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In this paper we consider the adaptive `1-penalized estimators for the preci-
sion matrix in a finite-sample setting. We show consistency results and construct
confidence intervals for the elements of the true precision matrix. Additionally, we
analyze the bias of these confidence intervals. We apply the estimator to the esti-
mation of functional connectivity networks in functional Magnetic Resonance data
and elaborate the theoretical results in extensive simulation experiments.

1. Introduction

Throughout the (long) history of neuroscience the question whether brain function is localized
or distributed over the human brain was subject to intense discussion (Finger 1994). The two
concepts are nowadays summarized as functional segregation on the one hand and functional
integration on the other (Friston 1994). With the advance of imaging techniques like functional
Magnetic Resonance Imaging (fMRI) most studies focused on the localization of function (Fris-
ton 2011; Poldrack, Mumford, and Nichols 2011). However, soon a growing number of stud-
ies revealed a plethora of new findings with respect to functional integration of the working
brain (Sporns 2011; Sporns 2013). These are typically described in terms of functional or effec-
tive connectivity. While the former relates to statistical correlation between neurophysiological
events, the latter refers to explicit influence among neural systems (Friston 2011). The statistical
problems considered in this paper belong to the category of functional connectivity (FC). Yet, the
interpretation of FC networks from fMRI data poses problems as the data is only a relative in-
direct measure of neural activity (Buxton, Wong, and Frank 1998; Huettel, Song, and McCarthy
2014).

Several methods are used to describe FC networks, see, e.g., Smith et al. 2011 or Poldrack,
Mumford, and Nichols 2011 for reviews: Among them are matrix factorization methods like
Principal Component Analysis (Friston et al. 1993) or Independent Component Analysis (ICA)
(Kiviniemi et al. 2003; Mantini et al. 2007), but also techniques like beta-series correlation (Riss-
man, Gazzaley, and D’Esposito 2004), psychophysiological interaction (Friston et al. 1997) and
others. However, very popular and simple is the approach to reflect the functional connectivity
by the correlation of the fMRI time series assigned to some suitable nodes defined based on the
results of activation-based fMRI, ICA, or brain atlas. We denote the number of nodes by p. In
order to eliminate the correlations that are only mediated via some common nodes partial corre-
lations can be considered. Typically, before the estimation of the FC network correlations due to
global artifacts (motion, field drift) or due to activation should be removed (Poldrack, Mumford,
and Nichols 2011). In this paper we will solely concentrate on the estimation of correlations by
means of the inverse covariance or precision matrix (Allen et al. 2012). The estimation gener-
ally makes use of the observation that FC networks are of small-world type and sparse (Sporns
2011), which can be incorporated by regularization.
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Currently most studies focus on static FC network estimation (Sporns 2013), but interest in net-
work dynamics is growing fast. This is particularly important for research on neural diseases but
also in the context of learning research with first attempts to characterize the re-configuration of
the brain (Bassett et al. 2011). This requires the estimation of confidence sets for FC networks.

Specifically, in this paper we consider an i.i.d. sample X1, ... Xn ∈ Rp with zero mean and n
is the length of the fMRI time series. Let X be the n× p matrix of samples. The FC network is
then characterized by the covariance matrix Σ or the precision matrix Θ = Σ−1. An estimate is
obtained by minimizing over the cone Sp++ of positive-definite p× p matrices:

arg min
Θ∈Sp++

[
tr(ΘΣ̂)− log det Θ + pλ(Θ)

]
with some suitable penalization pλ(Θ) and the empirical covariance Σ̂ = 1

n
XTX .

In order to address the problem `1-penalization approaches which were initially suggested by
Tibshirani 1994 may be used imposing the required sparsity on the estimate:

Θ̂ = arg min
Θ∈Sp++

[
tr(ΘΣ̂)− log det Θ + ‖Λ ∗Θ‖1

]
(1.1)

where Λ is a p × p matrix of non-negative off-diagonal elements and zero diagonal ones and
· ∗ · denotes matrix element-wise product.

There are consistency results of such estimators for samples of finite size (Ravikumar et al.
2011) along with asymptotic confidence intervals for the elements of the true precision matrix for
the case of equal amount of penalization applied to each element of precision matrix (Janková
and Geer 2015). On the other hand, there are some experimental evidences that adaptive pe-
nalization approaches may perform better (Fan, Feng, and Wu 2009). In this paper, we provide
the consistency results for adaptive `1-penalized estimators of precision matrix and we also
construct the confidence intervals based on these estimators for the elements of the true preci-
sion matrix. We show that the bias introduced by the penalization and the non-normality of the
constructed confidence intervals depends only on the largest amount of penalization applied to
non-zero elements of the true precision matrix. All the results are obtained in a finite-sample-size
setting.

The paper is organized as follows. Section 2 introduces the notation used throughout the paper.
Section 3 lists main theoretical results of the paper. Namely, sub-Section 3.1 contains non-trivial
assumptions, sub-Sections 3.2 and 3.3 give the definition and consistency results for adaptive
approaches such as classical adaptive graphical lasso (Zou 2006) (Fan, Feng, and Wu 2009)
and SCAD lasso (Zou and Li 2008) (Fan, Feng, and Wu 2009) (Fan and Li 2001) respectively
and the sub-Section 3.4 comes up with the definition of a de-sparsified estimator and provides
the results estimating its distribution which gives rise to confidence intervals construction along
with hypotheses testing. In Section 4 we provide the proofs of the claimed results. Finally, Sec-
tion 5 describes our experimental study.
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2. Notation

We denote the empirical covariance matrix as Σ̂ = 1
n
XTX , the true covariance matrix as Σ∗

and their difference as W = Σ̂−Σ∗. Throughout the paper we assume that the true precision
matrix Σ∗

−1 exists and we denote it as Θ∗.

Also define the set of non-zero entries of Θ∗ as S = {(i, j) : Θ∗ij 6= 0} and its complement as
Sc = {1..p}2 \ S.

