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ABSTRACT. We study large-deviation principles for a model of wireless networks consisting of Poisson point
processes of transmitters and receivers, respectively. To each transmitter we associate a family of connectable re-
ceivers whose signal-to-interference-and-noise ratio is larger than a certain connectivity threshold. First, we show
a large-deviation principle for the empirical measure of connectable receivers associated with transmitters in large
boxes. Second, making use of the observation that the receivers connectable to the origin form a Cox point pro-
cess, we derive a large-deviation principle for the rescaled process of these receivers as the connection threshold
tends to zero. Finally, we show how these results can be used to develop importance-sampling algorithms that
substantially reduce the variance for the estimation of probabilities of certain rare events such as users being
unable to connect.

1. MODEL DESCRIPTION AND MAIN RESULTS

We consider a stochastic-geometry model for a wireless network consisting of a family of transmitters and
a family of receivers. Transmitters and receivers are modeled by independent homogeneous Poisson point
processes X and Y in Rd whose intensities are assumed to be non-zero and finite and will be denoted by λT

and λR, respectively. For instance, we may think of transmitters and receivers as users participating in a device-
to-device communication where messages need not be routed via a base station. It is believed that this form of
communication will be a central concept in next-generation wireless networks [7]. The most basic requirement
in the design of such networks is to guarantee satisfactory quality of service on average. Additionally, it is
desirable to control and quantify the probability of low quality of service to occur. This necessitates a more
detailed probabilistic analysis and the theory of large deviations provides the appropriate tools.

Let us now describe the communication model. In order to determine the connection quality of messages sent
out from a transmitter located at x ∈ Rd to a receiver located at y ∈ Rd, the signal-to-interference-and-noise
ratio (SINR) has been identified to be of fundamental importance [3]. More precisely, we assume that signals
are transmitted with some positive powersPx and decay according to the path-loss function `(|x−y|), where |·|
denotes the Euclidean norm in Rd and ` : [0,∞)→ [0,∞) is a decreasing function satisfying `(r) ∈ o(r−α)
for some α > d. In particular ` is bounded and

∫
`(|x|)dx < ∞. In addition to the deterministic decay over

distance, the signal strength is also influenced by random fading effects that are encoded in a positive random
variable Fx,y . Such fading effects can for example come from large obstacles in the environment or multi-path
interference due to moving reflectors [4, Chapter 22].

Furthermore, considering a signal sent out from Xi, the strength of the interference experienced at a location
y ∈ Rd is assumed to be of the form

I(Xi, y) = I(Xi, y,X) = w +
∑
j 6=i

PXjFXj ,y`(|Xj − y|).

In words, the interference strength at a given location y consists of a contribution from the thermal noisew > 0
and the aggregated signal strengths coming from all other transmitters. For notational convenience, we differ
from the common convention [3] and include the thermal noise w in the interference term. Hence, the SINR for
the transmitter Xi ∈ X and the possible receiver location y ∈ Rd is defined as the ratio of the signal strength
by the interference, i.e.,

SINR(Xi, y) = SINR(Xi, y,X) =
PXiFXi,y`(|Xi − y|)

I(Xi, y)
.

We assume that a connection can be established between Xi ∈ X and Yj ∈ Y if SINR(Xi, Yj) ≥ t
for some fixed connectivity threshold t. The importance of the SINR stems from Shannon’s law in information
theory, which provides an explicit formula expressing the maximum possible data throughput in terms of SINR,
see [4, Chapter 16].

In the present paper, we analyze how connectivity properties of the SINR-based network model described
above behave in certain asymptotic regimes. First, we associate to each transmitter Xi the family of receivers
Y (i) that are connectable to Xi, i.e.,

Y (i) = {Yj ∈ Y : SINR(Xi, Yj) ≥ t}.
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FIGURE 1. Realization of the network model. Transmitters (red) are connected to receivers
(blue) by black lines when a fixed SINR-threshold is exceeded

An illustration of the transmitters together with their connectable receivers is shown in Figure 1. The family
Y (i) can be used to express a variety of frustration events for the transmitter Xi. For instance {Y (i) = ∅}
describes the frustration event that the transmitter Xi is isolated, in the sense that it fails to communicate with
any of the receivers. Similarly, if Br(Xi) denotes the open Euclidean ball with radius r centered at Xi, then
Y (i) ⊂ Br(Xi) encodes the event that Xi can only communicate with receivers at distance at most r.

Before we state our first main result, let us introduce the precise assumptions on the transmission powers and
fading variables. We assume that the transmission powers {Px}x∈Rd form an iid random field whose existence
is guaranteed by Kolmogorov’s extension theorem. Note that only the subset of powers {PXi}i≥1 is relevant,
but it is notationally convenient to work with the random field indexed by the full space Rd. A similar remark
holds for the random fading field {Fx,y}x,y∈Rd . It can reproduce two different kinds of fading effects. First,
a contribution stemming from a suitable random environment such as slow fading, which is typically spatially
correlated. Second, effects such as fast fading, that are idiosyncratic to the pair (x, y) and therefore do not
exhibit spatial correlation. To be more precise for the first contribution, we assume Z to be a homogeneous
Poisson point process with intensity λE > 0 modeling the random environment. Moreover, we use an iid
random field {Ux,y}x,y∈Rd consisting of random variables uniformly distributed on [0, 1] for the idiosyncratic
effects. Then the random fading field can have the following general form

Fx,y = Φ(y − x, Z − x, Ux,y)
where Φ is measurable and positive. In particular, the construction is such that the fading field is spatially
translation invariant, i.e., {Fx+z,y+z} is equal in distribution to {Fx,y} for any z ∈ Rd.

The dependence of Φ on its second component should be local in the sense that there exists an increasing
function senv : [0,∞) → [0,∞) such that Φ(z, ϕ, u) = Φ(z, ϕ ∩ Bsenv(|z|)(o), u), where Bsenv(|z|)(o)
denotes the Euclidean ball of radius senv(|z|) centered at the origin. Moreover, letting U be a single uniformly
distributed random variable on [0, 1], we assume that there exist N > 0, smax > smin > 0 such that for any
z ∈ Rd and any locally finite ϕ ⊂ Rd the distribution function qz,ϕ : t 7→ P(Φ(z, ϕ, U)−1 ≤ t)

(i) is globally Lipschitz with Lipschitz constant N ,
(ii) qx,ϕ(s) = 0 for s ≤ smin and qx,ϕ(s) = 1 for s > smax.

The second condition ensures that the fading variables have support bounded away from zero and infinity. We
assume the same for the power variables Px. Moreover the random objects X , Y , Z , {Px} and {Ux,y} are
independent.
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We provide an example illustrating possible fading fields within the above framework. For instance a Boolean
model Ξ =

⋃
Zi∈Z B1(Zi) can be interpreted as randomly distributed obstacles in a city. If the line of sight

between transmitter x and receiver y is blocked by some building the signal propagation is diminished. That
is, Fx,y = exp

(
− 1[x,y]∩Ξ 6=∅

)
J−1(Ux,y) where J is a globally Lipschitz distribution function of a random

variable which is bounded away from zero and infinity. We note that for modeling urban environments it is
important to take into account the effects of correlated fading variable due to fixed obstacles. See also [5].

Our first main result will provide a large-deviation principle (LDP) for the empirical measure of the family of all
connectable receivers Y (i)−Xi such thatXi is contained in the box Λn = [−n/2, n/2] for large n. To make
this precise, we first note that each Y (i) is a random variable in the measurable space (Nf ,Nf). Here Nf

is the family of all finite subsets of Rd that is endowed with the σ-algebra Nf generated by maps of the form
evB : ϕ 7→ #(ϕ ∩ B), for any Borel set B ⊂ Rd. In fact, Nf is also a Polish space, see [9, Section A.2.5].
Now, knowing the distribution of the empirical measure

Ln =
1
|Λn|

∑
Xi∈Λn

δY (i)−Xi

we can answer questions such as:

� What is the probability that, when spatially averaged, a certain proportion of transmitters in Λn are
isolated?

� What is the probability that, when spatially averaged, a certain proportion of transmitters in Λn have l
receiver in an r proximity?

Apart from these examples, Ln can be used to describe more general events like an average number of
connectable receivers per transmitter, i.e., |Λn|−1

∑
Xi∈Λn

#Y (i).

The empirical measure Ln is a random variable with values in the measurable space (Mf(Nf),Bcy(Mf)).
Here, Mf(Nf) denotes the family of all finite measures on Nf and Bcy(Mf) is the σ-algebra generated
by the evaluation maps µ 7→ µ(B), where B is any bounded Borel set of Nf . Since our first main result
provides a level-2 LDP, the τ -topology on Mf will play an important role. This topology is generated by the
maps µ 7→ µ(B) where B is any bounded Borel set of Nf . We refer the reader to [10, Section 6.2] for a
detailed discussion of this topological space.

The LDP allows us to quantify the decay of probability for events away from their ergodic limit on an exponential
scale. The exponential rate of decay to zero is proportional to the volume and the proportionality factor is called
the rate function. In order to identify the LDP rate function, we first recall the notion of specific entropy of point
marked random fields. We follow the presentation in [16] and refer the reader also to [15, Chapter 15] for
further details. Let E be a Polish space and write E for the corresponding Borel σ-algebra. Furthermore, let
NE denote the family of all configurations ϕ ⊂ Rd × E whose projection to Rd is injective and with image
forming a locally finite set. The space NE is endowed with the smallest σ-algebra for which all evaluation maps
ϕ 7→ #(ϕ ∩ (B × F )) are measurable for any Borel sets B, F of Rd and E, respectively. Any probability
measure on (NE ,NE) is called E-marked point random field. Let n ≥ 1 and P be an E-marked point
random field whose realizations are contained in Λn with probability 1. Moreover, let Q be another E-marked
point random field that is absolutely continuous with respect to P , where f denotes the respective density.
Then, the specific entropy H(Q|P ) of Q with respect to P is defined as

H(Q|P ) := P (f log f),

where P (f log f) denotes the expectation of f log f with respect to P . This definition is extended to random
point fields Q that are not absolutely continuous with respect to P by putting H(Q|P ) = ∞. Finally, if P , Q
are any E-marked point random fields we introduce the notation

h(Q|P ) := sup
n≥1

1
|Λn|

H
(
QΛn |PΛn

)
,

where PΛn , QΛn denote the projection of P , Q to Λn.
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In the following, we writePθ for the family of all stationaryE-marked point random fields of finite intensity. Here,
a stationary E-marked point random field is a probability measure on NE that is invariant with respect to shifts
on Rd. The intensity of Q is defined as∫

NE

#{(xi, ei) ∈ ϕ : xi ∈ [0, 1]d}Q(dϕ).

We also need the notion of the Palm version of a stationary point random field as defined for example in [20].
The (unnormalized) Palm mark measure Qo associated with Q ∈ Pθ is given by

Qo(F ) =
∫
NE

#{(xi, ei) ∈ ϕ : (xi, ei) ∈ [0, 1]d × F}Q(dϕ), F ∈ E .

In other words, after normalization, Qo describes the distribution of the marks of Q.

The concept of random marked point random fields is very flexible so that the probability space associated with
X , Y , Z , {Px} and {Ux,y} can be encoded in this framework, see Section 2.2 for details.

Let us state the first main result of this paper, an LDP for the empirical measure of connectable receivers
associated with transmitters in a large box. Starting from a stationary point random field Q of transmitters,
receivers and environment, we define Q∗ as the Palm mark measure of the stationary Nf -marked point random
field defined by {(Xi, Y

(i) −Xi)}i≥1.

Theorem 1. The random measures {Ln}n≥1 satisfy an LDP in the τ -topology with rate |Λn| and good rate
function

I(Q) = inf
Q∈Pθ
Q∗=Q

h(Q|P).

That is for all A ∈ Bcy(Mf)

lim sup
n→∞

1
|Λn|

log P(Ln ∈ A) ≤ − inf
Q∈Ā
I(Q)

and

lim inf
n→∞

1
|Λn|

log P(Ln ∈ A) ≥ − inf
Q∈Ao

I(Q)

where Ā denotes the closure and Ao the interior of A respectively. Moreover, the function I is lower semi-
continuous and has compact level sets.

To prove Theorem 1, we make use of the level-3 LDPs established in [16] (see also [13, 14] for related results).
However, the long-range dependencies induced by the interferences prevent us from applying the contraction
principle directly. Similarly to [1], we first have to perform a truncation step and consider an approximate model
with finite-range dependencies. In order to deduce Theorem 1 from the level-3 LDP in the truncated scenario,
we show that by a suitable choice of the truncation range, the truncation error becomes arbitrarily small.

