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Abstract

We consider networks of spiking coincidence detectors in continuous time. A single
detector is a finite state machine that emits a pulsatile signal whenever the number incom-
ing inputs exceeds a threshold within a time window of some tolerance width. Such finite
state models are well-suited for hardware implementations of neural networks, as on inte-
grated circuits (IC) or field programmable arrays (FPGAs) but they also reflect the natural
capability of many neurons to act as coincidence detectors.

We pay special attention to a recurrent coupling structure, where the delays are tuned
to a specific pattern. Applying this pattern as an external input leads to a self-sustained
reverberation of the encoded pattern if the tuning is chosen correctly.

In terms of the coupling structure, the tolerance and the refractory time of the individual
coincidence detectors, we determine conditions for the uniqueness of the sustained activ-
ity, i.e., for the funcionality of the network as an unambiguous pattern detector. We also
present numerical experiments, where the functionality of the proposed pattern detector is
demonstrated replacing the simplistic finite state models by more realistic Hodgkin-Huxley
neurons and we consider the possibility of implementing several pattern detectors using
a set of shared coincidence detectors. We propose that inhibitory connections may aid to
increase the precision of the pattern discrimination.

1 Introduction

During the recent years an increasing interest was directed towards the possibility of neural in-
formation coding with time-differences between spikes of different neurons [1–7]. For instance,
sensory stimuli of various types were shown to be encoded and processed as such multivari-
ate sequences of spikes [8–17]. Furthermore, also primarily cognitive processes, related to
mnemonic or associative tasks, are widely believed to be manifested in precisely timed patterns
of spike-times [6, 11, 14, 18–21].

As a possible origin of the observed phenomena, Abeles [22] proposed the activity of synfire
chains. These consist of feedforward connected layers of neurons through which a wave of
excitation can propagate from layer to layer where at each stage the neurons in the same pool
fire synchronously. A specific stimulus activates a specific synfire chain that is guided from one
layer to the next and thereby creates patterns of the observed type.

However, models of synfire chains do not account for heterogeneous axonal, synaptic and den-
dritic delays, which do exist within the brain [12, 23–26]. If non-identical delays are included
there is still a possibility that an excitation is propagated through the network, if at each partici-
pating neuron a sufficient number of inputs converges within a sufficiently narrow time window.
For each neuron this coincidence of inputs depends on the temporal signature of the activity of
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its predecessors such that the activation of the entire chain must appear as a precise orchestra-
tion of coincidences. The emerging propagating structures were introduced as “synfire braids”
by Bienenstock [27] and later studied under the term “polychronous groups” (PGs) by Izhikevich
[28]. It was shown that they arise naturally in sufficiently complex random networks constructed
in physiologically plausible parameter ranges [28–30]. There are two major implications of het-
erogeneous delays. Firstly, the neurons which participate in the propagation do not necessarily
fire synchronously and in a clocked manner, i.e. in well-defined layers. The observerved firing-
sequence is now a general multivariate pattern. Secondly, the systems storage capacity in form
of the number of distinct responses to inputs is believed to be potentiated [28]. An appealing
feature of the “web” of PGs is their complex interleaving: One neuron can be part of different but
overlapping groups – even the same ensemble of neurons may constitute different PGs.

The theoretical properties and computational capabilities of PG networks received an increasing
interest in the past years [28, 31–33]. The number of PGs of a network, which reflects the
number of information processing pathways was studied numerically [28, 30, 34–37] but it is
difficult to obtain a theoretical estimate and none is available up to date, as far as we know.
Methods for reservoir computing have been developed which exploit the dynamical formation of
PGs by spike-timing dependent plasticity and train the read-out delay lines of a complex network
[38].

In this paper we present circuits of neurons which function as pattern detectors and reverber-
ators. They can be used as building blocks for networks of spiking neurons which operate on
multivariate temporal patterns. The reverberating behavior is obtained by tuning the delays of
synaptic connections of a circular PG to a specific pattern in a way that it responds positively
only if this particular pattern arrives at its inputs, see fig. 1. Here a positive response consists
of a sustained repetition of the recognized pattern. Such a circuitry of neurons fulfills short and
long term mnemonic functions. Indeed, as long as the delays remain unchanged, they store
the corresponding pattern as a long term memory. Furthermore, if a pattern is recognized, it
reverberates through the circuit and reproduces itself over and over again until some external
input switches it off or some internal saturation comes to a threshold. Thus, the stable repetition
of the presented pattern may serve as a short term or working memory since the activity of the
reverberator indicates that its associated pattern occurred within the immediate past.

Reverberating activity in recurrent structures is seen as one possible mechanism underlying
the occurrence of repeating patterns in the brain [31, 33, 39–41]. However, it is not proven that
structures as the proposed pattern reverberator occur in the brain. In section 3 we show that in
principle it can be build from Hodgkin-Huxley neuron models, which suggests that it may have
developed naturally as well. The chance to find the proposed conectivity is probably not very
low if one considers a randomly connected network of the scale of the brain, i.e., 1011 neurons
with 1014 connections [42, 43].

To illustrate our idea, we will first explain the mechanism of pattern reverberation with a descrip-
tion by minimalistic coincidence detector networks [see Sec. 2]. Here, analytical reasoning is
possible to some extend. A numerical illustration that the main ideas can be transferred to a net-
work of more realistic neuron models is shown in section 3. We discuss the results in Section 4
and provide an Appendix containing theoretical results on sustained activity in homogeneous
delay networks.
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Figure 1: Activity in a single pattern reverberator consisting of six Hodgkin-Huxley neurons. The
upper panel of part (a) shows a sustained activity indicated by repeated spiking (the neurons
voltage traces are shown color-coded). The activation was successfully triggered by an appro-
priate stimulation shown in the lower panel of part (a). Part (b) shows an untimely stimulation
(the pulse-signal of the second input channel is delayed) which only leads to a transient activity.

2 Design of a pattern reverberator

In the following we describe a pattern detector which is built as a network of spiking neurons.
It is designed to determine the correct timing of spikes in a multivariate signal. This signal is a
sequence of spikes arriving via different channels, i.e., at different neurons. In the following, we
consider signals which are composed of exactly one spike per channel. If the correct sequence
of input signals arrives at the detector it reacts with sustained activity. More specifically, it repeats
the recognized sequence for a certain time.