We also use the following notations for matrix norms: ‖A‖1 =
∑

i,j|Aij|, ‖A‖∞ = maxi,j|Aij|
and |||A|||∞ = |||AT |||1 = maxj ‖A·j‖1.

For a matrix A its vectorization is denoted as Ā or, equivalently as vecA .

Let Γ∗ = Σ∗ ⊗ Σ∗ where · ⊗ · stands for Kronecker product, κΓ∗ = |||(Γ∗SS)
−1|||∞ , κΣ∗ =

|||Σ∗|||∞, κΘ∗ = |||Θ∗|||1.

Our main results assume lower bounds on the smallest absolute values of non-zero elements
of the true precision matrix which is denoted as θmin = mini,j:Θij 6=0|Θ∗ij|.
Other values we keep track on are the maximum number of non-zero elements in a row of
the true precision matrix d = maxi |{j : Θ∗ij 6= 0}| and the minimal penalization parameter
corresponding to zero elements of the true precision matrix ρ = min

(i,j)∈Sc
Λij .

3. Main results

3.1. Irrepresentability assumption

Assumption 1.

∃α ∈ (0, 1] s.t. max
e∈Sc

∥∥Γ∗eS(Γ∗SS)
−1
∥∥

1
≤ (1− α)

The irrepresentability assumption is usually interpreted as follows (Janková and Geer 2015)
(Ravikumar et al. 2011).

Define a centered random variable for each edge (i, j) ∈ {1..p}2

Y(i,j) = X1iXij − E[X1iX1j]

then covariances of these variables may be expressed in terms of matrix Γ∗ as

cov(Y(i,j), Y(k,l)) = Γ∗(i,j),(k,l) + Γ∗(j,i),(k,l).

So the Assumption 1 requires low correlation between edges from active set S and its comple-
ment Sc. The higher the constant α is, the stricter upper bound is assumed.
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3.2. Adaptive graphical lasso

3.2.1. Definition

Let Θ̂init be a solution of optimization problem (1.1) with penalization parameters Λij = λinit
for i 6= j.

Then, the adaptive graphical lasso estimator Θ̂ada is defined as the solution of the optimization
problem (1.1) with tuning parameters Λada

ij = λinit
1

|Θ̂initij |γ
for i 6= j where γ ∈ (0, 1] (γ = 0.5

is usually used). If Θ̂init
ij = 0, we define Λij = +∞, thereby excluding the corresponding

variable from optimization and forcing it to equal zero.

3.2.2. Consistency result

Theorem 1. Assume the conditions of the Lemma 8 hold. Furthermore, suppose

d ≤ δn

6
(
δn + λn

(θmin−r)γ

)2

max{κΓ∗κΣ∗ , κ2
Γ∗κ

3
Σ∗}

(3.1)

Then on the set T =
{∥∥∥Σ̂− Σ∗

∥∥∥
∞
< δn

}
the following holds:∥∥∥Θ̂ada −Θ∗

∥∥∥
∞
≤ 2κΓ∗

(
δn + λn

(θmin−r)γ

)
and Θ∗ij = 0⇔ Θ̂ada

ij = 0.

Remark 1. The main results in the paper are conditioned on the set T =
{∥∥∥Σ̂− Σ∗

∥∥∥
∞
< δn

}
.

The lower bound for the probability of the set T under sub-Gaussianity assumption is provided
by Lemma 11.

3.3. SCAD graphical lasso

3.3.1. Definition

SCAD was suggested in Fan and Li 2001 and was applied for sparse precision matrix estimation
in Lam and Fan 2009 as an alternative adaptive penalization approach.

Consider the following optimization problem:

Θ̂ = arg min
Θ∈Sp++

[
tr(ΘΣ̂)− log det Θ +

∑
i 6=j

SCADλ,a(|θij|)

]

for some positive λ and a (usually a = 3.7 is used) with the first derivative of SCADλ,a(·)
defined as
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SCAD′λ,a(x) = λ

{
I(x ≤ λ) +

(aλ− x)+

(a− 1)λ
I(x ≥ λ)

}
where (·)+ denotes a positive cut: (x)+ = max{0, x}.
In order to solve this non-convex optimization problem, the following approximate recurrent al-
gorithm was suggested in Fan, Feng, and Wu 2009

Θ̂(k) = arg max
Θ∈Sp++

tr(ΘΣ̂)− log det Θ +
∑
i,j

SCAD′λ,a(|θ
(k−1)
ij |)|θij| (3.2)

where Θ̂(0) is obtained as a solution of (1.1) with Λij = λ ∀i 6= j.

As one can see, SCAD′λ,a(x) = 0 for x large enough, so the problem (3.2) may have no

optimum in case if Σ̂ is singular. In this section we therefore assume that Σ̂ is non-singular.
However, this assumption may be dropped if we replace SCAD′λ,a(·) with I(SCAD′λ,a(·) =
0)ε+ I(SCAD′λ,a(·) > 0)SCAD′λ,a(·) for some ε > 0.

Also, denote the limiting point of the algorithm as Θ̂SCAD = lim
k→∞

Θ̂(k).

We denote the penalization matrix used at k-th iteration as Λ
(k)
ij = SCAD′λ,a(|θ

(k−1)
ij |) and its

minimal value corresponding to zero elements of true precision matrix as ρ(k) = min
(i,j)∈Sc

Λ
(k)
ij .

On the other hand the paper Zou and Li 2008 provides asymptotic properties of one-step esti-
mate Θ̂OSSCAD = Θ̂(1).

3.3.2. SCAD graphical lasso consistency results

Theorem 2. Assume the conditions of the Lemma 8. Also suppose that the matrix Σ̂ is non-
singular.

Then on the set T =
{∥∥∥Σ̂− Σ∗

∥∥∥
∞
< δn

}
the following holds:∥∥∥Θ̂OSSCAD −Θ∗

∥∥∥
∞
≤ 2κΓ∗

(
δn + SCAD′λ,a(θmin − r)

)
and Θ∗ij = 0⇔ Θ̂OSSCADij = 0.

