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Abstract. In this paper we consider a reaction-diffusion equation of Fisher-KPP
type inside an infinite cylindrical domain in RN+1, coupled with a reaction-diffusion
equation on the boundary of the domain, where potentially fast diffusion is allowed.
We will study the existence of an asymptotic speed of propagation for solutions of
the Cauchy problem associated with such system, as well as the dependence of this
speed on the diffusivity at the boundary and the amplitude of the cylinder.

When N = 1 the domain reduces to a strip between two straight lines. This
models the effect of two roads with fast diffusion on a strip-shaped field bounded by
them.

1 Introduction

Recently, in [3, 4, 5], the authors introduced a model to describe the effect of a road
with potentially fast diffusion in a field which was assumed to be the (half) plane.
The scope of the present paper is to provide a rigorous mathematical framework for
the problem of the propagation of biological species or substances in presence of more
general domains, with potentially fast diffusion on their boundary.

In particular we will consider the case of diffusion inside a (N + 1)-dimensional
cylinder Ω = R×BN(0, R), where BN(0, R) is the N -dimensional ball of radius R > 0
centered at the origin. In this case the walls, which may favor the process of diffusion,
play the role of a pipe.

In the specific case N = 1, this situation models two parallel roads of potentially
fast diffusion bounding a field described be a two-dimensional slab Ω = R× (−R,R).
Such spreading heterogeneities have been tracked in several real environments, such
as the diffusion of wolves along seismic lines in the Western Canadian Forest ([11])
or the early spreading of HIV among humans in Democratic Republic of Congo ([7]),
just to mention a few ones (see [3] for a more detailed list of empirical observations).

In our model, roughly speaking, a species, whose density will be denoted by v,
occupies the region Ω, where it reproduces, diffuses and dies, according to a logistic
law. The logistic law is governed by a function f (as a model case, the reader may
think about the case of f(v) = v(1−v), but more general logistic laws will be allowed
as well in this paper).

The population diffuses randomly inside the field, with a diffusion coefficient d.
When the individuals of the species, driven by their random movement, hit the bound-
ary of Ω, a proportion ν of them decides to use it to keep diffusing, with a possibly
different diffusion coefficient D. We denote the density of the population which moves
on ∂Ω by u and we assume that there no reproduction occurs, but the number of
individuals on it only varies because of the above mentioned positive contribution
from the field and a negative contribution given by a part µ of the population that
leaves ∂Ω to go back to the field.

Motivated by the wide number of applications, several authors have recently con-
sidered, from different point of views, similar models which couple reaction-diffusion
equations posed in different spatial dimensions and with different diffusivities in the
interior and on the boundary of a bounded domain. For example, in [2], the authors
consider no reaction in the interior and nonlinear Robin coupling terms. They prove
the existence of a unique weak solution of the evolution problem by means of sub-
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and supersolutions and determine the exponential rate of convergence to the unique
steady state through entropy methods. On the other hand, in [10], the authors con-
sider two coupled reaction-diffusion systems, one in the interior of the domain and
one on the boundary and study, according to the values of the different diffusivities,
the formation of Turing patterns in the interior and/or the boundary.

Our first result shows, roughly speaking, that the species invades the whole en-
vironment Ω, i.e. it converges to a positive steady state of our model (which will be
shown to be unique). With this result in hand, a very natural question from the bio-
logical point of view is to know how fast the species invades the domain, or, in other
words, what is the velocity of expansion of the region in which the solution of our
problem converges to the positive steady state. Such concept is known as asymptotic
speed of propagation and it was introduced in the contest of population dynamics
in [8, 9].

The main results of this paper are that our problem indeed admits a positive
asymptotic speed of propagation c∗ and we study its dependence on the parameters
d, D and R, characterizing the different regimes of propagation. In particular, we will
prove that, taking a large diffusion coefficient D produces arbitrarily large speeds, but
taking D small cannot slow down the process below a certain threshold. Notice that
neither of these two phenomena is obvious a priori from the biological interpretation
of the model, since, in principle, one can think that the slower diffusive process might
drag the whole diffusion and either prevent arbitrarily large speeds of propagation or
make such speed arbitrarily small – but we will show that this is not what happens
in our model.

Moreover, we will prove that increasing the diffusion coefficient D always makes c∗

larger, as illustrated in Figure 1. Remarkably, this phenomenon occurs even if D is
very small, in particular smaller than the diffusion coefficient d inside the field (i.e. the
speed of propagation is influenced by the auxiliary boundary device even when the
latter is not, in principle, faster than the field itself). This is in contrast with the
case of a single road treated in [3], where, for D ≤ 2d, the speed of propagation is
constantly equal to cKPP, the asymptotic speed of a classical Fisher-KPP equation in
RN .

Figure 1: Behavior of the asymptotic speed of propagation c∗ with respect to D, the
diffusivity on the boundary.

