semicontinuity as in (22); hence we only need to prove an upper bound. For any pair i 6= î, j we get∫ T

0

[
ẇ(ε)

ij (t) log
ẇ(ε)

ij (t)

ρ(ε)

i (t)︸ ︷︷ ︸
≥ρ̂(ε)i (t)

Qij
− ẇ(ε)

ij (t) + ρ(ε)

i (t)Qij

]
dt

≤
∫ T

0

[
ẇ(ε)

ij (t) log
ẇ(ε)

ij (t)

ρ̂(ε)

i (t)Qij
− ẇ(ε)

ij (t) + ρ̂(ε)

i (t)Qij

]
dt+

Tε

(|I| − 1)
θ(ε)(T )‖ρî‖L1(0,T )Qij︸ ︷︷ ︸

→0

.
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On the other hand, for any pair î 6= j,∫ T

0

[
ẇ(ε)

îj
(t) log

ẇ(ε)

îj
(t)

ρ(ε)

î
(t)Qîj

− ẇ(ε)

îj
(t) + ρ(ε)

î
(t)Qîj

]
dt

=

∫ T

0

[
ẇ(ε)

îj
(t) log

ẇ(ε)

îj
(t)

ρ̂(ε)

î
(t)Qîj

− ẇ(ε)

îj
(t) + ρ̂(ε)

î
(t)Qîj

− εθ(ε)(T )‖ρî‖L1(0,T )Qîj − ẇ(ε)

îj
(t) log

(
1−

εθ(ε)(T )‖ρî‖L1(0,T )

ρ̂(ε)

î
(t)︸ ︷︷ ︸

≥θ(ε)(T )‖ρî‖L1(0,T )

)]
dt.

Putting both bounds together yields

lim sup
ε→0

I(0,T )(ρ
(ε),w(ε)) ≤ lim sup

ε→0
I(0,T )(ρ̂

(ε),w(ε)) = I(0,T )(ρ,w),

which was to be proven.

In particular, as a consequence of Theorem 4.2 and Sanov’s Theorem, we have:

Corollary 4.16. Let ρ(n)(0) = 1
n

∑n
k=1 1Xk where X1, . . . , Xn are i.i.d. according to π ∈ P(I), the

unique invariant measure for the Markov chain with generator Q. Then (ρ(n),W(n)) satisfies a large-
deviation principle in BV

(
0, T ;P(I)× l1(I × I)

)
with the hybrid topology, with good rate functional

S
(
ρ(0)|π

)
+ I(0,T )(ρ,w).

Remark 4.17. The dynamic large deviations could also be proven by first proving the large devia-
tions of the empirical measure on the path space, and then contracting to the path of the empirical
measure-flux pair. This is the strategy used in [Fen94, Léo95] to prove large deviations for the empirical
measure.

5 Implications for Macroscopic Fluctuation Theory

Using the large-deviation principle that we proved in the previous section, we now explore which parts
of MFT can be applied to the setting of this paper.

5.1 Time-reversal symmetry for the flux

Usually in MFT, time is reversed simply by replacing time t by T − t. However this would turn non-
decreasing fluxes into non-increasing ones, which are non-feasible as we consider specific rather
than net fluxes. The solution is evident: whenever a particle jumps from state i to j at some time t, a
particle should jump from j to i at time T − t for the reversed path. More precisely, we define, for any
(ρ,w) ∈ BV

(
0, T ;P(I)× l1(I × I)

)
,

(θρ)(t) := ρ(T − t) and (θw)ij(t) := wij(T )− wji(T − t) for all i, j ∈ I.

