
Weierstraß-Institut
für Angewandte Analysis und Stochastik
Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint ISSN 2198-5855

Planelike interfaces in long-range Ising models

and connections with nonlocal minimal surfaces

Matteo Cozzi1, Serena Dipierro1,2, Enrico Valdinoci1,2,3

submitted: May 19, 2016

1 Weierstrass Institute
Mohrenstr. 39
10117 Berlin
Germany
E-Mail: matteo.cozzi@wias-berlin.de

serydipierro@yahoo.it
enrico.valdinoci@wias-berlin.de

2 School of Mathematics and Statistics
University of Melbourne
813 Swanston St
Parkville VIC 3010
Australia
and
School of Mathematics and Statistics
University of Western Australia
35 Stirling Highway
Crawley, Perth WA 6009
Australia

3 Dipartimento di Matematica
Università degli studi di Milano
Via Saldini 50
20133 Milan
Italy

No. 2264

Berlin 2016

2010 Mathematics Subject Classification. 82C20, 82B05, 35R11.

Key words and phrases. Planelike minimizers, phase transitions, spin models, Ising models, long-range interactions, non-
local minimal surfaces.

This work has been supported by the Alexander von Humboldt Foundation, the ERC grant 277749 E.P.S.I.L.O.N. “Elliptic
Pde’s and Symmetry of Interfaces and Layers for Odd Nonlinearities” and the PRIN grant 201274FYK7 “Aspetti variazionali
e perturbativi nei problemi differenziali nonlineari”.



Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.
Mohrenstraße 39
10117 Berlin
Germany

Fax: +49 30 20372-303
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/

preprint@wias-berlin.de
http://www.wias-berlin.de/


1

ABSTRACT. This paper contains three types of results:
• the construction of ground state solutions for a long-range Ising model whose interfaces stay

at a bounded distance from any given hyperplane,
• the construction of nonlocal minimal surfaces which stay at a bounded distance from any given

hyperplane,
• the reciprocal approximation of ground states for long-range Ising models and nonlocal minimal

surfaces.
In particular, we establish the existence of ground state solutions for long-range Ising models with
planelike interfaces, which possess scale invariant properties with respect to the periodicity size of the
environment. The range of interaction of the Hamiltonian is not necessarily assumed to be finite and
also polynomial tails are taken into account (i.e. particles can interact even if they are very far apart the
one from the other).

In addition, we provide a rigorous bridge between the theory of long-range Ising models and that of
nonlocal minimal surfaces, via some precise limit result.
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1. INTRODUCTION

In this paper we consider an Ising model whose Hamiltonian is obtained by the superposition of an
energy of ferromagnetic type and a magnetic potential.

As customary, this model describes the equilibria of a discrete set of variables that represent magnetic
dipole moments of atomic spins that can be in one of two states (which we denote by +1 or −1).
These spins are arranged in a d-dimensional lattice (that we take to be Zd, with d > 2).

We consider the case in which the Hamiltonian depends periodically on the environment, that is,
given τ ∈ N, both the ferromagnetic and the magnetic energy are invariant under integer translations
of length τ . Of course, this type of periodicity assumption is very common in the statistical mechanics
literature, especially in view of applications to crystals.

Differently from most of the existing literature, we take into account the possibility that the particle
interaction is not finite-range, but it possesses a tail at infinity (in particular, tails with polynomial decays
are taken into consideration).
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We show that, if the magnetic potential averages to zero in the fundamental domain of such crystal,
one can construct ground states in which the interface remains uniformly close to any given hyper-
plane. More precisely, fixed any hyperplane, we construct minimal interfaces that stay at a distance
from the hyperplane of the same order of the periodicity size of the model.

We stress that the vicinity to the prescribed hyperplane is uniform in the whole of the space and
that the hyperplane can have rational or irrational slope (the corresponding solutions will then have
accordingly periodic and quasiperiodic features).

Of course, the fact that the oscillation of the interface is proved to be of the same order of the crystalline
scale has clear physical relevance.

Furthermore, it provides an additional scale invariance that we can use to take suitable limits of the
solution constructed.

More precisely, we will show that, if we scale appropriately the planelike ground states of the Ising
model, we obtain in the limit a minimal solution for a nonlocal perimeter functional which has been
intensively studied in the recent literature (in particular, in this way we show that there exist planelike
nonlocal minimal surfaces).

To make the picture complete, we also show that any unique minimizer of the nonlocal perimeter
problem can be approximated by ground states of the Ising model, thus providing a complete bridge
between the long-range statistical mechanics framework and the geometric measure theory in nonlo-
cal setting.

We recall that the construction of planelike solutions is a classical topic in several areas of pure and
applied mathematics. This problem dates back, at least, to the construction of planelike geodesics on
surfaces of genus greater than one, see [M24]. As pointed out in [H32], geodesics in higher dimen-
sional manifolds fail, in general, to satisfy planelike conditions. Hence, the question of finding planelike
solutions eventually led to the generalization of the notion of “orbits” with that of “invariant measures”
in dynamical systems, which in turn gave a fundamental contribution to the birth of the Aubry-Mather
(or weak KAM) theory, see [AD83, M89, M91].

In addition, in [M86] the problem of finding suitable planelike solutions was put in a new framework for
elliptic partial differential equations, where the question of finding suitable analogues for hypersurfaces
of minimal perimeter was also posed.

In turn, this question for minimal surfaces was successfully addressed in [CdlL01, AB01].

See also [CF96, RS04, V04, PV05, B08] for related results for elliptic partial differential equations,
[T04, BV08] for additional results in Riemannian and sub-Riemannian settings, [CdlL05, dlLV07, dlLV10]
for results in statistical mechanics, and [CV15, CV16] for results for fractional equations.

We now introduce the formal mathematical settings in which we work. Let d ∈ N with d > 2. We
endow Zd (and, more generally, Qd) with its natural `1 norm, that will be simply denoted by | · |. For
simplicity of exposition and rather uncharacteristically, we adopt this notation even for vectors in Rd.
Thus, we write

|i| = |i|1 :=
d∑

n=1

|in| for any i ∈ Rd.

Of course, for the vast majority of the arguments a different norm of Rd could be considered as well,
with no significant changes in the computations.
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We call any function u : Zd → {−1, 1} a configuration. Associated to any configuration u is its
interface ∂u ⊂ Zd defined by

∂u :=
{
i ∈ Zd : ui = 1 and there exists j ∈ Zd such that |i− j| = 1 and uj = −1

}
.

Given a configuration u, we consider its (formal) Hamiltonian

H(u) :=
∑
i,j∈Zd

Jij (1− uiuj) +
∑
i∈Zd

hiui,

where J : Zd × Zd → [0,+∞) satisfies

Jij = Jji for any i, j ∈ Zd,(1.1)

Jii = 0 for any i ∈ Zd,(1.2)

Jij > λ for any i, j ∈ Zd such that |i− j| = 1,(1.3) ∑
j∈Zd

Jij 6 Λ for any i ∈ Zd,(1.4)

for some Λ > λ > 0, while h : Zd → R is such that

sup
i∈Zd
|hi| 6 µ,(1.5) ∑

i∈F

hi = 0,(1.6)

for some µ > 0 and with F denoting any fundamental domain of the quotient space Zd/τZd, with τ ∈
N.

Sometimes, we will require J to fulfill the following stronger assumption, in place of (1.3) and (1.4):

(1.7)
λ

|i− j|d+s
6 Jij 6

Λ

|i− j|d+s
for any i, j ∈ Zd with i 6= j and for some s ∈ (0, 1).

We point out that long-range Ising models like the ones described by the above requirements are well-
studied in the literature (see for instance [DRAW02, CDR09, P12, BPR13] and references therein),
with particular attention given to those taking into account power-like interactions as in (1.7). The array
of models covered by our choice of parameters (namely, s ∈ (0, 1)) falls into the class of the so-
called weak long-range interactions. Anyway, we stress that a wider generality (e.g. the case of (1.7)
with s > 1) is already encompassed within the broader framework of hypotheses (1.3) and (1.4).

The periodicity of the medium is modeled by requiring that, given τ ∈ N,

Jij = Ji′j′ for any i, j, i′, j′ ∈ Zd such that i− i′ = j − j′ ∈ τZd,(1.8)

hi = hi′ for any i, i′ ∈ Zd such that i− i′ ∈ τZd.(1.9)

Associated to the interaction kernel J , we consider the non-increasing function

(1.10) σ(R) := sup
i∈Zd

∑
j∈Zd

|j−i|∞>R

Jij,

defined for any R ∈ N. Note that we indicate with | · |∞ the `∞ norm in Zd and Rd, that is

(1.11) |i|∞ := sup
n=1,...,d

|in| for any i ∈ Rd.

Observe that σ quantifies the decay of the tails of J .
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Given a set Γ ⊂ Zd, we introduce the restricted Hamiltonian HΓ, defined on any configuration u by

HΓ(u) :=
∑

(i,j)∈Z2d\(Zd\Γ)2

Jij(1− uiuj) +
∑
i∈Γ

hiui

=
∑

i∈Γ, j∈Γ

Jij(1− uiuj) + 2
∑

i∈Γ, j∈Zd\Γ

Jij(1− uiuj) +
∑
i∈Γ

hiui.

Note that HΓ(u) is always well-defined when Γ is a finite set, as (1.4) is in force.

It will be useful to have a notation for the interaction energy involving two subsets of Zd. Given any
two sets Γ,Ω ⊆ Zd, we consider the restricted interaction term

(1.12) IΓ,Ω(u) :=
∑

i∈Γ, j∈Ω

Jij(1− uiuj).

We also write

IΓ(u) := IΓ,Γ(u) + IΓ,Zd\Γ(u) + IZd\Γ,Γ(u).

On the other hand, we indicate with BΓ the part of the Hamiltonian HΓ related to the magnetic field h.
That is,

(1.13) BΓ(u) :=
∑
i∈Γ

hiui.

With these notations, it holds that

HΓ(u) = IΓ(u) +BΓ(u).

Definition 1.1. We say that a configuration u is a minimizer for H in a set Γ ⊆ Zd if it satisfies

HΓ(u) 6 HΓ(v),

for any configuration v that agrees with u outside of Γ.

Remark 1.2. We point out that, although perhaps not immediately evident from the way the interaction
term I is defined, the definition of minimizer is consistent with set inclusion. With this we mean that,
given two sets Γ ⊆ Ω, a minimizer in Ω is also a minimizer in Γ.

To see this, it suffices to observe that, if u and v are two configurations satisfying

ui = vi for any i ∈ Zd \ Γ,

then

HΩ(u)−HΩ(v) = HΓ(u)−HΓ(v).

Of course, it is easy to check that such an identity is true for the magnetic term B. On the other
hand, the computation of the interaction term is slightly more involved, due to the presence of a dou-
ble summation. However, it becomes more apparent once one notices that

[
Z2d \ (Zd \ Γ)2

]
⊆[

Z2d \ (Zd \ Ω)2
]

and

uiuj = vivj for any (i, j) ∈
[
Z2d \ (Zd \ Ω)2

]
\
[
Z2d \ (Zd \ Γ)2

]
.

Definition 1.3. We say that a configuration u is a ground state for H if it is a minimizer for H in any
finite set Γ ⊂ Zd.

With this setting, we are in the position of stating our first result, which provides the existence of ground
state solutions for long-range Ising models with interfaces that remain at a bounded distance from a
given hyperplane (and, additionally, if J satisfies (1.7), such distance is of the same order of the size
of periodicity of the medium):



5

Theorem 1.4. Suppose that J and h satisfy assumptions (1.1), (1.2), (1.3), (1.4), (1.8) and (1.5) (1.6), (1.9),
respectively. Then, there exist a small constant µ0 > 0, depending only on d, τ and λ, and a
large constant M > 0, that may also depend on Λ and the function σ, for which, given any di-
rection ω ∈ Rd \ {0}, we can find a ground state uω for H such that its interface ∂uω satisfies the
inclusion

(1.14) ∂uω ⊂
{
i ∈ Zd :

ω

|ω|
· i ∈ [0,M ]

}
,

provided that µ 6 µ0.

More precisely, for any i ∈ Zd with ω
|ω| · i > M we have that uω,i = −1, and for any i ∈ Zd

with ω
|ω| · i 6 0 we have that uω,i = 1.

Furthermore, if J satisfies (1.7), in addition to the conditions already specified, and h vanishes iden-
tically, then the constant M may be chosen of the form M = M0τ , with M0 > 0 depending only
on d, s, λ and Λ.

In the case of finite-range periodic Ising models, the result in (1.14) was obtained in [CdlL05] (see
in particular formula (2) and Theorem 2.1 there). We also point the reader’s attention to the more
recent [B14], where it is shown that such existence result fails when one considers coefficients that
are only almost-periodic (i.e. that are the uniform limits of a family of periodic coefficients of increasing
period).

We stress that the additional result that we obtain when J satisfies (1.7) plays for us a crucial role,
since such scale invariance is the cornerstone to link the long-range Ising models to the nonlocal
minimal surfaces (and this will be the content of the forthcoming Theorems 1.6 and 1.8).

In order to deal with nonlocal minimal surfaces in periodic media, it is convenient now to introduce the
following auxiliary notation. Let K : Rd × Rd → [0,+∞] be a measurable function satisfying

(1.15) K(x, y) = K(y, x) for a.e. x, y ∈ Rd,

and

(1.16)
λ

|x− y|d+s
6 K(x, y) 6

Λ

|x− y|d+s
for a.e. x, y ∈ Rd,

for some exponent s ∈ (0, 1) and for some constants Λ > λ > 0. We also assume K to be Zd-
periodic, that is

(1.17) K(x+ z, y + z) = K(x, y) for any z ∈ Zd and a.e. x, y ∈ Rd.

For any open set Ω ⊆ Rd and any measurable function u : Rd → R, we define

KK(u; Ω) :=

∫∫
CΩ

|u(x)− u(y)|K(x, y) dx dy,

where

CΩ := R2d \
(
Rd \ Ω

)2
.

Given any two measurable sets A,B ⊆ Rd, we also write

(1.18) KK(u;A,B) :=

∫
A

∫
B

|u(x)− u(y)|K(x, y) dx dy,

so that, recalling (1.15), it holds

KK(u; Ω) = KK(u; Ω,Ω) + 2KK(u; Ω,Rd \ Ω).
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The K-perimeter of a measurable set E ⊆ Rd inside Ω is defined by

(1.19) PerK(E; Ω) := LK(E ∩Ω,Ω \E) + LK(E ∩Ω,Rd \ (E ∪Ω)) + LK(E \Ω,Ω \E),

where, for any two disjoint sets A,B ⊂ Rd,

(1.20) LK(A,B) :=

∫
A

∫
B

K(x, y) dx dy.

We observe that

(1.21) PerK(E; Ω) =
1

4
KK

(
χE − χRd\E; Ω

)
.

