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Abstract

The paper is devoted to the electromagnetic scattering of arbitrary time-harmonic fields by pe-
riodic structures. The Floquet-Fourier transform converts the full space Maxwell problem to a two-
parameter family of diffraction problems with quasiperiodic incidence waves, for which conventional
grating methods become applicable. The inverse transform is given by integrating with respect to the
parameters over a infinite strip in R2. For the computation of the scattered fields we propose an algo-
rithm, which extends known adaptive methods for the approximate calculation of multiple integrals. The
novel adaptive approach provides autonomously the expansion of the incident field into quasiperiodic
waves in order to approximate the scattered fields within a prescribed error tolerance. Some application
examples are numerically examined.

1 Introduction

Periodic structures are widely used in microwave, millimeter-wave, and optical wave regions because of var-
ious effects; for example, wave reflection, wavelength or polarization selectivity, mode conversion. There-
fore, electromagnetic scattering from periodic structures has been extensively studied, and many analytical
and numerical approaches have been developed to analyze the scattering problems when a plane wave is
incident on a periodic structure. In this case the scattered waves propagate to discrete directions, and the
approaches use the fact that the electromagnetic fields are quasiperiodic. This means that each field compo-
nent is a product of a periodic function and an exponential phase factor. This allows to reduce the analysis
region to the single periodicity cell.

The present paper is devoted to the case that an arbitrary time-harmonic field is incident on the periodic
structure. Problems of this kind are not quasiperiodic, therefore they cannot be reduced to a single periodic
problem. However, if the incidence field can be well approximated by a superposition of a finite number
of incoming plane waves, then superposing all the scattered fields for each plane wave component will
hopefully lead to a good approximation of the total scattered fields for the original problem. Then the
scattering of arbitrary incidence fields is reduced to several diffraction problems with quasiperiodic wave
incidence. This approach is quite common in the optics community, and the problem is addressed in a
number of papers for 2- and 3-dimensional problems, mainly for Gaussian beam illumination of gratings,
for example [16], [3], [17], [18].

The accuracy and computational complexity of this approach is obviously determined by the quality of the
plane wave approximations of the total scattered fields, which depend nonlinearly on the geometry and ma-
terial parameters of the periodic structure. Therefore accurate approximations of the incident field by plane
waves do not ensure in general that the scattered fields are well approximated. Instead, the approximation
method for the scattered field should perform the expansion of the incidence field, the input, such that the
output, the approximation of the scattered fields, is within a given tolerance. This task reminds of adaptive
integration algorithms, which ensure that the calculated integral value is within a given tolerance, even if
there is not much known about the integrand function.

The aim of this paper is to build a firm foundation for the reliable approximation of scattered fields. We
concentrate on the scattering of arbitrary incident fields in R3, which is the more realistic situation even for
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structures, homogeneous in one space direction. For this purpose, we apply the Floquet-Fourier transform
to Maxwell’s equations and derive a two-parameter family of so-called conical diffraction problems, the
scattering of quasiperiodic waves with oblique incidence by the periodic structure. The scattered fields are
obtained using the inverse Floquet-Fourier transform of the results of these problems, which can be solved
with conventional grating methods. But the inverse transform is given by integrating with respect to the
parameters over a semi-infinite domain in R2. Thus a cubature of this 2d-integral provides an approximation
of the scattered fields, where the determination of the integrand at one cubature node requires the solution
of a conical diffraction problem.

For the reliability of the computed scattered fields we propose an adaptive algorithm, which extends
adaptive methods for the approximate calculation of multiple integrals. The new method determines au-
tonomously, depending on local error estimators, the cubature nodes, for which the incident field is approx-
imated by a quasiperiodic wave via Floquet-Fourier transform and the corresponding conical diffraction
problems is solved.

In Section 2 we consider the Maxwell problem for beam scattering by gratings and discuss the transforma-
tion to the two-parameter family of conical diffraction problems. Section 3 describes the field computation
and the adaptive algorithm. Some examples of beam scattering by a lamellar grating are given in Section 4.

2 Formulation

2.1 Maxwell equations

We consider a general periodic structure in R3, which is infinitely wide, contained in a layer {(x1, x2, x3) :
|x2| < H}, and invariant in one spatial direction, say x3. It separates two regions filled with media of con-
stant permittivity and permeability. In the sequel the region above the inhomogeneous structure, containing
a halfspace {x2 > H}, is denoted by G+, the region below the structure by G−. The structure consists of
different homogeneous materials, characterized by permittivity and permeability functions ε and µ, which
are piecewise constant, periodic in x1 and do not depend on x3. Thus the piecewise constant functions
ε(x1, x2) and µ(x1, x2) characterize the geometry, inside the inhomogeneous structure they are periodic in
x1 and outside they are constant with ε(x1, x2) = ε± and µ(x1, x2) = µ± in G±.

In practice, the period d of the structures under consideration is comparable with the wavelength λ =
2πc/ω of incoming electromagnetic field, where c denotes the speed of light. Throughout the paper, we deal
with only time-harmonic fields, assuming a time dependence in exp(−iωt). For notational convenience
we will change the length scale by a factor of 2π/d, such that the grating becomes 2π-periodic: ε(x1 +
2π, x2) = ε(x1, x2), µ(x1 +2π, x2) = µ(x1, x2). Note that this is equivalent to multiplying the frequency
ω by d/2π, in the following we denote this modified frequency ω̃ = ω d/2π.

The periodic structure is illuminated from above by an electromagnetic field

Einc(x1, x2, x3) e−iω̃t , Hinc(x1, x2, x3) e−iω̃t .