In our second main result, we investigate how the connectable receivers associated with a typical transmitter
located at the origin behave as the connection threshold t tends to zero. Since this scenario turns out to be
more complicated than the one considered in Theorem 1, we impose stronger additional assumptions. To be
more precise, we assume that `(r) = min{1, r−α} for some α > d, the transmission power at the origin is
fixed (say equal to 1) and that there is no random environment Z . That is, {Fx,y}x,y∈Rd are iid and we put
q(a) = P(F−1

x,y ≤ a). Moreover, we assume that there exist N > 0 and smin > 0 such that

(i) q is globally Lipschitz and globally Lipschitz in its first derivative, both with Lipschitz constant N ,
(ii) q(s) = 0 for s ≤ smin and q(s) > 0 for s > smin.

To begin with, we provide some important preliminary observations: First, we note that the receivers con-
nectable to the origin, namely

Y t = {Yj ∈ Y : SINR(o, Yj , X ∪ {o}) ≥ t},
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form a Cox point process with random intensity measure Mt given by

Mt(B) = λR

∫
B

Γ(t−1`(|y|), y)dy,

where

Γ(a, y) = E(q(aI(y)−1)|X) for a ≥ 0 and y ∈ Rd. (1)

In other words, Γ is an expectation with respect to the fading field in the interference. More precisely, it is the
conditional expectation on the transmitter process X = {(Xi, Pi)} carrying also the transmission powers
as marks. For instance, this observation implies that the probability for the origin to be isolated is given by
pt = E exp(−Mt(Rd)) and tends to zero as t tends to zero. The representation of the isolation probability
provides a strong hint that the Varadhan-Laplace technique from the theory of large deviations (see e.g. [16])
could be a useful tool in the analysis of the asymptotic behavior of pt as t tends to zero. In particular, pt
should decay exponentially as t tends to zero. The exact form of this decay is presented in Corollary 3. In
Theorem 2, we give a more general result describing the exponential decay of unlikely numbers of connectable
receivers in space. Throughout the entire manuscript, β = 1/α denotes the inverse of the path-loss exponent.
Furthermore, we put Λ′t = Λ2(wsmint)−β , so that q(t−1SINR(o, y)) = 0 if y 6∈ Λ′t. In the following, we write
Poiss for the stationary point random field induced by a homogeneous Poisson point process with intensity
s ≥ 0.

Theorem 2. The random measures
{
|Λ′t|−1Y t(t−β·)}t<1 satisfy an LDP in the weak topology with rate |Λ′t|

and good rate function given by

I(ϕ) =

{∫
Λ′1
Iy(ϕ̇(y))dy if dϕ/dx = ϕ̇ exists,

∞ otherwise,

where

Iy(s) = inf
Q∈Pθ

(
h(Q|P) + h(Poiss|PoisλRQ(Γ(|y|−α,o)))

)
, (2)

and Q(Γ(|y|−α, o)) denotes the expectation of Γ(|y|−α, o) for a stationary marked point process X =
{(Xi, Pi)} that is distributed according to Q.

Note that in contrast to Theorem 1 the probability measures Q ∈ Pθ in (2) are distributions only of the trans-
mitters X and their transmission powers P . Setting ϕ ≡ 0 gives the decay of isolation probability, this is the
content of the following corollary.

Corollary 3.

lim
t→0
|Λ′t|−1 log pt = lim

t→0
|Λ′t|−1 log E exp

(
− λR

∫
Rd

Γ(t−1`(|y|), y)dy
)

= −
∫

Λ′1

inf
Q∈Pθ

(
h(Q|P) + λRQ(Γ(|y|−α, o))

)
dy.

Large-deviation principles in SIR-based networks have already been considered in [12, 23]. However, the ques-
tion treated in Theorem 2 is in a certain sense dual to the ones discussed in [12, 23]. In those papers a
large-deviation principle was derived for the interference at the origin caused by the signals from other users.
We investigate a scenario where the origin sends out a signal and we are interested in the interference at the
location of the other users.

The idea for the proof of Theorem 2 is to introduce a stationary point process that carries more information than
Y t. For this point process, we first establish a level-1 LDP based on the results of [16], and then deduce a path-
space LDP using the Dawson-Gärtner technique. The proof is concluded by an application of the contraction
principle.

Corollary 3 shows that pt decays exponentially in t−
d
α and provides a variational characterization of the rate

function. However, for the purpose of estimating the actual value of pt, our asymptotic result has two drawbacks.
First, in Corollary 3, we do not make any claims as regards to how small t should be for the asymptotic to be
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an acceptable approximation. It is not at all clear from the variational formula how to compute (or even approx-
imate) the asymptotic rate function. Nevertheless, when estimating the isolation probability pt via Monte Carlo
simulations, our large-deviation result can be used to devise an importance-sampling scheme that substantially
reduces the estimation variance. In the field of stochastic processes, large-deviation techniques have emerged
as a powerful tool to find suitable importance-sampling densities [2, Chapter 6.6], but so far have not found
widespread use for spatial rare-event problems.

As a notable exception, we mention [22], which deals with rare events arising from large values of the inter-
ference measured at the origin. In that paper, it is shown that the asymptotically efficient importance-sampling
density is given by a certain inhomogeneous Poisson point process. In our setting, the variational characteri-
zation in Theorem 2 suggests that the asymptotically optimal density is not given by a Poisson point process,
but by a collection of location-dependent Gibbs processes. Still, in a first step, we provide simulation results
illustrating that using an isotropic Poisson point process already leads to substantial variance reduction. Let us
also note that importance sampling for Gibbs processes on the lattice has been studied in [6].

The present paper is organized as follows. In Sections 2 and 3, we provide the proofs for Theorems 1 and 2,
respectively. Section 3 also contains the proof of Corollary 3. Finally, in Section 4 we describe two importance-
sampling schemes and provide some simulation results.

2. PROOF OF THEOREM 1

As mentioned in Section 1, in order to prove Theorem 1, we use the classical level-3 large-deviation result
for Poisson point processes [16, Theorem 3.1]. However, the interferences induce long-range interactions that
are not immediately compatible with the topology τL of local convergence that is used in [16]. To resolve this
issue, we will proceed similarly to [1] and show that a suitable truncation of the path-loss functions appearing
in the interference expression induces only a negligible error, see Section 2.1. After this truncation, we show in
Section 2.2 how the LDP for the stationary empirical field [16, Theorem 3.1] can be used to prove Theorem 1.

2.1. Truncation of the path-loss function. First, we show that only an asymptotically negligible error occurs
when disregarding transmitters close to the boundary of Λn. This is a well-known consequence of the Poisson
concentration property [8, Chapter 2.2], but for the convenience of the reader, we provide a detailed proof.

Lemma 4. Let b, ε > 0 be arbitrary. Then,

lim
n→∞

1
|Λn|

log P(X(Λn \ Λn−b) ≥ ε|Λn|) = −∞.

Proof. Let δ = λT(1 − (1 − b/n)d), m = δnd and τ = εnd, then the Poisson concentration inequality [8,
Chapter 2.2] implies that

P(X(Λn \ Λn−b)) ≥ τ) ≤ (m/τ)τeτ−n = (δε−1)εn
d
e(ε−δ)nd ≤ exp(εnd log(eδε−1)).

Since log(eδε−1) tends to −∞ as n→∞, this proves the claim. �

Next, we show that truncating the path-loss function in the interference at a finite threshold only leads to a small
error provided that the threshold is chosen sufficiently large. To be more precise, for b ≥ 1 we put `b(r) = `(r)
if r < b and `b(r) = 0 if r ≥ b. Furthermore, we define

Ib(Xi, y) = w +
∑
j 6=i

PXjFXj ,y`b(|Xj − y|), and SINRb(Xi, y) =
PXiFXi,y`(|Xi − y|)

Ib(Xi, y)
,

and

Lbn =
1
|Λn|

∑
Xi∈Λn

δY (i),b−Xi .
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where Y (i),b = {Yj ∈ Y : SINRb(Xi, Yj) ≥ t} denotes the point process of b-connectable receivers for the
transmitter Xi. We show that when using the total variation distance

dTV(Ln, Lbn) = sup
B∈Nf

|Ln(B)− Lbn(B)|,

the random measures {Lbn}n≥1 are exponentially good approximations of the random measures {Ln}n≥1 in
the sense of [10, Definition 4.2.14].

Lemma 5. Let ε > 0 be arbitrary. Then,

lim
b→∞

lim sup
n→∞

1
|Λn|

log P(dTV(Ln, Lbn) ≥ ε) = −∞.

Proof. To be specific and for notational convenience let us assume that the support of the power variables is
contained in [s−1

max, s
−1
min]. The definition of the total variation distance implies that

dTV(Ln, Lbn) ≤ 1
|Λn|

#{Xi ∈ Λn : Y (i) 6= Y (i),b}.

Next, by Lemma 4, we only need to consider those Xi that are contained in Λn−2r0 , where r0 > 0 is chosen
such that `(r0) ≤ ws2

mint. Then, almost surely, for Xi ∈ Λn−2r0 and Yi ∈ Λcn, SINRb(Xi, Yj) < t for all
b ≥ 1. Consequently, it suffices to bound the number of transmitter-receiver pairs (Xi, Yj) ∈ X × Y such
that Xi ∈ Λn−2r0 , Yi ∈ Λn and SINR(Xi, Yj) < t ≤ SINRb(Xi, Yj). In fact, it suffices to focus on the
receivers in these pairs. Indeed, let us call Yj b-pivotal if there exists some transmitter Xi such that the pair
(Xi, Yj) has these properties. Then, since we assumed that qx,ϕ(r) = 0 for r ≤ smin, for each receiver Yj
there exist K = dt−1s2

max/s
2
mine transmitters A(Yj , X) = {Xi1 , . . . , XiK} such that SINRb(Xi, Yj) < t

if Xi 6∈ A(Yj , X). Hence, it suffices to show that for every ε > 0,

lim
b→∞

lim sup
n→∞

1
|Λn|

log P(#{Yj ∈ Λn : Yj is b-pivotal} ≥ ε|Λn|) = −∞.

In order to do so, we use the exponential Markov inequality with s ≥ 1 and estimate

P(#{Yj ∈ Λn : Yj is b-pivotal} ≥ ε|Λn|)
≤ exp(−sε|Λn|)E exp(s#{Yj ∈ Λn : Yj is b-pivotal}).

Hence, it suffices to show that for every s ≥ 1,

lim
b→∞

lim sup
n→∞

1
|Λn|

log E exp(s#{Yj ∈ Λn : Yj is b-pivotal}) = 0.

The point process of receivers that are b-pivotal form a stationary Cox point process with random intensity
measure

M ′(B) = λR

∫
B

P(y is b-pivotal|X,Z)dy, B ∈ B(Rd),

where we think of X = {(Xi, Pi)}i≥1 as a marked point process and we evaluate the probability with respect
to the fading variables associated with the pairs (y,Xi)i≥1. Since q is assumed to be globally Lipschitz with
constant N , we arrive at

P(y is b-pivotal|X,Z)

≤
∑

Xi∈A(y,X)

P(SINR(Xi, y) < t ≤ SINRb(Xi, y)|X,Z)

≤
∑

Xi∈A(y,X)

P(F−1
Xi,y

t ∈ [PXi`(|Xi − y|)I(Xi, y)−1, PXi`(|Xi − y|)Ib(Xi, y)−1]|X,Z)

≤
∑

Xi∈A(y,X)

`(|Xi − y|)Ns−1
mint

−1w−2E(I(Xi, y)− Ib(Xi, y)|X,Z),

which is at most
S
∑
i≥1

`(|Xi − y|)− `b(|Xi − y|)

7



where S = K`(0)Ns−3
mint

−1w−2. In particular, we obtain that

M ′(B) ≤ S′
∫
B

∑
i≥1

`(|Xi − y|)− `b(|Xi − y|)dy,

where S′ = λRS. Hence, using the formula for the Laplace functional of a Cox point process, we get that

E exp
[
s#{Yj ∈ Λ2n : Yj is b-pivotal}

]
≤ E exp

[
(es − 1)S′

∫
Λ2n

∑
i≥1

`(|Xi − y|)− `b(|Xi − y|)dy
]

= exp
[
λT

∫
Rd

exp
(
(es − 1)S′

∫
Λ2n

`(|x− y|)− `b(|x− y|)dy
)
− 1dx

]
.