Theorem 3. Assume the conditions of Theorem 2.

Then on the set T =
{∥∥∥Σ̂− Σ∗

∥∥∥
∞
< δn

}
the following holds:

∥∥∥Θ̂SCAD −Θ∗
∥∥∥
∞
≤ 2κΓ∗

(
δn +

(
aλn − θmin + 2κΓ∗δn

2κΓ∗ + a− 1

)
+

)
and Θ∗ij = 0⇒ Θ̂SCAD

ij = 0.
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3.4. Inference result

In this section we aim to construct confidence intervals for true values of precision matrix Θ∗ij .
In order to do so we mostly follow the approach suggested in Geer et al. 2014 and applied to
the problem of estimation of high-dimensional precision matrix in Janková and Geer 2015.

Consider the stationarity condition corresponding to the problem (1.1):

−Θ̂
−1

+ Σ̂ + Λ ∗ Z = 0

where Z ∈ ∂ ‖Θ‖1.

Multiply from both sides by Θ̂:

Θ̂Σ̂Θ̂− Θ̂ + Θ̂(Λ ∗ Z)Θ̂ = 0

By rearranging obtain

Θ̂ + Θ̂(Λ ∗ Z)Θ̂ = Θ∗ −Θ∗WΘ∗ + r (3.3)

where

r = −(Θ̂−Θ∗)WΘ∗ − (Θ̂Σ̂− Ip)(Θ̂−Θ∗)

Finally, we define a de-sparsified estimator as

T̂ := 2Θ̂− Θ̂Σ̂Θ̂

= Θ̂ + Θ̂(Λ ∗ Z)Θ̂

= Θ∗ −Θ∗WΘ∗ + r

(3.4)

Theorem 4. Suppose, assumptions of Lemma 5 hold. Moreover, suppose, pT := P {T } > 0

Then, for all (i, j) the following upper and lower bounds hold:

Φ

(
σij√
n
c− R

σij
√
n

)
− Aµij3
σ3
ij

√
n
− 2(1− pT ) ≤ P

{
T̂ij −Θ∗ij < c | T

}
≤ Φ

(
σij√
n
c+

R

σij
√
n

)
+
Aµij3
σ3
ij

√
n

+ 2(1− pT )

where A < 0.4748, σ2
ij = V ar[Θ∗iXkΘ

∗
jXk − Θ∗ij] and µij3 is the third moment of |Zijk|

(see (4.17)) and R is defined by (4.15).
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4. Proofs

In order to prove the claimed consistency results we employ the primal-dual witness technique
which suggest to consider the following optimization problem:

Θ̃ = arg min
Θ∈Sp++
ΘSc=0

[
tr(ΘΣ̂)− log det Θ + ‖Λ ∗Θ‖1

]
(4.1)

The only difference between the problems (1.1) and (4.1) is that the latter one forces all zero
elements to be estimated as zero, e.g. Θ̃Sc = 0. The main idea of the technique is to show that
Θ̃ = Θ̂ on some set of high probability.

We use ∆ = Θ̃− Θ∗ to denote the mis-tie between the true precision matrix and the solution
of the problem (4.1).

In our derivations we also make use of properties of the residuals of the first-order Taylor ex-
pansion of the gradient of the log-det functional which take form:

R(∆) = Θ̃
−1−Θ∗

−1
+ Θ∗

−1
∆Θ∗

−1

4.1. Existence and uniqueness of solutions of problems (1.1) and (4.1)

Since we are about to investigate the properties of solutions of the problems (1.1) and (4.1), we
first need to give sufficient conditions for their existence and uniqueness.

The lemma below is a slightly generalized version of Lemma 3 given in Ravikumar et al. 2011
and can be proven by exactly the same argument.

Lemma 1. Let ∀i 6= j Λij > 0, Λii = 0 and Σii > 0 ∀i, then the problems (1.1) and (4.1)
have unique solutions.

We also give sufficient conditions which do not include positiveness of all non-diagonal elements
of Λ but in turn rely on non-singularity of the sample covariance matrix Σ̂.

Lemma 2. Suppose, Σ̂ is non-singular. Then the problems (1.1) and (4.1) have unique solu-
tions.

Proof. We give the proof for the problem (1.1). The uniqueness of the solution for the problem
(4.1), as well as for a problem with any set of non-diagonal values of Θ restricted to zero (in
case it does not violate symmetry) can be established by the same argument.

By Lagrange duality we can rewrite the problem (1.1) in form

Θ̂ = min
Θ∈Sp++

‖C(Λ)∗Θ‖1≤1

[
tr(ΘΣ̂)− log det Θ

]
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for some Cij(Λ) < +∞ for Λij > 0 and Cij(Λ) = 0 for Λij = 0.

Now, since Σ̂ is non-singular and it is a covariance matrix, it is positive-definite. Thus, there
exists and orthogonal transform S such that ST Σ̂S = D = diag(d1...dp) and ∀i di > 0.

Then, by using the fact that tr ΘΣ̂ = trSTΘΣ̂S and by noting that detS = 1, we further
rewrite the problem as

Θ̂ = min
Θ′∈Sp++

‖C(Λ)∗(SΘ′ST )‖
1
≤1

[tr(Θ′D)− log det Θ′]

where Θ′ = STΘS. Here we have also used the fact that Θ′ ∈ S++ iff. Θ ∈ S++.

Now we just substitute the definition of the trace:

Θ̂ = min
Θ′∈Sp++

‖C(Λ)∗(SΘ′ST )‖
1
≤1

[∑
i

diΘ
′
ii − log det Θ′

]

But, due to the fact that di > 0 by Lagrange duality we finally obtain

Θ̂ = min
Θ′∈Sp++

‖C(Λ)∗(SΘ′ST )‖
1
≤1

∀i |Θ′ii|≤Ci(di)

− log det Θ′ (4.2)

for some Ci(di) < +∞.

