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We consider the membrane model, that is the centered Gaussian field on i
whose covariance matrix is given by the inverse of the discrete Bilaplacian. We
impose a d —pinning condition, giving a reward of strength ¢ for the field to be 0 at
any site of the lattice. In this paper we prove that in dimensions d > 5 covariances
of the pinned field decay at least exponentially, as opposed to the field without
pinning, where the decay is polynomial. The proof is based on estimates for certain
discrete weighted norms, a percolation argument and on a Bernoulli domination

result.
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1 Introduction

Effective interface models are well-studied real-valued random fields, defined for instance on the
lattice Z?, which predict the behavior of polymers and interfaces between two states of matter.
The best known examples are the gradient models ¢ = {%c}mezd which (in formal notation)
are of the form

P(ag) = Zesp[-H (@) [[dee

with the Hamitonian

H(p)= Y  Vig—w)

€T, yEZd, ||I—y||:1

where V' : R — R is the interaction function, satisfying V' (z) — oo for ||z|| — +oc. The
measure has to be defined through a thermodynamic limit. In the case V (x) := Bx?, the



model is Gaussian, but it is defined on the whole of Z? only for d > 3. For lower dimensions,
one has to restrict x to a finite set, and put boundary conditions. This is the so-called Gaussian
free field which has attracted tremendous attention recently for d = 2. One simplifying feature
of the free field is that the covariances of the model are given in terms of the Green’s function
of a standard random walk on the lattice, and many properties of the field can be derived from
properties of the random walk. This has led to powerful techniques for analysing the model.
The case where V' is not quadratic is much more complicated. If V' is convex, there is still a
random walk representation of the correlation, the Helffer-Sjdstrand representation, but in the
case of non-convex 1/, random walk techniques cannot be applied, and many of the very basic
questions are still open. For a recent investigation, see Adams (2006).

The so-called massive free field has the Hamiltonian

H(e):=8 > (pe—@)+mY @2 B,m>0,

z,y, lz—yll=1

and it is a Gaussian field which is well-defined on the full lattice in any dimension, and has
exponentially decaying covariances. This just comes from the fact that the covariances are
given by the Green’s function of a random walk with a positive killing rate (Friedli and Velenik,
2015, Theorem 8.46)

It is quite astonishing that an exponential decay of correlations, in physics jargon a positive
mass, also appears when the free field Hamiltonian is perturbed by an arbitrary small attraction
to the origin, for instance in the form

H(p)=08 > (pa—0)+a> 1 py(ps) (1.1)

z,y, lz—yll=1

with @, b > 0 (see Velenik (2006, Section 5)). A somewhat simpler case is that of so-called
d-pinning where the reference measure [, d ¢, is replaced by [ [, (d ¢, + €do (d ¢,)) , and
which can be obtained from (1.1) by a suitable limiting procedure letting b — 0, a — +o00. All
the proofs we are aware of rely heavily on random walk representations.

Our main object here is to discuss similar properties for the §-pinned membrane model which
has the Hamiltonian

H(p) := >, (Aw)
vy, layli=1

where A is the discrete Laplace operator on functions f : Z? — R, defined by

Af@)=gy 3 ()~ f@). (12

y: ly—=[=1
We leave out the temperature parameter (3 as it just leads to a trivial rescaling of the field.

While the free field (see and for an overview Friedli and Velenik (2015, Chapter 8)) is used
to model polymers or interfaces with a tendency to maintain a constant mean height, the the
membrane model appears in physical and biological research to shape interfaces that tend to
have constant curvature (Hiergeist and Lipowsky, 1997, Leibler, 1989, Lipowsky, 1995, Ruiz-
Lorenzo et al., 2005). In solid state physics one often considers models with mixed gradient



and Laplacian Hamiltonian, but we will not discuss such cases here. The two models share
many common characteristics, for instance their variances are uniformly bounded in Z< if the
dimension is large enough, that is d > 3 for the gradient case resp. d > 5 for the membrane
model, and have variances growing logarithmically in d = 2 resp. d = 4.

The main topic of the present paper is an investigation of the decay of correlations for the mem-
brane model in dimensions d > 5. We restrict to the case of d-pinning for technical reasons.
We prove that the field becomes “massive”, i.e. has exponentially decaying correlation for any
positive pinning parameter.

The main difficulty when compared with the proofs of similar results for the free field is the
absence of useful random walk representations for the covariances and correlation inequalities.
Random walk representations for gradient fields have been very important since the celebrated
work Brydges et al. (1982). There is a variant of a random walk representation in the case of the
membrane model, but only in the presence of particular boundary conditions, or in the case of
the field on the whole lattice in the absence of boundary conditions. Results on the membrane
model with pinning were shown in (1+ 1) dimensions by Caravenna and Deuschel (2008) using
a renewal type of argument which, however, is not applicable in higher dimensions.

Structure of the paper. The structure of the paper is as follows: in Section 2 we give precise
definitions on the membrane model and the statement of our main theorem. We recall general
results, including Bernoulli domination, in Section 3. In Section 4 we prove our main theorem.