Notice, that we can bound the integral∫
Rd

exp
[
τ

∫
Λ2n

`(|x− y|)− `b(|x− y|)dy
]
− 1dx

≤
∫

Λ4n

exp
[
τ

∫
Rd\Bb(x)

`(|x− y|)dy
]
− 1dx+

∫
Rd\Λ4n

exp
[
τ

∫
Λ2n

`(|x− y|)dy
]
− 1dx.

where τ := (es − 1)S′. In the next step, we derive bounds for these expressions separately. For the first, we
get that

1
nd

∫
Λ4n

exp
[
τ

∫
Rd\Bb(x)

`(|x− y|)dy
]
− 1dx = 4d

[
exp

(
τ

∫
Rd\Bb(o)

`(|y|)dy
)
− 1
]

which tends to zero as b tends to infinity. For the second expression, we note that for x ∈ Rd \ Λ4n and
y ∈ Λ2n,

|x− y| = |x− y|+
√
d|x− y|

1 +
√
d

≥ |x− y|+ |y|
1 +
√
d
≥ (1 +

√
d)−1|x|.

Consequently, using that `(r) ∈ o(r−d), we have for large n

1
nd

∫
Rd\Λ4n

exp
[
τ

∫
Λ2n

`(|x− y|)dy
]
− 1dx

≤ 1
nd

∫
Rd\Λ4n

exp
[
τ(2n)d`((1 +

√
d)−1|x|)

]
− 1dx

≤
∫

Rd\Λ4n

τ2d+1`((1 +
√
d)−1|x|)dx =

∫
Rd\Λ4n(1+

√
d)−1

τ2d+1(1 +
√
d)d`(|x|)dx,

which tends to zero as n tends to infinity. �

2.2. Application of LDP for the stationary empirical field. In order to apply [16, Theorem 3.1], we need
to relate the empirical measure of connectable receivers to the stationary empirical field considered in [16].
Here the first task consists in encoding the probability space carrying the point processes of transmitters X ,
the point process of receivers Y , the random environment Z , the transmission powers {Px} and the iid family
{Ux,y} in the framework of stationary marked point processes. To be more precise, we put Σ = {E,R,T}
and consider the mark space E = Σ × (0,∞) × [0, 1]N equipped with some complete and separable
metric. Furthermore, we let V denote an independently E-marked homogeneous Poisson point process with
intensity

∑
σ∈Σ λσ . The mark distribution on E is a product of three distributions defined on the spaces Σ,

(0,∞) and [0, 1]N, respectively. First, on Σ, we choose the distribution which assigns σ ∈ Σ the probability
λσ/(

∑
σ′∈Σ λσ′). Second, on (0,∞) we choose the distribution of the transmission power Px considered

in Section 1. Third, the distribution on [0, 1]N describes a family of iid random variables that are uniformly
distributed [0, 1]. The Poisson point process Z that generates the random environment is represented by
elements of V = (vi, σi, Pi, (Ui,j)j≥1)i≥1 with σi = E. Elements of V = (vi, σi, Pi, (Ui,j)j≥1)i≥1 with
σi = T are thought of as transmitters and are denoted by X . Elements of V = (vi, σi, Pi, (Ui,j)j≥1)i≥1

with σi = R are thought of as receivers and are denoted by Y . We note that the power variables Pi have not
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meaning if σi 6= T. The random variables Ux,y should be thought of as being attached to the the transmitters.
Moreover, proceeding as in [16, Section 1], let

V per,n =
⋃
s∈Zd

((V ∩ Λn) + ns)

denote the periodic spatial continuation of V ∩ Λn. The stationary empirical field is defined as

Rn,V :=
1
|Λn|

∫
Λn

1V per,n−vdv

where V per,n−v = {(vj−v, ej)}j≥1 is the spatial translation of V per,n by v. Now, we let Y per,n,b,(i) denote
the family of periodized receivers that have a b-connection to the transmitter Xper,n

i = (xi,T, Pi, (Ui,l)l≥1).
More precisely,

Y per,n,b,(i) =
{
Yj = (yj ,R, Pj , (Uj,l)l≥1) ∈ Y per,n : t ≤

PiFxi,yj`(|xi − yj |)
w +

∑
k 6=i PkFxk,yj`(|xk − yj |)

}
,

where
Fxi,yj = Φ(yj − xi, Zper,n − xi, Ui,Ψ(yj−xi,Y per,n−xi)),

and where the integer Ψ(yj − xi, Y per,n − xi) ≥ 1 is defined as follows. If k ≥ 1 is such that yj − xi is the
k-th closest element in Y per,n− xi to the origin, then we put Ψ(yj − xi, Y per,n− xi) = k. This construction

will ensure translation invariance for the periodized version. The empirical measure Lper,b
n of b-connectable

receivers associated with transmitters in Λn when the network is based on periodized configurations can also
be expressed as a function of Rn,V . Indeed, by the same technique that was used to define the individual
empirical field in [16], we arrive at

Lper,b
n =

1
|Λn|

∑
xi∈Xper,n∩Λn

δY per,n,b,(i)−xi =
1
|Λn|

∫
Λn

g′(V per,n − v)dv,

where
g′(V per,n − v) =

∑
xi−v∈(Xper,n−v)∩Λ1

g(V per,n − xi),

and where g is the Dirac measure concentrated on the family of b-connectable receivers from the origin mul-
tiplied with the indicator function that the origin is a transmitter. Next, we prove that the random measures
{Lper,b

n }n≥1 and {Lbn}n≥1 are exponentially equivalent (in the sense of [10, Definition 4.2.10]), when using
the total variation metric.

Lemma 6. Let ε > 0 be arbitrary. Then,

lim
n→∞

1
|Λn|

log P(dTV(Lper,b
n , Lbn) ≥ ε) = −∞.

Proof. As in Lemma 5, choose r0 ≥ 1 such that `(|x − y|) ≤ ws2
mint if |x − y| ≥ r0. In particular

Y (i),b ⊂ Br0(Xi). Further by the truncation of the interference, to decide whether Yj ∈ Y (i),b it suffices to
look at transmitters in Bb(Yj). As a consequence, the family Y (i),b depends only on the network configuration

in Br0+b+senv(b)(Xi). Hence, dTV(Lper,b
n , Lbn) ≤ #(X ∩ Λn \ Λn−2(r0+b+senv(b))), and the claim follows

from Lemma 4. �

Now, we are in a position to provide a proof for the LDP asserted in Theorem 1 when Ln is replaced by Lbn.
Let Q be the distribution of some stationary E-marked point process V = (vi, σi, Pi, (Ui,j)j≥1)i≥1. Then,
we define Q∗,b as the Palm mark measure of the marked point process (Xi, Y

(i),b − Xi). Here, as above,
Xi ∈ V are interpreted as transmitters and Y (i),b ⊂ V as the b-connectable receivers.

Proposition 7. The random measures
{
Lbn}n≥1 satisfy an LDP in the τ -topology with rate |Λn| and good

rate function
Ib : Q 7→ inf

Q∈Pθ
Q∗,b=Q

h(Q|P).
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Proof. First, we note that the map Φb : Q 7→ Q∗,b is continuous with respect to the τ -topology. Indeed,
for Qn → Q and B ∈ Nf , the locality that is established after truncating the interferences gives that

|Q∗,b(B) − Q∗,bn (B)| → 0 as n → ∞. As Φb(Rn,V ) = Lper,b
n , we can apply [16, Corollary 3.2] and

the contraction principle. Thus the random measures
{
Lper,b
n }n≥1 satisfy an LDP with good rate function Ib.

Finally, Lemma 6 shows that {Lper,b
n }n≥1 and {Lbn}n≥1 are exponentially equivalent with respect to the total

variant distance. This implies exponential equivalence of {Lper,b
n }n≥1 and {Lbn}n≥1 when evaluated on an

arbitrary Borel subset of Nf . So the claim follows from [11, Corollary 1.10, Remark 1.4]. �

The same arguments also prove the following result, where we consider the marked point process (Xi, Y
(i),b−

Xi, Y
(i),b′ −Xi) at different truncation thresholds b′ > b ≥ 1. Starting from Q ∈ Pθ, the associated Palm

mark distribution is denoted by Q∗,b,b′ .
Lemma 8. Let b′ > b ≥ 1. Then, the random variables

{
1
|Λn|#{Xi ∈ Λn : Y (i),b′ 6= Y (i),b}}n≥1 satisfy

an LDP with rate |Λn| and good rate function

s 7→ inf
Q∈Pθ

Q∗,b,b′ (Y (o),b′ 6=Y (o),b)=s

h(Q|P).

Finally, we complete the proof of Theorem 1. In Lemma 5, we showed that {Lbn}n≥1 are exponentially good
approximations of {Ln}n≥1 and hence an application of [11, Theorem 1.13] is natural.

Proof of Theorem 1. As mentioned in the previous paragraph, [11, Theorem 1.13] implies that it suffices to
verify the following condition. For every ε,K > 0 there exists b ≥ 1 such that

sup
Q∈Pθ

h(Q|P)≤K

dTV(Q∗,Q∗,b) ≤ ε.

We show that a slightly stronger statement holds, where dTV(Q∗,Q∗,b) is replaced by Q∗(Y (o),b 6= Y (o)).

Lemma 5 shows that there exists b0 ≥ 1 such that if b′ > b ≥ b0, then

lim sup
n→∞

|Λn|−1 log P(#{Xi ∈ Λn : Y (i),b′ 6= Y (i),b} > ε|Λn|) ≤ −K.

Hence, the LDP from Lemma 8 yields that

inf
Q0∈Pθ

Q∗,b,b
′

0 (Y (o),b′ 6=Y (o),b)>ε

h(Q|P) > K.

In particular, if h(Q|P) ≤ K , then Q∗,b′,b(Y (o),b′ 6= Y (o),b) ≤ ε, as required. �

3. PROOF OF THEOREM 2

The difficulty in proving Theorem 2 is that the connectable receivers associated with the origin are not stationary,
so that we cannot use LDPs for the stationary empirical field directly. Therefore, we first consider a more general
stationary marked point process from which the connectable receivers can be reproduced by an application of
the contraction principle. Since we need a path-space LDP for this stationary marked point process, we proceed
as in the classical proof of Mogulskii’s Theorem [10, Theorem 5.3.1] and use the Dawson-Gärtner technique to
deduce the path-space LDP from the finite-dimensional marginals.

In order to define a suitable auxiliary stationary marked point process, we consider the random measure

M t(·) = λR

∫
Λ′t

∫ ∞
0

1{·}νy(ds)dy,

where νy([0, s]) = Γ(s, y) = E(q(sI(y)−1)|X) see also (1). Then, we let Zt = {(Yj , Sj)} denote a Cox
process with this random intensity measure and define the two-parameter field Y ∗,t = {Y ∗,t(x, s)}(x,s)∈Λ′1×[0,∞)

by
Y ∗,t(x, s) = Zt(Λt(x)× (0, s]),
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where

Λt(ξ1, . . . , ξd) = t−β
d∏
i=1

[−|Λ′1|1/d/2, ξi].

In particular, for any fixed (x, s) ∈ Λ′1× [0,∞), conditioned on X the random variable Y ∗,t(x, s) is Poisson-
distributed with parameter λR

∫
Λt(x) Γ(s, y)dy. Moreover, Y ∗,t is a random variable with values in Linc, the

space of [0,∞)-valued, bounded and coordinate-wise increasing functions on Λ′1 × [0,∞).

In the following, we put µQ(s) = λRQ(Γ(s, o)) and note that the derivative d
dsµQ(s) exists since q is differ-

entiable and d
dsq(s) is Lipschitz continuous with Lipschitz constant N .

Similar to [10, Section 5.3] we introduce the notion of absolute continuity for increasing functions F : Λ′1 ×
[0,∞) → [0,∞), (x, s) 7→ F (x, s). For the convenience of the reader, we reproduce some of these
definitions and observations. F defines a additive set-function on the set of cubes. More precisely for Λ =
(a1, b1] × (a2, b2] × · · · × (ad, bd] × (ad+1, bd+1] we will sometimes write F (Λ) :=

∑
u σ(u)F (u) with

σ(u) := (−1)ρ where ρ = #{k : uk = ak} and the summation extends of all corners u of Λ see [18,
Chapter 3]. It follows from Carathéodory’s extension theorem, that any right-continuous F ∈ LInc induces a
unique measure µF on Λ′1 × [0,∞) with the Borel sigma-algebra satisfying

µF (
d∏
i=1

[−|Λ′1|1/d/2, ξi]× [0, s]) = F (ξ1, . . . , ξd, s),

for any s ≥ 0 and (ξ1, . . . , ξd) ∈ Λ′1, see [18, Theorem 3.25].

The function F is called absolutely continuous if F is right-continuous and µF is absolutely continuous with
respect to the Lebesgue measure on Λ′1 × [0,∞). We write ∂F/(∂x∂s) for its Radon-Nikodym derivative.
Let

AC1
0 := {F :F is absolutely continuous, F (x, 0) = 0 and F (−|Λ′1|1/d/2, ξ2, . . . , ξd, s) =

= F (ξ1,−|Λ′1|1/d/2, . . . , ξd, s) = · · · = F (ξ1, . . . , ξd−1,−|Λ′1|1/d/2, s) = 0}.
In Section 3.3, we will derive Theorem 2 by the contraction principle from the following result.