So, the diagonal elements of Θ′ are bounded. Therefore, its trace is bounded, thus the sum of
its eigenvalues is bounded, so the feasible set is compact. Thus (recalling the convexity of the
log-det functional) the optimum exists and is unique.

Using the fact of equivalence of the problems (4.2) and (1.1) we obtain the claimed statement.

4.2. Proof of adaptive lasso consistency result

Lemma 3 (generalization of Lemma 6, Ravikumar et al. 2011). Suppose that

r := 2κΓ∗(‖W‖∞ + ‖ΛS‖∞) ≤ min

{
1

3κΣ∗d
,

1

3κ3
Σ∗κΓ∗d

}
(4.3)

then ∥∥∥Θ∗ − Θ̃
∥∥∥
∞
≤ r
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Proof (adaptation of the one given in Ravikumar et al. 2011). The problem (4.1) has a unique
solution, thus the gradient condition holds:

G(ΘS) := −[Θ
−1

]S + Σ̂S + ΛS ∗ ZS = 0

where ZS denotes an element of the sub-gradient: ZS ∈ ∂S
∥∥∥Θ̃
∥∥∥

1
.

Now we define a continuous function F : B(r)→ R|S| (whereB(r) stands for a zero-centered
|S|-dimensional l∞ ball of radius r)

F (∆S) := −(Γ∗SS)
−1
G(Θ∗ + ∆S) + ∆S

We now claim that F (B(r)) ⊆ B(r).

First, rewrite the expression for G(Θ̃S) as

G(Θ∗S + ∆S) = [−[(Θ∗ + ∆)
−1

]S + [Θ∗
−1

]S] +WS + ΛS ∗ ZS (4.4)

By Lemma 9 (which applies due to assumption (4.3) and the choice of ∆ ) we have

R(∆S)S = vec((Θ∗ + ∆)
−1−Θ∗

−1
)S + Γ∗SS∆S = vec(Θ∗

−1
∆Θ∗

−1
∆JΘ∗

−1
)S (4.5)

Using (4.4) and (4.5) obtain

F (∆S) = (Γ∗SS)
−1

vec(Θ∗
−1

∆Θ∗
−1

∆JΘ∗
−1

)S︸ ︷︷ ︸
T1

− (Γ∗SS)
−1

(W S + ΛS ∗ ZS)︸ ︷︷ ︸
T2

Clearly, ‖T2‖∞ ≤ κΓ∗(‖W‖∞ + ‖Λ‖∞) = r/2

As for T1, by Lemma 9, we have,

‖T1‖∞ ≤
3

2
dκ3

Σ∗κΓ∗ ‖∆‖2
∞ ≤

3

2
dκ3

Σ∗κΓ∗r
2

and again, by assumption (4.3), we obtain ‖T1‖∞ ≤ r/2.

Now, we have shown that the continuous function F (·) maps a ball B(r) onto itself. Thus,
we can apply the fixed-point theorem. But obviously, this function has a fixed point iff. ∃∆S ∈
B(r) : G(Θ∗S + ∆S) = 0 which is a sufficient and necessary condition for Θ∗ + ∆ to be a

solution of optimization problem (4.1) and thus
∥∥∥Θ∗ − Θ̃

∥∥∥
∞
≤ r.

Proof of Theorem 1. First, we note that Θ̂init
ij = 0 iff. θ∗ij = 0 (by Lemma 8).
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Thus, by the choice of Λada, Θ̂ada = Θ̃ada, so we can analyze the problem (4.1). Note, that this
also implies the fact that Θ∗ij = 0⇔ Θ̂ada

ij = 0

Also, by Lemma 8
∥∥∥Θ̂ada −Θ∗

∥∥∥
∞
≤ r. Thus,

∥∥Λada
S

∥∥
∞ ≤

λn(
min

i,j : Θ̂initij 6=0
Θ̂init
ij

)γ ≤
λn

(θmin − r)γ
(4.6)

Lemma 3 applies to the problem (4.1) with tuning parameters Λada due to the sparsity bound

(3.1) and the bound we have just obtained. Thus,
∥∥∥Θ∗ − Θ̃ada

∥∥∥
∞
≤ 2κΓ∗(‖W‖∞+

∥∥Λada
S

∥∥
∞).

Substituting the bound (4.6), recalling that we are considering the set T and that Θ̂ada = Θ̃ada

we obtain the claimed bound.

4.3. Proof of SCAD graphical lasso consistency result

Lemma 4 (generalization of Lemma 4, Ravikumar et al. 2011). Let

max{‖W‖∞ , ‖R(∆)‖∞} ≤
α

8
ρ

and

‖ΛS‖∞
ρ

≤ 1 (4.7)

Also, suppose Assumption 1 holds for some α ∈ (0, 1].

Then Θ̂ = Θ̃.

Proof (adaptation of the one given in Ravikumar et al. 2011). First, rewrite the stationarity con-
dition for the problem (1.1) as

Θ∗
−1

∆Θ∗
−1

+W −R(∆) + Λ ∗ Z = 0

By vectorizing obtain:

Γ∗∆ +W −R + Λ ∗ Z = 0

Now, using the fact that ∆Sc = 0 rewrite it in terms of disjoint decomposition:

Γ∗SS∆S +WS −RS + ΛS ∗ ZS = 0 (4.8)
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Γ∗Sc S∆S +WSc −RSc + ΛSc ∗ ZSc = 0 (4.9)

Solving (4.8) we obtain

∆S = −(Γ∗SS)
−1

[WS −RS + ΛS ∗ ZS]

Now, by solving (4.9) for ZSc and by substituting ∆S :

ZSc = −[Γ∗Sc S∆S +WSc −RSc ]� ΛSc

=
[
(I − Γ∗Sc SΓ∗SS

−1
)(W S +RS)− Γ∗Sc SΓ∗SS

−1
ΛS ∗ ZS

]
Where · � · denotes matrix element-wise division.