This behavior is achieved by two essential ingredients. One is the appropriate tuning of the con-
nection delays within the system, which are responsible for the reaction of the system to the
right pattern. The second ingredient is the principle that a single pre-synaptic action potential
(AP) cannot force a neuron to fire but several coincident inputs are required. This enables ex-
cluding sustained responses to wrongly timed or incomplete input sequences. We first define
a simplified neuron model, which captures a neuron’s capability to act as a spike coincidence
detector. Similar models were introduced before, e.g., in Refs. [34, 44, 45]. Then we give some
results on the possible modes of activity in networks of such neurons, which have homogeneous
connection delays. This leads us to a simple design of a network, which is able to react with syn-
chronous activity in response to a synchronous input on all channels, exclusively. For all other
inputs no sustained activity can occur. Afterwards we show how the results for homogeneous
delay models can be transferred to a class of models with inhomogeneous delays allowing for
the detection of a large variety of multivariate inputs. Finally, we show that the detector is still
functional in the case of small deviations of delay- and stimulation times from the prescribed
values, which are inevitable in practical implementations.

2.1 A minimalistic neuron model

Whether a neuron generates an actionpotential in response to incoming stimuli depends on a
number of factors as the amount and timing of stimuli, their amplitude, and the current state of
the neuron, which depends on its history. Since our focus lies on a particular kind of collective
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behavior it is adequate to focus on the modeling of the essential properties responsible for
this phenomenon. Many neurons have the ability to detect the coincidence of inputs [7, 12,
46, 47]. Given a set of incoming excitatory stimuli it is more likely that a neuron produces an
actionpotential if the stimuli arrive within a small timeframe than if they arrive well separated.
This is due to the neurons tendency to restore its resting potential after an input that did not
excite the neuron above threshold. Therefore subsequent inputs cannot accumulate to a super-
threshold excitation if the neuron is given enough time between them. See Fig. 2(a),(b) for an
illustration in case of a Hodgkin-Huxley (HH) neuron model.

In the following, we model a single neuron as a coincidence detector, which can only assume a
finite set of states. This modeling is partly motivated by an electronic implementation using FP-
GAs and partly by the intention to obtain rigorous theoretical results about the dynamic behavior
of the model.

We define a coincidence detector of ν-th order as a finite state system in continuous time x (t) ∈
{0, ..., ν} which is able to receive quantized inputs at arbitrary points in time. An input at time t
leads to a reset of x as:

x(t+) =

{
x(t−) + 1, if 0 < x(t−) < ν,

0, if x(t−) ∈ {0, ν} ,
(1)

where x(t±) = limε↓0 x (t± ε). This means, if the neuron is not in the refractory state x = 0,
its state is either increased by 1 or it is immediately reset to the refractory state. Such a reset
is interpreted as a spike event taking place after the state has exceeded the threshold x = ν.
Additionally, the relaxation of the neuron to its resting potential x = 1 is modeled as follows: if
x does not exceed the threshold after a time τe has passed since the input, x is decreased by
one. This is the basis for its functionality as a coincidence detector. Indeed, a neuron which is
not in its refractory period emits a spike if and only if it has received at least ν inputs within a
temporal window of width τe. Therefore, we call τe the tolerance or excitation time. The refractory
period, τr, is the time interval where x is not susceptible to inputs after it has emitted a spike.
This means that if x emits a spike at time t, it will switch from the state x(t + τ−r ) = 0 to
x(t + τ+r ) = 1 at time t + τr. During the interval (t, t + τr) the neuron remains at x = 0
unresponsive to the external inputs.

In the case τe < τr the described model can be formalized as follows:

ẋ(t) =
∑
tj

[(
χ[1,ν−1] − νχ{ν}

)
δ(t− tj)− χ[2,ν]δ(t− tj − τe) + δ(t− tj − τr)

]
, (2)

where tj are the times of external pulses arriving and χI is the indicator function such that
χI = 1 for x(t−) ∈ I and χI = 0 otherwise. The delta-function aδ(t− t∗) denotes the jump of
the solution x(t+∗ ) = x(t−∗ )+a. From Eq. (2) it is evident that this model possesses time-delays
τe and τr, and its evolution is determined by the history interval of the length max{τe, τr}. In
the case τe > τr, an additional component of the dynamics must be taken into account, which
is not covered by Eq. (2), i.e., when the excitation decay at time tj + τe appears to follow some
refractory interval caused by a later spike, that is tj + τe > tj+k + τr. In such a case, the decay
term χ[2,ν]δ(t− tj − τe) has to be disregarded.
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Figure 2: Comparison of a Hodgkin-Huxley neuron [(a) and (b)] and the minimal model (2) for
a coincidence detector of second order [(c) and (d)]. Both models exhibit a tolerance time τe
(indicated by a blue bar) which represents an upper bound of the interspike interval of two
arriving stimuli which trigger a postsynaptic spike.

Figure 2 compares the responses of the coincidence detector and a more realistic HH neuron
model on two subsequent pulse inputs. If the time interval between the inputs is smaller than τe
[Figs. 2(a) and (c)] then a spike is emitted. Otherwise, the system is not responding with a spike
[Figs. 2(b) and (d)]. Details of the chosen parameters for the HH model are given in Appendix E.

2.2 Sequence detection by networks of coupled coincidence detectors

To construct a detector for a multivariate spike sequence withN channels we consider a network
of coincidence detectors with delayed interactions between its units xj , j = 1, ..., N . If xj is
coupled into xi, a spike emitted by xj at time t arrives as an input at the postsynaptic element
xi at time t+ τi,j , where τi,j ≥ 0 is the propagation delay from xj to xi. At the moment of the
input arrival the state of the postsynaptic element xi is reset according to Eqn. (1).

The generation of a spike by xi requires that at least ν predecessors have spiked polysyn-
chronously with respect to xi, which means that their inputs arrive at xi simultaneously within
a time interval of width τe. We assume that each of the N elements acts as a receptor for one
signal channel. This means, whenever an external signal of type j ∈ {1, ..., N} arrives at some
time t, the corresponding element xj instantaneously emits a spike and is reset to xj(t+) = 0.
Concerning this external signal, there is no subthreshold excitation, i.e. it acts like a bundle of
at least ν simultaneous presynaptic inputs.