Acknowledgements: We are grateful to Vladimir Maz’ya who gave a significant input to the
present work by showing how to prove the exponential decay for the Bilaplacian in the con-
tinuous space with a sufficiently dense set of deterministic “traps” and appropriate boundary
conditions. For more information on the analytic background the reader can consult Maz'ya
(2003).

This work was performed in part during visits of the first author to the TU Berlin and WIAS
Berlin, and of the last two authors to the University of Zurich. We thank these institutions for
their hospitality. Francesco Caravenna, Jean-Dominique Deuschel and Rajat Subhra Hazra are
acknowledged for feedback and helpful discussions.

2 The model and main results

2.1 Basic notations

We will work on the d-dimensional integer lattice Z¢, and in the present paper our focus will be
in d > 5, although the basic definition is well-posed in all dimensions. Also, some of the partial
results which don’t rely on the dimension restriction will be stated and proved in generality.

For N € N, let Viy := [-N/2, N/2]? N Z and Vi := Z¢\ Vy.
Forz,y € Z4, d(z, y) is the graph distance between x and y on the lattice with nearest-
neighbor bonds, i.e. the ¢1-norm of x — y. With ||-|| , we denote the Euclidean norm.

We will use L as a generic positive constant which depends only on the dimension d, not nec-



essarily the same at different occurencies, and also not necessarily the same within the same
formula. The dependence on d will not be mentioned, but dependence on other parameters will
be noted by writing L (k) or L (¢), for instance.

We will consider real valued random fields {¢, } ;. . For A C 74, we write F 4 for the o-field
generated by the random variables {¢,, * € A} . To be definite, we can of course have all the
measures constructed on de, equipped with the product o-field.

We will typically use x, y for points in 74 If we write Zx this means summation over all Z<.
We will use e exclusively for the 2d elements of Z? which are neighbors of 0. To keep notations
less heavy, Ze means that we sum over all these elements, and similarly for other discrete
differential operators we will introduce. For a function f on Z%, we write

Def(z):=f(z+e) = f(z).
We write V f for the vector (D, f), , and V*f for the matrix (D, De: f), ., and similarly for the

higher order derivatives which are denoted by V3, V* etc. Remark that V* f (') depends on
all the values f (y) with d (y, z) < k. We write

Vo F @) = [V*f @), = > [DeyDey -+ Doy f ().

€1,...,ek

We also define ||V* f ()| _ := sup,,, |De, -+ - D, f(x)|. The Laplacian in (1.2) can be

rewritten as

e €k

AF(a)i= 533 Def (2).

Remark that although the right hand side looks like being a first order discrete derivative, it is of
course a second order one through the presence of e and —e in the summation. Namely, if we

define only the positive coordinate directions as {e(l), cee e(d)}, then the alternative definition
1
Af(z) = —o > D.wD_uo f(z) (2.1)
i=1

holds. For two square summable functions f, g on 72, we write

(f9):=> f(x)g(x).

x€Z4

Summation by parts leads to the following properties:

Lemma 2.1. Let f, g : Z% — R be square summable functions.

a) Foranye
(Def.g) = (f,D-cg)- (2.2)
b)
(Af,g) = (f,Ag). (2.3)
c)
> (D.f, Deg) = —4d (f, Ag). (2.4)

e



2.2 The membrane model and statement of the main result

Definition 2.2 (Sakagawa (2003), Velenik (2006), Kurt (2008)). Let W +# () be a finite subset
of Z*. The membrane model on W is the random field {py },cza € R%" with zero boundary
conditions outside W, whose distribution is given by

1
w(de) = 7 €xp (—— (Ap, Ap) ) H de, H do(dey), (2.5)
W zeW zeWe
where Zyy is the normalizing constant.

In the case W := Vi, we simply write Py instead of Py, .

It is notationally convenient to define the field {, } for # € Z4, butas p, = 0 forz ¢ W, itis
just a centered Gaussian random vector {%}xew- By (2.3), one has

(Ap, Ap) = (p, A%p) .

Remark that in the inner product on the left hand side, one cannot restrict the sum to IV even if
@ is 0 outside W. There is in fact a contribution from the points at distance 1 to V. In contrast,
in the inner product on the right hand side, the sum is only over W. Py, when regarded as a
law of a R" -valued vector, has density proportional to

exp (—% (e, A%W})

where A%, = (A2<£L‘, y)){x yew) is the the restriction of the Bilaplacian to 1. Actually, in

order to make (2.5) meaningful, one needs that A%,V is positive definite. This follows from the
maximum principle for A. In fact (Ap, Ap) > 0 holds for all ¢ which do not vanish identically,
and are 0 on W°. This proves the positive definiteness of A%V.