The dependence of c∗ on the geometry of the field is even more intriguing and rich
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of somehow unexpected features. If the field is very thin (i.e. when R goes to zero),
the asymptotic speed approaches zero. Such fact is not immediately evident from
the biological interpretation: in the case of two fast diffusive roads, for instance, one
might be inclined to think that for small R the two roads get very close and more
“available” to the individuals, which should make the diffusion faster. This is not the
case: the explanation of this phenomenon probably lies in the fact that small fields
do not allow the species to reproduce enough, and this reduces the overall diffusion.
On the other hand, as R becomes large, the asymptotic speed c∗ approaches the limit
value c∗∞, the asymptotic speed in the half-plane found in [3]. As mentioned above, c∗∞
coincides with the standard speed cKPP in the field if D ≤ 2d. Otherwise, if D > 2d
(i.e. when the auxiliary network provides fast enough diffusion, with respect to the
diffusion in the field) c∗∞ is greater than cKPP.

The threshold D = 2d is also crucial for the monotonicity properties of the asymp-
totic speed c∗ in dependence of the size of the field R. Indeed, when D ≤ 2d we have
that c∗ is increasing in R (see the left graph in Figure 2). This can be interpreted
by saying that, if the diffusion on the auxiliary network is not fast enough, then the
propagation speed only relies on the proliferation of the species, which is in turn
facilitated by a larger field. Conversely, when D > 2d, the speed c∗ does not depend
monotonically on R anymore, but it has a single maximum at a precise value R = RM ,
as shown in the right graph of Figure 2.

c*HRL

R

c¥
* = cKPP

c*HRL

RM
R

cKPP

c¥
*

Figure 2: Behavior of c∗ with respect to the amplitude of the cylinder in the case D ≤ 2d
(left) and D > 2d (right).

Once again, this fact underlines an interesting biological phenomenon: when the
auxiliary network provides a fast enough diffusion, there is a competition between the
proliferation of the species and the availability of the network, in order to speed up the
invasion of the species. On the one hand, a large R would favor proliferation and so,
in principle, diffusion; on the other hand, when R becomes too large the fast diffusion
device gets too far and cannot be conveniently reached by the population (similarly,
for small R the fast diffusion device becomes easily available, but the proliferation
rate gets reduced). As a consequence of these opposite effects, there is an optimal
distance at which the two roads shall be placed to get the maximum enhancement of
the propagation.

Such kind of monotonicity might arise also in other contests with contrasting
effects on the propagation, for example if D > d and there is a smaller reaction
on the boundary of the cylinder than in the interior, or if D < d and the reaction
on the boundary is larger. However, this kind of analysis, as well as the effect of
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transport terms on the boundary, goes out the scope of this work and is left for
further investigation.

After these considerations, we pass now to introduce the formal mathematical
setting that describes our model and state in detail our main results.

We consider the following problem




vt(x, y, t)− d∆v(x, y, t) = f(v(x, y, t)) for (x, y)∈Ω, t > 0
ut(x, y, t)−D∆∂Ωu(x, y, t)=νv(x, y, t)−µu(x, y, t) for (x, y) ∈ ∂Ω, t > 0
d∂nv(x, y, t) = µu(x, y, t)− νv(x, y, t) for (x, y) ∈ ∂Ω, t > 0,

(1.1)

where ∆∂Ω denotes the Laplace-Beltrami operator on ∂Ω, while ∂n stands for the
outer normal derivative to ∂Ω. The parameters D, d, µ, ν, R are positive and the
nonlinearity f ∈ C1([0, 1]) is of KPP type, i.e. satisfies

f(0) = 0 = f(1), 0 < f(s) ≤ f ′(0)s for s ∈ (0, 1) (1.2)

and is extended to a negative function outside [0, 1]. When N = 1, due to the non-
connectedness of ∂B1(0, R), problem (1.1) reduces to the case of a strip bounded by
two roads and reads as




vt(x, y, t)− d∆v(x, y, t) = f(v(x, y, t)) for (x, y)∈R×(−R,R), t>0
ut(x, t)−Duxx(x, t)=νv(x,R, t)−µu(x, t) for x ∈ R, t>0
dvy(x,R, t) = µu(x, t)− νv(x,R, t) for x ∈ R, t>0
ũt(x, t)−Dũxx(x, t)=νv(x,−R, t)−µũ(x, t) for x ∈ R, t>0
−dvy(x,−R, t) = µũ(x, t)− νv(x,−R, t) for x ∈ R, t>0.

(1.3)

This kind of models goes back to [3], where the authors studied the problem




vt(x, y, t)− d∆RN+1v(x, y, t) = f(v(x, y, t)) for (x, y)∈RN×R+, t > 0
ut(x, t)−D∆RNu(x, t)=νv(x, 0, t)−µu(x, t) for x ∈ RN , t > 0
d∂nv(x, 0, t) = µu(x, t)− νv(x, 0, t) for x ∈ RN , t > 0

(1.4)

for N = 1, which is the counterpart of (1.3) with just one road and the field which
is a half-plane. Some results about (1.4), such as the well-posedness of the Cauchy
problem, the comparison principle and a Liouville-type result for stationary solutions,
have been proved in [3] in arbitrary dimension N .

The main result of [3] (proved there for N = 1, but the arguments extend to
arbitrary dimension, as shown in Section 6 below) is that system (1.4) admits an
asymptotic speed of spreading c∗∞, along any parallel direction to the hyperplane
{y = 0}. If D ≤ 2d, c∗∞ coincides with cKPP, where

cKPP = 2
√
df ′(0)

is the spreading speed for the Fisher-KPP equation vt−d∆v = f(v) in the whole space
RN+1 (see [1]), while, if D > 2d, c∗∞ is strictly greater than cKPP. As a consequence,
the results of [3] show that a large diffusivity on the road enhances the speed of
propagation of the species in the whole domain.