We assume that a successful recognition corresponds to an increased activity of the network
and take this increased activity to correspond to indefinitely sustained activity in the simplified
model. Hence, we say that a sequence of external inputs is accepted if the system’s response
is a sustained activity. Otherwise, i.e. if the response activity is only transient and dies out
after finite time, the system is said to have rejected the input sequence. Our aim is to design a
coupling structure which accepts exactly one desired sequence, where perturbations of the input
sequence should be accepted within some tolerance bound. Other inputs should be rejected.
We assume that the sequence which is to be recognized has the form s = (s1, ..., sN), where
each entry sj ≥ 0 corresponds to an input time moment from the channel j.
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2.3 Sustained activity in a regular network with homogeneous delays

Let us now consider how to achieve the desired behavior of the network, i.e. that it responds
to a specific pattern with a sustained activity. For the beginning we assume that all delays
τi,j ≡ τ0 are the same and that the pattern to be recognized is the synchronous sequence
s0 = (0, ..., 0). After the initial simultaneous external stimulation of all elements at time t0, all
elements emit spikes, which arrive at their successors at time t0+τ0. Since we wish that the sys-
tem reacts by sustained activity, it is obviously necessary that τ0 > τr. Otherwise the elements
are in refractory state at time t0 + τ0, no new spikes are emitted and the network remains silent
afterward. Furthermore, it is clear that sustained synchronous spiking of all neurons is possible
if and only if each neuron has an in-degree din equal to or larger than the coincidence order ν.
This synchronous spiking mode is then triggered by a stimulation with the sequence s0. A more
general result about the possibility of sustained activity is proven in Appendix A, where we ex-
plore conditions under which the existence of an activity core is a sufficient [Proposition A.1] or
even necessary and sufficient condition [Proposition A.2] for the existence of sustained activity.
The activity core is defined as the maximal subsetA ⊂ {1, ..., N} of nodes which fulfills

A =
{
j | din (j)|A ≥ ν

}
, (3)

where din (j)|A is the restricted in-degree of the unit xj with respect to connections from other
units inA only.

To preclude the synchronous mode to be activated by a stimulation different from s0 (up to a
certain error tolerance of order τe), we stipulate that all in-degrees equal to the coincidence
order

din(j) = ν. (4)

For networks fulfilling (4), we show that for sufficiently small tolerance time τe the synchronous
mode is the only possible mode of sustained activity for the network if the sequence

{j} → Pre({j})→ Pre(Pre({j}))→ ... (5)

becomes stationary at {1, ..., N} for all j. Here Pre(A) denotes the predecessors of a subset
A

Pre(A) := {xk | ∃xj ∈ A : xk → xj}.

The proof is given in the Appendix C, Proposition C.3. Perhaps more intuitively, the stationarity
of (5) for all j means that for large enough m there must exist paths of length m between
each pair of nodes. This means, the network is strongly connected and the greatest common
divisor (GCD) of all cycle lengths is one. It has been studied in [48] how the GCD is related to
synchronized clusters and global synchronization in the case ν = 1.

Note that if τ0 is large enough (τ0 > 2τr) there may formally exist distinct sustained syn-
chronous solutions which consist of a periodically repeated series of synchronous spikes where
the interspike intervals are larger than the refractory period τr and the period is at most τ0. The
fact, that multiple coexisting solutions appear with increasing τ0, is a general property of sys-
tems with time delays [49]. However, only one of these distinct solutions (the one with uniform
interspike interval τ0) can be triggered by a single stimulation sequence.
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Figure 3: A single network of N = 6 coincidence detectors with order ν = 2, refractory
time τr = 3, tolerance time τe = 1.5, and homogeneous delays τ0 = 10. (a) Connection
scheme; (b)–(d) Possible stimulation induced responses of the network. (b) Stimulation at nearly
synchronous times (first excitations) leading to convergence to synchronous firing in finite time;
(c) A too large perturbation leads only to transient activity. (d) Applying a wave-like stimulation
pattern twice induces a sustained rotating wave.

2.4 Detection of the synchronous sequence by a unidirectional ring

Motivated by the previous observations we now give a concrete example for a circuit of units
with coincidence order ν = 2, see Fig. 3. To achieve a homogeneous in-degree din(j) = 2 for
each node j we select as predecessors the nodes j − 1 and j − 2 (modulo N ). As a result we
obtain a unidirectional ring where each unit connects to its nearest and next-nearest neighbors
in one direction, see Fig. 3(a). In this network, a sustained synchronous spiking of all nodes can
be excited by a synchronous stimulation of all nodes, see Fig. 3(b). There, the time-dependent
evolution of each node is color-coded as indicated in the legend, where the spikes are marked
by white lines followed by the refractory period xj = 0 of the length τr shown in black. The
resting state, xj = 1, is indicated by red and the excited state, xj = 2, by orange color.

Since A = {1, ..., N} and all delays are identical, the network recognizes the input sequence
s0. Moreover, if a non-synchronous sequence s = s0 + η is applied, the network will still
react with a sustained activity as long as the initial activation times of neighboring nodes do not
deviate more than

|sj − sj−1| = |ηj − ηj−1| < τe, j = 1, ..., N. (6)

In Figure 3(b)–(d) we show some possible responses of the network to different stimulations. As
long as τe > τr/N, and τe > τ0/(N + 1), a wave-like, non-synchronous sustained activity is
possible [see Fig. 3(d)]. However, this mode can not be induced by a sequence with one pulse
per channel. It seems that for such sequences, either synchronous activity is induced, or, if (6)
is violated, the activity dies out after a transient.

The dynamics in the unidirectional ring with delayed connections resembles the one reported
in [50–55], where also the coexistence of stable synchronous and rotating waves are reported.
This is due to the symmetry properties of the considered scheme and the time delays. However,
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Figure 4: A network ofN = 6 coincidence detectors with parameters as in Fig. 3. The delays τ̃i,j
are tuned according to (7) with the sequence s = (0, 2, 1, 4, 3, 7) and a base delay τi,j ≡ τ0 =
10. (a) Connection scheme; (b)–(d) Possible stimulation induced responses of the network. (b)
Stimulation at times close to the pattern s leads to convergence to an exact reverberation of the
pattern; (c) A larger perturbation leads only to transient activity. (d) The rotating wave solution of
the system with homogeneous delays [cf. Fig. 3(d)] exists in a transformed form in the system
with heterogeneous delays τ̃i,j as well.

in contrast to these results, which were obtained for oscillating units, our setup employs excitable
systems with a coincidence order ν and leads to the coexistence of a sustained spiking state
and a stable quiescence state.

2.5 Recognition of asynchronous patterns

We have shown how a pattern reverberator for a synchronous pattern s0 = (0, ..., 0) can be
constructed. In fact, this provides us with all necessary information about the construction of
a reverberator for an arbitrary sequence s = (s1, ..., sN). Indeed, if we already possess a
system which can recognize the synchronous sequence, then a system, which can recognize
the sequence s can be constructed by a modification of the connection delays. To be more
precise, defining new delays

τ̃i,j = τi,j + si − sj (7)

leads to a system which reacts with sustained activity for sequences sufficiently close to s [see
Fig. 4].