The covariances of the membrane model are given as
-1
Gw(z, y) = covpy, (u, ) = (A%) (2, 9), z,yeW, (2.6)

It is convenient to extend Gy to =, y € Z% by setting the entries to 0 outside W x W. For
x € W, the function Z? > y — Gy (z, y) is the unique solution of the boundary value
problem (Kurt, 2009)

For d > 5 the weak limit P := limy_,., Py exits (Sakagawa, 2003, Section Il). Under P, the
canonical coordinates {(, },.,. form a centered Gaussian random field with covariance given

by
G, y) =2z, y) = Y A2, 2)A7 (z,9) = Y T(x,2)T(2,y),

z€74 z€74

{ A2GVV($7 y) = 538,3/7 Yy € W

where T is the Green’s function of the discrete Laplacian on Z<. In particular observe that

G(0, 0) < +00. (2.7)



The matrix I' has a representation in terms of the simple random walk (Sm)mZO on Z¢ given by

C(z,y) = Y Pu[Sm =1

m>0

(P, is the law of .S starting at x). This entails that

Gz, y) = Y (m+1)P.[S = y] = Eq

m>0

> 1{%@}]

£, m=0

where S and S are two independent simple random walks starting at = and ¥ respectively. I’
and (7 are translation invariant. Using the above above representation one can easily derive the
following property of the covariance:

Lemma 2.3 (Sakagawa (2003, Lemma 5.1)). Ford > 5 there exists a constant kg > 0

G(0, )
B = R

ll]|—oo |||

In other words, as ||z — y|| — o0, the covariance between ¢, and ¢, decays like kq||z —
y||*~% in the supercritical dimensions.

For d = 4, limyn_ 1 Py does not exist, and in fact, varp, (o) — —+o0. It is known that
Gn(z, y) behaves in first order as 4 (log N — log ||« — y||) for some 74 € (0, +00), if 2 and
y are not too close to the boundary of V}y, see Cipriani (2013, Lemma 2.1).

Definition 2.4 (Pinned membrane model). Lete > 0. The membrane model on W with pinning
of strength ¢ is defined as

1 1
Py (dp) = ——exp <—§ (Agp, A¢>> I (dee +do(den)) ] do(des)  (28)
w TeEW zewe

where Z3;; is the normalizing constant
1
Ziyi= [ow (=5 @000 ) T @on + (o)) I oo
zeW zeWe

Incase W = Vi, we write Py and Z5; instead.

Our main result shows that for any positive pinning strength € the correlations between two
points decay exponentially in the distance.

Theorem 2.5 (Decay of covariances, supercritical case). Letd > 5 and £ > 0. Then there
exist C,n > 0 depending on € and d, but not on N, such that

|E5[eapy]] < Cele=vl

whenever z, y € Vy.



Remark 2.6. A more natural statement would be that P° := limy_,., Py has exponentially
decaying covariances. Unfortunately, we do not know if this limit exists. The proof in Bolthausen
and Velenik (2001) of the existence of the weak limit in the gradient case uses correlation in-
equalities which are not valid in the membrane case.

Remark 2.7 (Outlook on the case d = 4). The restriction to d > 5 is coming from a domination
of the measure v defined in (3.1) from below by a Bernoulli measure which is true in a strong
sense only for d > 5. The other steps of the proof do not depend on this dimension restriction
in an essential way. The method we apply here would give for d = 4 an estimate of | ES; [,y ]|
in the form exp [—7 ||z — y|| (log N)™] with some 1, o > 0. This is of course disappointing
as for fixed =, y, one would not get decay properties which are uniformly in /N, and one would
also not get boundedness of the variances varpe (o). We remark also that with techniques
similar to those of the present paper, albeit less refined, Bolthausen et al. (2016) show stretched
exponential decay of covariances in d > 4.

We however expect that with some weaker domination properties, as the one used in Bolthausen
and Velenik (2001) for d = 2, one could prove exponential decay also for the membrane model
in d = 4. However, the proofs used in Bolthausen and Velenik (2001) rely again on correlation
inequalities, so a proof eludes us.

It is well possible that exponential decay of correlations is true also for lower dimensions d =
2, 3, but we do not know of a method which could successfully be applied.

3 General results on the membrane model

Let B C A € Z®. As the Hamiltonian of the membrane model is represented through an inter-
action of range 2, the conditional distribution of {‘Px}meB under P4 given F 4\ p depends only
on {6y}, co,pna > Where 2B := {y ¢ B :d(y, B) < 2}. As the measures are Gaussian,

E, [gpx]]-"A\B] is a linear combination of the variables {goy}y@QBmA.

From general properties of Gaussian distributions, one easily gets the following result.

Proposition 3.1 (Cipriani (2013, Lemma 2.2)). Let A be a finite subset of Z, and B C A,
and let {y},czq be the membrane model under the measure Py. Let further {¢} ., be
independent of { .} and distributed according to Pg, i.e. with 0-boundary conditions outside
B. Then {¢, }scp has the same distribution under Pa as { Ex [:|Fas] + ¢4}, -

Corollary 3.2. Let B C A be finite subsets of Z%, and x1, ... ,x, € B, M\1,..., )\, € R, then

k k
varp, <Zi:1 )\igpxi) < varp, <Zi:1 )\2-90%) .

Proof. By the previous proposition, Zle iz, has under P4 the same law as

Ea [ijl Aipz, ]:A\B] T Zf:l A,

where {}, . is independent of the first summand and distributed according to Pp. From
that, the claim follows. O




For A C Z% we write PV‘?/ := Py 4, i.e. the membrane model with 0-boundary conditions on
both 1¥/¢ and on A. We also write G4}, for the corresponding covariance matrix. If A = (), then
PVQ)V = Py . Again, we just use the index NV if W = V.