The main results of the present paper concern the asymptotic speed of spreading
for problem (1.1). The first one is related to its existence.
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Theorem 1.1 There exists c∗ = c∗(D, d, µ, ν, R,N) > 0 such that, for any solution
(u, v) of (1.1) with a continuous, nonnegative, initial datum (u0, v0) 6≡ (0, 0), with
bounded support, there holds

(i) for all c > c∗,

lim
t→+∞

sup
|x|≥ct
|y|=R

|u(x, y, t)| = 0, lim
t→+∞

sup
|x|≥ct
|y|≤R

|v(x, y, t)| = 0, (1.5)

(ii) while, for all 0 < c < c∗,

lim
t→+∞

sup
|x|≤ct
|y|=R

∣∣∣∣u(x, y, t)− ν

µ

∣∣∣∣ = 0, lim
t→+∞

sup
|x|≤ct
|y|≤R

|v(x, y, t)− 1| = 0. (1.6)

Next, we derive the following qualitative properties for the speed of spreading.

Theorem 1.2 The quantity c∗ given by Theorem (1.1) satisfies the following prop-
erties:

(i) for fixed d, µ, ν, R,N , the function D 7→ c∗(D) = c∗(D, d, µ, ν, R,N) is increas-
ing and satisfies

lim
D↓0

c∗(D) =: c0 > 0, lim
D→+∞

c∗(D)√
D
∈ (0,+∞). (1.7)

In particular c∗(D)→ +∞ as D → +∞;

(ii) for fixed D, d, µ, ν,N , the function R 7→ c∗(R) = c∗(D, d, µ, ν, R,N) satisfies

lim
R↓0

c∗(R) = 0, lim
R→+∞

c∗(R) = c∗∞, (1.8)

where c∗∞ is the asymptotic speed of spreading for problem (1.4), which satisfies

c∗∞

{
= cKPP if D ≤ 2d,

> cKPP if D > 2d.

Moreover, if D ≤ 2d, the function R 7→ c∗(R) is always increasing, while, if
D > 2d, it is increasing up to the value

RM :=
NDν

(D − 2d)µ
, (1.9)

and decreasing for greater values. In addition,

c∗(RM) = max
R>0

c∗(R) =
D√

4d(D − d)
cKPP. (1.10)

The paper is organized as follows: in Section 2 we present some preliminary
results related to the existence and comparison properties of solutions of the Cauchy
problem associated with (1.1). In Section 3 we prove the existence and uniqueness
of the positive steady state and we show that it is a global attractor, in the sense
of locally uniform convergence, for solutions of (1.1) starting from a nonnegative,
nontrivial initial datum. Section 4 is dedicated to the geometrical construction of c∗

and to the proof of Theorem 1.1. Finally, the dependences of c∗ on D and on R are
discussed in Sections 5 and 6 respectively.
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2 Preliminary results and comparison principles

In this section we present some fundamental results that are extensively used in the
rest of the paper. Some of them are contained in or follow easily from [3, 4, 5], in
which cases we refer to such works and just outline the adaptations that need to be
done. We start with a weak and strong comparison principle for the following system





vt − d∆v + cvx = f(v) in Ω× (0,+∞)
ut −D∆∂Ωu+ cux = νv − µu in ∂Ω× (0,+∞)
d∂nv = µu− νv on ∂Ω× (0,+∞),

(2.1)

which is more general than (1.1), since we include the possibility of an additional
drift term with velocity c ∈ R in the x-direction. As usual, by a supersolution (resp.
subsolution) of (2.1) we mean a pair (u, v) satisfying System (2.1) with “≥” (resp.
“≤”) instead of “=”. Below and in the sequel, the order between real vectors is
understood componentwise.

Proposition 2.1 Let (u, v) and (u, v) be, respectively, a subsolution bounded from
above and a supersolution bounded from below of (2.1) satisfying (u, v) ≤ (u, v) at
t = 0. Then (u, v) ≤ (u, v) for all t > 0.

Moreover, if there exists T > 0 and (x, y) ∈ Ω such that either u(x, T ) = u(x, T )
or v(x, y, T ) = v(x, y, T ), then (u, v) = (u, v) for t ∈ [0, T ].

Proof. The arguments of the proof of [3, Proposition 3.2] easily extend to our
case, the key point being the strong maximum principle, which holds for the Laplace-
Beltrami operator ∆∂Ω (and the associated evolution operator) like for the operator
∂xx. �

The following result establishes the existence and uniqueness for the solution of
the Cauchy problem associated with (1.1). The proof of the existence part follows
from [3, Appendix A], while the uniqueness follows from Proposition 2.1.

Proposition 2.2 Let (u0(x, y), v0(x, y)) be a nonnegative, bounded and continuous
pair of functions defined in ∂Ω and Ω respectively. Then, there is a unique nonnega-
tive, bounded solution (u, v) of (2.1) satisfying (u, v)|t=0 = (u0, v0).

Once these properties established, we can show that the model exhibits total mass
conservation if no reproduction is present in the field.