Proposition 9. The random fields
{
|Λ′t|−1Y ∗,t(·, ·)}t<1 satisfy an LDP in the topology of pointwise conver-

gence with rate |Λ′t| and good rate function given by

I(F ) =

{∫
Λ′1
I∗
(
∂F
∂y∂s(y, ·)

)
dy if F ∈ AC1

0 ,

∞ otherwise,

where

I∗(g) = inf
Q∈Pθ

h(Q|P) +
∫ ∞

0
h
(
g(s)

∣∣ d
dsµQ(s)

)
ds. (3)

3.1. Finite-dimensional result. In order to apply the Dawson-Gärtner Theorem [10, Theorem 4.6.1], we first
derive the finite-dimensional LDPs.

Proposition 10. Let −|Λ′1|1/d/2 = ξ0 < ξ1 < · · · < ξk ≤ |Λ′1|1/d/2 and 0 = s0 < s1 < · · · < sr.
Furthermore, put Ξ = {ξ0, ξ1, . . . , ξk} and S = {s0, s1, . . . , sr}. Then, the (Ξd × S)-indexed random
variables

{(
|Λ′t|−1Y ∗,t(x, s)

)
(x,s)∈Ξd×S

}
t<1

satisfy an LDP with rate |Λ′t| and good rate function

IΞ,S(F ) =
∑
x∈Ξd

|ΛΞ(x)| inf
Q∈Pθ

h(Q|P) +
r∑
i=1

h
( 1
|ΛΞ(x)|

F (ΛΞ(x)× (si−1, si])
∣∣∆µQ(si)

)
,

where ∆µQ(si) = µQ(si)−µQ(si−1), and ΛΞ(ξi1 , . . . , ξid) =
∏d
j=1(ξij , ξij+1] with (ξi1 , . . . , ξid) ∈ Ξd.

The basic idea of proof for Proposition 10 is to apply the LDP for the stationary empirical field [16, Theorem
3.1]. However, in order to cast our problem into a suitable framework, we first have to perform a truncation and
a periodization step.
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3.1.1. Truncation of the path-loss function. In a first step, we show that truncation of the path-loss function
gives an exponentially good approximation. Let b ≥ 1, s′ ≥ s ≥ 0 and x, x′ ∈ Λ1 be such that all coordinates
of x′ − x are positive. Then, we let Y ∗,b,t(x, x′, s, s′) denote a random variable that conditioned on the inde-
pendently marked Poisson particle process X is Poisson distributed with parameter λR

∫
Λt(x,x′)

Γb(s′, y) −
Γb(s, y), where Γb(s, y) = E(sIb(y)−1|X),

Λt(x, x′) = t−βΛ(x, x′) = t−β
d∏
i=1

(πk(x), πk(x′)],

and πk : Rd → R denotes the projection onto the kth coordinate. From now on let us again assume that the
support of the power variables is contained in [0, s−1

min].

Lemma 11. Let b ≥ 1, s′ ≥ s > 0, and x, x′ ∈ Λ′1. Then, {Y ∗,b,t(x, x′, s, s′)}b≥1,t<1 are exponentially
good approximations of {Y ∗,t(Λt(x, x′)× (s, s′])}t<1.

Proof. Conditioned on X , the random variable |Y ∗,b,t(x, x′, s, s′)− Y ∗,t(x, x′, s, s′)| is stochastically domi-
nated by a Poisson distributed random variable with parameter

Hb = λR

∫
Λt(x,x′)

Γb(s′, y)− Γ(s′, y) + Γb(s, y)− Γ(s, y)dy.

Hence, using the Laplace transform of Poisson random variables, for any a ≥ 1 the exponential moment of
a|Y ∗,b,t(x, x′, s, s′)− Y ∗,t(x, x′, s, s′)| are bounded from above by

E exp(a|Y ∗,b,t(x, x′, s, s′)− Y ∗,t(x, x′, s, s′)|) ≤ E exp((ea − 1)Hb).

Now, similar to the proof of Lemma 5, Hb can be bounded from above by

λRN(s+ s′)s−2
minw

−2

∫
Λt(x)

∑
i≥1

`(|Xi − y|)− `b(|Xi − y|)dy,

so that

E exp(a|Y ∗,b,t(x, x′, s, s′)− Y ∗,t(Λt(x, x′)× (s, s′])|)

≤ E exp
(

(ea − 1)λRN(s+ s′)s−2
minw

−2

∫
Λt(x,x′)

∑
i≥1

`(|Xi − y|)− `b(|Xi − y|)dy
)
.

Now, we conclude as in Lemma 5. �

3.1.2. Periodization of the integration domain. Next, we show that replacing the quantity Y ∗,b,t(x, x′, s, s′) by
a periodized variant is exponentially equivalent. To be more precise, let b ≥ 1, s′ ≥ s ≥ 0 and x, x′ ∈ Λ′1 be
such that all coordinates of x′ − x are positive. Then, Xper,t denotes the periodization of X ∩ Λt(x, x′), i.e.,

Xper,t =
⋃
z∈Zd

(|Λt(x, x′)|1/dz +X ∩ Λt(x, x′)).

As in Lemma 11, we let Y ∗,per,b,t(x, x′, s, s′) denote a random variable that conditioned on X is Poisson
distributed with parameter

λR

∫
Λt(x,x′)

Γper,b(s′, y)− Γper,b(s, y)dy.

Here, Γper,b(s, y) = E(q(sIper,b(y)−1)|Xper,t) and Iper,b(y) is the interference at y in the periodized con-
figuration computed using truncated path-loss functions.

Lemma 12. The random variables
{
Y ∗,per,b,t(x, x′, s, s′)

}
t<1

are exponentially equivalent to the random

variables
{
Y ∗,b,t(x, x′, s, s′)

}
t<1

.
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Proof. Since we consider truncated interferences, we have that Iper,b(y) = Ib(y) for all y ∈ Λ−t (x, x′),
where Λ−t (x, x′) denotes the subset of all y ∈ Λt(x, x′) such that Bb(y) ⊂ Λt(x, x′). In particular,
|Y ∗,per,b,t(x, x′, s, s′) − Y ∗,b,t(x, x′, s, s′)| is stochastically dominated by a Poisson random variable with
parameter 2λR|Λt(x, x′) \ Λ−t (x, x′)|. Now, we can conclude as in Lemma 6 by making use of the Poisson
concentration property. �

3.1.3. Application of LDP for stationary empirical fields. We have seen that truncating the interference and
considering a periodization does not have an effect on {Y ∗,t(x, x′, s, s′)}t<1 in the LDP asymptotics. Now,
we derive an LDP after these modifications have been implemented. We put µbQ(s) = Q(Γb(s, o)).

Proposition 13. The random variables
{
|Λ′t|−1#Y ∗,per,b,t(x, x′, s, s′)}τ<1 satisfy an LDP with rate |Λ′t| and

good rate function

Ix,x
′,s,s′

b,N (a) = |Λ(x, x′)| inf
Q∈Pθ

(
h(Q|P) + h

(
a

|Λ(x,x′)| |µ
b
Q(s′)− µbQ(s)

))
(4)

Let us recall from [10, Equations 1.2.12 and 1.2.13] that if the random variable considered in an LDP is mea-
surable with respect to the Borel σ-algebra on the underlaying topological space, then the proof of the upper
and lower bound can be done directly for closed and open sets, respectively. We use this in the sequel without
further mentioning.

We prepare the proof of Proposition 13 by a lemma. First, we note that [16, Theorem 3.1] gives the following
auxiliary result, where we put

Mav,t = Mav,t(x, x′, s, s′) = λR|Λt(x, x′)|−1

∫
Λt(x,x′)

Γper,b(s′, y)− Γper,b(s, y)dy.

Lemma 14. Let F and G be compact and open subsets of [0,∞), respectively. Then,

lim sup
t→0

1
|Λt(x, x′)|

log E exp
(
− |Λt(x, x′)| inf

a∈F
h(a|Mav,τ )

)
≤ − inf

Q∈Pθ
a∈F

h(Q|P) + h
(
a|µbQ(s′)− µbQ(s)

)
,

and

lim inf
t→0

1
|Λt(x, x′)|

log E exp
(
− |Λt(x, x′)| inf

a∈G
h(a|Mav,τ )

)
≥ − inf

Q∈Pθ
a∈G

h
(
Q|P) + h(a|µbQ(s′)− µbQ(s)

)
.

Proof. In order to apply [16, Theorem 3.1], we only need to check that the functions

Q 7→ inf
a∈F

h
(
a|µbQ(s′)− µbQ(s)

)
and

Q 7→ inf
a∈G

h
(
a|µbQ(s′)− µbQ(s)

)
are lower- and upper-semicontinuous, respectively. First, note that the map Q 7→ µbQ(s′)−µbQ(s) is continuous

in the τL-topology, since Γb(·, o) only depends on X via X ∩ Bb(o). Now, we conclude by observing that
a′ 7→ infa∈F h(a|a′) is lower-semicontinuous as pointwise infimum of a two-parameter lower-semicontinuous
function over a compact set and a′ 7→ infa∈G h(a|a′) is upper-semicontinuous as infimum over a family of
continuous functions. �

Now, we can proceed with the proof of Proposition 13.
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Proof of Proposition 13. The upper bound for compactF is an immediate consequence of Lemma 14, since [21,
Lemma 1.2] implies that

P(|Λ′t|−1Y ∗,per,b,t(x, x′, s, s′) ∈ F ) ≤ E exp
(
− |Λt(x, x′)| inf

a∈F
h
(

a
|Λ(x,x′)| |Mav,τ

))
.

The proof of the lower bound is more involved. First, we may assume that G is an interval, i.e., G = [0, γ)
or G = (γ−, γ+) for some γ, γ−, γ+ > 0. Next, introduce the function f(k) by f(0) = 1 and f(k) =
e−1/(12k)(

√
2πk)−1 for k ≥ 1, and put Gt = Z ∩ (|Λ′t|G). Then, by [21, Lemma 1.3],

P(|Λ′t|−1Y ∗,per,b,t(x, x′, s, s′) ∈ G)

≥ E exp
(
− inf
k∈Gt

− log f(k) + h
(
k
∣∣|Λt(x, x′)|Mav,t

))
≥ E exp

(
− |Λ′t|(|Λ′t|−1/2 + |Λ(x, x′)| inf

k∈Gt
Mav,th

(
k|Λt(x, x′)|−1M−1

av,t)
))
,

where h(k|Λt(x, x′)|−1M−1
av,t) = h(k|Λt(x, x′)|−1M−1

av,t

∣∣1) is a short notation. Now, we distinguish between
the cases where G contains 0 and where it does not. We claim that if G = [0, γ) and ε > 0, then

inf
k∈Gt

Mav,th(k|Λt(x, x′)|−1M−1
av,t) ≤ ε+ inf

g∈G
Mav,th( g

|Λ(x,x′)|M
−1
av,t),

provided that t > 0 is sufficiently small. Once this claim is proven, Lemma 14 completes the proof of the lower
bound for the case G = [0, γ). Let ε > 0 be arbitrary. Then, under the event Mav,t ≤ ε, we deduce that

inf
k∈Gt

Mav,th(k|Λt(x, x′)|−1M−1
av,t) ≤Mav,t ≤ ε.

On the other hand, if Mav,t ≥ ε, then for every g ∈ G,∣∣g|Λ(x, x′)|−1M−1
av,t − k(g)|Λt(x, x′)|−1M−1

av,t

∣∣ ≤ |Λt(x, x′)|−1ε−1,

where k(g) ≥ 1 is chosen as the element of Z∩ (|Λ′t|G) such that k(g)|Λt(x, x′)|−1 minimizes the distance
to g|Λ(x, x′)|−1. In particular, uniform continuity of h(·) on the interval [0, γ|Λ(x, x′)|−1ε−1] implies that

inf
k∈Gt

Mav,th(k|Λt(x, x′)|−1M−1
av,t) ≤ ε+ inf

g∈G
Mav,th(g|Λ(x, x′)|−1M−1

av,t),

for all sufficiently small t > 0. Finally, we deal with the case, where G = (γ−, γ+) and observe that if
Mav,t ≥ ε, then we can conclude as before. To be more precise,

E exp
(
− |Λt(x, x′)| inf

k∈Gt
Mav,th(k|Λt(x, x′)|−1M−1

av,t)
)

≥ E exp
(
− |Λt(x, x′)|(−ε+ inf

g∈G
Mav,th

(
g|Λ(x, x′)|−1M−1

av,t)
))

− E1{Mav,t ≤ ε} exp
(
− |Λt(x, x′)|(−ε+ inf

g∈G
Mav,th

(
g|Λ(x, x′)|−1M−1

av,t)
))
.