Corollary 3.3. Let A C Z9, and d > 5. Then the weak limit P* := limy_. o, P} exists, and
it is a centered Gaussian field, with covariances

Gz, y) = Jim Gy (r,y), zyeZ.

Proof. By Corollary 3.2, G& (7, 2) T G4 (z,7) < +oc for all z, as N — +o00. The finite-
ness comes from Gy (z,z) < Gy (z,2) < G (2,2) < 400 (recall (2.7)). So { Py} is
a tight sequence. But for z, y € Z4, also imy_ 4 varpa (s + ) exists, and therefore
limy ., o G (7, y) exists. This implies the statement of the corollary. O

Bernoulli domination. A key step of our proof is that the environment of pinned points can
be compared with Bernoulli site percolation. Expanding [ ], .y, (de, + €do(dey)) in (2.8), one
has, for any measurable function f : RZ" — R,

Ei(f) = % [ feren (—% (A, A@) IT (de. + cdoldgn)) T doldi) =

zeW zeWe

A ZII/LIX/ A
w

ACW

where Z{}‘/ = Zynaie.
Fi= Y Gian
ACW
with

Giv (4) —e‘A‘Zs , 3.1)

which is a probability measure on P (1), the set of subsets of V. We will often use A or Ay,
to denote a P (1V)-valued random variable with this distribution, so that we can write

Ejyleatpy) = Y Cv(A)Gy (2, y) = Eg, (Giy (2, 1)) - (3.2)
ACVyN

Lemma 3.4. Ind > 5 there exist constants 0 < C_, C'y < oo depending only on the
dimension such that for everyw € W and E C W \ {w}

ZEU{w}

C_< ”ng/ < (4. (3.3)

Proof. The proof follows the ideas of Velenik (2006, Section 5.3). ZVEE,U{w}/Zg, is the density at
0 of the distribution of ¢,, under the law PZ, i.e.

zht 1
Z§ 2rGE (w,w)



As
0 < Gy (w,w) < Gy, (w,w) < G (w,w) =G (0,0) < +oo0,
the claim follows. 0

Remark 3.5. For d = 2, 3, 4, one has a similar upper bound for ZfVU{w}/ZE, but the lower

bound depends on W, as G (0,0) = +oc. For d = 4, one has

Zy'C
ZE  — logN’

We control now the pinning measure (5, through dominations by Bernoulli product measures.

Definition 3.6 (Strong stochastic domination). Given two probability measures 11 and v on the
set P(W), |W| < +oc, we say that ;» dominates v strongly stochastically if for all v € W,
EC W\ {z},

Az e A|A\{z} =FE)>v(A: x € A|A\{z} = E). (3.4)
When this holds we write |1 = v.

Let IP};, be the Bernoulli site percolation measure on W with intensity p € [0, 1] . We regard
this as a probability measure on P (V) .

Proposition 3.7. Letd > 5 ands > 0. Then
]P)/;[;(d’a) ~ C;V ~ P%}L(d,a)
with

L C:t (d) g
px(d€) = T4 C.(d)e

where C'_, C', are defined in Lemma 3.4.

€ (0,1) (3.5)

Proof. For z, E as in Definition 3.6

7 —1
ggV(A;xeA\A\{x}_E)_[HL\E} .
Zw\(Bu{z})

This proves the claim. O

4 Proof of the main result

4.1 Sobolev norms

A crucial role of the proof uses a Sobolev-type norm ||- ||A7E depending on subsets A, £ C Z<.
Given A, let R
A={recA:x+ec A Ve}.



Ais the subset of “interior” points of A. For f : Z¢ — R and A, E C 7% let

f(@)? IVf(z
1A% 5 = Z 1+ d(, A)2+s + Z 1+ d(z, A)d+? Z v - @)

zel zeFE

If A = ), then we put d(z, A) = +oo by convention, and 1f15 e = D eer VS ()|
We note the following two facts:

1 ||fI%, g is defined for f : EU0,E — R.
2 If E and FE5 are disjoint then

LA, 2o = IF IS, &,

We now bound the || - ||% 4 norm of a function vanishing on A by second derivates only.

Lemma 4.1. Let f be a function which is identically zero on A. Then

112 <2 V2 (@)

el

Proof. There is nothing to prove when 2 = (), so we assume ;1\ =+ 0.

We first show that the first summand on the right hand side of (4.1) is dominated by a multiple
of the second, and afterwards that the second is dominated by the third.

If € Z% we choose a nearest-neighbor path ¢, of shortest length to 121\ that is, ¥, =
(xo =z, xq,...,2%) Withz;, € A. As fis 0 on A, one has

k
= (fla) = flzim)).

=1

We can choose the collection {, } of paths in such a way that the same bond is not used for two
different end points in A. More formally: if z, 2" € Z% with paths ¥, = (2,21, ..., 7%), Yp =
(', 2, ..., x},) have the property that there exists a bond b which belongs to both paths, then
x), = x},. This can be achieved by choosing an enumeration {x,, } of Z%, and constructing the
paths recursively with this property.