Proposition 2.3 Assume f ≡ 0 and let (u, v) be the solution of (1.1) with a non-
negative, bounded initial datum (u0, v0) decaying at least exponentially as |x| → ∞.
Then, for every t > 0, we have

‖v(·, t)‖L1(Ω) + ‖u(·, t)‖L1(∂Ω) = ‖v0‖L1(Ω) + ‖u0‖L1(∂Ω) .

Proof. On the one hand, taking as subsolution the pair (0, 0) in Proposition 2.1 we
see that (u, v) is nonnegative for all times. On the other hand, anticipating on Section
4, the system admit exponential supersolutions with arbitrary slow exponential decay
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(i.e., with the notation of Section 4, α arbitrarily small, which is allowed provided c is
sufficiently large) and therefore, up to translation, above (u0, v0) at t = 0. Proposition
2.1 then implies that (u, v) decays exponentially as |x| → ∞ for all times. As a
consequence of standard parabolic estimates, the same is true for the derivatives of
u and v, up to the second order in space and first order in time. Therefore, using the
equations of (1.1) and applying Stokes’ theorem, we obtain

d

dt
‖v(·, t)‖L1(Ω) =

∫

Ω

vt(x, y, t) = d

∫

Ω

∆v(x, y, t) = d

∫

∂Ω

∂nv(x, y, t)

=

∫

∂Ω

(
µu(x, y, t)−νv(x, y, t)

)
=D

∫

∂Ω

∆∂Ωu(x, y, t)−
∫

∂Ω

ut(x, y, t)

=− d

dt
‖u(·, t)‖L1(∂Ω) ,

where, letting ∆SN−1 denote the Laplace-Beltrami operator on the (N − 1)-dimen-
sional unit sphere, we have used

∫

∂Ω

∆∂Ωu(x, y, t)=

∫

SN−1

∫ +∞

−∞
∂2
xxu(x, y, t) +

∫ +∞

−∞

∫

SN−1

∆SN−1u(x, y, t) = 0,

which holds because ∂xu decays exponentially to 0 and the second addend in the right
hand side is 0 by Stokes’ theorem, since SN−1 is compact and has no boundary. We
have eventually shown that ‖v(·, t)‖L1(Ω) + ‖u(·, t)‖L1(∂Ω) is constant in time and this
concludes the proof. �

We also need the following comparison principle involving an extended class of
generalized subsolutions and which is a particular instance of [5, Proposition 2.2].
Actually the result of [5] holds for a more general class of subsolutions than the one
we consider here, however we present it in the form needed in the sequel.

Proposition 2.4 Let (u1, v1) be a subsolution of (2.1), bounded from above and such
that u1 and v1 vanish on the boundary respectively of an open set E of ∂Ω× [0,+∞)
and of an open set F of Ω× [0,+∞) (in the relative topologies). If the functions u,
v defined by

u :=

{
max{u1, 0} in E

0 otherwise,
v :=

{
max{v1, 0} in F

0 otherwise,

satisfy

v(x, y, t) ≥ v1(x, y, t) for all (x, y, t) ∈ ∂Ω× R+ such that u(x, y, t) > 0,

u(x, y, t) ≥ u1(x, y, t) for all (x, y, t) ∈ ∂Ω× R+ such that v(x, y, t) > 0,
(2.2)

then, for any supersolution (u, v) of (1.1) bounded from below and such that (u, v) ≤
(u, v) at t = 0, we have (u, v) ≤ (u, v) for all t > 0.

Before concluding this section, we derive the strong maximum principle for two
variants of system (1.1):




vt − d∆v = f(v) for (x, y) ∈ Ω, t > 0
ut = νv − µu for (x, y) ∈ ∂Ω, t > 0
d∂nv = µu− νv for (x, y) ∈ ∂Ω, t > 0,

(2.3)
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vt − d∆yv = f(v) for (x, y)∈Ω, t>0
ut−∆∂Ωu = νv−µu for (x, y)∈ ∂Ω, t>0
d∂nv = µu− νv for (x, y)∈ ∂Ω, t>0,

(2.4)

where ∆y denotes the Laplace operator with respect to the y-variables only. Both
systems are semi-degenerate, in the sense that exactly one of the two parabolic equa-
tions is degenerate: the second one for (2.3) and the first one for (2.4). Apart from
being in themselves interesting, these results will be needed in Section 5 to charac-
terize some singular limits related to the asymptotic speed of propagation for (1.1).
Roughly speaking, even if one equation is degenerate, the presence of the other, which
is not degenerate, still guarantees the system to be strongly monotone.

Proposition 2.5 Let (u, v) and (u, v) be a subsolution bounded from above and a
supersolution bounded from below, both of system (2.3) or of system (2.4), such that
(u, v) ≤ (u, v) in Ω × (0,+∞). If there exist T > 0 and (x̂, ŷ) ∈ Ω for which either
u(x̂, T ) = u(x̂, T ) or v(x̂, ŷ, T ) = v(x̂, ŷ, T ), then (u, v) = (u, v) for t ∈ [0, T ].

Proof. The pair (u, v) := (u − u, v − v) is a nonnegative supersolution of either
system (2.3) or (2.4), with f(v) replaced by v(f(v)− f(v))/(v − v) in the first equa-
tion. This replacement will be understood throughout the proof. We argue slightly
differently according to which system is involved.