We recall that, when K(x, y) := |x − y|−d−s, the nonlocal perimeter in (1.19) reduces to that
introduced in [CRS10]. In this sense, the nonlocal perimeter in (1.19) is a natural notion of fractional
perimeter in a non-homogeneous environment. For a basic presentation of nonlocal minimal surfaces
(i.e. surfaces which locally minimize nonlocal perimeter functionals), see e.g. pages 97–126 in [BV16].

The concept of optimal set that we take into account here is rigorously described by the following
definition:

Definition 1.5. Given an open set Ω ⊆ Rd, a measurable set E ⊆ Rd is said to be a minimizer (or
a minimal surface1) for PerK in Ω if PerK(E; Ω) < +∞ and

PerK(E; Ω) 6 PerK(F ; Ω) for any measurable set F ⊆ Rd such that F \ Ω = E \ Ω.

Furthermore, E is said to be a class A minimal surface for PerK if it is a minimizer for PerK in every
bounded open set Ω ⊂ Rd.

By means of an argument similar to that presented in Remark 1.2 for the discrete setting, one can
easily convince himself or herself that to verify that a set E is a class A minimal surface for PerK it is
enough to check that E minimizes the K-perimeter on each set of an exhaustion of Rd that consists
of bounded subsets, e.g. concentric balls or cubes of increasing diameters.

In order to describe the similarity between the power-like long-range Ising model and theK-perimeter,
we associate to each kernel K a specific family of systems of coefficients J (ε). Indeed, given ε > 0,
we set for any i, j ∈ Zd

(1.22) J
(ε)
ij :=

ε
−d+s

∫
Qε/2(εi)

∫
Qε/2(εj)

K(x, y) dx dy if i 6= j

0 if i = j.

As we will see in the forthcoming Lemma 5.1 in Section 5, the coefficients J (ε) satisfy assump-
tions (1.1), (1.2) and (1.7), uniformly in ε.

Related to J (ε) is then the HamiltonianH(ε) with zero magnetic flux, defined on every finite set Γ ⊂ Zd

and any configuration u by

(1.23) H
(ε)
Γ (u) :=

∑
(i,j)∈Z2d\(Zd\Γ)2

J
(ε)
ij (1− uiuj).

Moreover, to each configuration u, we associate its extension ūε : Rd → {−1, 1} defined a.e. by
setting

(1.24) ūε(x) := ui where i ∈ Zd is the only site for which x ∈ Q̊ε/2(εi).

1Here we adopt a partially misleading terminology, as the boundary ∂E, and not the set E, should be regarded as
the minimal surface, in conformity with the classical geometrical notion of perimeter. However, we have PerK(E; Ω) =
PerK(Rd \ E; Ω), for any set E, and thus no confusion should arise from this slightly improper notation.
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Note that the above family of extensions allows us to understand configurations as characteristic func-
tions in Rd, via the embedding

Zd −→ εZd ↪−→ Rd,

defined by
Zd 3 i 7−→ εi ∈ Rd.

Clearly, the smaller the parameter ε is, the more densely the grid Zd is embedded in Rd, and so the
closer the Hamiltonian H(ε) looks to the K-perimeter.

The following result addresses such similarity in a rigorous way, by showing that the limit of ground
states for the long-range Ising models with Hamiltonians (1.23) produces a nonlocal minimal surface:

Theorem 1.6. Suppose that K satisfies assumptions (1.15) and (1.16). Let {εn}n∈N ⊂ (0, 1) be
an infinitesimal sequence. For any n ∈ N, let u(n) be a ground state for the Hamiltonian H(εn) and
let ū(n) = ū

(n)
εn be its extension to Rd, according to (1.24).

Then, there exists a diverging sequence {nk}k∈N of natural numbers such that

ū(nk) −→ χE − χRd\E a.e. in Rd, as k → +∞,
where E ⊆ Rd is a class A minimal surface for PerK .

By combining Theorems 1.4 and 1.6, we obtain the existence of planelike minimal surfaces, as stated
in the following result:

Theorem 1.7. Suppose that K satisfies assumptions (1.15), (1.16) and (1.17). Then, there exists a
constant M0 > 0, depending only on d, s, λ and Λ, for which, given any direction ω ∈ Rd \ {0}, we
can construct a class A minimal surface Eω for PerK , such that

(1.25)

{
x ∈ Rd :

ω

|ω|
· x < −M0

}
⊂ Eω ⊂

{
x ∈ Rd :

ω

|ω|
· x 6M0

}
.

The result in Theorem 1.7 here positively addresses a problem presented in [C09].

In the forthcoming paper [CV16], we plan to obtain the same result of Theorem 1.7 by a different
method, namely by approaching nonlocal minimal surfaces by nonlocal phase transitions of Ginzburg-
Landau-Allen-Cahn type: in this spirit, we may consider the nonlocal minimal surfaces as a natural
“pivot”, which joins, in the limit, the Ginzburg-Landau-Allen-Cahn phase transitions and the Ising mod-
els in a rigorous way.

Also, as a partial counterpart to Theorem 1.6, we have the following result, which states that a unique
minimizer of the nonlocal perimeter functional can be approximated by ground states of long-range
Ising models:

Theorem 1.8. Suppose that K satisfies assumptions (1.15) and (1.16). Let E be an open sub-
set of Rd and suppose that it is a strict minimizer for PerK in the cube2 QR, with R > 1, that
is PerK(E; Ω) < +∞ and

PerK(E; Ω) < PerK(F ; Ω) for any F ⊆ Rd such that F \ Ω = E \ Ω and F 6= E.

2Throughout the whole paper, QR denotes the closed cube of Rd having sides of length 2R and centered at the origin,
i.e.

QR :=
{

x ∈ Rd : |x|∞ 6 R
}

.

We use the same notation for cubes in Zd. That is, for ` ∈ N ∪ {0}, we write

Q` :=
{

i ∈ Zd : |i|∞ 6 `
}

=
{
− `, . . . ,−1, 0, 1, . . . , `

}d
.

Cubes not centered at the origin are indicated with QR(x) := x + QR and Q`(q) := q + Q`, with x ∈ Rd and q ∈ Zd.
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Let {εn}n∈N ⊂ (0, 1) be an infinitesimal sequence.

Then, for any n ∈ N, there exists a minimizer u(n) forH(εn) in the3 cubeQdR/εne, such that, denoting

by ū(n) = ū
(n)
εn its extension to Rd given by (1.24), it holds

ū(nk) −→ χE − χRd\E a.e. in Rd, as k → +∞,
for some diverging sequence {nk}k∈N of natural numbers.

We remark that, in view of Theorems 1.6 and 1.8, there is a perfect correspondence between the
ground states of the Ising model and the minimizers of the nonlocal perimeter, provided that the latter
ones are unique.

To make this correspondence even more explicit, we may rephrase it through the language of Γ-
convergence. We consider the topological space

X :=
{
v ∈ L∞(Rd) : ‖v‖L∞(Rd) 6 1

}
,

as endowed with the topology given by the convergence in L1
loc(Rd).

For any ε > 0, we also introduce the subspace

(1.26) Xε :=
{
v ∈ X : v is constant on the cube Q̊ε/2(εi), for any i ∈ Zd

}
.

Also, given any bounded open set Ω ⊂ Rd, we consider the functionals GK(·; Ω) : X → [0,+∞]
defined by

(1.27) GK(v; Ω) :=

{
KK(v; Ω) if v|Ω = χE − χRd\E, for some measurable E ⊆ Ω,

+∞ otherwise,

and G (ε)
K (·; Ω) : Xε → [0,+∞] obtained by setting G (ε)

K (·; Ω) := GK(·; Ω)|Xε .
Observe that, in view of identity (1.21), when v is globally the (modified) characteristic function of a
set E, then GK(v; Ω) boils down to the K-perimeter of E inside Ω.

Notice that the map defined in (1.24) is actually a homeomorphism of the space of configurations
(endowed with the standard pointwise convergence topology) onto the space Xε. Moreover, given
any ` ∈ N, we observe that any configuration u, together with its extension ūε ∈ Xε (as given
by (1.24)), satisfies the Hamiltonian-energy relation

(1.28) εd−sH
(ε)
Q`

(u) = KK(ūε, QR),

where R = (`+ 1/2)ε. This identity completes the picture on the equivalence between the space of
configurations with the associated Hamiltonian H(ε) and Xε with the energy KK .

Thanks to this complete identification, it is legitimate to see the next result as an appropriate Γ-
convergence formulation of the asymptotic relation intervening between the ε-Ising model (1.22)-(1.23)
and the K-perimeter (1.19).

Theorem 1.9. Suppose that K satisfies assumptions (1.15) and (1.16). Let Ω ⊂ Rd be a bounded
open set with Lipschitz boundary.4

Then, the family of functionals G (ε)
K (·,Ω) Γ-converges to GK(·,Ω), as ε → 0+. More precisely, we

have

3As usual, we will denote by dxe the smallest integer greater than or equal to x, and by bxc the largest integer less
than or equal to x.

4Actually, the Lipschitz regularity assumption on the boundary of Ω can be omitted for the deduction of the Γ-lim inf
inequality.
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• (Γ-lim inf inequality): for any uε ∈ Xε converging to u ∈ X , it holds

lim inf
ε→0+

G (ε)
K (uε; Ω) > GK(u; Ω);

• (Γ-lim sup inequality): for any u ∈ X , there exists uε ∈ Xε converging to u and such that

lim sup
ε→0+

G (ε)
K (uε; Ω) 6 GK(u; Ω);

• (Compactness): given any infinitesimal sequence {εn}n∈N ⊂ (0, 1), if un ∈ Xεn satisfies

sup
n∈N

G (εn)
K (un; Ω) 6 C,

for some C > 0, then there exist a measurable set E ⊆ Ω and a diverging sequence {nk}k∈N of
natural numbers such that unk converges to χE − χRd\E a.e. in Ω, as k → +∞.

The rest of the paper follows this organization: in Section 2 and 3 we give the proof of Theorem 1.4, by
considering as a special case the one of power-like interactions with no magnetic term (which leads
to additional, scale invariant, results).

Then, in Section 4, we present some ancillary results on nonlocal perimeter functionals. The link
between Ising models and nonlocal minimal surfaces is discussed in Sections 5 and 7, where we give
the proofs of Theorems 1.6 and 1.8, respectively. In between, in Section 6, we also prove Theorem 1.7,
thus obtaining the existence of planelike nonlocal minimal surfaces as a byproduct of our analysis of
the Ising model.

Finally, Section 8 is devoted to the proof of the Γ-convergence result given by Theorem 1.9.

2. PROOF OF THEOREM 1.4 IN THE GENERAL SETTING

In this section we include the proof of Theorem 1.4 in the general case of J and h satisfying (1.1), (1.2),
(1.3), (1.4), (1.8) and (1.5) (1.6), (1.9), respectively. The more specific scenario given by hypothe-
sis (1.7) and h = 0, described in the latter claim of the statement of Theorem 1.4, will be considered
in the next Section 3.

As the construction is rather involved, we split the argument into eight subsections.

First, we consider the case of a rational ω ∈ Qd \{0}. For any such direction, we build a ground state
forH whose interface satisfies the inclusion (1.14), for someM > 0. As will be evident by following the
steps of the construction, the constantM is indeed independent of the chosen direction ω. As a result,
an approximation argument displayed in the conclusive Subsection 2.8 will show that Theorem 1.4 can
be extended to general directions ω ∈ Rd \ {0}.
Although the existence of ground states will be eventually carried out in the generality announced in
the statement of Theorem 1.4, we need to initially impose an additional condition on the interaction
coefficients J . Throughout Subsections 2.1-2.6, we always assume that J satisfies

(2.1) Jij = 0 for any i, j ∈ Zd such that |i− j| > R,

for some R > 0. Assumption (2.1) allows us to avoid some technical complications related to the
presence of tails in the interaction term of the Hamiltonian H . The estimates performed in the next
subsections under hypothesis (2.1) will however turn out to be independent of the range of positiv-
ity R > 0. Therefore, in Subsection 2.7 we will be able to remove such assumption with the help of an
easy limiting argument and thus recover the validity of Theorem 1.4 in its full generality.
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2.1. Constrained minimizers. Let ω ∈ Qd \ {0} and m ∈ N. We consider the Z-modules

Lω :=
{
i ∈ τZd : ω · i = 0

}
,

and
Lm,ω := mLω.

We indicate with Fm,ω any fundamental domain of the quotient space Zd/Lm,ω. Given any two real
numbers A < B, we divide Fm,ω into the three subregions

FA,Bm,ω :=

{
i ∈ Fm,ω :

ω

|ω|
· i ∈ [A,B]

}
,

FA,−m,ω :=

{
i ∈ Fm,ω :

ω

|ω|
· i < A

}
and FB,+m,ω :=

{
i ∈ Fm,ω :

ω

|ω|
· i > B

}
.

A configuration u is said to be (m,ω)-periodic if

(2.2) ui+k = ui for any i ∈ Zd and any k ∈ Lm,ω.

We denote by Pm,ω the set of all (m,ω)-periodic configurations. Furthermore, we consider the
class A A,B

m,ω of admissible configurations, defined by

A A,B
m,ω :=

{
u ∈Pm,ω : ui = 1 for any i ∈ FA,−m,ω and ui = −1 for any i ∈ FB,+m,ω

}
.

Recalling the notation in (1.12) and (1.13), we introduce the auxiliary functional GA,B
m,ω , defined on any

configuration u by

(2.3)

GA,B
m,ω(u) := IFm,ω ,Zd(u) +BFA,Bm,ω

(u)

=
∑

i∈Fm,ω , j∈Zd
Jij(1− uiuj) +

∑
i∈FA,Bm,ω

hiui.

Observe that the interaction term of this functional differs from that of HFm,ω for the fact that in HFm,ω
the interactions between the regions Fm,ω and Zd \ Fm,ω are counted twice. Also note that GA,B

m,ω is
well-defined on any configuration, as it involves a sum of only a finite number of terms, thanks to (2.1).

Moreover, we denote by M A,B
m,ω the subset of A A,B

m,ω composed by the minimizers of GA,B
m,ω . That is,

M A,B
m,ω :=

{
u ∈ A A,B

m,ω : GA,B
m,ω(u) 6 GA,B

m,ω(v) for any v ∈ A A,B
m,ω

}
.

Observe that M A,B
m,ω is non-empty, since A A,B

m,ω is made up of a finite number of configurations.

Now we introduce a couple of operations on the space of configurations. Given two configurations u, v
we define their minimum min{u, v} and maximum max{u, v} by setting

(min{u, v})i := min{ui, vi},
(max{u, v})i := max{ui, vi},

(2.4)

for any i ∈ Zd. Analogously, one defines the minimum and maximum of a finite number of configura-
tions.

We present the following simple result which shows that the interaction energy (1.12) always de-
creases when considering minima and maxima.