By Cauchy-Schwarz,

d(x7

k
Z 951 $l 1) = Z $l 1))2,

=1

and thus, exchanging the order of summation between points = and paths 1/,

f ()’ d(z, ) ‘&
g A = 2y e s & V) )
d(z, 4)
<> |IVf 21; e (4.2)

10



For z € Z% write R, := {x € Z? : d(z,A) = k and z € 1, }. Observe that due to
our convention, every = € Z% with z € 1, satisfies d(z, A) > d(z, A), and ¥, and 1,
end at the same point in A. Thus there exists a constant ¢1 = c1(d) such that |R, x| <
c1(k — d(z, A))41 < ¢, k%L, Therefore

A 00
2 1 +j§ ?1320#3 < 2 LR;;JH
2:2EYy k=d(z, IZ)

1 1
<L <L . (4.3)
k %A) LR L+d(z, A)

Thus we have, plugging (4.3) in (4.2),

) ACI M o S Y
—1 + d(z, g)2d+3 o —1 + d(z, E)d“ .

It remains to prove that the right hand side is bounded by some multiple of >~ ||V f () 1. 1f
1, is the same as above, we have

because V f(x)) = 0 for zy, € A Thus by the same arguments as above, we get

d(z,A)

IV (@)]° < d(@, A) Y IV [f(w) — fla)]f,

=1

and

IVf ()| p
zm: 1+ d(z, A)d+2 : Z 1+ d (, A d+2 Z IvVis ACel

1
<LY IV @I Z 1+ d(z, A)d+!

T:ZE€EYy

<Ly V@) SUPZW SL2 V3 @)

Fork > 0and E C Z¢ let
vg (E) :={x:d(z,FE) < k}.
Forx, y € Z% let I';, , be the set of non-intersecting nearest-neighbor paths

V= (Tro=2,21,...,T, =),

11



and we write ¢ (1)) for the length 7. For such a v we define

da (V) = qa(x), (4.4)
i=0
where 1
qa (x) == a3 z €7
1+d (m A)
Define

da (2, y) ==min{¢a (V) 1 €Ty},

~

dA(O, 0) = 0.

8,4 may well be bounded, for instance if A is a finite set. In the cases we are interested in, it
will however be unbounded. We will often just write d if it is clear from the context what set
A is considered. Since g4(z) < 1 for any z, note also the bound d(z, y) < d(z, y) for all
x, y € 2%,

We define R

C, = {x :d(0,2) < 10n}. (4.5)
C,, is connected in the usual graph structure of Z?, but the complement may be disconnected.
If we want to emphasize the dependence of C;, on A, we write C), 4.

Remark 4.2. Remark that v2(Cy) N v2(Cr4y) = 0. In fact, assuming that there is a w €

n

v2(Cr) Nwa(Cs, ), then there exist wy € Cy, and wy € CF with d(w, w;) < 2 for
i =1, 2. Hence d(wy, ws) < d(wy, ws) < 4, and by the triangle inequality, w; € C,, implies
d(0, wy) < 10n + 4 which contradicts wy ¢ C), 1.

We will need a monotonicity property in the dependence on A. First remark that if A C A’ then
d (:):, A) >d <x, A’) for all , and therefore

dy < da. (4.6)

Lemma 4.3. For every n, there exists a functionn, : 74 — [0, 1] with the following properties:

M = 0 on vy (Cn> y Thn = 1 onwy (CZ+1) ) (4.7)

L
Vi ()] < ~—— VzeZ’ (4.8)
7 14 d(z, A)23

Proof. Let fi(z) := a(a:, v2(Cr)) and fo(z) = a(:c, v2(Cr.1)). We define

o fi(z)
() = TRV )

12



which evidently satisfies (4.7).

To prove (4.8), notice first that one can find an L large uniformly for all x with d(z, A\) <4, so

-~

let us consider z such that d(z, A) > 5. We have from Remark 4.2 that

fi(z) + fo(z) > 1.
Then
’Defl (.23)|
S ROES AR
¥ ! ! 4.9
Al oy Wy oy e Ry s iy s R
We see that

[ Defr ()] < qa(x) + qalz +€)
2

< PR N 2d+3
1+min{d<x, A),d(x—l—e, A>}
L

IA

N\ 2d+3°
1+d (:c A)
as we assumed d(z, A) > 5. The same estimate is true also for | D, f ()] .

The second summand in (4.9) is bounded above by |D. fi (z)| + |D.fs (x)|, so the claim
follows. -

Corollary 4.4. Forallx € Z% it holds that
a) forall k > 2 there exists L = L(k) > 0 such that

L
k
HV T (a:)Hoo < 1 +d(x,zzl\)2d+3' (4.10)

b) For all e neighbors of the origin and k > 1 there exists L = L(k) > 0 such that

V¥ (x4 )| < L Vr € 24, Ve (4.11)

- 1_|_d(x’A\)2d+3’

Proof.

a) (4.8) implies that also higher order derivatives can be estimated by the same bound with
a changed L because the supremum norm of higher order discrete derivatives can be
estimated by the first order ones.

b) Again this holds by an estimate with first order derivatives and the fact that

d(z +e, A) —d(z, A)| < 1.

13



O

Consider now an infinite set A with the property that C,, 4 is finite for all n. Given A with A°
finite, and 0 ¢ A, we consider the unique function / 4 which satisfies h 4 (z) = 0 on A, and for
allz € A°

A?hy (x) = 6(x).