Both systems, the one with delays τi,j and the one with delays τ̃i,j are dynamically equivalent.
A solution x(t) of the original system is transformed into a solution y(t) of the one tuned
to s by the componentwise timeshift yj(t) = xj(t − sj). For instance, a sustained activity
corresponding to the rotating wave shown in Fig. 3(d) is present in the system with delays (7)
as shown in Fig. 4(d). For details and other examples for the application of this componentwise
timeshift tranformation see [56–59]. In particular, if the global synchronous spiking is the only
possible mode of sustained activity in the detector for s0, the sustained reverberation of the
pattern s is the only possible sustained mode in the system with inhomogeneous delays τ̃i,j .
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Figure 5: A network of N = 12 coincidence detectors with parameters as in Figs. 3. (a) The
connection scheme is a combination of three single pattern reverberators as in Fig. 4, consisting
of the nodes g1 (red), g2 (black), and g3 (blue). Each group is tuned to a different pattern: s1,
s2, and s3 [see main text for details]. (b)–(f) Stimulation induced responses of the network. (b)
Stimulation of g1 with s1; (c) Stimulation of g2 with s2; (d) Stimulation of the g3 with s3. (e) For
increased tolerance time τe = 5 an initial activation of g1 with s1 leads to a sustained mode of
activation involving all nodes. Below the color-plot, the time trace of the activity measure V (t)
is shown, see Appendix D; (f) Transient response after stimulation of g1 with s1 and randomly
chosen stimulations at all other nodes.

2.6 Encoding multiple patterns in coupled coincidence reverberators

It is possible to couple several single interleaving pattern reverberators of the type shown in
Fig. 3 into one larger network where each reverberator shares some of its nodes with others,
see Fig. 5(a). The connection delays within each of the three groups, consisting of the nodes
g1 = (1, 2, 3, 4, 5, 6), g2 = (2, 8, 9, 10, 4, 7), and g3 = (7, 3, 10, 11, 12, 5), have been
adjusted according to (7) to tune each group to a different pattern. The patterns were chosen
as s1 = (0, 1, 2, 3, 4, 5), s2 = (5, 4, 3, 2, 1, 0), and s3 = (0, ..., 0). For appropriate choices
of τe, τr, and τ0, the resulting network is able to recognize the different patterns as shown in
Fig. 5(b)–(d). Each of these panels shows the networks response to an initial stimulation of a
different group. To distinguish nodes which are not members of the stimulated group we selected
a dimmed colormap.

However, the additional connections may allow for additional sustained activity involving nodes
from different pattern reverberators. This is illustrated in Fig. 5(e), where the pattern of the first
group (red color in 5(a)) is initially applied. For that example, the tolerance τe was increased to
τe = 5 to induce the effect of so-called “crosstalk” between the patterns. Such crosstalk can
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prevent successful activation or discrimination of sequences. It may arise either directly due to
the additional connections within each group or indirectly due to the rebounding influence from
collateral activation of nodes which are not part of the initially activated group (as in Fig. 5(e)). In
both cases the usual activation sequence may be disrupted by a too early invocation of a spike
due to the increased amount of input. This can either cause the excitation to die out completely
or to cause an activation of larger parts of the network and possibly impeding discrimination of
different stimulation patterns by the lack of corresponding attractors.

The phenomenon of disrupting crosstalk can almost always be overcome if the sensitivity of
the coincidence detectors is increased, i.e., τe is decreased. However, this is not possible to an
arbitrary amount for real neurons and requires a trade-off with the robustness of the device since
a decreased τe directly decreases the tolerance of the detector for perturbations of the pattern.
An example, where an additional initial activation disrupts a pattern and eventually leads to a
total decay of activity is illustrated in Fig. 5(f), where the pattern of the first group is applied
as a subsequence of the stimulation but does not induce a sustained response. Note that the
transient time is much longer in this situation than for single reverberator, cf. Fig. 4(b). It is also
worth mentioning that, if an initial stimulation is applied to all nodes, sustained activity different
from the responses shown in Fig. 5(b)–(d) is possible already for the tolerance time τe = 1.5.
However, if τe is decreased further, such an activity could not be observed in simulations, while
the positive responses to the different pattern persist.

To conclude, in a network of interleaving pattern reverberators, the relation between stimulus
and positive response is altered in several important ways with respect to a single reverberator
as constructed in Secs. 2.4 and 2.5. Firstly, an input may lead to a sustained response which
doesn’t repeat the same sequence of pulses. Indeed, if a stimulus triggers sustained activity
in one pattern reverberator, other neurons not belonging to that reverberator may be activated
spuriously as a side effect of the activity of the activated pattern or a completely different pattern
may evolve as in Fig. 5(e). Secondly, there may exist several different stimuli which lead to one
and the same sustained activity. Even an incomplete delivery of one of the encoded patterns
can trigger reverberating activity if the missing external stimuli are compensated by the timely
stimulation of some neurons from a different pattern which are predecessors to the neuron at the
site of missing direct stimulation. Thus, the one-to-one correspondence between input patterns
and sustained responses is lost.

Perturbed delays

One last theoretical consideration has to be taken in view of physical implementations of the
proposed system. In real systems one cannot expect delay times to be reliable in taking exact
values. Therefore, to justify the model and to obtain a stably working electronic device, it is
important to take into account imperfections of the implementation with respect to the delay
values.

In the Appendix B, we prove that if din ≡ ν, the synchronous solution is super-stable in the case
of homogeneous delays and that a nearly synchronous sustained activity persists if the delay
times are weakly perturbed. These results transfer to a system with non-homogeneous delays
(7) obtained from one with weakly perturbed, nearly identical delays.
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Figure 6: Response dynamics of a single pattern reverberator for the synchronous sequence s0
with slightly perturbed delay times τi,j = τ0 + ηi,j , ηi,j ∈ [−1, 1]; parameters are as in Fig. 3.
(a) and (b) show the response for two different samples of the delays, where the sample in (a)
allows for sustained activity, but in (b) the pattern recognition fails.

In Fig. 6, for two realizations of perturbed delays, we show the response of a single reverberator,
as in Fig. 3 with τi,j = τ0 + ηi,j , in response to the synchronous stimulation. Here, the per-
turbations ηi,j are uniformly distributed within [−1, 1], which can also lead to failure as shown
in panel (b). Similar as for perturbed initial stimulation times, the system becomes more robust
with respect to perturbations of the delays if the tolerance time τe is increased.