Lemma 2.1. Given any two subsets Γ,Ω ⊆ Zd and any two configurations u, v, it holds

(2.5) IΓ,Ω(min{u, v}) + IΓ,Ω(max{u, v}) 6 IΓ,Ω(u) + IΓ,Ω(v).
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Proof. Simply write m and M for min{u, v} and max{u, v}. We suppose that the right-hand side
of (2.5) is finite, since otherwise the inequality is trivially satisfied.

Take i ∈ Γ and j ∈ Ω. Then, one of the following four situations necessarily occurs:

(i) ui 6 vi and uj 6 vj ;
(ii) ui < vi and uj > vj ;
(iii) ui > vi and uj < vj ;
(iv) ui > vi and uj > vj .

If either (i) or (iv) is true, then u and v are equally ordered at both sites i and j. Hence, the identity

(1−mimj) + (1−MiMj) = (1− uiuj) + (1− vivj),
easily follows. Thus, we only need to inspect what happens when either (ii) or (iii) is verified. By
symmetry, we may in fact restrict our attention to case (ii) only. In this case, we have mi = ui =
−1, Mi = vi = 1, Mj = uj = 1 and mj = vj = −1. Therefore,

(1−mimj) + (1−MiMj) = 0 < 2 + 2 = (1− uiuj) + (1− vivj).
Consequently, both series on the left-hand side of (2.5) converge and the inequality follows. �

We conclude the subsection by investigating the relationship existing between the minimizers of the
functionals GA,B

m,ω and H . The following proposition shows that the periodic minimizers of GA,B
m,ω just

described are indeed minimizers of H with respect to perturbations supported inside FA,Bm,ω .

Proposition 2.2. Let u ∈M A,B
m,ω . Then, u is a minimizer for H in FA,Bm,ω .

Proof. Let v be a configuration that coincides with u outside FA,Bm,ω . We claim that

(2.6) H̃FA,Bm,ω
(u) 6 H̃FA,Bm,ω

(v),

where, for any configuration w, we set5 (recall notations (1.12) and (1.13))

(2.7) H̃FA,Bm,ω
(w) := IFm,ω ,Fm,ω(w) + 2IFm,ω ,Zd\Fm,ω(w) +BFA,Bm,ω

(w).

To prove (2.6), we write v = u+ϕ, withϕ : Zd → {−2, 0, 2} such thatϕi = 0 for any i ∈ Zd\FA,Bm,ω .
We first restrict ourselves to the case in which ϕ has a sign, i.e.

(2.8) either ϕi > 0 for any i ∈ Zd, or ϕi 6 0 for any i ∈ Zd.

Define ṽ and ϕ̃ as the (m,ω)-periodic extensions of v|Fm,ω and ϕ|Fm,ω , respectively. That is,

(2.9) ṽi+k := vi and ϕ̃i+k := ϕi for any i ∈ Fm,ω and k ∈ Lm,ω.

Notice that ṽ ∈ A A,B
m,ω .

We now compare the functionals GA,B
m,ω and H̃FA,Bm,ω

, when evaluated at u, v and u, ṽ, respectively. We
claim that

(2.10) H̃FA,Bm,ω
(u)− H̃FA,Bm,ω

(v) 6 GA,B
m,ω(u)−GA,B

m,ω(ṽ).

To check the validity of (2.10), we begin by evaluating the contributions coming from the magnetic field.
Recalling the definitions of v and ṽ, we have

(2.11) BFA,Bm,ω
(u)−BFA,Bm,ω

(v) = BFA,Bm,ω
(u)−BFA,Bm,ω

(ṽ).

5Note that H̃FA,B
m,ω

differs from HFm,ω only with respect to the region over which the magnetic term B is extended.

We take into account this slight modification, since BFm,ω might not be well-defined even under assumption (1.6), as the
set Fm,ω is not finite.
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We now address the interaction terms. Let (i, j) ∈ Z2d \ (Zd \ Fm,ω)2. If i ∈ Fm,ω, then ṽi = vi.
Hence,

(2.12) IFm,ω ,Fm,ω(u)− IFm,ω ,Fm,ω(v) = IFm,ω ,Fm,ω(u)− IFm,ω ,Fm,ω(ṽ).

On the other hand, if i ∈ Fm,ω and j ∈ Zd \ Fm,ω, then we can write j = j′ + k, with j′ ∈ Fm,ω
and k ∈ Lm,ω \ {0} uniquely determined. Notice that i − k 6∈ Fm,ω, therefore ui = ui−k = vi−k,
due to (2.2). Therefore, using again (2.2) and (2.9),

1− vivj = 1− ṽiṽj + vi(ṽj − uj)
= (1− ṽiṽj) + viϕj′

= (1− ṽiṽj) + (1− uiuj′)− (1− uivj′) + ϕiϕj′

= (1− ṽiṽj) + (1− uiuj)− (1− vi−kvj′) + ϕiϕj′ .

Then, by taking advantage of (1.8) and (2.8), we have

IFm,ω ,Zd\Fm,ω(v) = IFm,ω ,Zd\Fm,ω(ṽ) + IFm,ω ,Zd\Fm,ω(u)

−
∑

k∈Lm,ω\{0}

∑
i,j′∈Fm,ω

[
J(i−k)j′(1− vi−kvj′)− Ji(j′+k)ϕiϕj′

]
> IFm,ω ,Zd\Fm,ω(ṽ) + IFm,ω ,Zd\Fm,ω(u)− IFm,ω ,Zd\Fm,ω(v),

that may be in turn rewritten as

2
[
IFm,ω ,Zd\Fm,ω(u)− IFm,ω ,Zd\Fm,ω(v)

]
6 IFm,ω ,Zd\Fm,ω(u)− IFm,ω ,Zd\Fm,ω(ṽ).

By this, (2.12), (2.11) and the definition (2.7) of H̃A,B
m,ω , claim (2.10) follows immediately.

As a consequence of (2.10), since u ∈M A,B
m,ω and ṽ ∈ A A,B

m,ω , we deduce inequality (2.6) under the
sign assumption (2.8) on ϕ.

In order to finish the proof of the proposition, we now only need to show that (2.8) is in fact unnecessary
for the validity of (2.6). To do this, we consider a general v = u + ϕ and define ϕ+ := max{ϕ, 0}
and ϕ− := min{ϕ, 0}. Both ϕ+ and ϕ− satisfy (2.8) and therefore

2H̃FA,Bm,ω
(u) 6 H̃FA,Bm,ω

(u+ ϕ+) + H̃FA,Bm,ω
(u+ ϕ−).

But then, by Lemma 2.1, we have

H̃FA,Bm,ω
(u+ ϕ+) + H̃FA,Bm,ω

(u+ ϕ−) = H̃FA,Bm,ω
(max{u, v}) + H̃FA,Bm,ω

(min{u, v})

6 H̃FA,Bm,ω
(u) + H̃FA,Bm,ω

(v),

and (2.6) follows.

Thanks to (2.6), by arguing as in Remark 1.2 one can conclude the proof of Proposition 2.2. �

2.2. The minimal minimizer. We now select a specific element of M A,B
m,ω that will be proved to have

further minimizing properties in the forthcoming subsections. To do this, we recall the definitions given
in (2.4), and we introduce the main ingredient of this subsection and discuss its minimizing properties.
We define the minimal minimizer uA,Bm,ω as the minimum within the (finite) class M A,B

m,ω . That is, we set(
uA,Bm,ω

)
i

:= min
{
ui : u ∈M A,B

m,ω

}
,

for any i ∈ Zd. Clearly, uA,Bm,ω belongs to the class A A,B
m,ω of admissible configurations. To check

that uA,Bm,ω is actually a minimizer, we first need an auxiliary lemma.

More precisely, by applying Lemma 2.1 to minimizers ofGA,B
m,ω , we see that the operations of minimum

and maximum are closed in the set M A,B
m,ω . A thorough proof of this fact is contained in the next result.
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Lemma 2.3. Let u, v ∈M A,B
m,ω . Then, min{u, v},max{u, v} ∈M A,B

m,ω .

Proof. Recalling (2.3), by Lemma 2.1, one has

GA,B
m,ω(min{u, v}) +GA,B

m,ω(max{u, v}) 6 GA,B
m,ω(u) +GA,B

m,ω(v).

Moreover, since min{u, v},max{u, v} ∈ A A,B
m,ω , we easily deduce that

GA,B
m,ω(min{u, v}), GA,B

m,ω(max{u, v}) > GA,B
m,ω(u) = GA,B

m,ω(v),

and the thesis follows. �

By iterating Lemma 2.3, we finally obtain the minimality of the minimal minimizer uA,Bm,ω .

Corollary 2.4. uA,Bm,ω ∈M A,B
m,ω .

2.3. The doubling property. The minimal minimizer introduced in the previous subsection enjoys
important geometrical properties. The first of such properties is often referred to in the literature as no-
symmetry-breaking or doubling property. It asserts that the minimal minimizers uA,Bm,ω corresponding
to different multiplicities m ∈ N do in fact all coincide.

In order to prove this result, the following notation will be helpful. Given any k ∈ Zd, we define the
translation Tku of a configuration u along the vector k as

(2.13) (Tku)i := ui−k,

for any i ∈ Zd.

Also, from now on, we drop reference to the multiplicitym when we deal with objects for whichm = 1.
That is, we write e.g. Fω, GA,B

ω ,M A,B
ω , uA,Bω instead of F1,ω, G

A,B
1,ω ,M

A,B
1,ω , uA,B1,ω .

The doubling property for the minimal minimizer is proved in the following result.

Proposition 2.5. uA,Bm,ω = uA,Bω , for any m ∈ N.

Proof. Let m > 2. We define the configuration

v := min
{
TkuA,Bm,ω : k ∈ Lω

}
.

Clearly, v ∈ A A,B
ω ⊂ A A,B

m,ω . Furthermore, as TkuA,Bm,ω ∈ M A,B
m,ω for any k ∈ Lω, by applying

Lemma 2.3 we also obtain6 that v ∈M A,B
m,ω . Since uA,Bω ∈ A A,B

m,ω , recalling the definition (2.3) of the
functional GA,B

m,ω , we compute

(2.14) GA,B
ω (v) =

1

md−1
GA,B
m,ω(v) 6

1

md−1
GA,B
m,ω(uA,Bω ) = GA,B

ω (uA,Bω ).

Accordingly, by Corollary 2.4, we deduce that

(2.15) v ∈M A,B
ω

and hence uA,Bω 6 v, by definition of minimal minimizer. In particular, we conclude that

(2.16) uA,Bω 6 uA,Bm,ω.

To check the validity of the converse inequality it suffices to notice that, in light of (2.15), the first and
the last terms of (2.14) are equal. Consequently, the middle inequality in (2.14) is indeed an identity
and thus uA,Bω ∈M A,B

m,ω . Therefore, uA,Bm,ω 6 uA,Bω . This and (2.16) imply the desired result. �

6In this regard, observe that the family of configurations appearing in the definition of v is actually finite, thanks to the
periodicity of uA,B

m,ω .
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As a corollary of the doubling property and Proposition 2.2, we immediately deduce that the minimal
minimizer is a local minimizer in the whole strip

(2.17) SA,Bω :=
{
i ∈ Zd : ω · i ∈ [A,B]

}
.

Corollary 2.6. The minimal minimizer uA,Bω is a minimizer for H in every finite subset Γ of SA,Bω .

Proof. Given any finite Γ ⊂ SA,Bω , we may find a large enoughm ∈ N and a fundamental regionFm,ω
for which Γ ⊆ FA,Bm,ω . By Propositions 2.2 and 2.5, uA,Bω = uA,Bm,ω is a minimizer for H in FA,Bm,ω and
the result follows by recalling Remark 1.2. �

2.4. The Birkhoff property. Here, we concentrate on another property of the minimal minimizer (that
is also related to a similar feature in dynamical systems): the Birkhoff property. This trait essentially
refers to a kind of discrete monotonicity of uA,Bω .

Recalling the notation introduced in the previous subsection (in particular (2.13)), we may state the
validity of the Birkhoff property for the minimal minimizer as follows.

Proposition 2.7. Let k ∈ τZd. Then,

(2.18)
TkuA,Bω 6 uA,Bω if ω · k 6 0,

TkuA,Bω > uA,Bω if ω · k > 0.

Proof. We prove only the first inequality in (2.18), the second being completely analogous.

Let k ∈ τZd be such that ω · k 6 0. Observe that TkuA,Bω ∈ A A+ω·k,B+ω·k
ω and that, actually,

(2.19) TkuA,Bω = uA+ω·k,B+ω·k
ω .

Writem := min{uA,Bω , TkuA,Bω } andM := max{uA,Bω , TkuA,Bω }. We have thatm ∈ A A+ω·k,B+ω·k
ω

and M ∈ A A,B
ω . By arguing as in the proof of Lemma 2.3, we easily see that

(2.20) GA,B
ω (m) 6 GA,B

ω (TkuA,Bω ).

We now claim that

(2.21) mi =
(
TkuA,Bω

)
i

for any i ∈ FA,Bω ∆FA+ω·k,B+ω·k
ω .

Indeed
(
TkuA,Bω

)
i

= −1 for any i ∈ FB+ω·k,+
ω ⊃ FA,Bω \ FA+ω·k,B+ω·k

ω and, on the other
hand, uA,Bω = 1 for any i ∈ FA,−ω ⊃ FA+ω·k,B+ω·k

ω \ FA,Bω , which implies (2.21).

Recalling definitions (2.3) and (1.13) and using formulas (2.20) and (2.21), we conclude that

GA+ω·k,B+ω·k
ω (m)−GA+ω·k,B+ω·k

ω (TkuA,Bω )

= GA,B
ω (m)−GA,B

ω (TkuA,Bω )

+BFA+ω·k,B+ω·k
ω \FA,Bω

(m− TkuA,Bω )−BFA,Bω \FA+ω·k,B+ω·k
ω

(m− TkuA,Bω )

6 0.

Therefore, by (2.19), we have that m ∈ M A+ω·k,B+ω·k
ω and TkuA,Bω 6 m, as TkuA,Bω is a minimal

minimizer. The first inequality in (2.18) then follows. �
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2.5. An energy estimate. We collect in this subsection a rather general proposition, that quantifies
the energy of the minimizers of H inside large cubes. We stress that no periodicity of the coefficients
is necessary for the validity of the results presented here. That is, (1.8) and (1.9) are not required to
hold.

We begin by recalling the terminology adopted in footnote 2 at page 7 for cubes in Zd. Given ` ∈
N ∪ {0}, we denote by Q` the cube having sides made up of 2` + 1 sites and center located at the
origin, i.e.

(2.22) Q` := {−`, . . . ,−1, 0, 1, . . . , `}d.
A general cube centered at q ∈ Zd will be indicated with Q`(q) := q + Q`. We also write S` for
the boundary of Q`, that is

S` := Q` \Q`−1 if ` > 1,

S0 := Q0 = {0}.
(2.23)

Again, S`(q) := q + S`.