Now we take the `∞ norm of both sides and recall Assumption 1

∥∥ZSc

∥∥
∞ ≤

2− α
ρ

(‖W‖∞ + ‖R‖∞) + (1− α)
‖ΛS‖∞
ρ

≤ 2

ρ
(‖W‖∞ + ‖R‖∞) + (1− α)

≤ 2

ρ

(
2α

8
ρ

)
+ (1− α)

= 1− α

2
< 1

The strict dual feasibility condition holds. Therefore, we have Θ̂ = Θ̃.

Lemma 5 (generalization of Theorem 1, Ravikumar et al. 2011). Consider a distribution satis-
fying Assumption 1 with some α ∈ (0, 1], let Θ̂ be the solution of optimization problem (1.1).

Suppose also the following restrictions on the penalization parameters Λ hold

‖ΛS‖∞ ≤
8

α
δn

and

ρ ≥ 8

α
δn

Furthermore, suppose the following sparsity assumption holds:
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d ≤ δn
6(δn + ‖ΛS‖∞)2 max{κΓ∗κΣ∗ , κ2

Γ∗κ
3
Σ∗}

(4.10)

Then on the set T =
{∥∥∥Σ̂− Σ∗

∥∥∥
∞
< δn

}
the following hold:∥∥∥Θ̂−Θ∗

∥∥∥
∞
≤ rΛ := 2κΓ∗(δn + ‖ΛS‖∞)

and

Θ∗ij = 0⇒ Θ̂ij = 0 (4.11)

Proof. First, we show that Lemma 3 applies.

The inequality

2κΓ∗(‖W‖∞ + ‖ΛS‖∞) ≤ min

{
1

3κΣ∗d
,

1

3κ3
Σ∗κΓ∗d

}
(4.12)

holds due to assumption (4.10). Therefore, we have a bound∥∥∥Θ̃−Θ∗
∥∥∥
∞
≤ 2κΓ∗(‖W‖∞ + ‖ΛS‖∞) (4.13)

Now, we show the applicability of Lemma 4.

First, observe that

‖W‖∞ ≤ δn ≤
α

8
ρ

In order to bound R(∆) we use Lemma 9 which applies due to bounds (4.13) and (4.12) and
make use of the sparsity bound (4.10):

‖R(∆)‖∞ ≤
3

2
d ‖∆‖2

∞ κ
3
Σ∗ ≤ δn ≤

α

8
ρ

The assumption (4.7) of Lemma 4 clearly holds as well.

Thus, Θ̃ = Θ̂ which combined with (4.13) gives the bound claimed along the with the sparsis-
tency property (4.11).

Proof of Theorem 2. Since, the conditions of the Lemma 8 hold,
∥∥∥Θ̂(0) −Θ∗

∥∥∥
∞
≤ r and

Θ∗ij = 0⇔ Θ
(0)
ij = 0.

Therefore,
∥∥∥Λ

(1)
S

∥∥∥
∞
≤ λn ≤ 8

α
δn and ρ(1) = λn ≥ 8

α
δn and, due to Σ̂ being non-singular,

the problem (3.2) has a unique solution. Thus, Lemma 5 applies here giving the bound for

12



Θ̂OSSCAD. Moreover, due to the bound (A.1) we have Θ∗ij = 0 ⇔ Θ̂OSSCAD
ij = 0 (since the

bound for Θ̂
(1)
ij is not less strict that the one for Θ̂

(0)
ij ).

Proof of Theorem 3. Theorem 2 provides the bound for Θ̂(1) along with the sparsistency prop-
erty: Θ∗ij = 0⇔ Θ̂

(1)
ij = 0.

Following the same argument we prove the following bound for every Θ̂(k):∥∥∥Θ̂(k) −Θ∗
∥∥∥
∞
≤ 2κΓ∗

(
δn +

∥∥∥Λ
(k)
S

∥∥∥
∞

)
(4.14)

and we have the following recurrent expression for Λ
(k)
S

∥∥∥Λ
(k)
S

∥∥∥
∞
≤

(
aλn − |θmin − 2κΓ∗(δn + Λ

(k−1)
S )|

a− 1

)
+

Some algebra yields

∥∥∥Λ
(k)
S

∥∥∥
∞

k→∞−−−→
∥∥∥Λ

(∞)
S

∥∥∥
∞
≤
(
aλn − θmin + 2κΓ∗δn

2κΓ∗ + a− 1

)
+

And the passage to the limit in inequality (4.14) yields the claimed bound. The second statement
of the theorem follows from (A.1).

4.4. Proof of the inference result

The next lemma bounds the remainder r on the set T =
{∥∥∥Σ̂− Σ∗

∥∥∥
∞
< δn

}
.

Lemma 6. Suppose, assumptions of Lemma 5 hold. Then, on the set T =
{∥∥∥Σ̂− Σ∗

∥∥∥
∞
< δn

}
it holds that

‖r‖∞ ≤ R := 2drΛ(κΘ∗δn + (dδn + κΣ∗)rΛ) (4.15)

Proof.