Now, for any K ≥ 1 there exists ε > 0 such that Mav,th(γ−|Λ(x, x′)|−1M−1
av,t) ≥ K if Mav,t ≤ ε. In

particular,

exp
(
− |Λt(x, x′)|(−ε+ inf

g∈G
Mav,th(gM−1

av,t))
)
≤ exp

(
− |Λt(x, x′)|(−ε+K)

)
,

which completes the proof of the lower bound.

Note that
{
|Λ′t|−1Y ∗,per,b,t(x, x′, s, s′)}t<1 are exponentially tight because Y ∗,per,b,t(x, x′, s, s′) is stochas-

tically dominated by a Poisson random variable with parameter λR|Λt(x, x′)|, . This implies both goodness of
the rate function and the full LDP. �

Next, using Lemma 13, we derive an LDP for the finite-dimensional marginals of Y ∗,per,b,t(·, ·). In order to
state this precisely, it is convenient to introduce some notation. Let −|Λ′1|1/d/2 = ξ0 < ξ1 < · · · < ξk ≤
|Λ′1|1/d/2 and 0 = s0 < s1 < · · · < sr. Then, for x = (ξi1 , . . . , ξid) and s = si we put x+,Ξ =
(ξi1+1, . . . , ξid+1) and s+,S = si+1, where we use the conventions ξk+1 = |Λ′1|1/d/2 and s`+1 =∞.
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Corollary 15. Let −|Λ′1|1/d/2 = ξ0 < ξ1 < · · · < ξk ≤ |Λ′1|1/d/2 and 0 = s0 < s1 < · · · < s`.
Furthermore, put Ξ = {ξ0, ξ1, . . . , ξk} and S = {s0, s1, . . . , sr}. Then, the random vectors{(

|Λ′t|−1Y ∗,b,t(x, x+,Ξ, s, s+,S)
)

(x,s)∈Ξd×S
}
t<1

satisfy an LDP with rate |Λ′t| and good rate function

IbΞ,S((az)z∈Ξd×S) =
∑
x∈Ξd

|Λ(x, x+,Ξ)| inf
Q∈Pθ

h(Q|P) +
r∑
i=1

h
( ax,si
|Λ(x,x+,Ξ)|

∣∣∆µbQ(si)
)
.

Proof. First, we observe that
(
Y ∗,per,b,t(x, x+,Ξ)

)
x∈Ξd

defines a family of independent random vectors, where
we put

Y ∗,per,b,t(x, x+,Ξ) =
(
Y ∗,per,b,t(x, x+,Ξ, s, s+,S)

)
s∈S .

Indeed, this is a consequence of the independence property of the Poisson point process X since by the
definition of the periodization, Y ∗,per,b,t(x, x+,Ξ) depends on X only via X ∩ Λt(x, x+,Ξ). Hence, if for any
fixed x ∈ Ξd we can establish an LDP for Y ∗,per,b,t(x, x+,Ξ) with a certain good rate function, then [10,
Exercise 4.2.7] allows us to deduce that the collection

(
Y ∗,per,b,t(x, x+,Ξ)

)
x∈Ξd

satisfies an LDP with good

rate function given by the sum of the individual ones. If |S| = 1, then the LDP for Y ∗,per,b,t(x, x+,Ξ) is
precisely the result of Lemma 13, and an inspection of its proof shows that it also extends to the case of general
finite S.

In Lemma 11 we have seen that periodization replaces {Y ∗,b,t(x, x′, s, s′)}τ<1 by exponentially equivalent
random variables. Hence, applying [10, Theorem 4.2.13] completes the proof. �

In order to deduce Proposition 10 from Corollary 15, we need to undo the truncation approximations. Before we
start with the proof of Proposition 10, it is convenient to derive certain continuity properties of µbQ and d

dsµ
b
Q(s)

with respect to b and Q. The technique of proof is similar to the one used in the proof of Theorem 1.

Lemma 16. Let ε,K > 0 and s ≥ 0 be arbitrary. Then, there exists b ≥ 1 such that if Q ∈ Pθ satisfies
h(Q|P) ≤ K , then

µbQ(s)− µQ(s) ≤ ε, and | d
dsµ

b
Q(s)− d

dsµQ(s)| ≤ ε.

Proof. We first deal with the part of the statement not involving derivatives. Let b′ ≥ b ≥ 1 be arbitrary.
Proceeding as in Lemma 14, we see that

{
|Λ′t|−1

∫
Λ′t

Γb(s, y)− Γb
′
(s, y)dy

}
t<1

satisfies an LDP with rate

|Λ′t| and good rate function

a 7→ inf
Q∈Pθ

µbQ(s)−µb′Q (s)=a

h(Q|P).

In particular, the proof of the lemma is completed, once we show the existence of b0 ≥ 1 such that

lim sup
t→0

|Λ′t|−1 log P
(∫

Λ′t

|Λ′t|−1Γb(s, y)− Γb
′
(s, y)dy > ε

)
≤ −K.

for all b′ ≥ b ≥ b0. Note that

Γb(s, y)− Γb
′
(s, y) ≤ Nss−2

minw
−2
∑
i≥1

`b′(|y −Xi|)− `b(|y −Xi|). (5)

Hence, using the formula for the Laplace functional of a Poisson point process shows that for any a > 0,

E exp
(
a

∫
Λ′t

Γb(s, y)− Γb
′
(s, y)dy > ε

)
≤ exp

(
λT

∫
Rd

exp
(
aNs−2

minw
−2

∫
Λ′t

`(|x− y|)− `b(|x− y|)dy
)
− 1dx

)
.

Now, we conclude as in Lemma 5.
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For the part involving the derivatives, note that the derivative of µQ(s) is given by λRQ(I(o)−1 d
dsΓ(s, o)).

Essentially, this means replacing in the above arguments the expression q(sI(y)−1) by I(y)−1 d
dsq(sI(y)−1).

This specific form only comes into play in the estimate (5) which can be replaced by

|Ib(y)−1 d
dsq(sI

b(y)−1)− Ib′(y)−1 d
dsq(sI

b′(y)−1)|

≤ Ib(y)−1| d
dsq(sI

b(y)−1)− d
dsq(sI

b′(y)−1)|+ d
dsq(sI

b′(y)−1)|Ib(y)−1 − Ib′(y)−1|

≤
(
Nss−2

minw
−3 +Nw−2s−2

min

)∑
i≥1

(`b′(|y −Xi|)− `b(|y −Xi|)),

as required. �

Corollary 17. Let K > 0 and s ≥ 1 be arbitrary. Then, in the τL-topology,

(i) as b → ∞, the functions Q 7→ µbQ(s) converge to µQ(s) uniformly in {Q : h(Q|P) ≤ K}. In
particular, Q 7→ µQ(s) is continuous on {Q : h(Q|P) ≤ K},

(ii) as b → ∞, the functions Q 7→ d
dsµ

b
Q(s) converge to d

dsµQ(s) uniformly in {Q : h(Q|P) ≤ K}. In

particular, Q 7→ d
dsµQ(s) is continuous on {Q : h(Q|P) ≤ K},

(iii) if bn →∞, Qn → Q and lim supn→∞ h(Qn|P) ≤ K , then µbnQn(s)→ µQ(s).

Proof. Since the first two items are an immediate consequence of Lemma 16, we only deal with the last item.
Here, we use the decomposition

|µQ(s)− µbnQn(s)| ≤ |µQ(s)− µbQ(s)|+ |µbQ(s)− µbQn(s)|+ |µbnQn(s)− µbQn(s)|,

and conclude as before. �

Now, we have completed all preparations for the proof of Proposition 10.

Proof of Proposition 10. In Lemma 11, we have seen that truncation leads to an exponentially good approxi-
mation. Therefore, combining Corollary 15 with [10, Theorem 4.2.16] shows that the (Ξd×S)-indexed random
vector

{(
|Λ′t|−1Y ∗,t(x, s)

)
(x,s)∈Ξd×S

}
t<1

satisfies a weak LDP with rate function

I ′Ξ,S((ax,s)(x,s)) = sup
m≥1

lim inf
b→∞

inf
(a′x,s)(x,s): |(a′x,s)(x,s)−(ax,s)(x,s)|∞≤m−1

IbΞ,S((a′x,s)(x,s)).

Since the random vectors
{(
|Λ′t|−1Y ∗,t(x, s)

)
(x,s)∈Ξd×S

}
τ<1

are exponentially tight, the proof is completed

once we show that I ′Ξ,S((ax,s)(x,s)) = IΞ,S((ax,s)(x,s)), where

IΞ,S((ax,s)(x,s)) =
∑
x∈Ξd

|Λ(x, x+,Ξ)| inf
Q∈Pθ

h(Q|P) +
r∑
i=1

h
(

ax,si
|Λ(x,x+,Ξ)|

∣∣∆µQ(si)
)
.

First, we note that q(sIb(o)−1) is decreasing in b and converges to q(sI(o)−1) as b → ∞. Hence, for any
Q ∈ Pθ and x ∈ Ξd,

lim
b→∞

r∑
i=1

h
( ax,si
|Λ(x,x+,Ξ)|

∣∣∆µbQ(si)
)

=
r∑
i=1

h
( ax,si
|Λ(x,x+,Ξ)|

∣∣∆µQ(si)
)
.

In particular, I ′Ξ,S((ax,s)(x,s)) ≤ IΞ,S((ax,s)(x,s)). For the other direction, fix δ > 0 and x ∈ Ξd. Then, for
each m ≥ 1 choose a sequence (bm,n)n≥1 such that limn→∞ bm,n =∞ and write

lim
n→∞

inf
Q∈Pθ

(a′x,s)(x,s): |(a′x,s)s−(ax,s)s|∞≤m−1

h(Q|P) +
r∑
i=1

h
(

a′x,si
|Λ(x,x+,Ξ)|

∣∣∆µbm,nQ (si)
)

= lim inf
b→∞

inf
Q∈Pθ

(a′x,s)(x,s): |(a′x,s)s−(ax,s)s|∞≤m−1

h(Q|P) +
r∑
i=1

h
(

a′x,si
|Λ(x,x+,Ξ)|

∣∣∆µbQ(si)
)
.
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Next, for each m,n ≥ 1 choose Qx,m,n ∈ Pθ, and for each m,n ≥ 1 and s ∈ S choose a′x,s,m,n ∈
[ax,s − 1/m, ax,s + 1/m] such that

inf
Q∗∈Pθ

(a∗x,s)s: |(a∗x,s)s−(ax,s)s|∞≤m−1

h(Q∗|P) +
r∑
i=1

h
(

a∗x,si
|Λ(x,x+,Ξ)|

∣∣∣∆µbm,nQ∗ (si)
)

≥ −δ + h(Qx,m,n|P) +
r∑
i=1

h
(

a′x,si,m,n
|Λ(x,x+,Ξ)|

∣∣∆µbm,nQx,m,n(si)
)
.

If lim supn→∞ h(Qx,m,n|P) =∞, then

lim
n→∞

inf
Q∈Pθ

(a′x,s)(x,s): |(a′x,s)s−(ax,s)s|∞≤m−1

h(Q|P) +
r∑
i=1

h
(

a′x,si
|Λ(x,x+,Ξ)|

∣∣∆µbm,nQ (si)
)

=∞,

which is certainly at least as large as IΞ,S((ax,s)(x,s)). Otherwise, after passing to a subsequence, we may as-
sume that limn→∞Qx,m,n = Qx,m for some Qx,m ∈ Pθ by sequential compactness. Furthermore, we may
also assume for each 1 ≤ i ≤ r, that limn→∞ a

′
x,si,m,n = a′x,si,m for some a′x,si,m ∈ [ax,s − 1/m, ax,s +

1/m]. In particular, lower semicontinuity of h implies that lim infn→∞ h(Qx,m,n|P) ≥ h(Qx,m|P). Moreover,
by Corollary 17,

lim
n→∞

∆µbm,nQx,m,n(si) = ∆µQx,m(si).

Hence, another application of lower semicontinuity gives that

lim inf
n→∞

h
(

a′x,si,m,n
|Λ(x,x+,Ξ)|

∣∣∣∆µbm,nQx,m,n(si)
)
≥ h

(
a′x,si,m
|Λ(x,x+,Ξ)|

∣∣∣∆µQx,m(si)
)
.

Arguing as above, we may assume that Qx,m converges to some Qx as m → ∞. In order to conclude the
proof of the proposition, it therefore suffices to show that

lim inf
m→∞

h
(

a′x,si,m
|Λ(x,x+,Ξ)|

∣∣∣∆µQx,m(si)
)
≥ h

(
ax,si

|Λ(x,x+,Ξ)|

∣∣∣∆µQx(si)
)
.