In order to obtain the energy estimate, we plan to compare the Hamiltonian HQ` of a minimizer in the
cube Q` with that of a suitable competitor. Such auxiliary function will be modeled on the configura-
tion ψ(`) defined by (

ψ(`)
)
i

:=

{
−1 if i ∈ Q`,

1 if i ∈ Zd \Q`.

Recalling (1.10), the following lemma provides an upper bound for the energy of ψ(`).

Lemma 2.8. There exists a constant C > 1, depending only on d, µ and τ , for which

HQ`(ψ
(`)) 6 C`d−1

(
1 +

`+1∑
m=1

σ(m)

)
.

Proof. First, observe that Q` may be written as the disjoint union of a possibly empty family G of fun-
damental domains for the quotient Zd/τZd, leaving out at mostN sites {i(n)}Nn=1. It is not hard to see
that we can take N 6 c1τ`

d−1, for some dimensional constant c1 > 0. Accordingly, recalling (1.13)
and using (1.6) and (1.5), we have

(2.24) BQ`(ψ
(`)) = −

∑
F∈G

∑
i∈F

hi −
N∑
n=1

hi(n) 6 0 + µN 6 c1µτ`
d−1.

We now estimate the interaction term IQ` . Recalling definition (1.10), we compute

(2.25)

IQ`(ψ
(`)) = 4

∑
i∈Q`,j∈Zd\Q`

Jij = 4
∑̀
m=0

∑
i∈Sm

∑
|j|∞>`+1

Jij 6 4
∑̀
m=0

∑
i∈Sm

∑
|j−i|∞>`+1−m

Jij

6 8d
∑̀
m=0

(2m+ 1)d−1σ(`+ 1−m) 6 c2`
d−1

`+1∑
m=1

σ(m),

for some dimensional constant c2 > 0. The combination of (2.24) and (2.25) leads to the thesis. �

Now we show that each minimizer satisfies the same energy growth.

Proposition 2.9. Let u be a minimizer for H in Q`(q), for some q ∈ Zd and ` ∈ N. Then,

(2.26) HQ`(q)(u) 6 C̄`d−1

(
1 +

∑̀
m=1

σ(m)

)
,
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for some constant C̄ > 1 depending only on d, µ and τ .

Proof. Without loss of generality, we may assume the center q to be the origin. Let ψ(`) be the con-
figuration considered in Lemma 2.8 and define v := min{u, ψ(`)}, w := max{u, ψ(`)}. Observe
that v and u agree outside of Q`. Consequently, the minimality of u implies that

(2.27) HQ`(u) 6 HQ`(v).

Now we compare the energies of u and w. As u coincides with w in Q`, we have

(2.28) IQ`, Q`(u) = IQ`, Q`(w) and BQ`(u) = BQ`(w).

On the other hand, by taking advantage of the computation (2.25),

IQ`,Zd\Q`(u)− IQ`,Zd\Q`(w) 6 2
∑

i∈Q`,j∈Zd\Q`

Jij 6
c1

2
`d−1

`+1∑
m=1

σ(m),

for some c1 > 0. By this and (2.28), we conclude that

(2.29) HQ`(u) 6 HQ`(w) + c1`
d−1

`+1∑
m=1

σ(m).

On the other hand, using Lemma 2.1 and (2.27), we see that

HQ`(v) +HQ`(w) 6 HQ`(u) +HQ`(ψ
(`)) 6 HQ`(v) +HQ`(ψ

(`)),

which gives that HQ`(w) 6 HQ`(ψ
(`)). This and Lemma 2.8 imply that

HQ`(w) 6 HQ`(ψ
(`)) 6 c2`

d−1

(
1 +

`+1∑
m=1

σ(m)

)
,

for some c2 > 0. This and (2.29) imply estimate (2.26). �

Remark 2.10. By inspecting the proofs of Lemma 2.8 and Proposition 2.9, it is clear that when the
magnetic field h vanishes inQ`(q), the constant C̄ appearing in (2.26) may be chosen to depend only
on the dimension d.

2.6. Unconstrained minimizers and ground states. In this last subsection, we show that the min-
imal minimizer is actually a ground state, according to Definition 1.3, if the oscillation of its transition
is chosen sufficiently large. This will finish the proof of Theorem 1.4 for the case of rational directions
and truncated interactions.

From now on, we mostly restrict ourselves to the minimal minimizers that display a transition bounded
in the strip S0,M

ω , with M > 0 (recall (2.17)). For this reason, we slightly simplify our notation and
denote with FMω ,A M

ω ,SMω , uMω , . . . the quantities F0,M
ω ,A 0,M

ω ,S0,M
ω , u0,M

ω , . . .

Our main goal is to show that the minimal minimizer uMω becomes unconstrained, providedM is large
enough. To do this, we need a few auxiliary results.

First, we present a technical lemma related to the quantity σ introduced in (1.10).

Lemma 2.11. Set

(2.30) Σ(R) :=
1

R

R∑
m=1

σ(m),

for any R ∈ N. Then, it holds
lim

R→+∞
Σ(R) = 0.
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Proof. Let ε > 0 be any small number. In view of (1.4) and (1.8), we know that

lim
R→+∞

σ(R) = 0.

Hence, we may select R0 ∈ N such that, for any m > R0, it holds σ(m) 6 ε/2. Using again (1.4),
we see that σ(m) 6 Λ, for any m. Hence, taking R > 2ΛR0/ε, we have

Σ(R) =
1

R

R0∑
m=1

σ(m) +
1

R

R∑
m=R0+1

σ(m) 6
R0

R
Λ +

R−R0

R

ε

2
6
ε

2
+
ε

2
= ε,

and the conclusion follows. �

Then, we have a rigidity result for configurations that satisfy the Birkhoff property and display fat
plateaux.

We remark that in the remainder of the subsection we slightly modify the notation fixed in (2.22) and
denote with C` any cube of Zd with sides composed by ` sites, i.e.

C` = C`(q) := q + {0, 1, . . . , `− 1}d.

Note that now q denotes the lower vertex, instead of the center. The reference to q will be however
often neglected.

Lemma 2.12. Let u be a configuration satisfying the Birkhoff property with respect to ω, i.e. for which
inequalities (2.18) are fulfilled. Assume that there exists a cube Cτ (q) such that

ui = −1 for any i ∈ Cτ (q).

Then,

ui = −1 for any i ∈ Zd such that
ω

|ω|
· i > ω

|ω|
· q +

√
dτ.

Proof. See [CdlL05, Proposition 3.5]. �

With the aid of these lemmata and the energy estimate obtained in Subsection 2.5, we are now able
to prove the key result of this subsection.

Proposition 2.13. There exist two real numbers µ0 > 0, depending only on d, τ and λ, andM0 > 0,
that may also depend on Λ and the function σ, for which(

uMω
)
i

= −1 for any i ∈ Zd such that
ω

|ω|
· i >M −

√
dτ,

provided µ 6 µ0 and M >M0.

Proof. For shortness, we write u = uMω . In view of Lemma 2.12 and Proposition 2.7, it suffices to
show that

(2.31) ui = −1 for any i ∈ Cτ (q), with q ∈ Zd satisfying
ω

|ω|
· q 6M − 2

√
dτ.

In order to check the validity of claim (2.31), we first prove a weaker fact. Take

(2.32) µ 6 µ0 := λτ−d,

where λ is given in (1.3). Consider the strip

ŜMω := S
M
8
, 7M

8
ω =

{
i ∈ Zd :

ω

|ω|
· i ∈

[
M

8
,
7M

8

]}
⊂ SMω ,
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and a cube CNτ ⊂ ŜMω of sides Nτ , with N ∈ N. It is not hard to see that N can be taken in such a
way that

M

2
6 Nτ 6

3M

4
.

Divide the cube CNτ in a partition {C(n)
τ }N

d

n=1 of Nd non-overlapping, smaller cubes of sides τ . We
claim that

(2.33)
there exists an index n̄ ∈

{
1, . . . , Nd

}
for which

either ui = −1 for any i ∈ C(n̄)
τ or ui = 1 for any i ∈ C(n̄)

τ .

To prove (2.33) we argue by contradiction and suppose that, for any n = 1, . . . , Nd, we can find two
sites i(n), j(n) ∈ C(n)

τ at which ui(n) = −1 and uj(n) = 1. Observe that we can take i(n) and j(n) to
be adjacent, i.e. such that |i(n) − j(n)| = 1. Using (1.3), (1.5) and (2.32), we compute

HCNτ (u) > ICNτ , CNτ (u) +B CNτ (u) >
Nd∑
n=1

∑
i,j∈C(n)

τ

Jij(1− uiuj) +
∑
i∈CNτ

hiui

>
Nd∑
n=1

Ji(n)j(n)

(
1− ui(n)uj(n)

)
−
∑
i∈CNτ

|hi| > 2λNd − µ (Nτ)d > λNd.

(2.34)

On the other hand, the energy estimate established in Proposition 2.9 (recall that u is a minimizer
for H in CNτ , thanks to Corollary 2.6) gives that

HCNτ (u) 6 c1

(
Nτ − 1

2

)d−1 bNτ−1
2 c+1∑
m=1

σ(m) 6 c2N
d−1τ d−1

Nτ∑
m=1

σ(m),

for some constants c1, c2 > 0. By comparing this with (2.34) and recalling definition (2.30), we find
that

Σ(Nτ) >
λ

c2τ d
,

which clearly contradicts Lemma 2.11, if N (and hence M ) is chosen sufficiently large. Therefore,
claim (2.33) is true, provided we take M > M0, with M0 only depending on d, τ , λ, Λ and the
function σ.

Denote by q̄ the lower vertex of the cube C(n̄)
τ , so that C(n̄)

τ = Cτ (q̄). As Cτ (q̄) ⊂ CNτ ⊂ ŜMω , we
have that ω · q̄ 6 7M |ω|/8 6 (M − 2

√
dτ)|ω|, by possibly enlarging M0. Hence, (2.31) follows

from (2.33), once we rule out the possibility that

(2.35) ui = 1 for any i ∈ Cτ (q̄).

Assume by contradiction that (2.35) holds true. By applying Lemma 2.12 (to −u instead of u, which
has the Birkhoff property with respect to −ω), we deduce that

ui = 1 for any i ∈ Zd such that
ω

|ω|
· i 6 ω

|ω|
· q̄ −

√
dτ.

Again, by possibly taking a larger M0, we see that the above fact is valid in particular for any site i
satisfying ω · i < τ |ω|. Supposing with no loss of generality that ω1 > 0 (as one can relabel the axes
and invert their orientation) and setting k = (−τ, 0, . . . , 0) ∈ τZd, we have that ω ·k < 0 and, for the
observation made just before, Tku ∈ A M

ω . On the one hand, Proposition 2.7 implies that Tku 6 u.
On the other hand, using (1.6) one can check that GM

ω (Tku) = GM
ω (u). Consequently, Tku ∈MM

ω

and Tku > u, by the fact that u is the minimal minimizer. By putting together these two inequalities,
we end up with the identity Tku = u, which clearly cannot occur.
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As a result, (2.35) is false and claim (2.31) plainly follows. The proof of the proposition is therefore
complete. �

Corollary 2.14. Let µ0 and M0 be as in Proposition 2.13. If µ 6 µ0, then uM0
ω = uM0+a

ω for any a ∈
τN.

Proof. Consider any M = M0 + nτ , with n ∈ N∪ {0}. The claim of the corollary is then equivalent
to show that

(2.36) uMω = uM+τ
ω .

To see that (2.36) holds true, first notice that uMω ∈ A M+τ
ω . Also,

(2.37) uM+τ
ω ∈ A M

ω ,

as one can easily check by applying Proposition 2.13 to uM+τ
ω . Hence,

(2.38) GM+τ
ω (uM+τ

ω ) 6 GM+τ
ω (uMω ) and GM

ω (uMω ) 6 GM
ω (uM+τ

ω ).

But then, for any w ∈ A M
ω it holds

(2.39) GM+τ
ω (w)−GM

ω (w) = BFM+τ
ω \FMω

(w) = −
∑

i∈FM+τ
ω \FMω

hi = 0,

where the last identity is true by virtue of hypothesis (1.6), since FM+τ
ω \ FMω may be written as a

disjoint union of fundamental domains of Zd/τZd.

In particular, (2.37) and (2.39) give that

GM+τ
ω (uM+τ

ω ) = GM
ω (uM+τ

ω ).

Using this and the two inequalities in (2.38), we obtain that

GM
ω (uM+τ

ω ) = GM+τ
ω (uM+τ

ω ) 6 GM+τ
ω (uMω ) = GM

ω (uMω ) 6 GM
ω (uM+τ

ω ).

Hence, uMω and uM+τ
ω belong to MM

ω ∩MM+τ
ω and (2.36) follows by the fact that they are both

minimal minimizers. �

When used in combination with Corollary 2.6, the previous result ensures in particular that the en-
ergy H of uM0

ω is lower than that of any perturbation involving a finite number of sites that lie over
the module {ω · i = 0}. For this reason, the minimal minimizer uM0

ω does not feel the upper con-
straint {ω · i = M0|ω|} and extends its minimizing properties well beyond it.

In the next result, we show that the same happens for the lower constraint and that the minimal
minimizer is therefore fully unconstrained.

Proposition 2.15. Let µ0 and M0 be as in Proposition 2.13. If µ 6 µ0, then uM0
ω ∈ M−a,M0+a

m,ω for
any m ∈ N and any a ∈ τN.

Proof. First, we note that, by arguing as in the proof of Corollary 2.14, one may check that, given any
four real numbers A < B and A′ < B′ such that A− A′, B −B′ ∈ τZ, it holds

GA,B
m,ω(w) = GA′,B′

m,ω (w),

for any w ∈ A A,B
m,ω ∩A A′,B′

m,ω .

Take now any configuration v ∈ A −a,M0+a
m,ω and let k ∈ τZd be a vector satisfying ω · k > a|ω|

and ω · k ∈ τ |ω|N. We have that

Tkv ∈ A −a+ω·k/|ω|,M0+a+ω·k/|ω|
m,ω ⊆ A M0+b

m,ω
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for some b ∈ τN with b > a+ω · k/|ω|. By Corollary 2.14 and Proposition 2.5, we know that uM0
ω ∈

MM0+b
m,ω and thus GM0+b

m,ω (uM0
ω ) 6 GM0+b

m,ω (Tkv). But

GM0+b
m,ω (Tkv) = G

− ω
|ω| ·k,M0+b− ω

|ω| ·k
m,ω (v) = G−a,M0+a

m,ω (v),

and

GM0+b
m,ω (uM0

ω ) = GM0
m,ω(uM0

ω ) = G−a,M0+a
m,ω (uM0

ω ),

thanks to the opening remark. Consequently, G−a,M0+a
m,ω (uM0

ω ) 6 G−a,M0+a
m,ω (v) and the proposition

is proved. �

A simple consequence of this fact is that the minimal minimizer is indeed a ground state. A rigorous
proof of this fact is contained in the following

Corollary 2.16. Let µ0 andM0 be as in Proposition 2.13. If µ 6 µ0, then uM0
ω is a ground state forH .