Here we assume the existence of Hi > H , such that Einc(x1, x2, x3) for x2 < Hi can be represented by
the integral

Einc(x) = − 1

2π
∇×

∫
X2=Hi

eiκ+|x−X|

|x−X|
F(X1, X3) dX1 dX3 , (2.1)
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where we denote x = (x1, x2, x3), X = (X1, X2, X3), κ+ = ω̃
√
ε+µ+ and F = (F1, 0, F3)T is a suit-

able vector-function. This is the well-known integral representation of the electric field in the lower halfs-
pace {x2 < Hi} with the tangential components Einc

1 (x1, Hi, x3) = −F3(x1, x3) and Einc
3 (x1, Hi, x3) =

F1(x1, x3). Then the incoming magnetic field is given by

Hinc(x) =
i

2πω̃µ+

∇×∇×
∫

X2=Hi

eiκ+|x−X|

|x−X|
F(X1, X3) dX1 dX3 . (2.2)

The field is scattered by the grating structure to a scattered field (Es,Hs) e−iω̃t. The aim of the paper is the
efficient computation of this scattered field outside the layer {(x1, x2, x3) : |x2| < H}.
Dropping the factor e−iω̃t, the total field is given by

E =

{
Einc + Es,

Es,
, H =

{
Hinc + Hs, in G+ ∩ {x2 < Hi} ,

Hs, in R3 \G+ .

The total field satisfies in {x2 < Hi} and the scattered field satisfies in R3 the time–harmonic Maxwell
equations

∇× E = i ω̃µH and ∇×H = −i ω̃εE (2.3)

with the modified frequency

ω̃ = ω
d

2π
=

d

λ
√
ε0µ0

,

where ε0, µ0 are the dielectric constant and the permeability of vacuum, λ denotes the wave length.

The functions ε and µ are discontinuous on certain surfaces Λ × R between different media. Then the
tangential components of the total fields are continuous when crossing this interface[

n× E
]

= 0 and
[
n×H

]
= 0 on Λ× R , (2.4)

where n is the unit normal to Λ×R and [·] denotes the difference between the values on different sides of Λ.
Hence, at the boundary ∂G+ of the semi-infinite domain G+ above the periodic structure the transmission
condition has the form

n× (Einc + Es)
∣∣+
∂G+

= n× Es
∣∣−
∂G+

and n× (Hinc + Hs)
∣∣+
∂G+

= n×Hs
∣∣−
∂G+

, (2.5)

where u
∣∣±
∂G+

denote the boundary values of the function u from above resp. below at the surface ∂G+

2.2 Floquet-Fourier Transform

For a function f(x1, x2, x3) in R3 the Floquet-Fourier transformation is defined as

Uf(x1, x2, ξ3; ξ1) =
∞∑

m=−∞

e2πimξ1

∞∫
−∞

f(x1 − 2πm, x2, x3) e ix3ξ3 dx3

=
∞∑

m=−∞

e2πimξ1 F3f(x1 − 2πm, x2, ξ3) ,

(2.6)

where F3f denotes the Fourier transform of f with respect to the variable x3. This combination of Floquet
transform with respect to x1 and Fourier transform with respect to x3 has the following properties:
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- The application of Poisson’s summation formula gives the equivalent representation

Uf(x1, x2, ξ3; ξ1) =
1

2π

∞∑
m=−∞

F13f(m− ξ1, x2, ξ3) e−ix1(m−ξ1) , (2.7)

where F13f = F1(F3f) is the two-dimensional Fourier transform

F13f(ξ1, x2, ξ3) =

∫
R2

f(x1, x2, x3) ei(x1ξ1+x3ξ3) dx1dx3 .

- ξ1-quasiperiodicity in x1 and 1-periodicity in ξ1 of the form

Uf(x1 + 2π, x2, ξ3; ξ1) = e2πiξ1 Uf(x1, x2, ξ3; ξ1) ,

Uf(x1, x2, ξ3; ξ1 + 1) = Uf(x1, x2, ξ3; ξ1) .

- Inversion formula

f(x1, x2, x3) =
1

2π

∞∫
−∞

e−ix3ξ3 dξ3

1/2∫
−1/2

Uf(x1, x2, ξ3; ξ1) dξ1 . (2.8)

- Relation for partial derivatives

U(∂x1f) = ∂x1Uf , U(∂x2f) = ∂x2Uf , U(∂x3f) = −iξ3 Uf

- If ρ(x1, x2) is 2π-periodic function in x1, then

U(ρf)(x1, x2, ξ3; ξ1) = ρ(x1, x2)Uf(x1, x2, ξ3; ξ1) .

2.3 Transformation of the Maxwell system

In the following we apply the transform (2.6) to the Maxwell problem (2.3). This results in the partial
differential system for the vector functions UEs(ξ1;x1, x2, ξ3) and UHs(ξ1;x1, x2, ξ3)

U(∇× Es) = ∇̃× UEs = µ̃UHs , U(∇×Hs) = ∇̃× UHs = −i ε̃UEs (2.9)

with ∇̃ = (∂x1 , ∂x2 ,−iξ3), where we use the notation

ε̃ = ω̃ε =
dε

λ
√
ε0µ0

=
d

λ

ε

ε0

√
ε0

µ0

, µ̃ = ω̃µ =
dµ

λ
√
ε0µ0

=
d

λ

µ

µ0

√
µ0

ε0

,

and the periodicity of these piecewise constant functions. Moreover, since the normal to any surface Λ×R
does not depend on x3, n = n(x1, x2), and is 2π-periodic in x1, the conditions on the interfaces (2.4) and
(2.5) transform to

n× (UEinc + UEs)
∣∣+
∂G+

= n× UEs
∣∣−
∂G+

, n× (UHinc + UHs)
∣∣+
∂G+

= n× UHs
∣∣−
∂G+

,[
n× UEs

]
= 0 and

[
n× UHs

]
= 0 on all other interfaces Λ× R .