Case 1. System (2.3).
Suppose first that v(x̂, ŷ, T ) = 0. If (x̂, ŷ) ∈ Ω then, applying the strong parabolic
maximum principle to the first equation in (2.3), we conclude that v = 0 for t ≤ T
and thus the same is true for u by the third equation. If (x̂, ŷ) ∈ ∂Ω, the parabolic
Hopf lemma implies that either ∂nv(x̂, ŷ, T ) < 0 or v = 0 for t ≤ T . The first
situation being ruled out by the third equation in (2.3), we can conclude as before.
Suppose now that u(x̂, ŷ, T ) = 0. We claim that this yields v(x̂, ŷ, T ) = 0, and thus
the previous arguments apply. Indeed, if it were not the case, we would have from
the second equation of (2.3) that ut(x̂, ŷ, T ) > 0 and, as a consequence, u(x̂, ŷ, t) < 0
for t < T , t ∼ 0, which is impossible.

Case 2. System (2.4).
Suppose first that u(x̂, ŷ, T ) = 0. By the second equation in (2.4) we see that u
is a supersolution of the uniformly parabolic linear operator ∂t − ∆∂Ω + µ. Hence,
the parabolic strong maximum principle yields u = 0 in ∂Ω × [0, T ], and thus the
same is true for v, always by the second equation in (2.4). Moreover, ∂nv = 0 on
∂Ω × [0, T ] by the third equation in (2.4). Since, for fixed x ∈ R, (y, t) 7→ v(x, y, t)
is a supersolution of the first equation in (2.4), which is uniformly parabolic in (y, t),
we deduce from the Hopf lemma that v = 0 in Ω× [0, T ].

Consider now the case where v(x̂, ŷ, T ) = 0. If (x̂, ŷ) ∈ ∂Ω, since v ≥ 0, we have
that ∂nv(x̂, ŷ, T ) ≤ 0 and the third equation of (2.4) implies u(x̂, ŷ, T ) = 0. That is,
we end up with the previous case. If instead (x̂, ŷ) ∈ Ω then, applying the parabolic
strong maximum principle to (y, t) 7→ v(x̂, y, t), which is a supersolution of the first
equation in (2.4), we derive v(x̂, y, t) = 0 for |y| ≤ R, t ≤ T , i.e. v vanishes on a
point of ∂Ω, which is a case that we have already treated. �

Remark 2.6 By looking at the proof of Proposition 2.5, it follows immediately that
the comparison principles also hold if we add to (2.3) and (2.4) a constant drift term
in the x-direction.
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3 Liouville-type result and long time behavior

In this section we discuss the asymptotic behavior as t → +∞ of solutions of the
Cauchy problem. First of all, for later purposes, we study the long time behavior
of solutions of Problem (1.1) with an additional drift term and which start from a
specific class of initial data. Next, we show that the limit in time of a solution of
(1.1) is always constrained between two positive steady states that do not depend on
the x-variable and are rotationally invariant in y. Finally, we classify all the steady
states with these symmetries, showing that there is a unique nontrivial one, which is
a global attractor for our problem.

Proposition 3.1 Let (u, v) 6≡ (0, 0) be a nonnegative generalized stationary subso-
lution, in the sense of Proposition 2.4, of (2.1) which has bounded support and is
rotationally invariant in y. Then, the solution (ũ, ṽ) of (2.1) with (u, v) as initial
datum satisfies

lim
t→+∞

(ũ, ṽ) = (U, V ), (3.1)

locally uniformly in Ω, where (U, V ) is a positive stationary solution of (2.1), which
is rotationally invariant in y and x-independent.

Proof. By the comparison principle of Proposition 2.4, (ũ, ṽ) ≥ (u, v) for all
times. Hence, by Proposition 2.1, (ũ, ṽ) is nondecreasing in time, and it is actually
strictly increasing by the strong comparison result, because otherwise (ũ, ṽ) = (u, v)
for all times, which is impossible since (u, v) is not a solution of (1.1). From this
monotonicity in t, we obtain that (ũ, ṽ) tends, as t→ +∞, locally uniformly in Ω to
a nonnegative bounded steady state (U, V ) of (2.1), which proves (3.1).

As for the symmetries of (U, V ), we have that it is rotationally invariant in y since
the Cauchy problem itself is rotationally invariant in y and has a unique solution. To
prove that it is also x-independent, we “slide” the initial datum (u, v) as follows.

From the monotone convergence, we have that (U, V ) > (u, v) and, since the latter
has compact support, (u(·±h, ·), v(·±h, ·)) still lies below (U, V ) for sufficiently small
h. It follows from Propositions 2.4 and 2.1 that the solution to (1.1) emerging from
(u(· ± h, ·), v(· ± h, ·)) lies below (U, V ) for all times. But, by the x-translation
invariance of the system, such solution is simply the translation in the x variable by
±h of (ũ, ṽ) and therefore it converges to the corresponding translation of (U, V ) as
t→ +∞. We have eventually shown that these translations of (U, V ) lie, for h small
enough, below (U, V ) itself, which immediately implies that (U, V ) does not depend
on x. �

Theorem 3.2 For every nonnegative, bounded (u0, v0) 6≡ (0, 0), there exist two posi-
tive steady states of (1.1), denoted by (U1, V1) and (U2, V2), which are x-independent
and rotationally invariant in y and such that the solution of (1.1) starting from the
initial datum (u0, v0) satisfies

(U1, V1) ≤ lim inf
t→+∞

(u, v) ≤ lim sup
t→+∞

(u, v) ≤ (U2, V2), (3.2)

where the first inequality holds locally uniformly in Ω and the last one uniformly.
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Proof. It is easy so see that the pair (u, v), with

v = max
{

1, ‖v0‖∞,
µ

ν
‖u0‖∞

}
, u =

ν

µ
v,

is a stationary supersolution to (1.1) which is above (u, v) at t = 0. As a consequence
of Proposition 2.1, we have that the solution of (1.1) starting from (u, v) lies always
above (u, v) and tends non-increasingly, as t → +∞, to a positive bounded steady
state (U2, V2) of (1.1). It also follows from the symmetries of the system, that (U2, V2)
inherits from (u, v) the x-independence and the radial symmetry in y. As a conse-
quence, the convergence is uniform in Ω and the last inequality in (3.2) is thereby
proved.

To prove the first one, consider R1 such that the eigenvalue problem

{
−∆φ = φ in BN(0, R1),
φ = 0 on ∂BN(0, R1),

(3.3)

admits a positive solution φ. Such eigenfunction is therefore the (unique up to a
scalar multiple) principal eigenfunction of −∆ in BN(0, R1) under Dirichlet boundary
condition, and the associated eigenvalue is 1. It is well known that φ(y) = ψ(|y|) with
ψ : (0, R1) → R is decreasing and satisfies ψ′(0) = 0. Consider now the pair (u, v)
defined by

(u, v) :=

{
cos(αx) (1, γφ(βy)) if |x| ≤ π

2α

(0, 0) otherwise,

with α, γ > 0 and 0 < β < R1/R to be chosen. Plugging (u, v) into the third equation
of (1.1), we obtain

γ =
µ

dβψ′(βR) + νψ(βR)
(3.4)

which is positive for 0 < β < β < R1/R, where β is the first positive zero of the
denominator. We now look for α, β so that (u, v) is a generalized subsolution - in the
sense of Proposition 2.4 - to

{
vt − d∆v = f ′(0)

2
v

ut −D∆∂Ωu = νv|{|y|=R} − µu.

Due to (3.4), this results in the system





dα2 + dβ2 ≤ f ′(0)/2

Dα2 ≤ −µdβψ′(βR)

dβψ′(βR) + νψ(βR)
.

(3.5)

For fixed β < min

{√
f ′(0)

2d
, β

}
, since the right-hand side of the second inequality of

(3.5) is positive, it is possible to take α ∼ 0 in such a way (3.5) is satisfied. Thanks to
(1.2) we have that, for ε ∼ 0, ε(u, v) is a compactly supported generalized subsolution
to (1.3). Reducing ε if need be, we can further assume that ε(u, v) lies below the
pair (u, v) at time 1, the latter being strictly positive by Proposition 2.1. Again
by Proposition 2.1, the order is preserved between (u, v) shifted by 1 in time and
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the solution (ũ, ṽ) to (1.1) emerging from ε(u, v). The proof is concluded applying
Proposition 3.1. �

The previous result indicates that we have to focus the attention on the steady
states of (1.1) or, more generally of (2.1), with the symmetry properties specified
there. In this sense we have the following Liouville-type result.

Proposition 3.3 The unique nonnegative bounded stationary states of (2.1) which

are x-independent and rotationally invariant in y, are (0, 0) and
(
ν
µ
, 1
)

.

Proof. Let (u, v) be a steady state as in the statement of the proposition. Then u
is constant and there exists a nonnegative function Ψ ∈ C1([0, R]) ∩ C2((0, R]), with
Ψ′(0) = 0, such that v(x, y) = Ψ(|y|). It follows from the second equation in (2.1)
that u ≡ ν

µ
Ψ(R) and thus the other two equations read

{
−dΨ′′(r)− d(N−1)

r
Ψ′(r) = f(Ψ(r)) r ∈ (0, R),

Ψ′(R) = 0 = Ψ′(0).
(3.6)

To prove the result it is sufficient to show that Ψ(R) = 1 or Ψ(R) = 0. Suppose that
this is not the case. Then Ψ′′(R) 6= 0 and Ψ′ does not vanish in a left neighborhood
of R, being positive if 0 < Ψ(R) < 1 and negative if Ψ(R) > 1. Set

ρ := max{r ∈ [0, R) : Ψ′(r) = 0}.
From this definition we have that Ψ′ has a fixed strict sign in (ρ,R), which is the same
as 1 − Ψ(R). If this sign is positive then, for ρ < r < R, we have that 0 < Ψ(r) <
Ψ(R) < 1, whence f(Ψ(r)) > 0 and the first equation in (3.6) eventually yields
Ψ′′(r) < 0. This is impossible because Ψ′(ρ) = Ψ′(R) = 0. If instead 1 − Ψ(R) < 0,
then we obtain Ψ′(r) < 0 for ρ < r < R, which implies Ψ(r) > Ψ(R) > 1 and thus
f(Ψ(r)) < 0. Therefore, in such case, the first equation in (3.6) yields Ψ′′(r) > 0 for
ρ < r < R, which again contradicts Ψ′(ρ) = Ψ′(R) = 0. �

As an immediate consequence of Theorem 3.2 and Proposition 3.3, we characterize
the long time behavior of solutions of the Cauchy problem associated with (1.1).