Proof. The proof is analogous to that of Corollary 2.6.

Given a finite set Γ ⊂ Zd, we take m ∈ N and a ∈ τN sufficiently large to have Γ ⊆ F−a,M0+a
m,ω .

By Proposition 2.15, the minimal minimizer uM0
ω belongs to the class M−a,M0+a

m,ω and then, by Propo-
sition 2.2, it is a minimizer for H in F−a,M0+a

m,ω . The conclusion follows by recalling Remark 1.2 and
since Γ can be chosen arbitrarily. �

We point out that, in light of this last result, the proof of Theorem 1.4 is concluded, at least for rational
directions ω ∈ Qd \ {0} and under the finite-range hypothesis (2.1) on J .

In the next two subsections, we show that assumption (2.1) might in fact be removed and that irrational
directions can be dealt with an approximation procedure. After this, Theorem 1.4 will be proved in its
full generality.

2.7. Ground states for infinite-range interactions. Here we address the proof of Theorem 1.4 for
models allowing infinite-range interactions. That is, we show that planelike ground states exist for
Hamiltonians H whose interaction coefficients J satisfy the summability condition (1.4), but not nec-
essarily (2.1).

Let J : Zd × Zd → [0,+∞) be any function satisfying assumptions (1.1), (1.3), (1.4) and (1.8).
Let {Rn}n∈N be an increasing sequence of positive real numbers, diverging to +∞. For any n ∈ N,
we define a function J (n) : Zd × Zd → [0,+∞) by setting

J
(n)
ij :=

{
Jij if |i− j| 6 Rn,

0 if |i− j| > Rn,

and the associated Hamiltonian H(n), on any finite set Γ ⊂ Zd and any configuration u, as

H
(n)
Γ (u) :=

∑
(i,j)∈Z2d\(Zd\Γ)2

J
(n)
ij (1− uiuj) +

∑
i∈Γ

hiui.

Observe that J (n) still satisfies (1.1), (1.3), (1.4) and (1.8). Moreover, J (n) fulfills condition (2.1),
with R = Rn.

Let nowω ∈ Qd\{0} be a fixed direction. By the work done in the previous subsections, for any n ∈ N
we can find a ground state u(n) for H(n) with interface ∂u(n) satisfying

(2.40) ∂u(n) ⊂
{
i ∈ Zd :

ω

|ω|
· i ∈ [0,M ]

}
,
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for some M > 0 independent of n. We stress that the uniformity of M in n is crucial for the follow-
ing arguments, and is a consequence of the fact that the constant M0 found in Proposition 2.13 is
independent of the range of positivity R of (2.1).

By Tychonoff’s Theorem, we can find a subsequence of the u(n)’s, that we still label in the same way,
that converges to a new configuration u. As a matter of fact, for any finite set Γ ⊂ Zd, there exists a
number N ∈ N such that

(2.41) u
(n)
i = ui for any i ∈ Γ and any n > N.

We claim that u is a planelike ground state for H . Obviously, (2.40) passes to the limit and the same
estimate holds true for the interface of u. Therefore, we are only left to verify that u is a ground state
for H .

To see this, let Γ ⊂ Zd be a finite set and v be a configuration for which vi = ui at any site i ∈ Zd\Γ.
Write v = u + ϕ, with ϕ : Zd → {−2, 0, 2} and set v(n) := u(n) + ϕ. From now on, we always
assume n to be larger than the number N for which (2.41) is valid. By (2.41) and the fact that ϕi = 0
for any i ∈ Zd \ Γ, we see that v(n) attains only the values −1 and 1, at least for a large enough n.

That is, v(n) is an admissible configuration and v(n)
i = u

(n)
i for any i ∈ Zd \ Γ. As u(n) is a minimizer

for H(n) in Γ, we have that

(2.42) H
(n)
Γ (u(n)) 6 H

(n)
Γ (v(n)).

To finish the proof, we must show that (2.42) yields an analogous inequality for u, v and H . For this,
we first recall that u(n)

i = ui and, thus, v(n)
i = vi at any site i ∈ Γ. Moreover, up to taking a larger N ,

we have that J (n)
ij = Jij for any i, j ∈ Γ, as Γ is finite. Accordingly,

∣∣∣HΓ(u)−H(n)
Γ (u(n))

∣∣∣ = 2

∣∣∣∣∣∣
∑

i∈Γ,j∈Zd\Γ

[
Jij(1− uiuj)− J (n)

ij (1− uiu(n)
j )
]∣∣∣∣∣∣

6 2
∑
i∈Γ

 ∑
j∈Zd\Γ

Jij|uj − u(n)
j |+ 2

∑
j∈Zd\Γ

∣∣∣Jij − J (n)
ij

∣∣∣
 .

But then, since J (n)
ij 6 Jij , J

(n)
ij → Jij and u(n)

i → ui, for any i, j ∈ Zd, we are in position to apply
the Dominated Convergence Theorem for Series and conclude that the right-hand side of the above
inequality goes to 0 as n → +∞. Note that the summability hypothesis (1.4) and the finiteness of Γ
are crucial for this argument to work. As the same reasoning can be made for the v(n)’s, we obtain
that

lim
n→+∞

H
(n)
Γ (u(n)) = HΓ(u) and lim

n→+∞
H

(n)
Γ (v(n)) = HΓ(v).

By this and (2.42), we conclude that u is a minimizer for H in Γ and, hence, a ground state.

2.8. Irrational directions. In this subsection, we complete the proof of Theorem 1.4 by showing that
there exist planelike minimizers also in correspondence to irrational directions.

For a fixed irrational direction ω ∈ Rd \ Qd, we take a sequence {ωn}n∈N ⊂ Qd \ {0} converging
to ω. Associated to each ωn, we consider the ground state u(n) forH constructed previously. We have

(2.43) ∂u(n) ⊂
{
i ∈ Zd :

ωn
|ωn|
· i ∈ [0,M ]

}
,

for some constant M > 0 independent of n.
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The proof continues as in the preceding subsection. By Tychonoff’s Theorem, u(n) converges, up to a
subsequence, to a configuration u. Given any finite subset Γ ⊂ Zd, the sequence u(n) actually coin-
cides with u on Γ, provided n is large enough (in dependence of Γ). Therefore, we deduce from (2.43)
that

∂u ⊂
{
i ∈ Zd :

ω

|ω|
· i ∈ [0,M ]

}
.

The proof of the fact that u is a ground state for H is analogous to that displayed in the previous
subsection (and easier).

Theorem 1.4 is thus now proved completely (in the general setting).

3. PROOF OF THEOREM 1.4 FOR POWER-LIKE INTERACTIONS WITH NO MAGNETIC TERM

In this section we show that when J satisfies assumption (1.7) and no magnetic field h is incorporated
in the Hamiltonian H , the width M of the strip SMω appearing in the statement of Theorem 1.4 can be
further specified. Indeed, we shall show thatM can be chosen of the formM = M0τ , for someM0 >
0 only depending on d, s, λ and Λ.

To show the validity of this fact, we remark that it is enough to adapt to this specific setting the sole
arguments contained in Subsection 2.6, since that is the only point of the proof displayed in Section 2
where the widthM is made precise. As a first step toward this goal, we obtain some density estimates
for the level sets of the minimizers of H inside cubes that intercepts their interfaces.

We stress that throughout the whole section, J is supposed to fulfill hypothesis (1.7) (in addition
to (1.1), (1.2) and (1.8)) and the magnetic term h vanishes, i.e.

hi = 0 for any i ∈ Zd.

3.1. Density estimates. Here, we collect some results that aim to quantify the size of the level sets
of a non-trivial minimizer u. The main result is Proposition 3.3, where optimal density estimates are
obtained.

We begin with a few auxiliary results. The first is a purely geometrical estimate, reminiscent of the one
contained in [DNPV12, Lemma 6.1].

Lemma 3.1. Let Γ ⊂ Zd be any finite, non-empty set and i ∈ Zd. Then, it holds

(3.1)
∑

j∈Zd\Γ

1

|i− j|d+s
∞
> c (#Γ)−s/d ,

for some constant c > 0 depending only on s.

Proof. Take ` ∈ N in such a way that

(3.2) (2`− 1)d 6 #Γ < (2`+ 1)d,

and let Γ∗ ⊃ Γ be any set with cardinality #Γ∗ = (2`+ 1)d. Notice that

#(Q`(i) \ Γ∗) = #Q`(i)−#(Γ∗ ∩Q`(i))

= #Γ∗ −#(Γ∗ ∩Q`(i))

= #(Γ∗ \Q`(i)),

and hence∑
j∈Q`(i)\Γ∗

1

|i− j|d+s
∞
>

#(Q`(i) \ Γ∗)

`d+s
=

#(Γ∗ \Q`(i))

`d+s
>

∑
j∈Γ∗\Q`(i)

1

|i− j|d+s
∞

.
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Thanks to the above inequality, we compute

(3.3)

∑
j∈Zd\Γ

1

|i− j|d+s
∞
>

∑
j∈Zd\Γ∗

1

|i− j|d+s
∞

=
∑

j∈Q`(i)\Γ∗

1

|i− j|d+s
∞

+
∑

j∈Zd\(Γ∗∪Q`(i))

1

|i− j|d+s
∞

>
∑

j∈Γ∗\Q`(i)

1

|i− j|d+s
∞

+
∑

j∈Zd\(Γ∗∪Q`(i))

1

|i− j|d+s
∞

=
∑

j∈Zd\Q`(i)

1

|i− j|d+s
∞

.

On the other hand, recalling the notation on (2.23),∑
j∈Zd\Q`(i)

1

|i− j|d+s
∞

=
∑

k∈Zd\Q`

1

|k|d+s
∞

=
+∞∑

m=`+1

#Sm
md+s

>
+∞∑

m=`+1

1

m1+s
>

(`+ 1)−s

s
.

Accordingly, by this, (3.3) and (3.2), we finally get∑
j∈Zd\Γ

1

|i− j|d+s
∞
>

(`+ 1)−s

s
=

(2`− 1)−s

s

(
2`− 1

`+ 1

)s
>

(#Γ)−s/d

2ss
,

that is (3.1). �

As a corollary, we immediately deduce the following discrete, non-local isoperimetric-type inequality.
See e.g. [FS08, FFMMM15, DCNRV15] for similar results and further applications in a fairly related
continuous setting.

Corollary 3.2. Let Γ ⊂ Zd be any finite set. Then, it holds∑
i∈Γ, j∈Zd\Γ

1

|i− j|d+s
∞
> c (#Γ)

d−s
d ,

for some constant c > 0 depending only on s.

With this in hand, we may now head to the main result of this subsection: the density estimates.

Proposition 3.3. Let u be a minimizer for H in Q`(q), for some q ∈ Zd and ` ∈ N. If q ∈ ∂u, then

min
{

# ({u = −1} ∩Q`(q)) ,# ({u = 1} ∩Q`(q))
}
> c̄ `d,

for some constant c̄ > 0 depending only on d, s, λ and Λ.

Proof. Of course, we can assume q = 0. We also restrict ourselves to check that

(3.4) # ({u = 1} ∩Q`) > c̄ `d,

for some c̄ > 0, the estimate for the set {u = −1} ∩Q` being completely analogous.

For m = 0, . . . , `, we set

Vm := {u = 1} ∩Qm, Am := {u = 1} ∩ Sm,

and

vm := #Vm, am := #Am.



24

We consider the configuration w defined by

wi :=

{
−1 if i ∈ Qm,

ui if i ∈ Zd \Qm.

By its definition, w coincides with u outside of Qm. Hence, by the minimimality of u, we get

HQm(u) 6 HQm(w).

Since h = 0, we may rewrite this inequality as∑
i,j∈Qm

Jij(1− uiuj) + 2
∑

i∈Qm,j∈Zd\Qm

Jij(1− uiuj) 6 2
∑

i∈Qm,j∈Zd\Qm

Jij(1 + uj),

and, rearranging its terms conveniently,∑
i∈Vm,j∈Qm\Vm

Jij +
∑

i∈Vm,j∈{u=−1}\Qm

Jij 6
∑

i∈Vm,j∈{u=1}\Qm

Jij.

By adding to both sides the series ∑
i∈Vm,j∈{u=1}\Qm

Jij,

and taking advantage of (1.7), we then find

(3.5)
∑

i∈Vm,j∈Zd\Vm

1

|i− j|d+s
∞
6 c1

∑
i∈Vm,j∈{u=1}\Qm

1

|i− j|d+s
∞

,

for some c1 > 0.

Now we deal with the two sides of (3.5) separately. On the one hand, we apply Corollary 3.2 (with Γ :=
Vm) and obtain that

(3.6)
∑

i∈Vm,j∈Zd\Vm

1

|i− j|d+s
∞
> c2v

d−s
d

m ,

for some c2 > 0. On the other hand, we compute∑
i∈Vm,j∈{u=1}\Qm

1

|i− j|d+s
∞
6

∑
i∈Vm,j∈Zd\Qm

1

|i− j|d+s
∞

=
m∑
n=0

∑
i∈An

∑
|j|∞>m+1

1

|i− j|d+s
∞

6
m∑
n=0

an
∑

|k|∞>m+1−n

1

|k|d+s
∞
6 3dd

m∑
n=0

an

+∞∑
r=m+1−n

1

r1+s

6 c3

m∑
n=0

(m+ 1− n)−san,

for some c3 > 0. The combination of this, (3.6) and (3.5) yields

v
d−s
d

m 6 c4

m∑
n=0

(m+ 1− n)−san,

for some c4 > 0. We now sum up the above inequality on m = 0, . . . , `. We get∑̀
m=0

v
d−s
d

m 6 c4

∑̀
m=0

m∑
n=0

(m+ 1− n)−san = c4

∑̀
n=0

an
∑̀
m=n

(m+ 1− n)−s

= c4

∑̀
n=0

an

`+1−n∑
r=1

r−s 6 c5

∑̀
n=0

(`+ 1− n)1−san 6 c5(`+ 1)1−s
∑̀
n=0

an,
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that is

(3.7)
∑̀
m=0

v
d−s
d

m 6 c5(`+ 1)1−sv`,

for some constant c5 > 0.

We now claim that (3.7) implies the validity of (3.4), with

(3.8) c̄ :=

[
4−d−1+s

c5(d+ 1− s)

]d/s
.

To see this, we argue by induction. Of course, the claim holds true for ` = 0, 1, as 0 ∈ ∂u. Therefore,
we take ` > 2 and assume that

vm > c̄ md for any m ∈ {0, . . . , `− 1}.
Using (3.7) and (3.8), we have

v` >
(`+ 1)s−1

c5

`−1∑
m=0

v
d−s
d

m >
c̄
d−s
d

c5

(`+ 1)s−1

`−1∑
m=0

md−s

>
c̄
d−s
d

c5(d+ 1− s)
(`+ 1)s−1(`− 1)d+1−s >

c̄
d−s
d

c5(d+ 1− s)
(2`)s−1

(
`

2

)d+1−s

>
c̄
d−s
d 4−d−1+s

c5(d+ 1− s)
`d = c̄ `d,

that is our claim. Hence, the proof of the proposition is concluded. �

A first application of the estimates just proved is contained in the next corollary, that establishes a
bound from below for the interaction energy of non-trivial minimizers.