(2.10)
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We can determine UEinc and UHinc using the representations (2.1) and (2.2). From Weyl’s representation
formula of a spherical wave

eik|x|

|x|
=

i

2π

∫
R2

ei
√
k2−ξ21−ξ23 |x2|√
k2 − ξ2

1 − ξ2
3

ei(x1ξ1+x3ξ3) dξ1 dξ3

we get for any convolution integral

F (x) =

∫
R2

eik|x−X|

|x−X|
f(X′) dX′

the relation

F13F (ξ1, x2, ξ3) = F13

(eik|·|

| · |

)
(ξ1, x2, ξ3)F13f(ξ1, ξ3) = 2πi

ei
√
k2−ξ21−ξ23 |x2|√
k2 − ξ2

1 − ξ2
3

F13f(ξ1, ξ3) .

Thus, the representation (2.1) of the incident field Einc and (2.7) give for x2 < Hi

UEinc(x1, x2, ξ3; ξ1) =
1

2πi
∇̃×

∞∑
m=−∞

e−ix1(m−ξ1) ei
√
κ2+−(ξ1−m)2−ξ23 (Hi−x2)√
κ2

+ − (ξ1 −m)2 − ξ2
3

F13F(m− ξ1, ξ3) .

Denoting β+
m =

√
κ2

+ − (ξ1 −m)2 − ξ2
3 , the Floquet-Fourier transform of Einc is given by the series of

quasiperiodic functions

UEinc(x1, x2, ξ3; ξ1) =
1

2π

∞∑
m=−∞

eix1(ξ1−m)+iβ+
m (Hi−x2)

β+
m

Φm ×F13F(m− ξ1, ξ3) (2.11)

with the vectors Φm = (ξ1−m,−β+
m,−ξ3)T and F13F = (F13F1, 0,F13F3)T . Analogously, (2.2) leads

the series representation

UHinc(x1, x2, ξ3; ξ1) =
1

2πµ̃+

∞∑
m=−∞

eix1(ξ1−m)+iβ+
m (Hi−x2)

β+
m

Φm ×Φm ×F13F(m− ξ1, ξ3). (2.12)

In the following we assume that these series converge for almost all (ξ1, ξ3) ∈ [−1/2, 1/2]× R.

We see, that the Floquet-Fourier transformation converts the 3d Maxwell system to a two-parameter family
of 2d quasiperiodic partial differential problems. For given parameters (ξ1, ξ3) a ξ1-quasiperiodic solution
UEs, UHs of the partial differential system (2.9) in R2 is sought, which fulfills the conditions on the
interfaces (2.10). The data UEinc, UHinc are bounded and ξ1-quasiperiodic, which implies that the solution
should be bounded outside the layer {(x1, x2, x3) : |x2| < H}, i.e., it can be expanded in Rayleigh series

UEs(x1, x2, ξ3; ξ1) =
∞∑

m=−∞

E±m(ξ1, ξ3) eix1(ξ1−m)±iβ±
m x2 ,

UHs(x1, x2, ξ3; ξ1) =
∞∑

m=−∞

H±m(ξ1, ξ3) eix1(ξ1−m)±iβ±
m x2 ,

(2.13)

for x2 ≷ ±H , where β−m =
√
κ2
− − (ξ1 −m)2 − ξ2

3 and the vectors E±m(ξ1, ξ3), H±m(ξ1, ξ3) ∈ C3.
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In view of the inversion formula (2.8) the scattered field (Es,Hs) can be obtained from the integrals

Es(x1, x2, x3) =
1

2π

∞∫
−∞

e−ix3ξ3 dξ3

1/2∫
−1/2

UEs(x1, x2, ξ3; ξ1) dξ1 ,

Hs(x1, x2, x3) =
1

2π

∞∫
−∞

e−ix3ξ3 dξ3

1/2∫
−1/2

UHs(x1, x2, ξ3; ξ1) dξ1 ,

(2.14)

where for almost all (ξ1, ξ3) ∈ [−1/2, 1/2]×R the functions UEs, UHs satisfy the equations (2.9), (2.10)
with (2.11), (2.12) and the radiation condition (2.13).

2.4 Comparison with conical diffraction

Equations (2.9), (2.10) are known from the so-called conical diffraction, modeling the scattering of a plane
wave with oblique incidence by the given grating. Indeed, taking spherical coordinates x1 = sin θ cosφ,
x2 = cos θ cosφ, x3 = sinφ, φ ∈ [0, π], and suppose that the grating is illuminated by a plane wave
(Ei,Bi) = (p, q) e iκ+·x with p, q ∈ C3 and the wave vector κ+ = κ+(sin θ cosφ,− cos θ cosφ, sinφ),
|θ| < π/2 and φ ∈ [0, π/2). This corresponds to oblique incidence of the wave illuminating the grating
from above. Setting ξ1 = κ+ sin θ cosφ and ξ3 = −κ+ sinφwe rewrite (Ei,Bi) = (p, q) ei(ξ1x1−βx2−ξ3x3)

with β2 =
√
κ2

+ − ξ2
1 − ξ2

3 . Then the ansatz

E = E(x1, x2)e−iξ3x3 , H = H(x1, x2)e−iξ3x3

with vector functions E , H : R2 → C3 transforms the Maxwell system (2.3) to the equations

∇̃× Es = µ̃ , ∇̃×Hs = −i ε̃ Es (2.15)

for the scattered fields Es,Hs) subject to the transmission conditions

n× (E i + Es)
∣∣+
∂G+

= n× Es
∣∣−
∂G+

, n× (Hi +Hs)
∣∣+
∂G+

= n×Hs
∣∣−
∂G+

,[
n× Es

]
= 0 and

[
n×Hs

]
= 0 on all other interfaces Λ× R

(2.16)

with the incident plane wave (E i,Hi) = (p, q) ei(ξ1x1−βx2). Besides, Es,Hs) have to satisfy the radiation
condition (2.13).