A final application of lower semicontinuity completes the proof. �

3.2. Application of Dawson-Gärtner & identification of rate function. In Proposition 10, we have shown
that the finite-dimensional distributions of the random fields {Y ∗,t}t<1 satisfy an LDP and we have also identi-
fied the good rate function. Hence, the Dawson-Gärtner Theorem [10, Theorem 4.6.1] implies that the random
fields {Y ∗,t}t<1 satisfy an LDP with respect to the topology of pointwise convergence and that the good rate
function is given by

Ĩ(F ) = sup
Ξ,S
IΞ,S(F ),

where the supremum is over all finite S ⊂ [0,∞) and Ξ ⊂ [−|Λ′1|1/d/2, |Λ′1|1/d/2]. The proof of Proposition
9 now amounts to showing Ĩ(F ) = I(F ). This can be done using an adaptation of arguments appearing
in the classical derivation of Mogulskii’s Theorem provided in [10, Theorem 5.3.1]. For the convenience of the
reader, we provide some details.

Proof of Proposition 9. First assume that F ∈ AC1
0 and let f = ∂F/(∂x∂s) denote the density of F . By

non-negativity of IΞ,S(F ), we can assume ξk = Λ′1|1/d/2. Note that IΞ,S(F ) can be expressed in the form∑
x∈Ξd |ΛΞ(x)| infQ f(F (x),Q) where f is convex in the pair (F (x),Q) by linearity of µQ. Hence, also

G(F (x)) = infQ f(F (x),Q) is convex in F (x) so that Jensen’s inequality gives that

IΞ,S(F ) ≤
∫

Λ′1

inf
Q∈Pθ

h(Q|P) +
k∑
i=1

h
(∫ si

si−1

f(x, s)ds
∣∣∆µQ(si)

)
dx.

Again by convexity of h and an application of Jensen’s inequality, we can further estimate

h
(∫ si

si−1

f(x, s)ds
∣∣∆µQ(si)

)
≤
∫ si

si−1

h
(
f(x, s)

∣∣ d
dsµQ(s)

)
ds.
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This proves Ĩ(F ) ≤ I(F ). For the other direction we first consider the supremum over partitions Ξ and let
some S-partition be fixed. The idea is to use a volume partition into equal sub-cubes with side length going to
zero as a lower bound. More precisely, let {ρk(l)}k

d

l=1 denote the disjoint partition of Λ′1 into cubes of volume
|Λ′1|/kd and equal side length δ(k) = |Λ′1|1/d/k. Then,

IΞ,S(F ) ≥ lim inf
k→∞

kd∑
l=1

1
kd

inf
Q∈Pθ

h(Q|P) +
r∑
i=1

h
(
F (ρk(l)× (si−1, si])

∣∣∆µQ(si)
)

= lim inf
k→∞

∫
Λ′1

inf
Q∈Pθ

h(Q|P) +
r∑
i=1

h
(
fki (x)

∣∣∆µQ(si)
)
dx

where each fki (x) is constant on each of the cubes ρk(l), l = 1, . . . , kd. By Lebesgue’s theorem fki (x) →∫ si
si−1

f(x, s)ds for Lebesgue almost all x as k tends to infinity. Therefore, by Fatou’s lemma and the lower
semicontinuity of the rate function

sup
Ξ
IΞ,S(F ) ≥ lim inf

k→∞

∫
Λ′1

inf
Q∈Pθ

h(Q|P) +
r∑
i=1

h
(
fki (x)

∣∣∆µQ(si)
)
dx

≥
∫

Λ′1

lim inf
k→∞

inf
Q∈Pθ

h(Q|P) +
r∑
i=1

h
(
fki (x)

∣∣∆µQ(si)
)
dx

=
∫

Λ′1

inf
Q∈Pθ

h(Q|P) +
r∑
i=1

h
( ∫ si

si−1

f(x, s)ds
∣∣∆µQ(si)

)
dx = IS(F ).

For the supremum over S-partitions we use the same approach and consider a partition of intervals [0, k] for
k ∈ N with constant mesh size 1/k. Using Fatou’s lemma, we have

sup
S
IS(F ) ≥

∫
Λ′1

lim inf
k→∞

inf
Q∈Pθ

h(Q|P) +
k2∑
i=1

1
k
h
(∫ i/k

(i−1)/k f(x, s)ds

1/k

∣∣∣∆µQ(i/k)
1/k

)
dx,

where we can look at k
∫ i/k

(i−1)/k f(x, s)ds as a stepfunction fkx on [0, k]. Similarly, for k[µQ(i/k)−µQ((i−

1)/k)] = k
∫ i/k

(i−1)/k
d
dsµQ(s)ds with gkQ on [0, k], we have that

k2∑
i=1

1
k
h
(
k

∫ si

si−1

f(x, s)ds
∣∣k∆µQ(i/k)

)
=
∫ k

0
h
(
fkx (r)|gkQ(r)

)
dr.

Now fix x ∈ Λ1 and k ≥ 1 and let Qx
k such that

inf
Q∈Pθ

h(Q|P) +
∫ k

0
h(fkx (r)|fkQ(r))dr = h(Qx

k|P) +
∫ k

0
h
(
fkx (r)|gkQxk(r)

)
dr,

which exists since lower-semicontinuous functions assume their minimum on compact sets. Let kn be the
subsequence such that the limit inferior becomes a limit and for simplicity write again k. Further we can assume
supk h(Qx

k|P) < ∞ for Lebesgue almost all x since otherwise there is nothing to show. Since h(·|P) has
sequentially compact level sets there exists a cluster point Qx

∗ of (Qx
k)k∈N and by lower semicontinuity and

Fatou’s lemma, we have

sup
S
IS(F ) ≥

∫
Λ′1

h(Qx
∗ |P) +

∫ ∞
0

lim inf
k→∞

h
(
fkx (r)

∣∣gkQxk(r)
)
drdx.

Note that by Lebesgue’s theorem for almost all s ∈ [0,∞), lim infk→∞ fkx (s) = f(x, s). Further note that
also lim infk→∞ gkQxk(s) = d

dsµQx∗ (s). Indeed by the mean value theorem for s ∈ ((i − 1)/k, i/k) there

exists s′ ∈ ((i− 1)/k, i/k) such that gkQxk
(s) = d

dsµQxk(s′) and

|gkQxk(s)− d
dsµQx∗ (s)| ≤ |

d
dsµQxk(s′)− d

dsµQxk(s)|+ | d
dsµQxk(s)− d

dsµQx∗ (s)|.
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The second summand on the right tends to zero as k tends to infinity by Corollary 17. For the first term we have
by Lebesgue’s theorem

| d
dsµQxk(s′)− d

dsµQxk(s)| ≤ λRQx
k(E( d

ds |s=s′
q(sI(o)−1)− d

ds |s=sq(sI(o)−1)|X))

≤ Nw−2|s′ − s|

which tends to zero as k tends to infinity and thus lim infk→∞ gkQxk(s) = d
dsµQx∗ (s). Using this and lower

semicontinuity gives

lim inf
k→∞

h(fkx (s)|gkQxk(s)) ≥ h(f(x, s)
∣∣ d

dsµQx∗ (s)),

as required.

Finally let F /∈ AC0. First, for any ε > 0 there exists QS,x ∈ Pθ such that

Ĩ(F ) ≥ sup
Ξ,S

[ ∑
x∈Ξd

|ΛΞ(x)|h(QS,x|P)

+
r∑
i=1

|ΛΞ(x)|h
(
F (ΛΞ(x)×(si−1,si])

|ΛΞ(x)|
∣∣∆µQS,x(si)

)]
− ε

≥ sup
Ξ,S

[ ∑
x∈Ξd

r∑
i=1

|ΛΞ(x)|h
(
F (ΛΞ(x)×(si−1,si])

|ΛΞ(x)|
∣∣∆µQS,x(si)

)]
− ε

= sup
Ξ,S

[ ∑
x∈Ξd

r∑
i=1

|ΛΞ(x)| sup
ρ

[ρF (ΛΞ(x)×(si−1,si])
|ΛΞ(x)| − (eρ − 1)∆µQS,x(si)]

]
− ε

using also the Legendre transform of the relative entropy. Further, we have

|µQS,x(si)− µQS,x(si−1)| ≤ λR|QS,x(Γ(si, o)− Γ(si−1, o)| ≤ NλRw
−2|si − si−1|,

and hence for ρ ≥ 0

Ĩ(F ) ≥ ρ sup
Ξ,S

[ ∑
x∈Ξd

r∑
i=1

[F (ΛΞ(x)× (si−1, si])− (eρ − 1)NλR|ΛΞ(x)||si − si−1|]
]
− ε.

If F is not right-continuous, there exists a point (x, s) such that F (x, s) < limn→∞ F (x+ 1/n, s+ 1/n) =
M . Consider a sequence of finite partitions (Ξn, Sn)n∈N where the cube (

∏d
j=1(xj , xj+1/n])×(s, s+1/n]

is contained in (Ξn, Sn) for all n ∈ N. Then

Ĩ(F ) ≥ ρ
[
F (x+ 1/n, s+ 1/n)− F (x, s)− (eρ − 1)NλR1/nd+1

]
− ε

and letting n tend to infinity gives Ĩ(F ) ≥ ρ[M − F (x, s)]− ε which tends to infinity for ρ→∞.

If F is right-continuous but F /∈ AC0 there exists δ > 0 and a sequence of measurable sets Ak, with
νd+1(Ak) → 0 and µF (Ak) ≥ δ. Using the regularity of the Lebesgue measure there exists a disjoint union
of countably many d + 1-dimensional cuboids such that Ak ⊂

⋃
l q
k
l and νd+1(

⋃
l q
k
l \ Ak) <

1
k . Then, for

every ρ ≥ 0,

Ĩ(F ) ≥ ρ
∞∑
l=1

F (qkl )− (eρ − 1)NλRνd+1(
⋃
l

qkl )− ε

≥ ρµF (Ak)− (eρ − 1)NλR(νd+1(Ak) + 1/k)− ε.

Letting k tend to infinity we have Ĩ(F ) ≥ ρδ − ε which tends to infinity as ρ tends to infinity. �
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3.3. Contraction principle & identification of rate function. In the present section, we apply the contraction
principle to derive Theorem 2 from Proposition 9. Consider the function Ψ : K →M(Λ′1) given by

F (·) 7→ F
(

(· × [0,∞)) ∩ {(y, s) ∈ Λ′1 × [0,∞) : s ≤ |y|−α}
)
.

Then, the random measure Ψ(|Λ′t|−1Y ∗,t(·, ·)) is exponentially equivalent to the random measure |Λ′t|−1Y t(t−β·).
Moreover, Ψ is continuous when restricted to the subset Linc,0(Λ′1× [0,∞)) of Linc(Λ′1× [0,∞)) consisting
of those F with µF (∂M) = 0, where

M = {(y, s) ∈ Λ′1 × [0,∞) : s ≤ |y|−α}
andK ⊂ Linc(Λ′1× [0,∞)) denotes the family of all [0,∞)-valued, bounded, increasing and right-continuous
functions. Since the Lebesgue measure of ∂M is 0, the rate function from the LDP of Proposition 9 is infinite
on the complement of K. Hence, [10, Lemma 4.1.5] shows that the random fields

{
|Λ′t|−1Y ∗,t(·, ·)}t<1 also

satisfy an LDP on K. Hence, the contraction principle applies and it remains to identify the rate function. That
is, we need to show that

inf
F∈K

G(·)=F (·1M )

∫
Λ′1

inf
Q
h(Q|P) +

∫ ∞
0

h
(
f(y, s)| d

ds
µQ(s)

)
dsdy

=
∫

Λ′1

inf
Q
h(Q|P) + h

(
g(y)|µQ(|y|−α)

)
dy,

where f = ∂F/(∂y∂s) and g = ∂G/∂y denote the Radon-Nikodym derivatives of F and G, respectively.
Note that if G was not absolutely continuous, then neither could be F , so that the left-hand side would be
infinity. We show that the equality arises as a consequence of two inequalities. First, we consider the direction
≥. As in the proof of Proposition 9, an application of Jensen’s inequality implies that∫ |y|−α

0
h
(
f(y, s)| d

ds
µQ(s)

)
ds ≥ h

(∫ |y|−α
0

f(y, s)ds|µQ(|y|−α)
)
.

The right-hand side is equal to h(g(y)|µQ(|y|−α)) if G(·) = F (·1M ).