‖r‖∞ ≤
∥∥∥(Θ̂−Θ∗)WΘ∗

∥∥∥
∞

+
∥∥∥(Θ̂Σ̂− Ip)(Θ̂−Θ∗)

∥∥∥
∞

≤ |||(Θ̂−Θ∗)|||1(‖WΘ∗‖∞ +
∥∥∥(Θ̂Σ̂− Ip)

∥∥∥
∞

)

≤ drΛ(‖WΘ∗‖∞ +
∥∥∥Θ̂Σ̂− Ip

∥∥∥
∞

)

13



∥∥∥(Θ̂Σ̂− Ip)
∥∥∥
∞

=
∥∥∥(Σ̂− Σ∗)(Θ̂−Θ∗) + Σ∗(Θ̂−Θ∗) + (Σ̂− Σ∗)Θ∗

∥∥∥
∞

≤ (dδn + κΣ∗)
∥∥∥Θ̂−Θ∗

∥∥∥
∞

+ ‖WΘ∗‖∞

‖r‖∞ ≤ drΛ(2 ‖WΘ∗‖∞ + (dδn + κΣ∗)
∥∥∥Θ̂−Θ∗

∥∥∥
∞

)

≤ 2drΛ(κΘ∗δn + (dδn + κΣ∗)rΛ)

The next lemma shows that conditioning on a set of high probability does not significantly
change the cumulative distribution function of a random variable

Lemma 7. Let x be a random variable and let A be some set of probability pA > 0. Then

|P{x < c} − P{x < c | A}| ≤ 2(1− pA)

Proof.

|P{x < c} − P{x < c | A}| = |P{x < c | A}P(A) + P{x < c | A}P(A)− P{x < c | A}|
≤ (1− pA)P{x < c | A}+ P{x < c | A}(1− pA)

≤ (1− pA) + (1− pA) = 2(1− pA)

Proof of Theorem 4. Using equation (3.3), and the definition of T̂ (3.4) we obtain for all (i, j)

√
n(T̂ij −Θ∗ij) =

1√
n

∑
k

Zijk +
r√
n

(4.16)

where

Zijk := Θ∗iXkΘ
∗
jXk −Θ∗ij (4.17)

Observe that Zijk are i.i.d. (for (i, j) fixed) and E[Zijk] = 0.

Now we divide both sides of (4.16) by σij :=
√
V ar[Zijk]

√
n(T̂ij −Θ∗ij)/σij =

1

σij
√
n

∑
k

Zijk︸ ︷︷ ︸
S

+
r
√
n

σij

14



The cumulative distribution function of S can be estimated by Berry-Esseen inequality (Korolev
and Shevtsova 2010)

|P {S < c} − Φ(c)| ≤ Aµij3
σ3
ij

√
n

with A < 0.4748.

Now from Lemma 7 we have

|P {S < c} − P {S < c| T }| ≤ 2(1− pT )

Combining the latter two inequalities yields

|P {S < c| T } − Φ(c)| ≤ Aµij3
σ3
ij

√
n

+ 2(1− pT )

Next we make use of the bound for the residual r provided by Lemma 6.

P
{
S +

r
√
n

σij
< c | T

}
≤ P

{
S − R

√
n

σij
< c | T

}

P
{
T̂ij −Θ∗ij < c | T

}
≤ Φ

(
σij√
n
c+

R
√
n

σij

)
+
Aµij3
σ3
ij

√
n

+ 2(1− pT )

And in the same way the lower bound can be obtained as:

P
{
T̂ij −Θ∗ij < c | T

}
≥ Φ

(
σij√
n
c− R

√
n

σij

)
− Aµij3
σ3
ij

√
n
− 2(1− pT )

5. Simulation experiments

5.1. Functional connectivity network from experimental data

For our examples we rely on a functional network that we determined from an experimental fMRI
dataset in a recent study (Puschmann, Brechmann, and Thiel 2013) that examined learning-
dependent plasticity in the human auditory cortex. There, fMRI data with a total of 1680 EPI
volumes were acquired with a 3 T Siemens MAGNETOM Trio MRI scanner (Siemens AG, Er-
langen, Germany) with an eight-channel head array. We randomly selected a dataset from a
single subject. The subject performed a learning experiment with auditory stimuli, number com-
parison task and reward. The details of the experiment and data acquisition can be found in

15



Puschmann, Brechmann, and Thiel 2013. We do not repeat them here, because we used the
fMRI data only to obtain a realistic network with a natural sparsity pattern for the simulation
experiments.

In order to define suitable nodes for the functional connectivity network we used the parcellation
atlas defined in a recent study (Finn et al. 2015) which is available online at the BioImage
Suite NITRC page 1. We normalized the atlas to the motion-corrected functional dataset using
SPM12 2 with standard parameters. Mean time courses of the p = 256 regions-of-interest were
determined to estimate a functional connectivity network. In order to exclude changes in the
network due to the learning effect in the experiment, only the last n = 300 time points were
used. The network analysis was conducted on the residuals of linear modeling common in fMRI
experiments (Poldrack, Mumford, and Nichols 2011). This way a matrix X∗ of size 256 × 300
of real data was acquired.

5.2. Software

All simulations were performed with the R language and environment for statistical comput-
ing and graphics (R Core Team 2016). The following R packages were used: oro.nifti
(Whitcher, Schmid, and Thornton 2011) was used in order to work with the format the data were
stored in, as an implementation of graphical lasso the package glasso (Friedman, Hastie, and
Tibshirani 2014) was used, igraph package (Csardi and Nepusz 2006) was used in order to
manipulate and visualize graphs, sampling from multivariate normal distribution was conducted
by MASS package (Venables and Ripley 2002), and an implementation of partial correlation
matrix estimator by Pearson method was borrowed from ppcor package (Kim 2012).

5.3. Simulation study

5.3.1. The way the data are simulated

First, we extracted a precision matrix which was then considered to be a true matrix from the
real data X∗. In order to do so we first used thresholded graphical lasso with some penaliza-
tion parameter λ1 and a threshold parameter of 0.1 (e. g. we set all the parameters estimated
by graphical lasso smaller than 0.1 by absolute value to zero) applied to all the non-diagonal
elements of the precision matrix on the whole sample X∗. This way we obtained a sparse pre-
cision matrix Θ1 which may be seen as an adjacency matrix of some graph with 256 vertices:
|V | = 256. Next we chose the largest component of the graphC ⊂ V . Finally, we used thresh-
olded graphical lasso with the same threshold parameter and a possibly different penalization
parameter λ2 taking into account only the nodes included in the main component, e.g. we ap-
plied graphical lasso to the sampleX∗C·, which produces a precision matrix Θ∗ of size |C|×|C|
which is treated as a true matrix in our simulation. It is easy to see that, λ1 controls the size of
the true network and λ2 controls its sparsity.