Corollary 3.4 Any solution (u, v) of (1.1) starting from a bounded, nonnegative
initial datum (u0, v0) 6≡ (0, 0) satisfies

lim
t→+∞

u(x, y, t) =
ν

µ
, locally uniformly in ∂Ω,

lim
t→+∞

v(x, y, t) = 1, locally uniformly in Ω.
(3.7)

In particular, restricting to stationary solutions of (1.1), we obtain that the unique

nonnegative bounded steady states are (0, 0) and
(
ν
µ
, 1
)

.

Remark 3.5 (i) Observe that this last statement of Corollary 3.4 is much stronger
than Proposition 3.3 with c = 0, because it holds without knowing a priori the
symmetry of solutions.

(ii) In (3.7), thanks to Theorem 3.2, the inequalities “≤”related to the lim sup hold
uniformly in Ω.
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4 Asymptotic speed of spreading

In this section we prove the existence of a value c∗ such that (1.1) admits a super-
solution moving with speed c∗ and some generalized subsolutions moving with speed
less than and arbitrarily close to c∗. This value c∗ will be identified as the asymp-
totic speed of spreading appearing in Theorem 1.1. The construction of c∗ will also
provide some key information about its dependence on D and R that will be used in
the following sections to derive Theorem 1.2.

The starting point to find c∗ is the analysis of plane wave solutions for the lin-
earization of (1.1) around v = 0. This is achieved in Section 4.1 through a geometrical
construction. The plane waves are supersolutions of (1.1) by the KPP hypothesis and
their existence immediately implies (1.5). In Section 4.2 we construct the generalized
subsolutions and prove (1.6).

4.1 Plane wave solutions

Consider the linearization of (1.1) around v = 0:




vt − d∆v = f ′(0)v in Ω× R+

ut −D∆∂Ωu = νv − µu on ∂Ω× R+

d∂nv = µu− νv on ∂Ω× R+.
(4.1)

We look for plane wave solutions in the form

(u, v) = eα(x+ct)(1, γφ(β, y)), (4.2)

with α, γ > 0, β ∈ R and φ positive, i.e., moving leftward at a velocity c and decaying
exponentially as x+ct→ −∞. In contrast with [3], but in analogy with [13], we need
to consider two types of plane waves, corresponding to a dichotomy in the definition
of φ:

φ(β, y) :=

{
φ1(βy) if β ≥ 0

φ2(βy) if β < 0.

The functions φ1 and φ2 are related to the eigenvalue problem for the Laplace operator
in a ball and in the whole space respectively. We will show that φ is differentiable,
reflecting a continuous transition from φ1(βy) to φ2(βy) at β = 0, uniformly in y,
due to the fact that the support of φ1(βy) becomes the whole RN as β ↓ 0. The
construction of the subsolutions that will be carried out in Section 4.2 makes use of
one or the other type of plane wave depending on the values of the parameters of
the problem. This dichotomy will give rise to the two different monotonicities with
respect to R stated in Theorem 1.2(ii).

We start with β ≥ 0. In this case we take φ(β, y) := φ1(βy) in (4.2), where
φ1 is the positive eigenfunction φ1 of problem (3.3), normalized by φ1(0) = 1. We
therefore impose β ≤ R1/R. We recall that φ1(z) = ψ1(|z|) for a real analytic
decreasing function ψ1 on [0, R1] such that ψ′1(0) = 0. Plugging this expression into
(4.1) we are driven to the system




−dα2 + dβ2 + cα = f ′(0),
−Dα2 + cα = νγψ1(βR)− µ,
dγβψ′1(βR) = µ− νγψ1(βR).

(4.3)
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Solving the last equation for γ yields

γ =
µ

dβψ′1(βR) + νψ1(βR)
. (4.4)

In order to have γ > 0 we restrict to 0 ≤ β < β, where β ∈ (0, R1/R) is the first
positive zero of the function r 7→ drψ′1(rR) + νψ1(rR), which is positive for r = 0
and negative for r = R1/R. By plugging (4.4) into the second equation of (4.3) we
obtain

−Dα2 + cα =
−µdβψ′1(βR)

dβψ′1(βR) + νψ1(βR)
=: χ1(β)

and, solving for α,

α±D(c, β) =
1

2D

(
c±

√
c2 − 4Dχ1(β)

)
. (4.5)

Observe that χ1 is positive in (0, β), satisfies χ1(0) = 0 = χ′1(0) and χ1(β)→ +∞ as
β ↑ β. We now use a property of the function ψ1 that will be crucial also in the sequel:
logψ1 is concave (see e.g. [6]). It implies that the negative function ψ1(r)/ψ′1(r) is
increasing and then the same is true for r 7→ ψ1(r)/(rψ′1(r)). Reasoning on 1/χ1, we
find that χ1 is increasing too. Therefore, for every c > 0 there exists a unique value
of β ∈ (0, β), denoted by β̃(c), such that

c2 = 4Dχ1(β̃(c)).