The other direction is more involved. First, we proceed as in the proof of Proposition 9 and note that the
right-hand side can be approximated using a suitable discretization. To be more precise, let {ρ(l)}2dkl=1 be a
subdivision of Λ′1 into congruent cubes of side length δ(k) = |Λ′1|1/d2−k. The point in the l-th cube which
minimizes the distance to the origin will be denoted by yk,l. In the first step of the discretization, we replace the
expression µQ(|y|−α) by µQ(|yk,l|−α).

Lemma 18.

lim sup
k→∞

2dk∑
l=1

∫
ρ(l)

inf
Q∈Pθ

h(Q|P) + h
(
g(y)

∣∣µQ(|yk,l|−α)
)
dy

≤
∫

Λ′1

inf
Q∈Pθ

h(Q|P) + h
(
g(y)

∣∣µQ(|y|−α)
)
dy.

Proof. First, note that for every l ∈ {1, . . . , 2dk}, y ∈ ρ(l) and Q ∈ Pθ we get that

h
(
g(y)

∣∣µQ(|yk,l|−α)
)
− h
(
g(y)

∣∣µQ(|y|−α)
)

≤ g(y) log
µQ(|y|−α)
µQ(|yk,l|−α)

+ |µQ(|yk,l|−α)− µQ(|y|−α)|

≤ |µQ(|yk,l|−α)− µQ(|y|−α)|
where the last inequality follows from the choice of yk,l. In particular, the right-hand side is always bounded
above by 1. Moreover, for ε > 0 we let Aε = {l ∈ {1, . . . , 2dk} : miny∈ρ(l) |y| < ε} denote the set of
indices of cubes that are close to the origin. Then, the Lipschitz assumption implies that for every l 6∈ Aε,
y ∈ ρ(l) and Q ∈ Pθ,

|µQ(|yk,l|−α)− µQ(|y|−α)| ≤ Nα|yk,l|−α−1|y − yk,l| ≤ Nαε−α−1
√
dδ(k)−1. (6)
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Hence,

2dk∑
l=1

∫
ρ(l)

inf
Q∈Pθ

h(Q|P) + h
(
g(y)

∣∣µQ(|yk,l|−α)
)
dy

−
(∫

Λ′1

inf
Q∈Pθ

h(Q|P) + h
(
g(y)

∣∣µQ(|y|−α)
)
dy
)

≤ |ρ(1)|#Aε +Nαε−α−1
√
dδ(k) ≤ 2dεd +Nαε−α−1

√
dδ(k),

provided that k ≥ 1 is sufficiently large. Since ε > 0 was arbitrary, this completes the proof. �

The next lemma is proved similarly to Proposition 9 using Jensen’s inequality and a discretization of the integral.
We omit the proof.

Lemma 19. Let k ≥ 1 and 1 ≤ l ≤ 2dk be arbitrary. Then,

|ρ(l)|−1

∫
ρ(l)

inf
Q∈Pθ

h(Q|P) + h
(
g(y)

∣∣µQ(|yk,l|−α)
)
dy

≥ inf
Q∈Pθ

h(Q|P) + h
(
|ρ(l)|−1G(ρ(l))

∣∣µQ(|yk,l|−α)
)
dy.

Now that we have discretized the integral, we can define approximations F (k) to the desired function F . For
this purpose, we first need to construct certain minimizers. Recall from Corollary 17 that the function Q 7→
µQ(|yk,l|−α) is continuous on every set of the form {Q : h(Q|P) ≤ K} for some K < ∞. Therefore, the
function

Q 7→ h(Q|P) + h
(
|ρ(l)|−1G(ρ(l))

∣∣µQ(|yk,l|−α)
)

is lower semicontinuous, and we let Qk,l be one of its minimizers. Now, define measurable functions f (k) :
Λ′1 → [0,∞], k ≥ 1 by

f (k)(y, s) =


|ρ(l)|−1G(ρ(l)) d

ds
µQk,l (s)

µQk,l (|yk,l|
−α)

if y ∈ ρ(l) and s ≤ |yk,l|−α,
d
dsµQk,l(s) if y ∈ ρ(l) and s > |yk,l|−α.

Here, we make the convention that the first line is equal to zero if µQk,l(|yk,l|−α) = G(ρ(l)) = 0 and is equal

to infinity if µQk,l(|yk,l|−α) = 0, but G(ρ(l)) 6= 0. Furthermore, we let F (k) denotes the distribution function

of the measure with density f (k)(y, s). Then, for every y ∈ ρ(l),

inf
Q∈Pθ

h(Q|P) +
∫ ∞

0
h
(
f (k)(y, s)

∣∣ d
ds
µQ(s)

)
ds

≤ h(Qk,l|P) +
∫ |yk,l|−α

0
h
( |ρ(l)|−1G(ρ(l)) d

dsµQk,l(s)
µQk,l(|yk,l|−α)

∣∣ d
ds
µQk,l(s)

)
ds

= h(Qk,l|P) + h
(
|ρ(l)|−1G(ρ(l))

∣∣µQk,l(|yk,l|
−α)
)
.

By the goodness of the rate function in Proposition 9, the functions (F (k))k≥1 have an accumulation point, and
lower-semicontinuity therefore gives that∫

Λ′1

inf
Q∈Pθ

h(Q|P) +
∫ ∞

0
h
(
f(y, s)|µQ(s)

)
ds ≤

∫
Λ′1

inf
Q∈Pθ

h(Q|P) + h
(
g(y)|µQ(|y|−α)

)
dy.

Hence, it remains to show that the measure induced by G(·) coincides with the measure induced by F (·1M ).
In order to prove this claim, we first show that F (k)(M (k) \M) tends to zero as k tends to infinity, where
M (k) = {(y, s) ∈ Λ′1 × [0,∞) : y ∈ ρ(l) and s ≤ |yk,l|−α}

Lemma 20. The expression F (k)(M (k) \M) tends to zero as k tends to infinity.
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Proof. First, observe that F (k)(M (k) \M) can be expressed as

F (k)(M (k) \M) =
2dk∑
l=1

G(ρ(l))|ρ(l)|−1

∫
ρ(l)

µQk,l(|yk,l|−α)− µQk,l(|y|−α)
µQk,l(|yk,l|−α)

dy.

Now, for ε > 0 introduce the set

Aε = {l ∈ {1, . . . , 2dk} : min
y∈ρ(l)

|y| < ε or max
y∈ρ(l)

|y|−α > wsmin − ε}

of indices whose associated cubes are far away from the origin and the boundary of the ball B(wsmin)−1/α(o).
Hence, we arrive at

F (k)(M (k) \M) = αε−α−1N
√
dδ(k)

∑
l 6∈Aε

G(ρ(l))
µQk,l(|yk,l|−α)

+ r(ε), (7)

where r(ε) tends to zero as ε tends to zero. Since the sum above consists of at most 2dk summands, it
suffice to consider those l 6∈ Aε that satisfy |ρ(l)|−1G(ρ(l)) > µQk,l(|yk,l|−α). Now, note that if l 6∈ Aε,
then µP(|yk,l|−α) ≥ 1/K for some sufficiently large K = K(ε) not depending on k, l. We claim that also
µQk,l(|yk,l|−α) ≥ 1/K . Once this is shown, the proof is complete.

Suppose that µQk,l(|yk,l|−α) < 1/K . First, if |ρ(l)|−1G(ρ(l)) ≥ µP(|yk,l|−α), then

h
(
|ρ(l)|−1G(ρ(l))|µP(|yk,l|−α)

)
< h

(
|ρ(l)|−1G(ρ(l))|µQk,l(|yk,l|

−α)
)
,

which contradicts the minimality of Qk,l. Otherwise put Q∗ = λP + (1− λ)Qk,l, where λ ∈ [0, 1) is chosen
such that

λµP(|yk,l|−α) + (1− λ)µQk,l(|yk,l|
−α) = |ρ(l)|−1G(ρ(l)).

Then, since the specific relative entropy h (introduced in Section 1) is an affine function,

h(Q∗|P) + h
(
|ρ(l)|−1G(ρ(l))|µQ∗(|yk,l|−α)

)
= (1− λ)h(Qk,l|P)

< h(Qk,l|P) + h
(
|ρ(l)|−1G(ρ(l))|µQk,l(|yk,l|

−α)
)
,

which contradicts again the minimality of Qk,l. �

Now, we can complete the proof of Theorem 2.

Proof of Theorem 2. By Lemmas 18 and 19, it suffices to show thatG(f) = F (f1M ) holds for any f : Λ′1 →
[0,∞) of the form f = 1ρ(l0) for some 1 ≤ l0 ≤ 2dk0 . Now, we can argue as follows.

|F (f1M )−G(f)| ≤ lim sup
k→∞

|F (k)(f1M(k))−G(f)|+ lim sup
k→∞

F (k)(f1M(k)\M ).

Lemma 20 shows that the second summand is zero. Moreover, by definition of F (k),

F (k)(f1M(k)) = G(k)(f),

where G(k), k ≥ k0 denotes the measure with locally constant density g(k)(y) = |ρ(l)|−1G(ρ(l)). Hence,

G(k)(f) = G(k)(ρ(l0)) =
∑

ρ(l)⊂ρ(l0)

G(ρ(l)) = G(ρ(l0)) = G(f),

as required. �
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3.4. Proof of Corollary 3.

Proof. The upper estimate is a direct consequence of the upper bound in Theorem 2

lim sup
t→0

|Λ′t|−1 log pt = lim sup
t→0

|Λ′t|−1 log P
(
|Λ′t|−1Y t(t−β·) = 0

)
≤ −

∫
Λ′1

inf
Q∈Pθ

(
h(Q|P) + λRQ(Γ(|y|−α, o))

)
dy.

For the lower estimate first note that

pt = E exp
(
− λR

∫
Λ′t

Γ(t−1`(y), y)dy
)

where Γ(a, y) = E(q(aI(y)−1)|X) is a non-local function of the transmitter process. In order to be able to
apply [16, Theorem 3.1], we need to establish a translation-invariant setting using discretization of the integrand.
To be more precise, we subdivide Λ′t into 2dn sub-cubes Λit of side length 21−n|wsmint|−β and let yi denote
the corresponding element of the subcube Λit which is closest to the origin. Then

pt ≥ E exp
(
− λR

2dn∑
i=1

∫
Λit

Γ(t−1`(|yi|), y)dy
)
≥ E exp

(
− λR

2dn∑
i=1

∫
Λit

Γb(t−1`(|yi|), y)dy
)

where Γb(a, y) = E(q(aIb(y)−1)|X). Further let Xper,i be the configuration obtained after extending the
configuration of the marked Poisson point process X in the subcube Λit periodically in the entire Euclidean

space Rd. The error made replacing
∑2dn

i=1

∫
Λit

Γb(t−1`(yi), y) by
∑2dn

i=1

∫
Λit

Γper,b(t−1`(yi), y) is negligible

in the large deviation principle where Γper,b(a, y) = E(q(aIb(y)−1)|Xper,i), indeed∫
Λit

[Γb(t−1`(yi), y)− Γper,b(t−1`(yi), y)]dy

≤ N(w2t)−1

∫
Λit

[Ib(o, y,X)− Ib(o, y,Xper,i)]dy

≤ N(s2
minw

2t)−1
[ ∑

Xj∈X
Xj 6∈Λit,Xj∈Λit,b

∫
Λit

`b(|Xj − y|)dy +
∑

Xj∈Xper,i

Xj 6∈Λit,Xj∈Λit,b

∫
Λit

`b(|Xj − y|)dy
]

≤ N(s2
minw

2t)−1[X(Λit,b \ Λit) +Xper,i(Λit,b \ Λit)]
∫
Bb(o)

`b(|y|)dy, (8)

where Λit,b denotes the volume Λit joined with its b-boundary. Consequently, for all ε > 0,

E exp
(
− λR

2dn∑
i=1

∫
Λit

Γb(t−1`(|yi|), y)dy
)

≥ e−ε|Λ′t|E exp
(
− λR

2dn∑
i=1

∫
Λit

Γper,b(t−1`(|yi|), y)dy
)

− P
(
λR

2dn∑
i=1

∫
Λit

Γb(t−1`(yi), y)− Γper,b(t−1`(yi), y)dy ≥ ε|Λ′t|
)
.