Lemma 4.5. With the above notation, we have forn > 1

IhallZce,, < Lllhall cpnca-

It is important to emphasize that L depends neither on A nor onn.

Proof. Fix n, and let 77, be as in Lemma 4.3. We also drop the subscript A in & 4. We have with
Lemma 4.1 and Lemma 2.1

Rl ce,, = bl e,

< bl 0 < LY (DeDemuh, DeDengah)

e,e’

= L (nuh, A* (n,h)) . (4.12)

By an elementary computation, one has for any f, g : Z¢ — Rand z € Z¢
1
A(fg) (w) = f(2) Ag (2) + Af (1) g (x) + 55 > Def () Deg (). (4.13)
Applying this twice gives

1
A2(nah) = 1, A% + (A%p,) b+ 2An,Ah + y > (DeAny) Deh

e

4d?

ee’

1 1
+ a z@: (Denn) (DAR) + — Z (DeDeny,) Do Deh

1 1 1
=+ o+ 2F5 4+ -Fy + - F5 + — I.
1+ Fo+ 3+d4+d5+4d26

Note that
(mah, F1) = (nyh, 0, A%hY) = 0, (4.14)

as for z # 0 we have A%h (z) = 0 and for z = 0 we have 7, (0) = 0. All the other terms
contain derivatives of 7,,. Therefore, every derivative of the function 1,, will be non-zero only for
points in C, 11 \ C,. Since we have (4.12), we need to estimate (n,h, F;) fori = 2, ..., 6.
Let us begin with = = 2: by Corollary 4.4

[k, o)l <Y | A% (@) h(2)* = D |A%, (2)] b (2)?
z z€CH+1\Ch

L
< ¥ 1 (2)’ < L||
2€Omi\Cn 1+ d(z, A)2d+

2
A,Cr1\Cr* (4.15)

14



Let us see now ¢ = 3. With the Cauchy-Schwarz inequality we get

|(nh, F3)| < L ‘eron+1\cn

< L\/ er%l\cﬂ (Ah (x))z\/ ZzeCnH\Cn (An, (2))* b (2)?

< LIhlAe, e (4.16)

i () b () A () Ab ()

using Corollary 4.4, (2.1) and the arithmetic-geometric mean inequality.

To estimate the part with F;, we first observe that D.An,, (x) is 0 outside C,,+1\C,,, and by
Remark 4.4

L
|DAn, (7)] < = :
1+ d(z, A)2d+3

Therefore, using the inequality of arithmetic and geometric means,

h(z)? D.h (z)?

\ 2€Cn+1\Cn (1 + d(z, A)2d+3> 2€Cn41\Chn (1 + d(w, A)2d+3>
2 D 2

Iy | Y e Y A

€ \xecn-‘rl\cn + (.T, ) 2€CHr+1\Cn + (x7 )

< LHhHi,an\cn- (4.17)

(b, Fi)| S L)

For the estimate of (1, h, Fs) we can use Lemma 4.3 and (2.1) again to say that, for a fixed
direction e,

|(Mh; (Denn) (DeAR))

< Z Tn (x)h($) Deny, (QJ) Ah (QJ)
2€CHR+1\Cn

+1 > (2)h(x) Deny () Ah (2 + €)
2€CH+1\Crn

< | S h@PDa.@?| [ Y An@P+ | Y Ahle+o)

mECn+1\Cn xecn+l\on $€Cn+1\on
< Lkl e,

Summing over e yields

[, F5)| < LRl e, i\c0 (4.18)
It finally remains to show

[(mah, Fo)| < LIRN ¢, 0 (4.19)
which follows in the same way as (4.16).

Combining (4.14)-(4.19) proves the lemma. O
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With these preparations, we can now prove that ||h||124705+1 decays exponentially.

Lemma 4.6. Letd > 1,and let A C Z%\ {0} be such that A° is finite. There exist constants
¢1 (d) > 0andd (d) > 0, independent of A, such that, for alln € N,

10, < ere™ 1Bl 5.
Proof. From Lemma 4.5 we get

Il s, < PIRlE e, = L (IR0 = IlEes,, ) -

n+1 n+1

that is, iterating the argument,

L L n—1
s, < Tl < (5g)  Mlfe;

1+ L L \"
<2 (=) nl?
< () Ml

proving the claim. O

Corollary 4.7. Ifd > 5, then, under the same conditions and notation as above

1Rl e < cre™.

Proof. By Lemma 4.1
Ihl% e < L ||V?h(2)|| = L (h, A%h) = 1 (0) < G(0, 0) < +o0.
x€Z4

Plugging this in Lemma 4.6 concludes the proof. O

4.2 Trapping configurations under the Bernoulli law

In order to prove our main theorem, we have to obtain probabilistic properties of the sequence
{Cn,A}n where A is random and distributed according to (°. Using the Bernoulli domination,
the key probabilistic estimates have to be done only for a Bernoulli measure instead of (.
Therefore, let p € (0, 1) and P? be the Bernoulli site percolation measure on the set of subsets
of Z% with parameter p. As p is fixed in this section, we leave it out in the notation. We write .Z
for the set of interior points. Let By, (z) := {y : d(x, y) < m}.