There exist different approaches to the numerical solution of off-plane diffraction, (cf. [11]), either based
on the solution of the Maxwell system in R3, of the system (2.15) in R2 or on the solution of a system of
two Helmholtz equations. The last one is based on the fact that the components of Es, Hs are solutions of

∆u+ (κ2 − ξ2
3)u = 0 , (x1, x2) ∈ R2 , (2.17)

with the piecewise constant coefficients κ2 − ξ2
3 . Moreover, if κ2 − ξ2

3 6= 0, than 2 of the 6 components
are sufficient to determine the solution (E,H) of the quasiperiodic Maxwell system (2.3), and these two
components are coupled by special transmission conditions on the interfaces between different media. For
example, if one chooses the third components Es3 , Hs

3 and denotes Bs3 =
√
µ0/ε0Hs

3, then on the upper
interface D+ = G+ ∩ R2 the jump conditions read as

(Es3 + E i3)
∣∣+
∂D+

= Es3
∣∣−
∂D+

,
ε̃ ∂n(Es3 + E i3)− ξ3 ∂t(Bs3 + Bi3)

κ2 − ξ2
3

∣∣∣+
∂D+

=
ε̃ ∂nEs3 − ξ3 ∂tBs3

κ2 − ξ2
3

∣∣∣−
∂D+

,

(Bs3 + Bi3)
∣∣+
∂D+

= Bs3
∣∣−
∂D+

,
µ̃ ∂n(Bs3 + Bi3) + ξ3 ∂t(Es3 + E i3)

κ2 − ξ2
3

∣∣∣+
∂D+

=
µ̃ ∂nBs3 + ξ3 ∂tEs3

κ2 − ξ2
3

∣∣∣−
∂D+

,

(2.18)
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with E i3 = p3 ei(ξ1x1−βx2), Bi3 = q3

√
µ0/ε0 ei(ξ1x1−βx2), and on all other interfaces Λ[

Es3 ] =
[
Bs3] = 0 ,

[ ε̃ ∂nEs3 − ξ3 ∂tBs3
κ2 − ξ2

3

]
Λ

=
[ µ̃ ∂nBs3 + ξ3 ∂tEs3

κ2 − ξ2
3

]
Λ

= 0 . (2.19)

This transmission problem (2.17), (2.18), (2.19) for Es3 , Bs3 together with the radiation condition (2.13) was
used for the mathematical analysis of conical diffraction by studying equivalent variational equations or
systems of integral equations over the interfaces. Besides conditions on the existence and uniqueness of
solutions also stability and convergence results for finite element and boundary element methods have been
obtained, cf. [5], [14].

Existing solvers for conical diffraction can easily be adapted to the solution of the Floquet-Fourier trans-
formed Maxwell problems, since the only difference to conical diffraction is the appearance of UEinc,
UHinc as sum of ξ1-quasiperiodic plane waves instead of the single ξ1-quasiperiodic plane wave E i, U i.
The numerical results listed below have been obtained by an efficient integral method, which is based on
the solution of a 2× 2 system of singular integral equations on each interface ([8], [9], [15], [13]).

3 Field computation

For given parameters (ξ1, ξ3) the square root β±m =
√
κ2
± − ξ2

3 − (ξ1 −m)2 is real only for integers m
belonging to finite sets Σ±(ξ1, ξ3), which give raise to propagating reflected or transmitted modes. In all
other cases Im

√
κ2
± − ξ2

3 − (ξ1 −m)2 > 0, such that the remaining terms∑
m/∈Σ±(ξ1,ξ3)

(E±m(ξ1, ξ3),H±m(ξ1, ξ3)) e i(ξ1−m)x1±i
√
κ2±−ξ23−(ξ1−m)2 x2 , (3.1)

form evanescent fields, concentrated in the vicinity of the boundary of the periodic structure. Since we
are interested to compute the scattered fields outside the layer {(x1, x2, x3) : |x2| < H}, for any point
(x1, x2), ±x2 ≥ H , the solution UEs,UHs is approximated with high accuracy by a finite sum

(UEs,UHs)(x1, x2, ξ3; ξ1) ≈
∑

m∈Σ̃±(ξ1,ξ3)

(E±m(ξ1, ξ3),H±m(ξ1, ξ3)) e ix1(ξ1−m)±iβ±
m x2 , (3.2)

where Σ̃±(ξ1, ξ3) ⊇ Σ±(ξ1, ξ3) may contain integer values m associated with evanescent modes. Then the
scattered field is approximated for |x2| > H using a cubature of the integrals (2.14)

Es(x1, x2, x3) ≈ 1

2π

N∑
j=1

ωj UEs(x1, x2, ξ
(j)
3 ; ξ

(j)
1 ) e−ix3ξ

(j)
3 ,

Hs(x1, x2, x3) ≈ 1

2π

N∑
j=1

ωj UHs(x1, x2, ξ
(j)
3 ; ξ

(j)
1 ) e−ix3ξ

(j)
3 .

(3.3)

Here ωn and (ξ
(j)
1 , ξ

(j)
3 ) ∈ (1/2, 1/2]× R are the weights and positions of cubature knots, respectively.