Corollary 3.4. Let u be a minimizer for H in Q`(q), for some q ∈ Zd and ` ∈ N. If q ∈ ∂u, then

(3.9) IQ`(q), Q`(q)(u) > c?`
d−s,

for some constant c? > 0 depending only on d, s, λ and Λ.

Proof. We simply apply hypothesis (1.7) and Proposition 3.3 to deduce that

IQ`(q), Q`(q)(u) >
λ

dd+s

∑
i,j∈Q`(q)

1− uiuj
|i− j|d+s

∞

>
4λ

(2d`)d+s
[# ({u = −1} ∩Q`(q)})] · [# ({u = 1} ∩Q`(q)})]

> c?`
d−s,

for some c? > 0, as desired. �

Remark 3.5. The bound (3.9) can be seen as a counterpart to the estimate from above obtained in
Proposition 2.9. More specifically, Corollary 3.4 shows that the energy estimate (2.26) gives an optimal
bound for the energy of a non-trivial minimizer u in a cube Q`(q), as a function of `. Indeed, notice
that under hypothesis (1.7), we can make the choice

σ(R) =
cdΛ

s
R−s,

for some dimensional constant cd > 0. Thanks to this observation and recalling Remark 2.10, esti-
mate (2.26) becomes in this setting just

(3.10) HQ`(q)(u) 6 C̄`d−s,
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for some constant C̄ > 1 depending only on d, s and Λ. As a result, both estimates (3.9) and (2.26)
(in its form (3.10) just deduced) show the same dependence on `.

We conclude the subsection with a result that sharpens the density estimates of Proposition 3.3: the
so-called clean ball condition. We obtain it by applying both Corollary 3.4 and Proposition 3.3 itself.

Proposition 3.6. Suppose that J satisfies condition (1.7) and that h = 0. Let u be a minimizer for H
in Q`(q), for some q ∈ Zd and ` ∈ N. If q ∈ ∂u, then there exist two sites q−, q+ ∈ Q`(q) and a
constant κ ∈ (0, 1), depending only on d, s, λ and Λ, such that

Qbκ`c(q−) ⊆ {u = −1} ∩Q`(q) and Qbκ`c(q+) ⊆ {u = 1} ∩Q`(q).

Proof. We prove the statement concerning the level set {u = 1} ∩ Q`(q), the other one being
completely analogous. Moreover, we restrict ourselves to consider ` > `0, for a large value `0 > 2 to
be later specified, as for the case ` < `0 one can simply choose κ = 1/`0 and q+ = q.

Fix k ∈ N, with

(3.11) k 6
`

2
,

and let N ∈ N be the only integer for which

(3.12) (2k + 1)N 6 2`+ 1 < (2k + 1)(N + 1).

In view of (3.12), there is a family Q = {Q(n)}Nd

n=1 of Nd non-overlapping cubes Q(n) = Q
(n)
k (q(n))

each contained in Q`(q), having center q(n) ∈ Q`(q) and sides composed by 2k + 1 sites. Observe
that we may choose Q so that the union of its elements covers Q`−k(q). Let then Q̃ ⊆ Q be the
subfamily of Q made up of those cubes having non-empty intersection with the level set {u = 1}.
That is,

Q̃ :=
{
Q ∈ Q : there exists i ∈ Q at which ui = 1

}
.

Denoting by Ñ ∈ N the cardinality of Q̃, we claim that

(3.13) Ñ > c1N
d,

for some c1 > 0 independent of N and `. To check (3.13), we simply apply the density estimate of
Proposition 3.3 to the cube Q`−k(q) and compute

c̄(`− k)d 6 # ({u = 1} ∩Q`−k(q)) 6
Nd∑
n=1

#
(
{u = 1} ∩Q(n)

)
6 Ñ(2k + 1)d.

This, (3.12) and (3.11) then imply that

c̄

2d
`d 6 c̄(`− k)d 6

Ñ

Nd
(2`+ 1)d 6

Ñ

Nd
3d`d,

which gives (3.13).

We relabel the cubes of the family Q̃ in order to write Q̃ = {Q̃(n)} eN
n=1, with Q̃(n) = Qk(q̃

(n)),
with q̃(n) ∈ Q`(q). To finish the proof, we shall show that we can find a cube Q̃(n̄), for some n̄ ∈
{1, . . . , Ñ}, such that ui = 1 at any i ∈ Q̃(n̄). For this, we argue by contradiction and in fact
suppose that, for any n ∈ {1, . . . , Ñ}, there exists a site i(n) ∈ Q̃(n) at which ui(n) = −1. By the
definition of Q̃, it is then clear that there also exist sites j(n) ∈ Q̃(n) ∩ ∂u, for any n ∈ {1, . . . , Ñ}.
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Up to modifying the family Q̃ and reducing its cardinality Ñ by a factor 3d, we may also assume
that j(n) = q̃(n). By applying Proposition 2.9, Corollary 3.4 and estimate (3.13), we then get

C̄`d−s > HQ`(q)(u) >

eN∑
n=1

IQk(eq(n)), Qk(eq(n))(u) > c?Ñk
d−s > c?c1N

dkd−s,

that, combined with (3.12) and (3.11), yields

k > c2`,

for some c2 > 0 independent of `. But this leads to a contradiction, since we are free to take k ∈
{1, . . . , bc2`/2c} and ` > `0 := 4/c2. �

We stress that the argument adopted in the above proof is a refined version of the one displayed in
Proposition 2.13, in light of the now available density estimates and the optimal energy bound (3.9).
Indeed, Proposition 3.6 is the main tool that will be used in the next subsection to improve the result
of Proposition 2.13 and finish the proof of Theorem 1.4.

3.2. Completion of the proof of Theorem 1.4. As discussed at the beginning of the present section,
to finish the proof of Theorem 1.4 we only need to show that in Proposition 2.13 we can take

(3.14) M0 := M̄0τ,

for some M̄0 > 0 depending only on d, s, λ and Λ.

From now on, we freely use the notation adopted in Section 2 with no further explanation.

In order to prove that Proposition 2.13 holds true with M0 given by (3.14), it suffices to show that the
minimal minimizer u = uMω satisfies

(3.15) ui = −1 for any i ∈ Q2dτ (q̄), for some q̄ ∈ SMω such that Q2dτ (q̄) ⊂ SMω ,

providedM >M0, withM0 as in (3.14). Note that (3.15) is indeed stronger than the claim (2.31) that
was proved in Proposition 2.13. By arguing as in the proof of Proposition 2.13, we can reduce (3.15)
to the weaker claim that

(3.16) either ui = −1 for any i ∈ Q2dτ (q̄) or ui = 1 for any i ∈ Q2dτ (q̄).

To check (3.16), we first notice that there are a site q ∈ SMω and a dimensional constant c? > 0 such
that Q3`(q) ⊂ SMω , with ` = bc?Mc. Now, either

(3.17) Q`(q) ∩ ∂u 6= ∅,

or u is identically equal to−1 or 1 in the whole of Q`(q). By taking M >M0 := (4dτ)/c?, this latter
fact would imply (3.16) and the proof would then be over. Therefore, we suppose that (3.17) is verified
and, thus, that there exists a site q? ∈ Q`(q) ∩ ∂u.

By Corollary 2.6, the minimal minimizer u is a minimizer for H in Q`(q?) ⊂ Q2`(q) and, hence,
Proposition 3.6 implies that, say,

ui = −1 for any i ∈ Qbκ`c(q̄),

for some site q̄ ∈ Q`(q?) and some constant κ ∈ (0, 1), depending only on d, s, λ and Λ. But
then, (3.16) follows once again by choosing M >M0 := (4dτ)/(c?κ).

Claim (3.16) is thus fully proved and so is Theorem 1.4.



28

4. INTERLUDE. SOME SIMPLE FACTS ABOUT NON LOCAL PERIMETER FUNCTIONALS

In this intermediate section, we present a couple of results regarding the set functions LK and PerK ,
introduced in (1.20) and (1.19), respectively.

Throughout most of the section, K : Rd × Rd → [0,+∞] is a general non-negative kernel, not
necessarily satisfying any of conditions (1.15) or (1.16). In particular, K is never required here to fulfill
the periodicity assumption (1.17).

We begin by presenting a lemma that establishes the lower semicontinuity of LK with respect to L1

convergence. As a byproduct, we also obtain the lower semicontinuity of the K-perimeter functional.

Lemma 4.1. Let {An} and {Bn} be two sequences of measurable sets in Rd. Suppose that there
exist two measurable sets A,B ⊆ Rd such that An → A and Bn → B in L1

loc, as n→ +∞. Then,

(4.1) LK(A,B) 6 lim inf
n→+∞

LK(An, Bn).

In particular,

(4.2) PerK(A;B) 6 lim inf
n→+∞

PerK(An;Bn).

Proof. Let {nk} be a subsequence along which the lim inf on the right-hand side of (4.1) is attained
as a limit. By a standard diagonal argument and up to selecting a further subsequence (that we do not
relabel), we have that χAnk → χA and χBnk → χB a.e. in Rd, as k → +∞. Then, Fatou’s Lemma
implies that

LK(A,B) =

∫
Rd

∫
Rd
χA(x)χB(y)K(x, y) dx dy

6 lim inf
k→+∞

∫
Rd

∫
Rd
χAnk (x)χBnk (y)K(x, y) dx dy

= lim
k→+∞

LK(Ank , Bnk)

= lim inf
n→+∞

LK(An, Bn),

that is (4.1).

The validity of (4.2) follows at once from (4.1) after one notices that the convergences of An and Bn

imply that 
An ∩Bn −→ A ∩B
An \Bn −→ A \B
Bn \ An −→ B \ A
Rd \ (An ∪Bn) −→ Rd \ (A ∪B)

in L1
loc,

as n→ +∞. �

Next is a simple computation that may be seen as a generalized Coarea Formula. See e.g. [V91] and
the very recent [CSV16, L16] for similar results. More precisely, we recall (1.18) and we prove the
following:

Lemma 4.2. Let Ω ⊆ Rd be an open set and u : Ω→ R a measurable function. Then,

(4.3) KK(u; Ω,Ω) =

∫ +∞

−∞
KK(χ{u>t}; Ω,Ω) dt.



29

Proof. First of all, notice that, for any x, y ∈ Ω, we may write

(4.4) |u(x)− u(y)| =
∫ +∞

−∞
|χ{u>t}(x)− χ{u>t}(y)| dt.

Indeed, notice that

χ{u>t}(x)− χ{u>t}(y) =


1, if u(x) > t > u(y),

−1, if u(y) > t > u(x),

0, otherwise.

From this, formula (4.4) easily follows.

Hence, by (4.4) and Fubini’s Theorem, we simply obtain

KK(u; Ω,Ω) =

∫
Ω

∫
Ω

|u(x)− u(y)|K(x, y) dx dy

=

∫
Ω

∫
Ω

(∫ +∞

−∞
|χ{u>t}(x)− χ{u>t}(y)| dt

)
K(x, y)dx dy

=

∫ +∞

−∞

(∫
Ω

∫
Ω

|χ{u>t}(x)− χ{u>t}(y)|K(x, y) dx dy

)
dt,

and (4.3) follows. �

We conclude the section with the following basic integrability result.

Lemma 4.3. Suppose that K satisfies (1.16) and let Ω ⊂ Rd be a bounded open set with Lipschitz
boundary. Then,

(4.5) K ∈ L1(Ω× (Rd \ Ω)).

Proof. By using polar coordinates and (1.16), we compute∫
Ω

∫
Rd\Ω

K(x, y) dx dy 6 Λ

∫
Ω

∫
Rd\Ω

dx dy

|x− y|d+s
6 Λ

∫
Ω

(∫
Rd\Bdist(x,∂Ω)

dz

|z|d+s

)
dx

= dΛ|B1|
∫

Ω

(∫ +∞

dist(x,∂Ω)

dt

t1+s

)
dx =

dΛ|B1|
s

∫
Ω

dx

dist(x, ∂Ω)s
.

Then, (4.5) follows, as the last integral is finite, due to the Lipschitzianity of ∂Ω. This last fact may be
for instance deduced from [M00, Lemma 3.32], applied with u = 1 there. �

5. FROM THE ISING MODEL TO THE K -PERIMETER. PROOF OF THEOREM 1.6

In this section, we give a proof of Theorem 1.6. The argument is rather articulated and thus will be
split into various lemmata, most of which deal with convergence issues.

Notice that throughout the section, we always assume the kernel K to satisfy assumptions (1.15)
and (1.16), but not (1.17), in accordance with the hypotheses made in the statement of Theorem 1.6.

We begin by checking that the coefficients J (ε) yield a power-like interaction term, bounded indepen-
dently of ε.

Lemma 5.1. Given any ε > 0, the interaction J (ε) defined in (1.22) satisfies conditions (1.1) and (1.2).
Moreover, it fulfills (1.7) uniformly in ε. That is,

(5.1)
λ?

|i− j|d+s
6 J

(ε)
ij 6

Λ?

|i− j|d+s
for any i, j ∈ Zd with i 6= j,
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for some constants Λ? > λ? > 0 that depend only on λ, Λ, d and s.

Proof. The fact that J (ε) satisfies (1.1) and (1.2) is a simple consequence of its definition and hypothe-
ses (1.15) on K . Thus, we focus on the proof of (5.1).

By changing variables, for i 6= j we have

J
(ε)
ij = εd+s

∫
Q1/2(i)

∫
Q1/2(j)

K(εx, εy) dx dy.

To obtain the left-hand side inequality in (5.1), we observe that, for x ∈ Q1/2(i) and y ∈ Q1/2(j), it
holds

|x− y| 6 |i− j|+ |x− i|+ |y − j| 6 |i− j|+
√
d 6 2

√
d |i− j|,

and hence, by (1.16),

J
(ε)
ij > λ

∫
Q1/2(i)

∫
Q1/2(j)

dx dy

|x− y|d+s
>

(2
√
d)−d−sλ

|i− j|d+s
,

which gives the first inequality in (5.1).

On the other hand, to get the second inequality in (5.1), we deal with the two cases |i − j|∞ > 2
and |i− j|∞ = 1 separately. If |i− j|∞ > 2, we recall the notation in (1.11) and we simply have

|x−y| =

(
d∑

k=1

(xk − yk)2

)1/2

> |x−y|∞ > |i−j|∞−|x−i|∞−|y−j|∞ > |i−j|∞−1 >
|i− j|∞

2
,

for any x ∈ Q1/2(i) and y ∈ Q1/2(j). Thus, using (1.16),

J
(ε)
ij 6 Λ

∫
Q1/2(i)

∫
Q1/2(j)

dx dy

|x− y|d+s
6

2d+sΛ

|i− j|d+s
,

which proves the second inequality in (5.1) in this case.