3 Simulation with Hodgkin-Huxley Neurons

In this section we will adopt the networks, which were developed in the previous section, to
design pattern reverberators based on Hodgkin-Huxley neurons[60]. Each neuron is described
by the equations given in Appendix E. The dynamic equation for the membrane potential has
the form

V̇ (t) = −gNam(t)3h(t)(V (t)−VNa)−gKn(t)4(V (t)−VK)−gl(V (t)−Vl)−z(t)(V (t)−Vr)

where z(t) is the synaptic input. In absence of input (z(t) = 0) the system has a globally stable
fixed point with at the resting potential V0 ≈ −65mV. For the simulations, we initialize a HH
neuron in this resting state and apply an input signal z (t) = γp (t− t0) at time t = t0. Here,
we emulate the excitatory postsynaptic potential (EPSP) as the α-function

p(t) = t exp(−t/α) (8)

with α = 0.9 [see Fig. 7]. Numerically we determine the critical value γc of the pulse intensity
which causes a spike in a resting neuron as γc ≈ 0.077. Operating with an intensity of γ =
0.05, we find that the corresponding tolerance time is given as τe ≈ 2.27ms, i.e., if two pulses
of intensity γ arrive at a time difference smaller than τe, the neuron will emit a spike in response,
otherwise it remains silent [see Fig. 2 (a)].

We have constructed a single pattern reverberator of N = 6 HH-neurons coupled as depicted
in Fig. 4(a) with base delay τ0 = 35ms and tuned to the pattern s = (5, 10, 20, 5, 15, 0). Fig-
ure 1 shows the responses of such a detector to stimuli. Further, we have conducted numerical
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Figure 7: Comparison of the pulsatile signal p(t) [see Eq. (8)], and PSPs of the excitatory
synapse s(t) and the inhibitory synapse sinh(t) generated by the HH model, see App. E,
Eqs. (18).

experiments for three coupled single detectors as shown in Fig. 5. The delays on the connec-
tions were chosen according to (7) for three different patterns and base delay τ0 = 35ms. In
Fig. 8 we show that this network consisting of twelve HH neurons reacts with sustained activity
to each of the patterns. For two of the patterns [(a) and (c)] the response is a periodic repro-
duction of the applied pattern. In Plot (b) the applied pattern is repeated but the network also
exhibits spurious activations of nodes [1, 3, 5, and 6, indicated by red pencil marks], which are
not part of the stimulated group.

To some extend, these spurious activations can be overcome by adding an inhibitory after-
shot following each EPSP. This may be done by including an inhibitory connection with a
slightly larger delay τ inhi,j = τi,j + τinh [variable sinh(t) in the HH equations (18)]. We illus-
trate this in Fig. 8(d), where we included inhibitory synapses [see Fig. 7(d)] with an additional
lag τinh = 1ms to stabilize the pattern s2. Some primary spurious activations are still present
but they are surpressed in the following reverberations of the applied pattern due to the addi-
tional inhibitory connections. The inhibitory aftershot effectively decreases the tolerance time τe
of the connection, leading to a higher precision of the coincidence detection.

4 Discussion

In the present paper we have shown how ensembles of coupled spiking elements can detect
and reverberate activation patterns. We have focused on a special coupling structure which
serves this purpose. This was illustrated for networks composed of simple, idealized coinci-
dence detectors as well as for networks of HH neuron models. The proposed systems may
serve as elements of neural computation in biological and engineered setups by providing an
implementation of working memory or building blocks of larger processing devices.

Due to the potential complexity of coincidence detector networks in general, many questions
arise when the assumptions made in this work are relaxed.

Let us first turn to a question, which has a well-known answer: How can the setup be adapted
to recognize stimulation sequences, which do not necessarily deliver maximally one input pulse
per channel? In fact, the proposed detectors can be equipped with a “preprocessor”, which
transforms a given temporal sequence of pulses on one channel into a single spike. This is
accomplished by projecting the preprocessor neuron via an array of delay lines to a detector

12
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Figure 8: (a)–(c) Activity of three overlapping cyclic pattern reverberators consisting of
twelve Hodgkin-Huxley neurons with delayed connections tuned to the patterns s1 =
(0, 5, 10, 15, 20, 25), s2 = (25, 20, 15, 10, 5, 0), and s3 = (0, ..., 0) with base delay τ0 =
35ms [see Fig. 5 for the connection scheme and Eq. (7) for the choice of the delays τi,j ]. The
right panels show the reverberating responses following an initial stimulation with sequences (a)
s1; (b) s2; (c) s3. The applied signals are shown in the left panels. Plot (d) shows the response
to s2 in the presence of additional inhibitory connections with delays τ inhi,j = τi,j+1ms. Failures
in the reproduction of the pattern are indicated by red pencil marks.

whose order equals the number of pulses in the corresponding channel. The delays are chosen
such that the relayed signals arrive synchronously at the detector if they were delivered with the
correct timing. Such setups were considered in Refs. [15, 38, 61].

In the examples shown in the present work we have always considered an identical order ν = 2
for all coincidence detectors of the network. However, the effects of a higher order ν > 2 and
also of variability of the order within the network are interesting subjects to further studies. The
theoretical results, which were proven in the appendix, are already obtained for networks of
arbitrary order ν, and they appear to be generalizable to variable orders ν = νj . From an in-
creased coincidence order ν > 2 one might expect that for a network the effect of crosstalk
is less pronounced, since a larger number of interfering inputs is needed to evoke a mistimed
response. This may result in an increased storage capacity, measured as the number of stored
patterns divided by the number of nodes. This is because an increased value of ν requires a
more precise polysynchrony of the whole network. To induce a spike in a neuron, ν of its pre-
decessors must have emitted spikes that arrive within a time window of size τe, which imposes
a stronger constraint on the networks polysynchrony for larger ν. For instance, the tolerance
condition (6) for a ring shaped detector would tighten to

max
i∈{j−1,j−2}

|si − sj| < τe,

if the coincidence order of the nodes would be increased to ν = 3 and xj−3 would be added
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to the predecessors of xj . If two nodes have no common successor, their initial activations
may deviate further than τe while the network still responds with sustained synchrony. Here,
the maximal allowed deviation max1≤j,k≤N |sj − sk| seems to be connected to the number
m0 ∈ N, where the sequence (5) becomes stationary at {1, ..., N} [cf. proof of Prop. C.3]. For
larger ν, one usually obtains a lower m0.

Another potential generalization of the coupling structure„ is to choose din > ν for each single
detector to increase its robustness. In this case again the general principle applies that an
increased robustness comes with a loss of precision, since a larger in-degree allows for an
activation of a pattern by an incomplete stimulus. From another point of view this could also
been rated beneficial since it allows for pattern completion.