3.1 Splitting of the integration domain

However, a simple application of 2d-cubature formulas (3.3) may lead to doubtful results or to inappropriate
computational costs. This is caused by the non-smoothness or irregular behavior of UEs, UHs as functions
of (ξ1, ξ3), which can have several reasons.
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We mention first, that the terms e iβ
±
m |x2| = e i

√
κ2±−ξ23−(ξ1−m)2 |x2| appearing in (3.3) are not smooth near

the Rayleigh frequencies, the zeros of the curves κ2
± − ξ2

3 − (ξ1 − m)2 = 0 for m ∈ Z, |m| ≤ [κ±],
where [k] denotes the integer part of k > 0. Besides the singularity of the square root the number of
propagating modes changes near these curves, since the integer m is associated with a propagating mode if
κ2
±−ξ2

3−(ξ1−m)2 ≥ 0 and with an exponentially decaying evanescent mode for κ2
±−ξ2

3−(ξ1−m)2 < 0.

Simple tests show that it necessary to split the integration domain (0, 1) × R of the integrals (2.14) into
subdomains where the number of propagating modes is constant, i.e. the subdomains are bounded by the
curves ξ3 = ±

√
κ2
± − (ξ1 −m)2 for m ∈ Z, |m| ≤ [κ±]. In Figure 1 the splitting is shown for κ = 3.4

and ξ3 ≥ 0, which must be extended symmetrically to ξ3 < 0. Since UEs, UHs are 1-periodic in ξ1,
the splitting can be performed such, that it consists of 2 infinite domains

{
ξ1 ∈ (−1/2, 1/2), |ξ3| >√

κ2
± − ξ2

1

}
and a finite number of closed curved polygons, contained either in the strip−1/2 ≤ ξ1 ≤ 1/2

or in the strip 0 ≤ ξ1 ≤ 1. This is depicted in Figure 2, also for ξ3 ≥ 0.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

-0.5  0  0.5

ξ3

ξ1

Figure 1: Splitting of the inte-
gration domain for ξ3 ≥ 0
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ξ3

ξ1

0
1 2
3

4

5

6

7

Figure 2: Splitting into closed
curved polygons for ξ3 ≥ 0, the
numbers of propagating modes
are indicated in each subdomain

3.2 Behavior of Rayleigh coefficients

Inside the subdomains with a constant number of propagating modes the Rayleigh coefficients E±m =
E±m(ξ1, ξ3) and H±m = H±m(ξ1, ξ3) can behave non-smoothly or fast oscillating. But in contrast to the
problem with the Rayleigh frequencies, which satisfy κ2

± − ξ2
3 − (ξ1 − m)2 = 0 for some m ∈ Z, the

behavior of the Rayleigh coefficients strongly depends on the illuminating field, the geometry and the mate-
rials of the periodic structure. In the following we illustrate the dependence of the Rayleigh coefficients E−m
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on the incident field for the simple case of classical diffraction, when the illuminating beam is independent
on x3.

We consider a binary grating of fused silica with period 800 nm, depth 400 nm and fill factor 0.5. It is
illuminated by a 2d-Gaussian beam, by a plane wave with normal incidence through a slit and by a wave
emitted by a line source, all having the wave length 880 nm. In this case, the grating transmits 3 outgoing
waves if |ξ1| < 0.32, and 2 outgoing waves for 0.32 < |ξ1| < 0.5. In Fig. 3 we plot the imaginary
parts of the third components of H−m(ξ1, 0). For |ξ1| < 0.32 we set f(m + ξ1) = Im(H−m)3(ξ1, 0)
for the three orders m = 0,±1. The gap in the argument 0.32 < ξ1 < 0.68 is filled with the values
f(m+ ξ1) = Im(H−m)3(ξ1, 0) for the two orders m = 0,−1.

-2
-1.5

-1
-0.5

 0
 0.5

 1

-1 -0.5  0  0.5  1

Imaginary part of Rayleigh coefficients, input Gaussian beam

-1
 0
 1
 2
 3
 4
 5

-1 -0.5  0  0.5  1

Imaginary part of Rayleigh coefficients, input plane wave trough a slit

-800
-400

 0
 400

-1 -0.5  0  0.5  1

Imaginary part of Rayleigh coefficients, input line source

Figure 3: Plot of the imaginary parts of f(m+ ξ1) = (H−m)3(ξ1, 0), |ξ1| ≤ 0.32, |m| ≤ 1.

It is interesting that oscillations or even jumps of the Rayleigh coefficients can occur at Rayleigh frequen-
cies for reflection, which appear at ξ1 ≈ 0.09. The grating is illuminated from air, the incidence of plane
waves e i(ξ1x1−β

+x2) leads to one reflection mode if |ξ1| < 0.09 and otherwise to two reflection modes.
Other numerical experiments with gratings with more than 2 materials indicate, that in general irregular
behavior of Rayleigh coefficients can occur for points (ξ1, ξ3), when for some material parameter κ of the
grating κ2 − ξ2

3 − (ξ1 −m)2 = 0 with integer m. Hence a further subdivision of the integration domain
could be useful. In the case of classical diffraction the implementation can be carried out rather easily,
whereas in the case of 3d-illumination a further subdivision of the integration domain leads to in general
rather complicated situations with a large number of subdomains.

3.3 Cubature of 2d-integrals

In order to develop efficient cubature formulas (3.3) a better theoretical understanding of the dependence of
Rayleigh coefficients on incidence angles and their behavior is necessary, but not available. In the case of
3d-illumination we restrict to the subdivision of the integration domain indicated in Fig. 2 and try to apply
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an approach able to control the accuracy of the calculated scattered fields. The integrals over the curved
polygons can easily be transformed into integrals over squares or triangles, for which different cubature
formulas can be found in the literature.