When instead |i− j|∞ = 1, by applying twice Coarea Formula and using again (1.16), we compute

J
(ε)
ij 6 Λ

∫
Q1/2(i)

∫
Q1/2(j)

dx dy

|x− y|d+s
6 Λ

∫
Q1/2

∫
Q1\Q1/2

dx dy

|x− y|d+s
∞

6 Λ

∫
Q1/2

∫
Q2\Q 1

2−|x|∞

dz

|z|d+s
∞

 dx = 2ddΛ

∫
Q1/2

(∫ 2

1
2
−|x|∞

dt

t1+s

)
dx

6
2d+sdΛ

s

∫
Q1/2

dx

(1− 2|x|∞)s
=

22d+sd2Λ

s

∫ 1/2

0

td−1

(1− 2t)s
dt

6
Cd,s Λ

|i− j|d+s
,

for some constant Cd,s > 0 depending only on d and s. This completes the proof of the second
inequality in (5.1). �

Now that we know from Lemma 5.1 that J (ε) is a well-behaved power-like interaction term, with fer-
romagnetic constants independent of ε, we may use the estimate contained in Proposition 2.9 (in its
form (3.10)) to deduce uniform-in-ε bounds for the Hamiltonian H(ε) defined in (1.23). More precisely,
if u is a minimizer for H(ε) in a cube Q` of sides ` ∈ N, then

(5.2) H
(ε)
Q`

(u) 6 C`d−s,

for some constant C > 1, depending only on d, s and Λ.
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Moreover, recall that to any configuration u and any ε > 0 we associated an (a.e.) extension ūε of u
to Rd, via definition (1.24). We now consider the measurable set

(5.3) E(u, ε) :=
{
x ∈ Rd : ūε(x) = 1

}
.

By the definitions of E(u, ε) and J (ε), recalling (1.21) and (1.28), we see that the identities

(5.4) PerK(E(u, ε);QR) =
1

4
KK(ūε;QR) =

εd−s

4
H

(ε)
Q`

(u),

hold true for any R = (`+ 1/2)ε, with ` ∈ N.

Formula (5.4) is crucial in building a rigorous bridge between the discrete setting of the Hamilton-
ian H(ε) and the continuous one given by PerK . In particular, we will shortly use it, in combination
with (5.2), to obtain a uniform bound for the K-perimeter.

Let now {εn}n∈N ⊂ (0, 1) be an infinitesimal sequence and, for any n ∈ N, let u(n) be the ground

state for the Hamiltonian H(εn) considered in the statement of Theorem 1.6. Let ū(n) = ū
(n)
εn be the

extension of u(n) to Rd, defined as in (1.24), andEn := E(u(n), εn) be the corresponding measurable
set introduced in (5.3).

It is not hard to see that (5.2) and (5.4) imply the following result:

Lemma 5.2. There exists a constant C > 1, depending on d, s and Λ, but not on n, such that

PerK(En;QR) 6 CRd−s,

for any R > 1.

Thanks to Lemma 5.2 and hypothesis (1.16), we know that the W s,1(QR) norm of χEn is bounded
uniformly in n, for any R > 1. Hence, by the compact embedding of W s,1(QR) into Ld/(d−s)(QR)
(see e.g. [DNPV12, Corollary 7.2]) and a standard diagonal argument (in n and R), we conclude that,
up to a subsequence (that we omit in the notation), χEn converges in L1

loc and a.e. to χE , for some
measurable set E ⊆ Rd, as n→ +∞.

In what follows, we show that E is a class A minimal surface for PerK , thus completing the proof of
Theorem 1.6.

To check this, we fix a cube QR with sides R > 2. Of course, it is enough to prove that E is a minimal
surface for PerK in each such cube. For any n ∈ N, let `n ∈ N be defined by

(5.5) `n :=

⌊
1

2

(
2R

εn
− 1

)⌋
.

Also set

Rn :=

(
`n +

1

2

)
εn,

and notice that

(5.6) R− εn < Rn 6 R.

In particular, Rn → R as n→ +∞.

By taking advantage of Lemma 4.1 in Section 4 and (5.4), we have that

(5.7) PerK(E;QR) 6 lim inf
n→+∞

PerK(En;QRn) =
1

4
lim inf
n→+∞

εd−sn H
(εn)
Q`n

(u(n)).

Now, letF be a competitor forE inQR, i.e. a measurable set withF\QR = E\QR and PerK(F ;QR) <
+∞. In view of the following lemma, we may assume without loss of generality that the boundary of F
is smooth inside QR.



32

Lemma 5.3. Let Ω ⊂ Rd be a bounded open set with Lipschitz boundary and let F ⊂ Rd be a mea-
surable set such that PerK(F ; Ω) < +∞. Then, there exists a sequence {Fn}n∈N of measurable
subsets of Rd such that, for any n ∈ N,

∂Fn ∩ Ω is smooth,(5.8)

Fn \ Ω = F \ Ω,(5.9)

and

lim
n→+∞

|Fn∆F | = 0,(5.10)

lim
n→+∞

PerK(Fn; Ω) = PerK(F ; Ω).(5.11)

The proof of Lemma 5.3 is inspired by the one of the analogous result for the classical perimeter (see
e.g. [G84, Theorem 1.24]) and is similar to those of [CSV16, Proposition 6.4] and [L16, Theorem 1.1].
As it is rather technical but by now sufficiently standard, we defer it to Appendix A.

For such competitor F and a given n ∈ N, we consider the partition (up to a negligible set) of the
cube QRn into the family of open7 subcubes

Qn :=
{
Q̊εn/2(εni) : i ∈ Q`n

}
,

with `n as in (5.5), and its further subdivision into the three disjoint subfamilies

G+
n :=

{
Q ∈ Qn : Q ⊂ F̊

}
,

G−n :=
{
Q ∈ Qn : Q ⊂ Rd \ F̄

}
and Bn :=

{
Q ∈ Qn : Q ∩ ∂F 6= ∅

}
= Qn \

(
G+
n ∪ G−n

)
.

We also write

(5.12) G±n :=
⋃
Q∈G±n

Q and Bn :=
⋃
Q∈Bn

Q.

We then define a configuration v(n) by setting

v
(n)
i :=


1 if Qεn/2(εni) ∈ G+

n ,

−1 if Qεn/2(εni) ∈ G−n ∪ Bn,
u

(n)
i if i ∈ Zd \Q`n ,

and, as in (5.3), the corresponding set

Fn :=
⋃

i∈{v(n)
i =1}

Qεn/2(εni).

By definition, v(n) coincides with u(n) outside Q`n and Fn \ QRn = En \ QRn . Notice that (5.6)
implies that

(5.13) Fn \QR = En \QR.

Moreover, by (5.6) and (5.4), we see that

PerK(Fn;QR) > PerK(Fn;QRn) =
εd−sn

4
H

(εn)
Q`n

(v(n)).

7As usual, Q̊ denotes the interior of Q.
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Hence, by (5.7) and the minimality of u(n) in Q`n , we deduce that

PerK(E;QR) 6 lim inf
n→+∞

PerK(Fn;QR).

To conclude the proof of the minimality of E it now suffices to verify the validity of the following result:

Lemma 5.4. There exists a diverging sequence {nk}k∈N of natural numbers for which

(5.14) lim
k→+∞

PerK(Fnk ;QR) = PerK(F ;QR).

Proof. Given any set Ω and any δ > 0, we denote by N Ω
δ (∂F ) the δ-neighborhood of ∂F in Ω, that

is

N Ω
δ (∂F ) :=

{
x ∈ Ω : dist (x, ∂F ) 6 δ

}
.

Since ∂F ∩QR is smooth (recall Lemma 5.3), we have that

|N QR
δ (∂F )| 6 Cδ,

for any small δ > 0 and some constant C > 0 independent of δ. Moreover, recalling (5.12), we notice
that

Bn ⊆ N QR√
dεn

(∂F ),

and thus

(5.15) |Bn| 6 c1εn,

for some c1 > 0 independent of n.

After these preliminary considerations, we now head to the proof of (5.14). First of all, we observe that

Fn −→ F in L1
loc, as n→ +∞.

Indeed, the convergence outside QRn comes from the fact that Fn \QRn = En \QRn and En → E
in L1

loc. On the other hand, (Fn∆F ) ∩QRn ⊂ Bn and the conclusion follows by (5.15).

Up to considering a suitable subsequence (that we neglect to keep track of in the notation), we also
have that

(5.16) χFn −→ χF and χBn −→ 0 a.e. in Rd, as n→ +∞.

Concerning the inner contributions to the K-perimeters of Fn and F , we recall the notation in (5.12)
and we compute

(5.17)

|LK(Fn ∩QR, QR \ Fn)− LK(F ∩QR, QR \ F )|
6
∣∣LK(G+

n , G
−
n ∪ (Bn \ F ))− LK(F ∩QR, QR \ F )

∣∣+ LK(G+
n , Bn ∩ F )

6 LK((F ∩QR) \G+
n , QR \ F ) + LK(G+

n , Bn ∩ F )

= LK(Bn ∩ F,QR \ F ) + LK(G+
n , Bn ∩ F ).

Now, on the one hand,

LK(Bn ∩ F,QR \ F ) =

∫
F∩QR

∫
QR\F

χBn(x)K(x, y) dx dy,

so that, by taking advantage of the Lebesgue’s Dominated Convergence Theorem, (5.16) and the fact
that F has finite K-perimeter in QR, we deduce that

(5.18) lim
n→+∞

LK(Bn ∩ F,QR \ F ) = 0.
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On the other hand, we use hypothesis (1.16), a suitable change of variables and the Coarea Formula
to obtain

LK(G+
n , Bn ∩ F ) 6 Λ

∑
Q∈Bn

∫
Q

∫
Rd\Q

dx dy

|x− y|d+s
∞

= Λ (#Bn)

∫
Qεn/2

∫
Rd\Qεn/2

dx dy

|x− y|d+s
∞

=
Λ|Bn|
εsn

∫
Q1/2

∫
Rd\Q1/2

dx dy

|x− y|d+s
∞
6

Λ|Bn|
εsn

∫
Q1/2

∫
Rd\Q 1

2−|x|∞

dz

|z|d+s
∞

 dx

6 c2
|Bn|
εsn

,

for some c2 > 0 independent of n. By this and (5.15), we conclude that

lim
n→+∞

LK(G+
n , Bn ∩ F ) = 0,

and thus, recalling (5.17) and (5.18),

(5.19) lim
n→+∞

LK(Fn ∩QR, QR \ Fn) = LK(F ∩QR, QR \ F ).

In regards to the outer contributions, using (5.13), we have

|LK(Fn \QR, QR \ Fn)− LK(F \QR, QR \ F )|
6 |LK(Fn \QR, QR \ F )− LK(F \QR, QR \ F )|+ LK(En \QR, Bn ∩ F )

6 LK((Fn∆F ) \QR, QR) + LK(Rd \QR, Bn)

=

∫
Rd\QR

(∫
QR

(χFn∆F (x) + χBn(y))K(x, y) dy

)
dx.

Notice that, by (1.16), the kernelK belongs to L1(QR×(Rd\QR)), thanks to Lemma 4.3. Therefore,
we can use (5.16) and the Lebesgue’s Dominated Convergence Theorem once again to get

(5.20) lim
n→+∞

LK(Fn \QR, QR \ Fn) = LK(F \QR, QR \ F ).

Analogously, one also checks that

lim
n→+∞

LK(Fn ∩QR,Rd \ (Fn ∪QR)) = LK(F ∩QR,Rd \ (F ∪QR)).

By putting together this, (5.20) and (5.19), the thesis immediately follows. �

6. PLANELIKE MINIMAL SURFACES FOR THE K -PERIMETER. PROOF OF THEOREM 1.7

Here, we address the validity of Theorem 1.7. Thanks to the link, established in Theorem 1.6, between
the discrete structure of the Hamiltonian H and the continuous character of the perimeter PerK ,
Theorem 1.7 is an almost immediate consequence of Theorem 1.4.

Proof of Theorem 1.7. Fix any direction ω ∈ Rd \ {0}. Let {εn} be the infinitesimal sequence of
positive numbers defined by setting εn := 1/n, for any n ∈ N. Let J (εn) be the interaction kernel
associated to εn introduced in (1.22) and observe that, thanks to (1.17), it satisfies the periodicity
condition (1.8) with τ = n. Moreover, Lemma 5.1 ensures that J (εn) also fulfills hypotheses (1.1), (1.2)
and (1.7).

In view of this, we may deduce from Theorem 1.4 the existence of a ground state u(n) for the Hamil-
tonian H(εn) associated to J (εn) (see (1.23) for the precise definition) for which

(6.1)

{
i ∈ Zd :

ω

|ω|
· i 6 0

}
⊂
{
i ∈ Zd : u

(n)
i = 1

}
⊂
{
i ∈ Zd :

ω

|ω|
· i 6M0n

}
,
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for some constant M0 > 0 independent of n.

But then, Theorem 1.6 implies that a subsequence of the extensions ū(n) = ū
(n)
εn of the u(n)’s, as

given by (1.24), converges inL1
loc and a.e. in Rd to the characteristic function χEω of a class A minimal

surface Eω ⊆ Rd for PerK . Also, it can be readily checked from definition (1.24) that inclusion (6.1)
implies the analogous{

x ∈ Rd :
ω

|ω|
· x 6 −M0

}
⊂
{
x ∈ Rd : ū(n) = 1

}
⊂
{
x ∈ Rd :

ω

|ω|
· x 6M0

}
,

up to possibly taking a larger M0, still independent of ε. Hence, this and the convergence of the ū(n)’s
establish the validity of the planelike condition (1.25) for the set Eω.

The proof of Theorem 1.7 is therefore complete. �

7. FROM THE K -PERIMETER TO THE ISING MODEL. PROOF OF THEOREM 1.8

In this section we prove Theorem 1.8.

Similarly to what we did in the proof of Theorem 1.6, for any n ∈ N we consider the (almost) partition
of Rd into the family

(7.1) Qn :=
{
Q̊εn/2(εni) : i ∈ Zd

}
,

and we divide it into the two disjoint subfamilies

Gn :=
{
Q ∈ Qn : Q ⊂ E

}
and Qn \ Gn.

Write
Gn :=

⋃
Q∈Gn

Q,

and notice that Gn ⊆ E. We then define a configuration v(n) by setting

v
(n)
i :=

{
1 if Qε/2(εi) ∈ Gn,
−1 if Qε/2(εi) ∈ Qn \ Gn,

and denote by v̄(n) = v̄
(n)
εn its extension to Rd, as in (1.24). Note that v̄(n) = χGn − χRd\Gn . We

claim that

(7.2) v̄(n) −→ χE − χRd\E a.e. in Rd, as n→ +∞.

Indeed, since Gn ⊂ E for any n ∈ N and E is open by hypothesis, we have that χE∆Gn → 0 a.e.
in Rd, as n→ +∞. Hence, (7.2) follows.