Observe that the continuity equation is indeed invariant under this operation:

∂t(θρ)(t) + div ∂t(θw)(t) = −ρ̇(T − t) + div ẇT(T − t) = −ρ̇(T − t)− div ẇ(T − t) = 0.
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Let us from now on assume that the chain is irreducible, with a unique, (coordinate-wise) positive
invariant measure π > 0. The time-reversed process (θρ(n), θW(n)) is then a Markov process with
generator

(
←−
Q (n)φ)(ρ,w) := n

∑∑
i 6=j

ρi
πi
Qjiπj

[
φ(ρi→j,wij+)− φ(ρ,w)

]
, (23)

and we denote by
←−
I [0,T ] the corresponding large-deviation rate functional, defined as in (3) where

Qij is replaced by ( 1
π
⊗ QT ⊗ π)ij := 1

πi
Qjiπj . Let us assume that ρ(n)(0) = 1

n

∑n
k=1 1Xk where

X1, . . . , Xn are i.i.d. according to the stationary measure π ∈ P(I). Then θρ(n)(0) has the same
distribution, and so for any hybrid-measurableA ⊂ BV

(
0, T ;P(I)× l1(I × I)

)
,

Prob
(
(ρ(n),W(n)) ∈ A

)
= Prob

(
(θρ(n), θW(n)) ∈ θA

)
.

By Corollary 4.16 this implies the time-reversal symmetry:

S
(
ρ(0)|π) + I(0,T )(ρ,w) = S

(
ρ(T )|π) +

←−
I [0,T ](θρ, θw). (24)

Symmetries of this type are fundamental to MFT, and we see that with the right choice of the time-
reveral operator θ the symmetry is also valid when using specific rather than net fluxes. One should
however be aware that we only assumed an invariant measure for ρ(n), and not for the flux W(n).
Indeed if the density is in equilibrium, net fluxes are always zero, whereas specific fluxes will continue
to increase.

Since
←−
Q is known, relation (24) can also be calculated directly:

I(0,T )(ρ,w)−
←−
I [0,T ](θρ, θw) =

∫ T

0

S
(
ẇ(t)|ρ(t)⊗Q

)
dt−

∫ T

0

S
(
ẇT(t)

∣∣ρ(t)
π
⊗QT ⊗ π

)
dt

=
∑
i

∫ T

0

[∑
j 6=i

(ẇij(t)− ẇji(t))︸ ︷︷ ︸
=− divi w(t)=ρ̇i(t)

log
ρi(t)

πi
+ ρi(t)

∑
j 6=i

(Qij −
1

πi
Qjiπj)︸ ︷︷ ︸

=0

]
dt

= S(ρT |π)− S(ρ0|π). (25)

In the case of more general particle systems, relation (24) still holds, and can be exploited to charac-
terise the reversed hydrodynamics. Consider for example a system with mean-field interaction, where
a particle jumps from state i to j with rate kij(ρ(n)) that depends on the empirical measure/mean field.
The large-deviation rate for the pair (ρ(n),W (n)) is then [PR17]

I(0,T )(ρ,w) =

∫ T

0

S
(
ẇ(t)|k(ρ(t))

)
dt,

whenever (ρ,w) ∈ W 1,1(0, T ; l1(I × I)) and (2a) holds. Now assume that there exists a unique
invariant measure for ρ(n), with corresponding large-deviation rate I0 as in Corollary 4.16. Let us
further assume that the time reversed process (θρ(n), θW(n)) is a Markov process with corresponding
dynamical large-deviation rate

←−
I [0,T ](ρ,w) =

∫ T

0

S
(
ẇ(t)|

←−
k(ρ(t))

)
dt,

for some unknown
←−
k . Following [BDSG+15, Sec. II.C], we replace the time-interval by (t− ε, t+ ε)

for some t ∈ (0, T ), divide (24) by ε and then let ε→ 0, yielding

∇DI0

(
ρ(t)

)
· ẇ(t) = DI0

(
ρ(t)

)
· ρ̇(t) = S

(
ẇ(t)|k(ρ(t))

)
− S

(
ẇT(t)|

←−
k(ρ(t))

)
= − log

k(ρ(t))
←−
k(ρ(t))

· ẇ(t)−
∣∣k(ρ(t))

∣∣
1

+
∣∣←−k(ρ(t))

∣∣
1
, (26)
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using the discrete partial integration ∇ξ · j := −ξ · div j = ξ · ρ̇. Since (26) has to hold for all(
ρ(t), ẇ(t)

)
, the reversed rates have to satisfy the following two conditions for all ρ:

∇DI0(ρ) = log
k(ρ)
←−
k(ρ)

,∣∣k(ρ)
∣∣
1

=
∣∣←−k(ρ)

∣∣
1
.