But one should mention that the construction of high-quality approximation rules even for 2d-integrals still
remains a current research problem, cf. [6], [10], [7]. There exists no unique best criterion for the choice
of weights and points in the integral approximation. The generally accepted rule is that this choice should
provide the exact integration for a class of integrands in the form of polynomials of a certain algebraic
degree. In particular, the N -point Gaussian quadrature is exact for all one-dimensional polynomials of
degree at most P = 2N − 1. Analogously, in the case of two variables it is necessary to construct an
N -point cubature scheme which would be perfect for all two-dimensional polynomials with the maximal
total degree P . In order that cubature rule is efficient, the number N of points should be as small as
possible for each given value P . But up to now, the lowest possible number Nmin of points (knots) is
unknown, in general. Moreover, the nonlinear equations, which appear when constructing the cubature rule
of a high degree P , become too complicated to be analyzed theoretically, and the only way is to solve them
numerically. However, the straightforward scheme, based on the product of two Gaussian quadratures to
get a cubature formula, is very inefficient for large degree P . Since the function evaluation at a cubature
knot (ξ1, ξ3) in (3.3) requires the solution of a conical diffraction problem, we don’t use tensor products of
1d-formulas, but try to apply an efficient 2d-cubature rule.

Concerning adaptive cubature algorithms for 2d-integrals the situation is similar restricted when compared
to the case of 1d-integrals, where different adaptive integration methods are know. There exist only few
cubature algorithms for rectangles, which is the most suited for our problem, and they are closely related
[4], [1], [2]. After some testing we implemented an algorithm mainly based on ideas of the Cuhre algorithm
described in [2]. The algorithm uses integration rules of polynomial degree 7, 9, and 13 and a globally
adaptive subdivision strategy. In each iteration, the subregion with the largest estimated error is halved
along the axis where the integrand has the largest fourth divided difference. The a posteriori error estimates
produced by the algorithm use approximations by null rules, which are calculated simultaneously with the
integration rule. Details on the algorithm can be found in the original references [2] and on the employed
cubature rules in the Cuba library [12], which provides an implementation of Cuhre and three other cubature
algorithms based on Monte Carlo integration.

3.4 Description of the algorithm

The aim of the algorithm is to compute an approximation of the scattered fields for a given finite point
set S outside the layer {(x1, x2, x3) : |x2| < H} with a prescribed absolute or relative error. This can
be done using an adaptive method based on reliable error estimations. Our realization of the adaptive ap-
proach extends some modules provided by [12], where we have to take into account that at a cubature knot
(ξ

(j)
1 , ξ

(j)
3 ) the evaluation of the coefficients E±m(ξ

(j)
1 , ξ

(j)
3 ), H±m(ξ

(j)
1 , ξ

(j)
3 ) in (3.2) for m ∈ Σ̃±(ξ

(j)
1 , ξ

(j)
3 )

corresponds to the solution of a transmission problem (2.9), (2.10) with UEinc(x1, x2, ξ
(j)
3 ; ξ

(j)
1 ) and

UHinc(x1, x2, ξ
(j)
3 ; ξ

(j)
1 ) given by (2.11), (2.12).

Let us mention, that besides the control of the accuracy of the scattered field calculations the adaptive
method has the advantage, that it determines automatically the nodes (ξ

(j)
1 , ξ

(j)
3 ) for the discrete approx-

imation of the incident functions UEinc and UHinc. This is based on the a posteriori error estimations
of the scattered field and no further knowledge of the incident functions is required. Hence the incident
functions UEinc and UHinc are expanded into quasiperiodic wave functions UEinc(x1, x2, ξ

(j)
3 ; ξ

(j)
1 ) and

UHinc(x1, x2, ξ
(j)
3 ; ξ

(j)
1 ) such that the resulting scattered field approximations are ”optimal”. This feature

together with the computation of incident functions UEinc and UHinc seems to be characteristic for our
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approach.

First the integration domain is split into subdomains Ωk with the same number of propagating modes k, as
indicated in Fig. 2. Then the integrals (2.14) are the sums over the subdomains

Es(x1, x2, x3) =
1

2π

N∑
k=0

∫∫
Ωk

UEs(x1, x2, ξ3; ξ1) e−ix3ξ3 dξ1dξ3 ,

Hs(x1, x2, x3) =
1

2π

N∑
k=0

∫∫
Ωk

UHs(x1, x2, ξ3; ξ1) e−ix3ξ3 dξ1dξ3 ,

where N is the maximal order of propagating modes. For each Ωk we specify index sets Σ̃±(k), containing
indices of all propagating and possibly of some evanescent modes. Note that the domains Ω0 correspond
to the unbounded subdomains of the integration domain with |ξ3| >

√
κ2
± − ξ2

1 for |ξ1| ≤ 1/2. The
integrals gives only an exponentially decaying contribution to the scattered fields, so in most cases they can
be neglected. If otherwise Σ̃±(0) 6= ∅, then we truncate Ω0 to bounded sets with

√
κ2
± − ξ2

1 < |ξ3| < cκ±
with a constant c > 1.

As mentioned above, the subdomains Ωk (or parts of it) can easily be presented as the image of continuous
mappings of reference integration domains, the unit square or a triangle. For simplicity, in the following we
will describe the adaptive algorithm in the simple case that Ωk = χk(�), where � is the unit square and
χk denotes the continuous transformation. This applies analogously to the cases, that Ωk is the image of a
triangle or represents the union of images of squares or triangles.

3.4.1 Adaptive algorithm

After subdivision the adaptive algorithm is applied to each Ωk = χk(�) separately. The formal description
of the procedure coincides with the general structure of adaptive algorithms for numerical integration:

(i) Choose the subregion with the largest local error from a set of subregions.

(ii) Subdivide the chosen subregion into two subregions.