It is evident that at least for the case that ν > 2 coincidence detectors of the form (1) do
not completely describe the corresponding response dynamics of a neuron. This is because
a coincidence detector emits a spike if and only if within a tolerance frame of length τe it has
received ν inputs. In case of a neuron, the internal timing of the arriving APs may also play
a role in determining whether the neuron will generate an AP in response. Even for the case
ν = 2 the idealized model may disregard some resonance effects of the inputs.

Further, the role of inhibitory connections, which we mentioned only shortly, should be studied to
more detail in the future. Additionally to their stabilizing effects for single patterns they might play
a role in preventing runaway excitation in larger networks. Another possible function of inhibitory
connections could be a specific inhibition of concurring patterns during the activation of another
pattern.
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Figure 9: Contrasting examples for Prop. A.2 [(a), (b)] and Prop. C.3 [(c), (d)]. On the left hand
the coupling schemes are depicted; on the right, sustained activity different from complete syn-
chronization is shown. The initial excitation is induced external signal to the nodes: (a), (d)
{1, 2, 3}; (b), (c) {1, 2}. For all cases, we have ν = 2 and τ0 = 10. In (a) τe = 11, τr = 3;
(b) τe = 6, τr = 5, and s = 5.5 [see text] (c), (d) τe = 1.5, τr = 3.

Appendix

A The activity core in a network with homogeneous delays

In the following, we consider a network of coincidence detectors as introduced in Sec. 2 with
homogeneous delays τj,i ≡ τ0. Its activity core A, as defined in Eq. (3), can be constructed
iteratively as the stationary point of the sequence

N1 = N := {1, ..., N} andNk+1 :=
{
xj | din (xj)|Nk

≥ ν
}
. (9)

For A 6= ∅, synchronous activity obviously persists on this set. Thus, A = ∅ is a necessary
condition for all activity to die out after a stimulation with the synchronous sequence s0. How-
ever, if τe > τ0, it is not sufficient. To see that, consider for the case ν = 2 the simple 3-node
network depicted in Fig. 9(a) with links

x1 → {x1, x2, x3}, x2 → {x1, x3}, x3 → x1.

It hasA = ∅, but if τe > τ0 there exists a sustained activity, where at each time t = t0 + 2kτ0,
x1 and x2 fire and x3(t) = 2 is excited only at subthreshold-level, and at times t = t0 + (2k+
1)τ0, x1 and x3 fire and x2(t) = 2. The following statement holds for the case τe < τ0:

Proposition A.1. If τe < τ0 and τr < τ0, a sustained activity as a response to the synchronous
input can persists indefinitely if and only ifA 6= ∅.
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Proof. We already know that for A 6= ∅ sustained activity exists. Thus we only need to show
that no sustained activity is possible ifA = ∅ and τe < τ0.

Let us first assume that the activity is initiated by a synchronous stimulation at t = t0. IfA = ∅
there exists at least one node x with din(x) < ν. This node and all other nodes xj with
din(xj) < ν do not emit a spike at t = t0 +τ0 and never later, since their excitation level, which
is xj (t) = din(xj) at time t = (t0 + τ0)

+ drops back to xj (t) = 0 until t = (t0 + 2τ0)
−

due to τe < τ0. Therefore, all nodes xj with din(xj) < ν will never spike and we can exclude
them from considerations. All nodes with din(xj) ≥ ν will spike at time t = t0 + τ0 since
they receive din(xj) ≥ ν inputs. The set of these latter nodes is just N1 from (9). At the next
relevant instance at t = t0 + 2τ0, all nodes in the setN2 = {xj | din(xj)|N1 ≥ ν} fire, and so
on. SinceNk becomes stationary at ∅ at latest in the N -th step, all spiking activity will cease at
t = t0 +Nτ0.

A natural question is whether Proposition A.1 can be generalized to arbitrary sustained activ-
ity: Is it true that no sustained activity is possible if the activity core is empty? Without further
qualification, this conjecture is wrong. To see that consider ν = 2 and the 3-node network
[Fig. 9(b)]

x1 ⇒ x3, x2 ⇒ x3, x2 → x1, x3 → {x1, x2} ,

where the double arrow denotes a connection of double impact, e.g. a solitary spike of x1 at
time t already induces a spike of x3 at t+ τ0 (an equivalent network can easily be constructed
by replacing each node which emits double spikes by two with the same in- and outgoing links
of single strength). Clearly, the network has an empty activity core and the response to a syn-
chronous stimulation dies out according to Prop. A.1. However, the response to a stimulation of
x1 at t = t0 and x2 at t = t0 + s may be sustained. In fact, if the duration of the refractory
period τr, and the tolerance τe fulfill τr < s < τe, then x3 will emit two spikes at times t0 + τ0
and t0 + τ0 + s. Further, x1 is excited to x1(t0 + τ0 + s)+ = 2 via the input from x2. The first
spike emitted by x3 arrives at x1 at time t0 + 2τ0 which causes x1 to spike if it is still excited at
this time, i.e. x1(t0 + 2τ0) = 2. This is the case if τ0 − s < τe (and because τr < τ0). The
spike arrives at x2 at the same time but only excites x2. Only the second spike, which arrives at
t = t0 + 2τ0 + s, causes x2 to fire and excites x1. Then the cycle starts again (the excitation
of x1 will be decayed until the next spike arrives at t0 + 3τ0 + s since τr < τ0). The dynamics
can be seen in Fig. 9(b), right panel.

The construction of the example relied on τr < τe. And indeed, if we assume the contrary, we
obtain an assertion independent of the initial stimulation:

Proposition A.2. If τe < τr < τ0, sustained activity can persist indefinitely if and only ifA 6= ∅.

Proof. In general, if a node xj with din (xj) ≤ ν spikes, then at least one of its direct prede-
cessors must have spiked twice in an interval of length τe. This is impossible if τe < τr.
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B Stability of the synchronous firing mode and perturbed
delay times

Proposition B.1. Consider a network with homogeneous in-degree din ≡ ν. If for homoge-
neous delay times τi,j ≡ τ0 for all j ∈ Pre({i}) a sustained synchronous firing mode exists,
then a nearly synchronous, sustained mode persists for sufficiently small perturbations of the
delay-times.