1https://www.nitrc.org/frs/?group_id=51
2http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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the graph of size 60 and sparsity 0.100564971751412
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Figure 1 – Upper-left: Graph obtained with λ1 = 0.6, λ2 = 0.3. Then p = 60 and sparsity =
0.100. Upper-right: power of hypothesis testing for adaptive (red), non-adaptive (black)
and the classical approach (green). Lower-left: coverage probability for adaptive (red)
and non-adaptive (black) approach. Lower-right: accuracy of classification between zero
and non-zero parameters using adaptive (red) and non-adaptive approach (black).

Simulated data were drown independently from a Gaussian distribution N (0,Θ∗
−1

) varying n
from 50 to 4500.

In all the experiments involving either adaptive or non-adaptive graphical lasso the penalization

parameter was chosen as λ =
√

log p
n

which is an asymptotically optimal choice (Janková and
Geer 2015). In all the experiments one-step SCAD graphical lasso was used as an adaptive
approach.

5.3.2. Hypothesis testing

For each non-diagonal element of the precision matrix the null-hypothesis Hij
0 = {Θ∗ij = 0}

can be tested against an alternative Hij
1 = {Θ∗ij 6= 0}. In order to do so a de-sparsified

estimator T̂ij  N (Θ∗ij, σ
2
ij) was used with σ2

ij replaced by the suitable estimator

σ̂2
ij := Θ̂iiΘ̂jj + Θ̂2

ij

(see also Lemma 10). Finally, Bonferroni-Hochberg multiplicity correction was applied and the
power of the test was computed.
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the graph of size 60 and sparsity 0.0497175141242938
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Figure 2 – As Fig. 1 but with λ1 = 0.6, λ2 = 0.6, p = 60, sparsity = 0.050

the graph of size 60 and sparsity 0.0299435028248588
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Figure 3 – As Fig. 1 but λ1 = 0.6, λ2 = 0.65, p = 60, sparsity = 0.034
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the graph of size 60 and sparsity 0.0338983050847458
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Figure 4 – As Fig. 1 but λ1 = 0.6, λ2 = 0.67, p = 60, sparsity = 0.030

the graph of size 23 and sparsity 0.130434782608696
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Figure 5 – As Fig. 1 but λ1 = 0.65, λ2 = 0.65, p = 23, sparsity = 0.130
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the graph of size 23 and sparsity 0.106719367588933
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Figure 6 – As Fig. 1 but λ1 = 0.65, λ2 = 0.67, p = 23, sparsity = 0.107

the graph of size 23 and sparsity 0.0632411067193676
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Figure 7 – As Fig. 1 but λ1 = 0.65, λ2 = 0.7, p = 23, sparsity = 0.063
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the graph of size 23 and sparsity 0.0237154150197628
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Figure 8 – As Fig. 1 but λ1 = 0.65, λ2 = 0.75, p = 23, sparsity = 0.024

In our experiments we compared tests based on the de-sparsified estimator produced by `1-
penalized estimator, the adaptive estimator and on the classical approach employing Fisher
z-transform z(·) on the elements of the partial correlation matrix. The classical approach can
be summarized as follows: the partial correlation matrix was estimated with the Pearson method.
Fisher z-transform was applied afterward producing approximately normally distributed values
zij  N (z(ρ∗ij), n − p − 1) where ρ∗ is a true partial correlation matrix. Clearly, ρ∗ij = 0 iff.
Θ∗ij = 0, so one can use values zij as a test statistic.

The power (the fraction of null-hypotheses Hij
0 rejected for non-zero elements of Θ∗) of these

tests were compared.

5.3.3. Confidence interval

Using the de-sparsified estimator T̂ij approximate (1 − β)100% confidence intervals for the
individual values of precision matrix were constructed as

Iβ,nij (Θ̂) = [T̂ij − Φ−1(1− β/2)σij/
√
n, T̂ij + Φ−1(1− β/2)σij/

√
n]

where Φ(·) stands for cumulative distribution function of standard normal distribution and Φ−1(·)
denotes its inverse.

In order to compare the approaches we estimated the mean probability for the interval to cover
the true value 1

p(p−1)

∑
i 6=j P{Θ∗ij ∈ I

β,n
ij (Θ̂)} and compared its absolute deviation from 1−β
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for the approaches under comparison.

In our experiments the confidence level was chosen as β = 0.05.

5.3.4. Classification between zero and non-zero elements

We compared the ability of the adaptive and non-adaptive approaches to classify between zero
and non-zero parameters. In order to improve accuracy we applied Fisher z-transform to the
partial correlation matrix corresponding to the precision matrix produced by the methods being
compared. The distribution of the estimated partial correlation coefficients is highly skewed (for
|ρ| � 0) with variances depending on the correlation coefficients. Fisher z-transform makes
variance parameters independent and improves the normal approximation. The values pro-
duced by Fisher z-transform were compared with 0.05 (half of the threshold parameter, see
sub-Section 5.3.1) in order to classify the correlation coefficient equals as zero or not.

The accuracies of such classifiers were compared.

5.3.5. Description of the figures

The graphs obtained in the manner described in Section 5.3.1 along with the results obtained
(see Sections 5.3.2–5.3.4 for details) are given in Figures 1 – 8. The values of the penalization
parameters λ1 and λ2 used to produce these graphs along the number of vertexes p and its
sparsity (the fraction of non-zero off-diagonal element of Θ∗) are given in the captions. The
upper-left plots represent the extracted graph. In all these plots each vertex occupies the same
spot and disconnected components are shown in different colors. The upper-right plots report
the powers of hypothesis testing based on the adaptive, non-adaptive graphical lasso and on
a classical approach (see sub-Section 5.3.2). The lower-left plots compare the coverage prob-
abilities of the constructed confidence intervals using the estimator based on the adaptive and
non-adaptive estimator (see sub-Section 5.3.3). The lower-right plots represent the comparison
of accuracies of classification between zero and non-zero parameters based on the adaptive
and non-adaptive approach (see sub-Section 5.3.4). The performance of non-adaptive graphi-
cal lasso is show in black, of the adaptive approach in red and the performance of the classical
approach (on the plots reporting the powers of statistical tests) is show in green.