The first condition is sometimes interpreted as a fluctuation-dissipation equation, see [BDSG+15,
Sec. II.C].

Remark 5.1. At least formally, the average flux J̄(n) := T−1
∫ T

0
Ẇ(n)(dt) = T−1W(n)(T ) satisfies

a large-deviation principle as n → ∞ and subsequently T → ∞ with rate functional (or the lower
semicontinuous regularisation thereof):

j̄ 7→ lim
T→∞

inf
w∈W 1,1(0,T ;l1(I×I)):

w(T )/T =̄j

1

T
I[0,T ](ρ,w), ρ(t) := ρ(0) + divw,

and so-called a Galavotti-Cohen time-reversal symmetry also holds for this functional. This is beyond
the scope of the current paper.

5.2 Time-reversal symmetry for the measure

As briefly mentioned in the introduction, by a simple contraction principle we retrieve the large devia-
tions of the empirical measure ρ(n) with rate functional

J(0,T )(ρ) = inf
w∈BV(0,T ;l1+(I×I)):

ρ̇+div ẇ=0

I(0,T )(ρ,w),

see for example [Fen94, Léo95, SW95, PR16]. Note in particular that there are no additional as-
sumptions needed on the jump rates ρ ⊗ Q, like boundedness away from zero, reversibility or weak
reversibility. Therefore this method has the potential to generalise some earlier large-deviation results,
which we shall pursue in [PR17].

Following [BDSG+15, Sec. IV.A], we find the time-reversal symmetry for the empirical measures by
taking the infimum on both sides of (24),

S
(
ρ(0)|π) + J(0,T )(ρ) = S

(
ρ(T )|π) +

←−
J [0,T ](θρ).

Moreover, from this relation the quasipotential can be retrieved via (again, see [BDSG+15, Sec. IV.A])

S(ρ|π) = inf
ν∈BV(−∞,0:P(I))
ν(−∞)=π,ν(0)=ρ

J(−∞,0](ν).

5.3 Flux decompositions

The advantage of working with specific fluxes is that the rate functional I(0,T ) has a nice explicit for-
mula, from which we can deduce additional structure as in (25). Of course the specific fluxes encode
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more information, and by a straight-forward contraction one finds the large-deviation rate for the em-
pirical measure-net flux pair (ρ(n),W(n) −W(n)T):

ŵ 7→ inf
w∈W 1,1(0,T ;l1(I×I)):

w−wT=ŵ

I(0,T )(ρ,w).

For more information, analysis and thermodynamic interpretation of this functional we refer to [BMN09].

Alternatively, if the non-negativity of the net fluxes is of importance, one could also split W(n)

ij =

[W(n)

ij ∧ W(n)

ji ] + [W(n)

ij − W(n)

ij ∧ W(n)

ji ], and apply contractions to find the large deviations for the
cancelling fluxes and the net fluxes respectively.

The net fluxes can be decomposed even further. It is however unclear how to do this in a meaningful
way. As common in MFT, we could decompose any flux into a gradient and a solenoidal part w =
w∇+ wsol, where w∇ = ∇ξ for some ξ ∈ RI , and divwsol = 0. However, one usually exploits
the quadratic structure of the rate functional to devise an orthogonal decomposition such that the rate
functional split into two parts. In the discrete setting of this paper however, the rate functional I(0,T ) is
entropic rather than quadratic. Therefore it remains an open question how a meaningful decomposition
of the fluxes would look like.
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