(iii) Perform the cubature and error estimation for the new subregions; update the subregion set.

(iv) Update error estimates; check for convergence.

Topics (ii)-(iv) need some explanation.

(ii): The subdomains are of the form χk(R) for a rectangle R ⊂ � with sides parallel to the coordinate
axis. The algorithm bisects R into two rectangles R1 and R2 along the coordinate axis where the integrand
has largest fourth divided difference, as proposed for the Cuhre algorithm[2]. Then χk(R) is subdivided
into χk(R1), χk(R2). The computation of the integrand values is explained in the next topic (iii). These
values are associated with knots (ξ

(j)
1 , ξ

(j)
3 ), which also appear in the cubature rule for the integrals over

χk(R1), χk(R2) and can be reused. So the calculation of the differences does not significantly contribute
to the computation time.
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(iii): From (ii) we derive two subregions associated with rectangles R1 and R2, for which the integrals
should be approximated. Denoting by R one of the rectangles R1 and R2 we explain here how the cubature
of the integrals over χk(R) ⊂ Ωk and the error estimation are handled. The algorithm specifies the cubature
formula with weights ωj and knots (ρ

(j)
1 , ρ

(j)
3 ) ∈ R. The nodes are mapped to parameters (ξ

(j)
1 , ξ

(j)
3 ) =

χk(ρ
(j)
1 , ρ

(j)
3 ) ∈ χk(R), for which the diffraction problem (2.9), (2.10) has to be solved. As the first step

approximations of UEinc and UHinc are computed,

UEinc(x1, x2, ξ
(j)
3 ; ξ

(j)
1 ) ≈ 1

2π

∑
m∈Σ̃+(k)

eix1(ξ1−m)+iβ+
m (Hi−x2)

β+
m

Φm ×F13F(m− ξ(j)
1 , ξ

(j)
3 ),

UHinc(x1, x2, ξ
(j)
3 ; ξ

(j)
1 ) ≈ 1

2πµ̃+

∑
m∈Σ̃+(k)

eix1(ξ1−m)+iβ+
m (Hi−x2)

β+
m

Φm ×Φm ×F13F(m− ξ(j)
1 , ξ

(j)
3 ),

cf. (2.11), (2.12). Here (x1, x2) are points on the upper interfaceD+ = ∂G+∩R2. Since the corresponding
diffraction problem is solved with the integral method, only the third components of UEinc

3 and UHinc
3 are

needed. The integral solver computes the third components e±m(ξ
(j)
1 , ξ

(j)
3 ), h±m(ξ

(j)
1 , ξ

(j)
3 ) of the Rayleigh

coefficient vectors E±m(ξ
(j)
1 , ξ

(j)
3 ) and H±m(ξ

(j)
1 , ξ

(j)
3 ) of the solution.

Then for the given finite set S of points x = (x1, x2, x3) the values

fE(x, ξ
(j)
1 , ξ

(j)
3 ) =

e−ix3ξ
(j)
3

2π

∑
m∈Σ̃±(k)

e±m(ξ
(j)
1 , ξ

(j)
3 ) e i(ξ

(j)
1 −m)x1±i

√
κ2±−(ξ

(j)
3 )2−(ξ

(j)
1 −m)2 x2 ,

fH(x, ξ
(j)
1 , ξ

(j)
3 ) =

e−ix3ξ
(j)
3

2π

∑
m∈Σ̃±(k)

h±m(ξ
(j)
1 , ξ

(j)
3 ) e i(ξ

(j)
1 −m)x1±i

√
κ2±−(ξ

(j)
3 )2−(ξ

(j)
1 −m)2 x2 ,

can be considered as a vector of integrand values at the cubature knots (ρ
(j)
1 , ρ

(j)
3 ) ∈ R. Note that the

computation of the fourth divided difference, mentioned in (ii), is performed with these vectors of integrand
values at special cubature knots. As usual, the weighted sums of the integrand values

ER(x) =
N∑
j=1

ωjfE(x, ξ
(j)
1 , ξ

(j)
3 ) , HR(x) =

1

2π

N∑
j=1

ωjfH(x, ξ
(j)
1 , ξ

(j)
3 ) (3.4)

are approximations of the integrals

1

2π

∫∫
χk(R)

UEs
3(x1, x2, ξ3; ξ1) e−ix3ξ3 dξ1dξ3 ,

∫∫
χk(R)

UHs
3(x1, x2, ξ3; ξ1) e−ix3ξ3 dξ1dξ3 .

Moreover, sums of the form (3.4) with different weights ω(i)
j , i = 1, ..., 4, are the null rules, which are

used to compute local estimators of the cubature error for the integrals over χk(R), as described in [2]. The
maximum over all x ∈ S of these error bounds is taken as the local error on χk(R).

This procedure is done for both rectangles R1 and R2. The subregion set is updated by discarding all
values connected with the subdivided rectangle R1 ∪ R2 and by saving the center and sidelength of the
rectangles, the cubature results and the local errors, the coefficients e±m(ξ

(j)
1 , ξ

(j)
3 ), h±m(ξ

(j)
1 , ξ

(j)
3 ) with the

weights ω(i)
j and parameters (ξ

(j)
1 , ξ

(j)
3 ) for both new subregions R1 and R2 for later use.
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(iv): If the sum of the local errors for all rectangles of the subdivision exceeds the required error tolerance,
then choose the subrectangle R possessing the largest estimated error and go to (ii).

Otherwise, the adaptive procedure is stopped, because for all x ∈ S the integrals over Ωk are calculated
with the required accuracy. The integrals over Ωk are simply the sums of the corresponding saved cubature
results for all rectangles in the partition Π(�) of the unit square.