Lemma4.8. Form € N, z € Z¢,

2m+1Jd

P(Bmcv)mﬁ:@) < (1—prry L

16



Proof. It suffices to take x = 0 and write B,, for B, (0). Note that B,, is a hypercube of
side length 2m + 1. Put n := [(2m + 1) /3] . We can place n? pairwise disjoint boxes
By (xj) , 1 <7< n? in B,,. As these boxes are disjoint, the events {xj S /T} are inde-

2d+1

pendent and they have probability p . Therefore

MJd

P(BunA=0) <P(z;¢ A Vj<n')=(1-p*)L"

O

Lemma 4.9. There exist A\, K > 0 and ng € N depending only on the dimension d and p
such that for alln > ng andall N > Kn

xECmA 170)>Kn

P ( sup d(0,x) > Kn) = ]P’< « inf 8(0,@ < 10n) <e M (4.20)

Proof. The equality in (4.20) holds by the definition of C,,. Let us prove the inequality on the
right-hand side of the above formula.

For M € N we subdivide Z? in boxes B;, i € Z?, of side-length M :
B; = ([(iy — 1) M + 1,5, M] x -+ x [(ig — 1) M + 1, igM]) N Z%,
and
By = ([(in =) M +2, iuM = 1] x -+ x [(ia = 1) M +2, iaM — 1)) N Z°,
which is a box contained in B;. We define

o1 BN A£D
”(1)_{0 it BINA=0

The 7 (i) are i.i.d. In order to estimate I (1) (i) = 0), we subdivide the box B} into boxes Q; of
side-length 3, with possibly some small part remaining close to the boundary of Bio. As the BiO
have side-length M — 2, we can place | (M — 2) /3] of the Q-boxes without overlaps into
BY. For a Q-box, the probability that the middle point and all its neighbors belong to A is p?**.
Therefore
de

3

P(n(i)=0) < (1-p4)k
We choose M = M (p, d) such that

P =0)<

(4.21)

For z € 7%, we write i (z) for the index i such that z € B;. Remark that i (0) = 0. Remark
that M depends on d and p only.

Given any self-avoiding nearest-neighbor path connecting x with 0, that is,

w:(x():xaxla"wmkzo)
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we attach to it a renormalized nearest neighbor path ¢» = (i (z) , i1, . .., i, = 0) in the following
way. 1 starts at x which is inside a box Bj(,). Put iy := i (). When 1) for the first time leaves
B;,, it enters a box B;, with i; being a neighbor of ij in Z*. Then we wait for the next time in
which 1) leaves B;, and enters a neighbor box Bj,. This path is not yet self-avoiding, but we
can make it so by erasing successively all the loops. See Figure 1 for an example.

Figure 1: The dashed path represents 7/ and the solid line the renormalised path_E where the
M -squares have side-length 4. Note we have erased the red loop from ).

In this way, we proceed and obtain a path from i, to 0, which we indicate as iy — 0, of the form
(ig,i1,...,1, = 0). Evidently, we can define an injective mapping {0,...,¢} > j — t; €
{0,..., k} with xy; € Bj; (for example assigning to each j the point x;, which is the center of
the box B; ;). As this mapping is injective and the path 1) is self-avoiding, the ;s are different.

We attach to @ a weight

o (V) =i <:n(iy) =1}
that counts the number of large boxes in which a pinned point lies. From the construction one
obtains that

l l ;

o 2 + 2M2d+5
6 (W) = L=y <D Lina=1) SGIIE

§=0 j=0 2+2d (:Etj,A>

as d (x, 121\) < M whenever x € B; with BY N A # (). Moreover, recalling (4.4), we can say

that
¢

LinGj=13 & 1
<> < ¢ ()

O\ 2d+3 O\ 2d+3 —
=0 2+ 2d (:ctj, A) iz0 2+ 2d (ac A)



and so

6 (¥) < (2+2M*3) ¢ (1) . (4.22)

We have already fixed M above (depending only on d and p), and we choose now K as

K := [20M (24 2M*™2)]. (4.23)

If there exists z with d (0, ) > Kn and d (0,2) < 10n, then there exists a ¢ from x to 0 with
¢ (1) < 10n, implying by means of (4.22) that there exists a path ¢/ from i (z) to 0 with weight

¢ (¥) <10 (24 2M*3)n

and i
n
d(0,i) > —.
( Y l) M
Setting
Kn
m = | —
M Y
we see that by our choice (4.23)
~ - m
d < } { < _} .
g { (0,2) <10n} ¢ | iU JOES (4.24)
z:d(0,z)>Kn i:d(0,i)>m 3:i—0

Fix i with d (0,i) =: | > m. Apath ¢ = (ig =1,i;,...,1, = 0) has length r := |¢| > 1,
hence _

-~ - (0

@ <™ c {w) g%}

The number of paths of length > [ on the lattice is bounded by (Zd)T . For every such path E
the 7 (i;) are i.i.d. with success probability (cf. (4.21))

1 - 1
64d2 = 2’