Proof. Consider weakly perturbed delays

τj,i = τ0 +O (ε) ,

where ε > 0 is the perturbation size. Initially, the system is assumed to be in its resting state
xj(t) = 0, j = 1, ..., N , for t < t0. Then, a stimulation is applied at times tj0 = t0 + O (ε)
which are nearly synchronous. The m-th spike time of the j-th element is denoted by tjm. The
first (0-th) spike time is the immediate response to the stimulus at t = tj0. Now assume that for
m = 0, ..., k − 1 all neurons have emitted spikes at times tjm = tj0 + mτ0 + O (ε), which is
fulfilled for k = 1. Let akj,i = tik−1 + τj,i denote the arrival time of the k − 1-th action potential
of neuron i ∈ Pre({j}) at neuron j. If ε is sufficiently small we have for all i1, i2 ∈ Pre({j}):

|akj,i1 − a
k
j,i2
| < τe, (10)

Hence, a spike of the j-th neuron is triggered by the last arrival at time

tjk = max
{
akj,i
}
i∈Pre(k) = max

{
tik−1 + τj,i

}
i∈Pre(k) = tj0 + kτ0 +O(ε). (11)

Recursively, the value of tjk can be expanded as

tjk = max {T (p) | p ∈ Pk (j)} , (12)

where Pk (j) is the set which contains all paths of length k ending in node j and T (p) is the
total delay time of a path p = (`1, ..., `k) plus the initial activation time tp10 of its starting point
p1, i.e.,

T (p) := t
s(`1)
0 +

k∑
j=1

τt(`j),s(`j), (13)

where s (`) and t (`) denote the source and the target of a link `, e.g., p1 = s(`1). For long
paths, i.e. large k, the cycle c̄ with the largest mean delay τ̄ will dominate the expressions for
tjk ∼ τ̄ k. Therefore, we obtain

min
n
tn0 + (k − 2N)τ̄ + 2N min

m,n
τm,n ≤ tjk ≤ max

n
tn0 + (k −N)τ̄ + 2N max

m,n
τm,n. (14)

In (14) the term (k − 2N)τ̄ is the delay time collected from the time spend in the cycle c̄ and
the terms 2N minm,n τm,n and 2N maxm,n τm,n give generous bounds for the delays along the
paths which are taken to reach c̄ initially and to reach the target node after leaving c̄. Using (14)
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the difference of the k-th spikes of two neurons i and j can be estimated uniformly independent
of k, i, and j by∣∣tjk − tik∣∣ ≤ maxn |tnk | −minn |tnk | ≤ max

m,n
|tm0 − tn0 |+ 2N max

m,n,l,p
|τm,n − τl,p| ≤ O(ε).(15)

This means, for sufficiently small perturbations of delay and stimulus times the system admits
sustained synchronous activity.

Proposition B.2. Consider a network with homogeneous in-degree din ≡ ν and delay times
τi,j ≡ τ0 for all j ∈ Pre({i}) and assume that a sustained synchronous firing mode exists. If
the sequence (5) becomes stationary at {1, ..., N}, this mode is super-stable with respect to
perturbed stimulation times, i.e. the synchronous spiking is achieved in finite time.

Proof. With notations as in the previous proof we obtain for weakly perturbed stimulation times

tjk = max {T (p) | p ∈ Pk (j)} = max
m∈Prek({j})

tm0 .

By stationarity of (5), for sufficiently large k, we have

max
m∈Prek({j})

tm0 = max
1≤n≤N

tn0 ,

independent of j. Thus, the spiking becomes perfectly synchronous in finite time.

C Unique mode of sustained activity

In this section we consider a strongly connected network of coincidence detectors (1) with ho-
mogeneous delay τ0, in-degree equal to ν and the GCD of all cycles being one, i.e. there exist
only loops of coprime lengths. Networks possessing the latter property are called aperiodic net-
works. We prove that the unique possible mode of sustained activity is synchronous spiking if
the tolerance of the single detectors is sufficiently small.

Firstly, we give two counter-examples, where several sustained modes are possible. These ex-
amples should convince the reader that we need (i) an aperiodic network, (ii) a strongly con-
nected network to guarantee the uniqueness of synchronous spiking. We remind once more,
that if τ0 is large enough (τ0 > 2τr) there may exist distinct synchronous solutions having
shorter interspike intervals than τ0. We subsumed this coexistence under the claim of unique-
ness. The more precise formulation is that synchronous spiking is the only possible mode of
sustained activity.

Example C.1. (i) If the GCD of all cycles is k > 1, i.e., the network graph has period k, then
there exists a partition C1, ..., Ck of the network such that the nodes are connected in a cyclic
manner [62, Theorem 10.5.1]:

C1 → C2 → ...→ Ck → C1.
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This means, all nodes from Cj receive inputs exclusively from nodes in Cj−1 [see Fig. 9(c)].
Therefore, an initial, synchronous stimulation at t = t0 of all nodes in C1 will lead to a spike of
all nodes in C2 at time t = t0 + τ0, of all nodes in C3 at time t = t0 + 2τ0 and so on in an
indefinitely sustained cyclic activity, which is not globally synchronous. Cluster synchronization
in delay-coupled dynamical systems with this kind of coupling structure have been studied in
[63].

Example C.2. (ii) If the network is not strongly connected, a strongly connected component
C ( N can be selected, which is a root in the associated acyclic graph, i.e., no links enter
C . For each k ∈ C we have din(xk)|C = ν, therefore an initial, synchronous stimulation of
C will lead to a sustained synchronous activity in C but this activity will take over the rest of
the network only if no cycles exist on N \ C . If such a cycle exists, some node j ∈ N \ C
has din(x)|N\C > 0 and din(x)|C = ν − din(x)|N\C < ν, which implies that it will never be
excited by the synchronous spiking in C if τe < τ0. See Fig. 9(d) for a simple example of such
a network.

From the study of the network shown in Fig. 3(a), and the existence of the wave-like solution
[Fig. 3(c)] for this connection scheme, we already know that the tolerance time may not be too
large, if only synchronous firing is desired. In the following proposition we give a bound in terms
of τr, which assures the uniqueness of the synchronous mode:

Proposition C.3. If there exists m0 ∈ N such that Prem({j}) = {1, ..., N} for all m ≥ m0

and all j ∈ {1, ..., N} and din(xj) ≡ ν. Then, for sufficiently small τe satisfying 0 < τe <
τr < τ0, the only possible mode of sustained activity is synchronous spiking.

Proof. Assume that the dynamics displays an arbitrary mode of sustained activity. We have
to show that for sufficiently small τe all nodes spike synchronously. To show that, choose an
arbitrary node j such that it fires at time t = t0. We denote t−n := t0 − nτ0 and T−n :=
[t−n − nτe, t−n]. Since node j fires at t0, all its ν predecessors, Pre({j}), must have fired at
least once within T−1. Hence, their predecessors, Pre2({j}), must have fired at least once in
T−2 and so on.