3.4.2 Further field computations

But it is more interesting, that the saved coefficients e±m(ξ
(j)
1 , ξ

(j)
3 ), h±m(ξ

(j)
1 , ξ

(j)
3 ), the weights ω(i)

j and pa-

rameters (ξ
(j)
1 , ξ

(j)
3 ) for all rectangles in the partition allow also to calculate approximations of the integrals

1

2π

∫∫
Ωk

UEs
3(x1, x2, ξ3; ξ1) e−ix3ξ3 dξ1dξ3 ,

∫∫
Ωk

UHs
3(x1, x2, ξ3; ξ1) e−ix3ξ3 dξ1dξ3

for points x /∈ S outside the layer {(x1, x2, x3) : |x2| < H}. For this one has only to use the saved values
e±m(ξ

(j)
1 , ξ

(j)
3 ), h±m(ξ

(j)
1 , ξ

(j)
3 ), ω(i)

j and (ξ
(j)
1 , ξ

(j)
3 ) for any rectangle R ∈ Π(�), to compute

ER(x) =
1

2π

N∑
j=1

ωj e−ix3ξ
(j)
3

∑
m∈Σ̃±(k)

e±m(ξ
(j)
1 , ξ

(j)
3 ) e i(ξ

(j)
1 −m)x1±i

√
κ2±−(ξ

(j)
3 )2−(ξ

(j)
1 −m)2 x2 ,

HR(x) =
1

2π

N∑
j=1

ωj e−ix3ξ
(j)
3

∑
m∈Σ̃±(k)

h±m(ξ
(j)
1 , ξ

(j)
3 ) e i(ξ

(j)
1 −m)x1±i

√
κ2±−(ξ

(j)
3 )2−(ξ

(j)
1 −m)2 x2 ,

and to sum

1

2π

∫∫
Ωk

UEs
3(x1, x2, ξ3; ξ1) e−ix3ξ3 dξ1dξ3 ≈

∑
R∈Π(�)

ER(x) ,

1

2π

∫∫
Ωk

UHs
3(x1, x2, ξ3; ξ1) e−ix3ξ3 dξ1dξ3 ≈

∑
R∈Π(�)

HR(x) .

Since the remaining first and second components of the Rayleigh coefficient vectors E±m(ξ
(j)
1 , ξ

(j)
3 ) and

H±m(ξ
(j)
1 , ξ

(j)
3 ) can be expressed by the third components e±m(ξ

(j)
1 , ξ

(j)
3 ), h±m(ξ

(j)
1 , ξ

(j)
3 ) in a simple way, it is

straightforward to derive approximations for the integrals

1

2π

∫∫
Ωk

UEs(x1, x2, ξ3; ξ1) e−ix3ξ3 dξ1dξ3 ,

∫∫
Ωk

UHs(x1, x2, ξ3; ξ1) e−ix3ξ3 dξ1dξ3

for any point x outside the layer {(x1, x2, x3) : |x2| < H}.

4 Numerical examples

In the final section we present visualizations of the intensities of transmitted fields from a lamellar grating
with period d = 800 nm, depth h = 400 nm and fill factor 0.5 ruled on fused silica. The incident field is
supposed to propagate downward from air in the silica region. We consider illumination in normal incidence
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by a Gaussian beam, a radially polarized Gaussian beam and a plane wave passing through a small circular
aperture.

The pictures show the field intensity in the material below the grating in 4 planes

{(x1, x2, x3) : −20d ≤ x1 ≤ 20d,−41d ≤ x2 ≤ −d, x3 = 0} ,
{(x1, x2, x3) : −20d ≤ x1, x3 ≤ 20d, x2 = c} , c = −5d,−10d,−15d .

Figure 4 corresponds to the illumination by a Gaussian beam of wave length λ = 880 nm with normal
incidence. The incident E-field is given by the integral (2.1) with Hi = 10d and the functions

F1(x1, x3) = e−(x21+x23)/3d , F3(x1, x3) = i e−(x21+x23)/3d .

Figure 4: Field intensity of transmitted Gaussian beam in {x3 = 0} plane (upper left)
and in planes {x2 = c} with c = −5d (upper right), c = −10d (lower left) and
c = −15d (lower right)

The next Figure 5 corresponds to the illumination by a radially polarized Gaussian beam of wave length
λ = 880 nm with normal incidence. The tangential components Einc

1 ,Einc
3 in the plane (x1, 10d, x3) are
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given by

(Einc
1 ,Einc

3 )(x1, x3) = − (x1, x3)√
x2

1 + x2
3

e−(x21+x23)/3d .

Then the E-field of the radially polarized Gaussian beam is given by the integral (2.1) with

F(x1, x3) = (Einc
3 (x1, x3), 0 ,−Einc

1 (x1, x3))T =
e−(x21+x23)/3d√

x2
1 + x2

3

(−x3, 0 , x1)T .

Figure 5: Field intensity below of transmitted radially polarized Gaussian beam in
{x3 = 0} plane (upper left) and in planes {x2 = c} c = −5d (upper right), c =
−10d (lower left) and c = −15d (lower right)

Figure 6 corresponds to the illumination by a plane wave passing through a circular aperture of radius 5d
with the wave length λ = 880 nm and normal incidence. The incident E-field is given by the integral (2.1)
with Hi = 10d and the functions

F1(x1, x3) = Θ3d(x1, x3) , F3(x1, x3) = iΘ3d(x1, x3) ,

where Θr(x1, x3) is the characteristic function of the disc {x2
1 + x2

3 ≤ r2}.
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Figure 6: Field intensity of illumination through a circular aperture in {x3 = 0} plane
(upper left) and in planes {x2 = c} c = −5d (upper right), c = −10d (lower left)
and c = −15d (lower right)
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