— m — — m -~
P(e() <3)=P({50) < 3}n{A#0}).
Therefore, for a fixed E, the right-hand side above is bounded by the probability that a Bernoulli

sequence of length - with success probability 1 — 7 has at least /2 successes. This probability
is bounded above by (see Arratia and Gordon (1989))

ol (o)

where for p1, po € (0, 1) one defines

Ppi)=1)=717>1-

and therefore

P I—p
I (p1]p2) :=p110gp—1+(1—p1)10g1 -
2

— P2
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Hence

P({F@ <3 }n{A#0}) <on [ (31-7)]

Pl U {a(zp)gg}m{ﬁ;é@} <3 @dy @4(1—7)"
P:i—0 r=l
r/2 1 1
<§ (2d)° ( 64d2) T Ly v
and
—~ i:d(i,0)=1
P U U{ }H{A%@} SZH (2“) 3
d(0,i)>m 3:i—0 >m+1
ld—l 2 m
< ¢s (d) —1 < (g)

for large enough m. Together with (4.24), this gives
~ o\ M
P {d 0,2) < 10 } <(z2) .
., o< < (3
2:d(0,z)>Kn

This concludes the proof of the lemma choosing A = A(p, d) := — (K/M)log(2/3). O

4.3 Proof of Theorem 2.5

We assume now d > 5. Let 7, y € Z?. We have to estimate ES [pzpy]- We may assume that
x, y € Vy, as otherwise the expression is 0. It is convenient to shift everything by x:

By [papy] = By ya [000y-o] = Egz . (Gavy+0(0,y — 2)1ogay)

where A C Vi + x is distributed according to ¢y, .. Substituting 2 := y — x, we see that we
have to estimate

‘EC\E/N-m (G'A= VN+$(0’ 2)1{0¢«4}>) < EC\E/N-m (’GA, VN+€E(07 Z>| 1{0§Z.A}) .

Let A .= AU (Viy +)°. For a fixed realization of A with 0 ¢ A, G4 vy+2(0,-) is hg
restricted to Vv + x. Outside this set, hj is of course 0.
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By Proposition 3.7, the distribution of .4 under (V1o Strongly dominates the Bernoulli law [P*~
where p_ = p_ (d, ¢) is defined by (3.5). The Bernoulli domination is proved there only for the

configuration inside Vy + x, but as A contains all the points outside Vv + x, the domination
trivially extends to the measures on P (Z%).

Let K = K (d, ¢) be as defined in Lemma 4.9 with p there equal to p_. Set
R,:={z€Z':Kn<d(0,z) <K (n+1)}.

We want to show that we can choose d > 0, depending on d, ¢ only, such that

sup v ta (Sup |G A vy+2(0,2)] > e‘”‘) < L(g)e ™ (4.25)

R 2€ER,

Having proved this, Theorem 2.5 follows, as sup, , n 4 |Ga,vy+2(0,2)| < G(0, 0) < +o0
for d > 5 and therefore, if z € R,, for some n, by the law of total probability we get

Sup |EY [prprrz]] < sup B . (1G4 vy+2(0,2)| Liogay) < L (e) o0

In order to prove (4.25), set

X, = sup |Ga vy+2(0,2)],
z2€ER,

Yn = ||GA,VN+IE(07 .)HX,RH y

& = \/1 + sup,cp, d(z, A)2+3.

Then

Xo < [ (Gavya(0,2))" < &Y (4.26)

ZGRn

To prove (4.25), we observe that for any ¢’ > 0 and n > ng(d’)
Sub Cy+e <£nYn 2 56%) = sup Wt (fnYn >e 0" &, < n2(d+2)>
+ i\l,lp o <fnYn > efé’n’ £, > n2(d+2))
< sup Wy +a (Yn > 526/") +sup Gioa (60 > n*T2). (4.27)

Now define 20’ := § where ¢ appears in Corollary 4.7. Notice that

C‘E/N-HC (Yn Z e_én) = C\S/N-‘rﬂc (Yn Z e—dn’ Rn C C:L)
+ Gy (Yo 2 €7, Ra NGy £ 0)

< C‘E/N-HC ("7l = (Z)) + Clg/'N—i-x (infx:d(x,0)>Kn aj (0, fl?) < 10n) .
(4.28)
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In the last inequality we have used Corollary 4.7. By means of the monotonicity property (4.6)
and Bernoulli domination, the right-hand side above is dominated by

P~ (7\ = (Z)) + P (infm:d($70)>Kn az 0,z) < 10n> ,

where p~ := p~ (d, £). With \ as of Lemma 4.9 we can find n = n(\) large enough such that
Pr (.71 = (Z)) < exp(—An) applying Lemma 4.8. We plug the result of Lemma 4.9 in (4.28) to
get

(e (Yo =) <e (4.29)

We now look at the second summand of (4.27). For large enough n (depending on d, ¢ only)

{&, > n?@t2] {Sup d(z, A) > n2} .

zeR,

Using the monotonicity property (4.6), one has

SUP (i 4 (sup d(z, A) > n2> <P (sup d(z, A) > n2>

N, CEERn CEERn

which evidently is of order exp [—L x n?| for large n. This, (4.29), (4.28) and (4.26) prove
(4.25).
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