6. Discussion

The experiments showed that the tests based on the classical approach are always outper-
formed by those based on graphical lasso approaches (apart from the cases where n � p
where all the approaches perform nearly perfect). At the same time adaptive graphical lasso
tends to notably outperform non-adaptive graphical lasso in case of short samples, though
sometimes (in case of a denser true precision matrix, see Figure 1) non-adaptive approach
performs better for sufficiently large samples.

The confidence intervals constructed using the adaptive graphical lasso estimate exhibit cov-
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erage probabilities significantly closer to the desired confidence level in comparison to those
obtained using non-adaptive graphical lasso estimates.

In experiments on the accuracy of classification between zero and non-zero parameters adap-
tive approach performs notably better for all sizes of sample n apart for the case of a denser
precision matrix (see Figure 1).

We believe, that superiority of adaptive graphical lasso over a non-adaptive graphical lasso is
related to the fact that non-adaptive lasso penalizes all the values with the same penalty pa-
rameter λ whereas adaptive graphical lasso might reduce penalization of non-zero parameters
which leads to the reduction of bias brought in by penalization (compare Theorem 2 and Lemma
8 ). At the same time, non-normality of the de-sparsified estimator depends on the largest pe-
nalization parameter corresponding to a non-zero element ‖ΛS‖∞ (see Theorem 4), which in
case of non-adaptive graphical lasso equals λ while in case of an adaptive approach might be
smaller.
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Appendix A Consistency result for the `1-penalized
estimator by Ravikumar et al. 2011

Lemma 8 (Theorem 1, Ravikumar et al. 2011). Consider a distribution satisfying Assumption 1
with some α ∈ (0, 1], let Θ̂ be a solution of the optimization problem (1.1) with tuning parame-
ters Λij = λn = 8

α
δn for i 6= j.

Furthermore, suppose the following sparsity assumption:

d ≤ δn
6(δn + λn)2 max{κΓ∗κΣ∗ , κ2

Γ∗κ
3
Σ∗}

Also assume that

θmin > r := 2κΓ∗(δn + λn) (A.1)

Then on the set T =
{∥∥∥Σ̂− Σ∗

∥∥∥
∞
< δn

}
the following holds:

∥∥∥Θ̂−Θ∗
∥∥∥
∞
≤ r and Θ∗ij =

0⇔ Θ̂ij = 0.
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Appendix B The bound for R(∆) by Ravikumar et al. 2011

Lemma 9 (Lemma 5, Ravikumar et al. 2011). Suppose, ‖∆‖∞ ≤
1

3κΣ∗d
. Then the matrix

J :=
∑∞

k=0(−1)k(Θ∗
−1

∆)k satisfies the bound ‖J‖∞ ≤ 3/2 and the matrix

R(∆) = Θ∗
−1

∆Θ∗
−1

∆JΘ∗
−1

is bounded as

‖R(∆)‖∞ ≤
3

2
d ‖∆‖2

∞ κ
3
Σ∗

Appendix C The estimation σ̂2
ij for σ2

ij

Lemma 10 (generalization of Lemma 2 by Janková and Geer 2015). Assume conditions of
Lemma 5. Moreover, let Xi ∼ N (0,Σ∗). Define the estimator σ̂2

ij as

σ̂2
ij := Θ̂iiΘ̂jj + Θ̂2

ij

Then on set T =
{∥∥∥Σ̂− Σ∗

∥∥∥
∞
< δn

}
|σ̂2
ij − σ2

ij| ≤ 2rΛ(2νΘ∗ + rΛ)

where νΘ∗ = ‖Θ∗‖∞

Proof. Xi ∼ N (0,Σ∗), then Θ∗X ∼ N(0,Θ∗). Some algebra yields

σ2
ij = Θ∗iiΘ

∗
jj + Θ∗2ij

Therefore

|σ̂2
ij − σ2

ij| ≤ |Θ̂iiΘ̂jj −Θ∗iiΘ
∗
jj|+ |Θ̂2

ij −Θ∗2ij |

Now using the bond provided by Lemma 5 we can bound the terms on the right hand

|Θ̂iiΘ̂jj −Θ∗iiΘ
∗
jj| ≤ (Θ∗ii + Θ∗jj)rΛ + r2

Λ

|Θ̂2
ij −Θ∗2ij | = |(Θ̂ij −Θ∗ij)(Θ̂ij + Θ∗ij)|

≤ rΛ(2Θ∗ij + rΛ)

And finally
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|σ̂2
ij − σ2

ij| ≤ rΛ(2νΘ∗ + rΛ) + 2νΘ∗rΛ + r2
Λ

= 2rΛ(2νΘ∗ + rΛ)

Appendix D Probability of the set T

Assumption 2 (Sub-Gaussianity condition). Denote the normalized components of the vector
X1 as ξi = X1i√

Σ∗ii
. Then, we say that the Sub-Gaussianity condition holds for vector X1 if

∃K > 0 : ∀i E exp

(
ξ2
i

K2

)
≤ 2

Lemma 11 (by Ravikumar et al. 2011 in form by Janková and Geer 2015). Let Assumption 2
hold for some K > 0. Then for

δ(n, r) = 8(1 + 12K2) max
i

Σ∗ii

√
2

log(4r)

n

and for any γ > 2 and for n such that δ(n, pγ) < 8(1 + 12K2) maxi Σ
∗
ii we have

P
{∥∥∥Σ̂− Σ∗

∥∥∥
∞
≤ δ(n, pγ)

}
≥ 1− 1

pγ−2
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