Within all the intervals T−2m0 , ..., T−m0 , all nodes fire at least once because Prem({j}) =
{1, ..., N}, for m = m0, ..., 2m0, by assumption. Note that the width of all these intervals is
bounded by 2m0τe. Therefore, if we have

(2m0 + 1)τe < τr, (16)

each node fires exactly once in each of the intervals T−m, m = m0, ..., 2m0, and each such
firing in T−m, for m = m0, ..., 2m0 − 1, is evoked exclusively by the ν firing events of its
predecessors in T−m−1, i.e., xk(t−m − mτe) ≤ 1 at the left boundary of Tm. Otherwise, at
least on predecessor would have fired twice in T−m−1, which we did just exclude. Recursively,
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just as in the argument in the proof of Proposition [ref:stability-perturbed-times], we obtain

tk−m = max
i∈Pre({k})

ti−m−1 + τ0

= max
i∈Pre2({k})

ti−m−2 + 2τ0

...

= max
i∈Pre2m0−m({k})

ti−2m0
+ (2m0 −m)τ0.

For m = m0, this yields

tk−m0
= max

i∈Prem0 ({k})
ti−2m0

+m0τ0

= max
1≤i≤N

ti−2m0
+m0τ0,

independently of k. This means tk−m0
= t−m0 for all 1 ≤ k ≤ N . We also conclude that all

nodes fires exactly once within (t−m0−τr, t−m0+τr). This implies, that no firing is evoked in the
interval (t−m0 + τ0− τr, t−m0 + τ0) and all nodes are in the resting state when the spikes from
the synchronous firing at t−m0arrives. Therefore, they fire synchronously at t−m0+1 = t−m0+τ0
as well and likewise for all tm = t−m0 +(m−m0)τ0 = t0 +mτ0 withm > m0. If there should
be any firing events occurring between the synchronous firings at tm as determined before, they
can be treated analogously to prove that they also form part of a sustained chain of synchronous
firings.

Remark C.4. The number m0 can be large, making the required bound (16) on τe quite strong.
Even though the bound may not be optimal, the order 1/m0 appears to be necessary, if no
further restrictions on τ0 are assumed. Indeed, for the network in Fig. 3(a), we have m0 = 6,
and there exists a non-synchronous sustained activity as long as τe > τr/m0.

D A Lyapunov function for homogeneous degree networks

As a measure of activity in a network of coincidence detectors (1) we introduce the function

V (t) :=
N∑
j=1

(max{xj(t−), 1} − 1) + #{spikes in the wire} ∈ N. (17)

Here, the term “#{spikes in the wire}” refers to the number of emitted spikes which did not
arrive at their destination, yet. More formally, it is given as

#{spikes in the wire} =
∑
j

#{tik | i ∈ P (j), 0 < t− tik ≤ τj,i}.

V (t) is piecewise constant. The only moment at that V (t) may grow is a spike event. If an
element xj spikes at time t = t1, V changes by an amount V (t+1 )− V (t−1 ) = ν − dout (xj),
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where dout (xj) is the outdegree of xj . (The value c (xj) := ν − dout (xj) is called production
capacity of xj .) V may as well decrease if c(xj) < 0 for the spiking unit xj . It can also decrease,
if an excitation level at site xj reduces after a time τe has passed after the arrival of a presynaptic
AP and no spike was emitted in the meantime or if an AP arrives while xj(t) = −1. Notice that
V (t) is bounded if the refractory time doesn’t vanish, i.e. τr > 0. This is because a link with
delay τj,i cannot contain more than τj,i/τr + 1 spikes. With help of V , sustained activity can be
defined as a state in which V (t) 6= 0 for all times t ≥ t0.

Consider a network such that dout (xj) ≤ ν for all j. Then c (xj) ≤ 0 and therefore, V (t) is
non-increasing. This means, it is a discrete Lyapunov function and on each attractor V (t) ≡ V0
is constant. Obviously, the silent mode V ≡ 0, with xj ≡ 0, is a fixed point of the system.

Given dout (xj) ≤ ν, there are some evident, necessary conditions for sustained activity. Firstly,
each element which is involved in this activity by repeated spiking must have an outdegree
dout (xj) = ν. Otherwise, V (t) would decrease each time when xj spikes. By the same rea-
son, elements which receive an input of a participating element must participate in the sustained
activity, too (“what comes in, must come out”). This restricts sustained activity to connected com-
ponents with dout (xj) = din (xj) = ν for all xj participating in the sustained activity. Moreover,
it is necessary that there is no decrease of the excitation levels due to the expiration of exci-
tation times and inputs may not arrive during refractory periods. That implies that at each unit,
each time exactly ν spikes arrive collectively within a time intervals of length ≤ τe which are
separated by periods without inputs of length > τr.

E The Hodgkin-Huxley neuron model

The Hodgkin-Huxley neuron model, which was used for the numerical results in Sec. 3, is given
by the following set of equations:

CV̇j(t) = I − gNam3h(Vj(t)− VNa)− gKn(Vj(t)− VK)− gl(Vj(t)− Vl) (18)

− κ(V (t)− Vr)
∑

j∈Pre({i})

sj(t− τi,j)− κinh(Vj(t)− V inh
r )

∑
j∈Pre({i})

sinhj (t− τ inhi,j ),

ṁj(t) = αm(Vj(t))(1−mj(t))− βm(Vj(t))mj(t),

ḣj(t) = αh(Vj(t))(1− hj(t))− βh(Vj(t))hj(t),
ṅj(t) = αn(Vj(t))(1− nj(t))− βn(Vj(t))nj(t),

ṡj(t) = 5(1− sj(t))/(1 + exp(−Vj(t)))− sj(t),
ṡinhj (t) = (1− sinhj (t))/(1 + exp(−Vj(t)))− 0.3sinhj (t),

where Vj(t) models the membrane potential of the j-th node, αm(V ) = (0.1V + 4)/(1 −
exp(−0.1V − 4)), βm(V ) = 4 exp((−V − 65)/18), αh = 0.07 exp((−V − 65)/20),
βh(V ) = 1/(1 + exp(−0.1V − 3.5)), αn(V ) = (0.01V + 0.55)/(1− exp(−0.1V − 5.5)),
βn(V ) = 0.125 exp((−V − 65)/80), C = 1µF/cm2, I = 0µA/cm2, gNa = 120mS/cm2,
VNa = 50mV, gK = 36mS/cm2, VK = −77mV, gl = 0.3mS/cm2, Vl = −54.5mV, Vr =
0mV, V inh

r = −65mV, κinh = 0.1mS/cm2 and κ = 0.05mS/cm2.
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