By equation (8), the second line is bounded from below by

−2P
(
λR2N(s2

minw
2t)−1

∫
Bb(o)

`b(|y|)dyX(Λ1
t,b \ Λ1

t ) ≥ ε|Λ1
t |
)
.
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But this goes to zero on an exponential scale infinitely fast by Lemma 4. Hence,

lim
t→0
|Λ′t|−1 log E exp

(
− λR

2dn∑
i=1

∫
Λit

Γb(t−1`(yi), y)dy
)

≥ lim
t→0
|Λ′t|−1 log E exp

(
− λR

2dn∑
i=1

∫
Λit

Γper,b(t−1`(yi), y)dy
)

= 2−dn
2dn∑
i=1

lim
t→0
|Λit|−1 log E exp

(
− λR

∫
Λit

Γper,b(t−1`(yi), y)dy
)
,

where we used the independence of the Xper,i with respect to i in the second line. Now we are in the position
to apply [16, Theorem 3.1] and write

lim
t→0
|Λ′t|−1 logE exp

(
− λR

2dn∑
i=1

∫
Λit

Γper,b(t−1`(yi), y)dy
)

≥ −2−dn
2dn∑
i=1

inf
Q∈Pθ

(
h(Q|P) + λRQ(Γb(|yi|−α, o))

)
,

where we also used the continuity of Γper,b ensured by the truncation of the interference. Notice that

lim sup
b→∞

inf
Q∈Pθ

(
h(Q|P) + λRQ(Γb(|yi|−α, o))

)
≤ inf

Q∈Pθ

(
h(Q|P) + λRQ(Γ(|yi|−α, o))

)
.

Indeed, let Q0 be a minimizer of the right hand side, then

lim sup
b→∞

inf
Q∈Pθ

(
h(Q|P) + λRQ(Γb(|yi|−α, o))

)
≤ h(Q0|P) + λR lim sup

b→∞
Q0(Γb(|yi|−α, o))

and it suffices to show that

|Q0(Γb(|y|−α, o))−Q0(Γ(|y|−α, o))| ≤ N |y|−αw−2Q0

( ∑
Xj 6⊂Λb

`(|Xj |)
)

tends to zero as b tends to infinity. But this is true since Q0 is a translation-invariant point process. In order to
perform the large-n limit, we have to show that

y 7→ inf
Q∈Pθ

(
h(Q|P) + λRQ(Γ(|y|−α, o))

)
is continuous. But this is also true since

| inf
Q∈Pθ

(
h(Q|P) + λRQ(Γ(|y|−α, o))

)
− inf

Q∈Pθ

(
h(Q|P) + λRQ(Γ(|x|−α, o))

)
|

≤ sup
Q∈Pθ

∣∣λRQ(Γ(|y|−α, o))− λRQ(Γ(|x|−α, o))
∣∣ ≤ Nw−1λR

∣∣|y|−α − |x|−α∣∣.
This gives the result. �

4. IMPORTANCE SAMPLING

In this section, we show how the LDPs derived in Theorems 1 and 2 can be used to devise an importance-
sampling scheme improving the accuracy of basic Monte Carlo approaches for estimating the probability of
observing unlikely configurations of connectable receivers. Theorems 1 and 2 imply that such probabilities
generally tend to zero exponentially quickly, so that basic Monte Carlo estimators perform poorly.

The general heuristic for devising importance-sampling schemes is the following. Instead of sampling the trans-
mitters according to their true distribution, the simulation is performed by using a modified law under which the
considered rare event is more likely. An appropriate reweighting using likelihood ratios ensures the unbiased-
ness of the new estimator. For a more detailed discussion of the general technique of importance sampling, we
refer to the textbooks [2, 19].
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In principle, Theorems 1 and 2 provide precise descriptions of the asymptotically exponentially optimal change
of measure, in the sense that the modified law of transmitters should be given by suitable Gibbs point processes.
However, as these distributions just arise as minimizers of fairly complicated functionals, it is difficult to use
them for computational purposes. Still, by performing this minimization in the restricted class of Poisson point
processes, we can achieve substantial accuracy benefits.

We only provide a proof-of-concept for the use of importance sampling, and therefore assume a specific pa-
rameter constellation in the following. First, we fix d = 2, w = λR = λT = 1 and assume that the path-loss
function is given by `(r) = r−4. Moreover, we assume that there is no random environment, and that trans-
mission powers and fading random variables are constant and equal to 1. Note that this choice is not covered
by the assumptions for Theorems 1 and 2. Nevertheless, our simulation results illustrate that variance reduction
through importance sampling also hold under weaker conditions than the ones assumed in Theorems 1 and 2.

4.1. Importance sampling related to Theorem 1. Since we have assumed that there is no random envi-
ronment and that transmission powers and fading variables are constant, the minimization in the rate function
of Theorem 1 is performed only over stationary point processes of transmitters and receivers. As mentioned
above, this minimization is intractable in its full generality. Nevertheless, in this section, we show that if min-
imization is performed only in the class of Poisson point processes, then the problem becomes tractable. In
fact, we provide an example problem, where the minimization can be reduced to a standard two-dimensional
constrained minimization problem, where the constraint is given in terms of certain special functions. The dis-
advantage of this approach is that solving the minimization problem in a restricted class of point process will not
automatically lead to good choices for the importance sampling. This will become apparent from the simulation
results discussed below.

We assume that t = 1 and consider events of the form

An,a =
{

1
|Λn|

∑
Xi∈Λn

#Y (i) < a
}
,

i.e., the event that the (spatially) averaged number of connectable receivers associated with transmitters in the
cube Λn is less than a. Now, we explain how to implement an importance-sampling scheme based on the
LDP. A related importance-sampling scheme for a Poisson point process on the real line has already been
considered in [17], but for the convenience of the reader, we present some details in our situation.

In order to estimate the probability of the event An,a, we simulate the Poisson point processes with new inten-
sities µR > 0 and µT > 0 in Λn. Then, the likelihood ratio of Poisson point processes with intensity 1 with
respect to these point processes is given by

exp
(
|Λn|(µR − 1) + |Λn|(µT − 1)

)
µ
−X(Λn)
R µ

−Y (Λn)
T .

Hence, an unbiased estimator for P(An,a) is given by

p̂n,a,µT,µR
= exp

(
|Λn|(µR − 1) + |Λn|(µT − 1)

)
µ
−X(Λn)
R µ

−Y (Λn)
T 1An,a .

Note that in order to take into account edge effects, we also generate transmitters and receivers with the
unmodified intensity in a small environment around Λn. We can obtain estimates p̂ and v̂ of the expectation
and variance of p̂n,a,µT,µR

by considering the sample average and variance of N ≥ 1 independent copies
generated using Monte Carlo simulation.

This leaves the question as of how to find good choices for µR and µT. In a first attempt, choose these
parameters to minimize the large-deviation rate function appearing in Theorem 1. If Q ∈ Pθ the distribution of
independent Poisson point processes of receivers and transmitters with intensities µR and µT, then the relative
entropy h(Q|P) is given by the formula

(µR logµR − µR + 1) + (µT logµT − µT + 1). (9)

Hence, to determine the optimal intensities (λR,opt, λT,opt) according to Theorem 1, we need to minimize (9)
under the constraint

Q∗(#Y (o)) < a. (10)
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(µR, µT) p̂ v̂
(1, 1) 3.31× 10−4 3.31× 10−4

(0.832, 0.984) 3.12× 10−4 3.69× 10−4

(0.892, 0.989) 3.29× 10−4 5.10× 10−5

TABLE 1. Comparison of the simulation results for the expectation and variance of the con-
sidered importance sampling estimators with transmitter and receiver intensities (µR, µT).

Next, we express the constraint (10) in terms of certain special functions. First, by Campbell’s theorem,

Q∗(#Y (o)) = µTµR

∫
B1(o)

Q∗
( |x|−4

1 +
∑

i≥1 |Xi|−4
≥ 1
)

dx

= µTµR2π
∫ 1

0
rP
(∑
i≥1

|Xi|−4 ≤ µ2
T(r4 − 1)

)
dr,

where in the last line we used that scaling by 1/
√
µT transforms a Poisson point process with intensity 1 to a

Poisson point process with intensity µT. Moreover,
∑

i≥1 |Xi|−4 is distributed according to an inverse gamma

distribution with parameters 0.5 and π3/4. In particular, P(
∑

i≥1 |Xi|−4 ≤ s) = π−1/2γ(1/2,−π3/(4s)),
where γ(·, ·) denotes the incomplete gamma function. Now it is easy to check that

Q∗(#Y (o)) = µRµT2π
∫ 1

0
rγ
(
1/2, π3/(4µ2

T(r4 − 1))
)
dr

= µRµTπ exp
(
π3/(4µ2

T)
)
erfc
(
π3/2/(2µT)

)
,

where erfc denotes the complimentary error function. For instance, choosing a = 0.5 gives (λR,opt, λT,opt) ≈
(0.832, 0.984).

In order to assess the actual accuracy improvements that can be achieved with this importance sampling-
scheme, we performed a prototypical Monte Carlo analysis. We fixed a = 0.5, n = 25 and performed
N = 1, 000, 000 simulation runs. We consider three different parameter choices for the importance sampling
intensities (µR, µT). First, we consider the case of basic Monte Carlo simulation, that is (µR, µT) = (1, 1).
Second, we take the intensities that are obtained from the large-deviation analysis performed above, i.e.,
(µR, µT) = (0.832, 0.984). Third, we estimate (µR, µT) from a simple cross-entropy scheme. That is, we
performed a pilot run of 100, 000 basic Monte Carlo simulations and determined the average intensities under
the condition that the rare event occurs. This gives (µR, µT) = (0.892, 0.989). We refer the reader to [19] for
further details on the general cross-entropy technique. The results for p̂ and v̂ are reported in Table 1.

In particular, we would like to draw the attention to an important observation: The estimator that is obtained as
the solution of the optimization based on our large-deviation principle actually has a higher variance than the
basic Monte Carlo estimator. Given the close relation between large-deviation theory and asymptotically optimal
change of measures, this might come as a surprise at first sight. However, since we performed our optimization
not in the full class of stationary point processes, but only considered Poisson point processes, the simulation
output does not contradict this intuition. In fact, considered from a different perspective, the simulation results
provide evidence that the optimal change of measure is rather far (in the Kullback-Leibler distance) from being
a Poisson point process. In contrast, performing the change of measure with the intensities obtained from the
pilot run shows that for the considered example, a more than seven-fold variance reduction can be achieved.

The discussion in the previous paragraph raises the legitimate question whether the change of measures de-
duced from the large-deviation result are of any practical use for importance sampling? Indeed, in the example
described above, the intensities that lead to the seven-fold decrease in variance could be found without ref-
erence to the LDP, namely by an ‘educated guess’ (or rather ‘cross-entropy’). Nevertheless, when considering
importance sampling in the setting of Corollary 3 finding a good importance sampling change of measure would
involve ‘guessing’ a continuous family of parameters, which is substantially more involved than what we have
done above. In contrast, a simple analysis of the large-deviation rate function provides immediately a useful
heuristic for the shape of the curve.
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p̂ v̂
λ(·) ≡ 1 7.72× 10−6 8.22× 10−10

λ(·) ≡ λopt(·) 7.70× 10−6 1.78× 10−10

TABLE 2. Comparison of the simulation results for the expectation and variance of the basic
versus the importance sampling estimator.

4.2. Importance sampling related to Theorem 2. Finally, we investigate importance-sampling techniques
related to Theorem 2. We consider the specific setting of Corollary 3, i.e., estimation of the isolation probability
pt for small values of t. Similar to the situation considered in Section 4.1, the full minimization problem is
intractable, so that we restrict our attention to the class of homogeneous Poisson point processes. However, the
situation is slightly different from the one considered in Section 4.1. Instead of globally optimizing a transmitter
and receiver intensity, we now have the freedom to choose a different intensity for each point in Λ′1. Due to
isotropy, this reduces to the task of choosing an optimal intensity λopt(r) for each r ∈ [0, 1]. This optimal
intensity must minimize the following expression that can be derived from the variational characterization in
Corollary 3:

λopt(r) log λopt(r)− λopt(r) + 1 + P(r−4 ≥ 1 + λopt(r)2
∑
i≥1

|Xi|−4). (11)

This is a standard minimization problem that can be solved by finding the roots of the derivative with respect to
λopt(r). After some simplifications, we arrive at

log λopt(r) =
π√

r−4 − 1
exp(

π3λopt(r)2

4(r−4 − 1)
).

This equation can be solved numerically; a plot of this solution is shown in Figure 2.

FIGURE 2. Plot of the optimal density λopt(r) at distance r from the origin

As in the previous example, in order to assess the actual accuracy improvements for the estimation of pt that
can be achieved with this importance sampling-scheme, we performed a prototypical Monte Carlo analysis. We
fixed t = 0.002 and performed N = 1, 000, 000 simulation runs.

In contrast to the previous example, we see that the importance-sampling estimator derived from large-deviation
theory provides substantial benefits. Indeed, the variance is reduced by approximately 78%. Furthermore,
applying the cross-entropy technique for the present example would be substantially more involved than in the
previous one. Indeed, instead of simply estimating two parameters, we would need to extract an entire curve
from the pilot runs, so that proper statistical tools would be needed to estimate such a functional object from
data.
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