Let now

`n :=

⌈
R

εn

⌉
,

and set

Rn :=

(
`n +

1

2

)
εn.

Clearly, R 6 Rn 6 R + 2εn, so that Rn → R, as n→ +∞.

We consider the minimizer u(n) for H(n) in Q`n , with datum v(n) outside of Q`n , that is a configura-
tion u(n) for which

H
(n)
Q`n

(u(n)) 6 H
(n)
Q`n

(w) for any configuration w such that wi = v
(n)
i for any i ∈ Zd \Q`n .
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As in (5.3), we associate to each u(n) the set

En :=
⋃

i∈{u(n)
i =1}

Qεn/2(εni).

By arguing as for Lemma 5.2, we use the uniform Hamiltonian estimate given by Proposition 2.9 (in its
refined form (3.10)) and the identity (5.4) to obtain that

PerK(En;QR) 6 PerK(En;QRn) 6 C1R
d−s
n 6 C2R

d−s,

for some constants C2 > C1 > 1 independent of n (and R). By this, we may then extract a subse-
quence {nk} in such a way that χEnk converges a.e. inQR to χ eE , for some measurable set Ẽ ⊆ QR,
as k → +infty.

Set now
Ê := Ẽ ∪ (E \QR) .

By (7.2) and the definition of Ẽ, we see that

ū(nk) = χEnk − χRd\Enk −→ χ bE − χRd\ bE a.e. in Rd, as k → +∞,

where ū(n) = ū
(n)
εn denotes as usual the extension of u(n) to Rd as of definition (1.24). Moreover, by

arguing as in Section 5, one checks that the set Ê is a minimizer for PerK in QR. But then, since E
is a strict minimizer and Ê \QR = E \QR, we conclude that Ê = E, and so Theorem 1.8 follows.

8. THE Γ-CONVERGENCE RESULT. PROOF OF THEOREM 1.9

In this section we show Theorem 1.9. For this, notice that the Γ-lim inf inequality is a trivial conse-
quence of Fatou’s Lemma.

We can also easily check the validity of the third statement by applying the compact fractional Sobolev
embedding (see e.g. [DNPV12, Corollary 7.2]) and recalling definition (1.27).

The proof of the Γ-lim sup inequality is slightly more involved. To begin with, observe that we may
restrict ourselves to assuming that GK(u; Ω) < +∞ and thus that u = χE − χRd\E in Ω, for some
measurable set E ⊆ Rd with finite K-perimeter in Ω.

We first prove the statement under the additional hypothesis that

(8.1)


u = χE − χRd\E in Ω′

∂E ∩ Ω′ is smooth

u ∈ C0(Rd \ Ω′)

for some open bounded Lipschitz set Ω′ ⊃⊃ Ω.

We fix ε > 0 and, as in (7.1), we consider the (almost) partition of Rd given by the family

Qε :=
{
Q̊ε/2(εi) : i ∈ Zd

}
.

We define the set
Ωε :=

⋃
Q∈Qε:Q∩Ω6=∅

Q,

and, recalling (1.26), the function uε ∈ Xε, by setting for a.e. x ∈ Rd

uε(x) := inf
Qε/2(εi)

u, where i ∈ Zd is the only site for which x ∈ Q̊ε/2(εi).

Note that Ω ⊆ Ωε ⊂ Ω′ for any ε sufficiently small and, consequently, that uε = χEε −χRd\Eε in Ωε,
for some measurable set Eε.
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Let now {εn}n∈N ⊂ (0, 1) be any infinitesimal sequence for which

(8.2) lim sup
ε→0+

G (ε)
K (uε; Ω) = lim

n→+∞
G (εn)
K (uεn ; Ω).

Thanks to the regularity assumptions on E and u, we see that uεn → u a.e. in Rd and thus
in L1

loc(Rd), as n → +∞. Furthermore, by arguing as for (5.15) we can strengthen such conver-
gence inside Ω and obtain that

|(Eεn∆E) ∩ Ω| 6 Cεsn,

for some constant C > 0 independent of n. As in the proof of Lemma 5.4, from this we then easily
deduce

(8.3) lim
n→+∞

KK(uεn ; Ω,Ω) = KK(u; Ω,Ω).

On the other hand, by Lemma 4.3 we may use the Lebesgue’s Dominated Convergence Theorem to
get that

lim
n→+∞

KK(uεn ; Ω,Rd \ Ω) = KK(u; Ω,Rd \ Ω).

By combining this with (8.3) and (8.2), we conclude that the Γ-lim sup inequality holds true under
hypothesis (8.1).

To finish the proof, we show that the Γ-lim sup inequality may be proved without assuming (8.1).
Recall that u ∈ X is such that GK(u; Ω) < +∞ and u = χE − χRd\E in Ω, for some measur-
able E ⊂ Rd.

We first apply Lemma 5.3 to obtain8 a sequence of measurable sets {Ek}k∈N that satisfy

(8.4) ∂Ek ∩ Ω1/k is smooth, Ek \ Ω1/k = E \ Ω1/k, lim
k→+∞

|Ek∆E| = 0,

where, for any t > 0, we set Ωt := {x ∈ Rd : dist(x,Ω) 6 t}, and

(8.5) lim
k→+∞

PerK(Ek; Ω) = PerK(E; Ω).

Next, we consider a sequence {ϕk}k∈Rd ⊂ C0(Rd \ Ω) such that ϕk → u a.e. in Rd \ Ω, as k →
+∞. Note that, to obtain such approximating sequence, one may argue as follows. Fix N ∈ N in
such a way that Ω1 ⊂ BN . Set F0 := BN \ Ω and Fj := BN+j \ BN+j−1, if j ∈ N. For any

fixed j ∈ N ∪ {0}, we can find a sequence of functions {ϕ(j)
k }k∈N ⊂ C∞0 (Fj) such that ϕ(j)

k → u
in L1(Fj), as k → +∞. We then define

ϕk(x) :=
+∞∑
j=0

χFj(x)ϕ
(j)
k (x) for any x ∈ Rd \ Ω.

Up to a subsequence, the sequence {ϕk} has the desired convergence properties.

For any x ∈ Rd, we define

u(k)(x) :=

{
χEk(x)− χRd\Ek(x) if x ∈ Ω1/k,

ϕk if x ∈ Rd \ Ω1/k.

Observe that

u(k) → u a.e. in Rd and KK(u(k); Ω)→ KK(u; Ω), as k → +∞.

8To be extremely precise, Lemma 5.3 gives a sequence of sets {Ẽk}k∈N with smooth boundaries such that∣∣∣[(Ẽk ∩ Ω) ∪ (E \ Ω)]∆E
∣∣∣→ 0 and PerK

(
(Ẽk ∩ Ω) ∪ (E \ Ω); Ω

)
→ PerK(E; Ω), as k → +∞.

Then, it is not hard to check that the sets Ek := (Ẽk ∩ Ω1/k) ∪ (E \ Ω1/k) fulfill (8.4) and (8.5).
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These facts are true thanks to (8.4), (8.5), the definition of u(k) and an application of the Lebesgue’s
Dominated Convergence Theorem together with Lemma 4.3.

Moreover, each u(k) satisfies assumption (8.1). Hence, for any ε > 0 we deduce the existence
of u(k)

ε ∈ Xε such that u(k)
ε → u(k) a.e. in Rd and KK(u

(k)
ε ; Ω) → KK(u(k); Ω), as ε → 0+.

More precisely, we can find a strictly decreasing, infinitesimal sequence {εk}k∈N of positive numbers
such that

(8.6) dL1
loc

(u(k)
ε , u(k)) +

∣∣KK(u(k)
ε ; Ω)−KK(u(k); Ω)

∣∣ < 1

k
for any ε ∈ (0, εk], k ∈ N,

where dL1
loc

is some metric on L1
loc(Rd) inducing the standard L1

loc topology, e.g.

dL1
loc

(v, w) :=
+∞∑
j=1

1

2j
‖v − w‖L1(Bj)

1 + ‖v − w‖L1(Bj)

for any v, w ∈ L1
loc(Rd).

For ε ∈ (0, ε1], we set

uε := u(k)
ε where k ∈ N is the only integer for which εk+1 < ε 6 εk.

Clearly, uε ∈ Xε. Moreover, uε → u inL1
loc(Rd) and KK(uε; Ω)→ KK(u; Ω), as ε→ 0+. Indeed,

given any δ > 0, we may select k = kδ ∈ N large enough to have

(8.7) dL1
loc

(u(j), u) <
δ

2
, |KK(u(j); Ω)−KK(u; Ω)| < δ

2
and

1

j
<
δ

2
for any j > k.

Let now ε 6 εk and select the only integer j > k for which ε ∈ (εj+1, εj]. By combining (8.7)
with (8.6), we conclude that

dL1
loc

(uε, u) = dL1
loc

(u(j)
ε , u) 6 dL1

loc
(u(j)

ε , u(j)) + dL1
loc

(u(j), u) <
1

j
+
δ

2
< δ,

and, analogously,

|KK(uε; Ω)−KK(u; Ω)| 6 |KK(u(j)
ε ; Ω)−KK(u(j); Ω)|+ |KK(u(j); Ω)−KK(u; Ω)| < δ.

This concludes the proof of the Γ-lim sup inequality and, hence, of Theorem 1.9.

APPENDIX A. PROOF OF LEMMA 5.3

In the present appendix, we provide a proof of Lemma 5.3 in full details. As mentioned right after its
statement in Section 5, our argument is based on the strategies already followed in e.g. [G84, CSV16,
L16].

Throughout the section, we implicitly suppose conditions (1.15) and (1.16) to be in force. Although the
result may in fact hold under weaker hypotheses, we always suppose for simplicity that K satisfies
both these assumptions. However, we stress that none of the steps of the proof require the periodicity
hypothesis (1.17) to be valid, that we therefore do not suppose to hold.

After these introductory remarks, we may now head to the proof of Lemma 5.3.

Proof of Lemma 5.3. First, notice that, by (1.16) and the fact that F has finite K-perimeter, the char-
acteristic function χF belongs to the fractional Sobolev space W s,1(Ω). Hence, by standard density
results (see e.g. [G85, Theorem 1.4.2.1]), there exists a sequence {ϕn}n∈N ⊂ W s,1(Ω) ∩ C∞(Ω)
such that

(A.1) ϕn → χF in W s,1(Ω), as n→ +∞.
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By using again (1.16), this ensures that

(A.2) lim
n→+∞

KK(ϕn; Ω,Ω) = KK(χF ; Ω,Ω).

For t ∈ (0, 1), we let
Fn :=

(
{ϕn > t} ∩ Ω

)
∪ (F \ Ω).

Clearly, Fn \ Ω = F \ Ω, which proves (5.9).

Also, Morse-Sard’s Theorem tells that, for a.e. t ∈ (0, 1), the boundary of the level set {ϕn > t} is a
smooth hypersurface. Hence ∂Fn is smooth inside Ω, which gives (5.8).

We now claim that for a.e. t ∈ (0, 1) fixed,

(A.3) lim
n→+∞

|Fn∆F | = 0,

and

(A.4) lim
n→+∞

PerK(Fn; Ω) = PerK(F ; Ω),

up to a subsequence, that is (5.10) and (5.11), respectively.

We begin by checking (A.3). Let τ ∈ (0, 1) and notice that

ϕn − χF > τ in ({ϕn > τ} \ F ) ∩ Ω

and χF − ϕn > 1− τ in (F \ {ϕn > τ}) ∩ Ω.

From this, we deduce that

‖ϕn − χF‖L1(Ω) >
∫

({ϕn>τ}\F )∩Ω

(ϕn(x)− χF (x)) dx+

∫
(F\{ϕn>τ})∩Ω

(χF (x)− ϕn(x)) dx

> τ |({ϕn > τ} \ F ) ∩ Ω|+ (1− τ)|(F \ {ϕn > τ}) ∩ Ω|
> min{τ, 1− τ} |({ϕn > τ}∆F ) ∩ Ω|.

Therefore, using this and (A.1),

(A.5) {ϕn > τ} −→ F in L1(Ω), for a.e. τ ∈ (0, 1).

Claim (A.3) follows as a particular case by taking τ = t in formula (A.5) above and recalling that Fn \
Ω = F \ Ω.

Next, we address the convergence of the perimeters stated in (A.4). Thanks to (A.5) and Lemma 4.1,
we have

LK(F ∩ Ω,Ω \ F ) 6 lim inf
n→+∞

LK({ϕn > τ} ∩ Ω,Ω \ {ϕn > τ}) for a.e. τ ∈ (0, 1),

or, equivalently,

(A.6) KK(χF ; Ω,Ω) 6 lim inf
n→+∞

KK(χ{ϕn>τ}; Ω,Ω) for a.e. τ ∈ (0, 1).

By applying, in sequence, (A.2), the generalized Coarea Formula of Lemma 4.2, Fatou’s Lemma
and (A.6), we compute

KK(χF ; Ω,Ω) = lim
n→+∞

KK(ϕn; Ω,Ω) = lim
n→+∞

∫ +∞

−∞
KK(χ{ϕn>τ}; Ω,Ω) dτ

>
∫ 1

0

lim inf
n→+∞

KK(χ{ϕn>τ}; Ω,Ω) dτ >
∫ 1

0

KK(χF ; Ω,Ω) dτ = KK(χF ; Ω,Ω).

By this and, again, (A.6) we conclude that

lim inf
n→+∞

KK(χ{ϕn>τ}; Ω,Ω) = KK(χF ; Ω,Ω) for a.e. τ ∈ (0, 1),
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and thence

(A.7) lim
n→+∞

LK(Fn ∩ Ω,Ω \ Fn) = LK(F ∩ Ω,Ω \ F ).

On the other hand, we claim that

(A.8)
lim

n→+∞
LK(Fn \ Ω,Ω \ Fn) = LK(F \ Ω,Ω \ F )

and lim
n→+∞

LK(Fn ∩ Ω,Rd \ (Fn ∪ Ω)) = LK(F ∩ Ω,Rd \ (F ∪ Ω)),

up to subsequences. To check the validity of (A.8), we first notice that, by (A.3), χFn → χF a.e. in Rd

(up to extracting a subsequence), as n → +∞. Therefore, in view of Lemma 4.3 we may apply the
Lebesgue’s Dominated Convergence Theorem to get

lim
n→+∞

LK(Fn \ Ω,Ω \ Fn) = lim
n→+∞

∫
Ω

χRd\Fn(x)

(∫
Rd\Ω

χFn(y)K(x, y) dy

)
dx

=

∫
Ω

χRd\F (x)

(∫
Rd\Ω

χF (y)K(x, y) dy

)
dx

= LK(F \ Ω,Ω \ F ),

and similarly for the limit on the second line of (A.8). The combination of (A.7) and (A.8) yields the
convergence of the K-perimeters claimed in (A.4).

The proof of Lemma 5.3 is thus finished. �
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