There holds
lim
c↓0

β̃(c) = 0, lim
c→+∞

β̃(c) = β.

The functions α±D are real-valued for β ∈ (0, β̃(c)], where they satisfy

β 7→ α+
D(c, β) is decreasing, β 7→ α−D(c, β) is increasing.

With regard to the monotonicity in c, we have that

c 7→ α+
D(c, β) is increasing, c 7→ α−D(c, β) is decreasing

and that the region delimited by α±D(c, ·) invades, increasingly, the strip [0, β] ×
(0,+∞) in the (β, α)-plane as c→ +∞, while it shrinks to (0, 0) as c ↓ 0.

On the other hand the first equation in (4.3) represents the two branches of a
hyperbola

α±d (c, β) :=
1

2d

(
c±

√
c2 − c2

KPP + 4d2β2

)

where cKPP = 2
√
df ′(0). For c < cKPP, the functions α±d (c, β) are real-valued for

β ≥ β̂(c), where β̂(c) > 0 satisfies

c2 = c2
KPP − 4d2β̂(c)2.

Observe that β̂(c)→
√
f ′(0)/d as c ↓ 0. On the contrary, for c ≥ cKPP, the hyperbolas

are defined for every β ≥ 0. In particular, for c = cKPP, the hyperbolas degenerate
into the straight lines ±β + cKPP/(2d). As c increases to +∞, the region lying in the
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first quadrant between the curves α±d (c, ·) with β ≥ β̂(c) if c < cKPP and β ≥ 0 if
c ≥ cKPP, invades monotonically the whole quadrant.

Passing to the construction of the second type of plane waves, we consider the
positive radial eigenfunction φ2 of ∆φ2 = φ2 in RN , normalized by φ2(0) = 1, and we
look for solutions of (4.2) with φ(β, y) = φ2(βy) and this time β ≤ 0. Let us recall
the construction of φ2, because it provides some informations needed in the sequel.
We look for ψ2 : R− → R such that φ2(z) = ψ2(− |z|), ψ′2(0) = 0 and satisfying the
Bessel equation

ψ′′2(r) +
N − 1

r
ψ′2(r)− ψ2(r) = 0 for r < 0. (4.6)

The desired solution of (4.6) is

ψ2(r) = 0F1(; τ + 1;
r2

4
), (4.7)

where τ = N/2 − 1 and 0F1(; τ + 1; r
2

4
) is the generalized hypergeometric function

defined as

0F1(; τ + 1; z) :=
∞∑

n=0

Γ(τ + 1)

Γ(τ + 1 + n)

zn

n!
. (4.8)

Indeed ψ2(0) = 1 and, using the fundamental property of the Gamma function

Γ(τ + 2) = (τ + 1) Γ(τ + 1) for every τ > −1,

we derive

ψ′2(r) =
r

2(τ + 1)
0F1(; τ + 2;

r2

4
) (4.9)

and, thus, ψ′2(0) = 0. Moreover, from (4.8) we have that ψ2(r) and ψ′2(r) are defined
for all r < 0, the former being positive and the latter negative.

By plugging (u, v) = eα(x+ct)(1, γφ2(βy)) into (4.1) and proceeding as in the pre-
vious case, we obtain the following system:





−dα2 − dβ2 + cα = f ′(0)

−Dα2 + cα =
−µdβψ′2(βR)

dβψ′2(βR) + νψ2(βR)

γ =
µ

dβψ′2(βR) + νψ2(βR)
.

(4.10)

Observe that, in this case, γ > 0 without any restriction on β ≤ 0. We now extend
the previously defined functions α±D(c, β) and α±d (c, β) to negative values of β. Solving
the second equation of (4.10) for α gives

α±D(c, β) =
1

2D

(
c±

√
c2 − 4Dχ2(β)

)
, (4.11)

where

χ2(β) =
−µdβψ′2(βR)

dβψ′2(βR) + νψ2(βR)
.
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The function χ2 vanishes at 0, is defined and negative for every β < 0. Moreover ψ2

is log-convex (for the proof in the case N > 1 see e.g. [12], while the case N = 1
follows from direct computation, since in this case ψ2(r) = cosh(r)), which implies
that χ2 is increasing for β < 0. As a consequence, β 7→ α+

D(c, β) is decreasing, for
β < 0. Finally, it is easy to see that the region of the second quadrant delimited by
this graph and the β-axis invades monotonically such quadrant as c ↑ +∞.

Now the first equation of (4.10) describes, for c ≥ cKPP, a half-circle (β, α±d (c, β)),
β ≤ 0, which has center (0, c

2d
) and radius

ρ(c) =

√
c2 − c2

KPP

2d
;

in particular it is defined for 0 ≥ β ≥ β̂(c) := −ρ(c). The half-disk bounded by it
shrinks to its center as c ↓ cKPP and invades monotonically the whole of the second
quadrant as c→ +∞.

In sum, we have defined the functions α±D, α±d for β ranging in the whole real line.
Direct computations show that, for every c > 0,

lim
β→0

α+
D(c, β) =

c

D
, lim

β→0
∂βα

+
D(c, β) = 0, (4.12)

and, for c > cKPP,

lim
β→0

α±d (c, β) =
c±

√
c2 − c2

KPP

2d
, lim

β→0
∂βα

±
d (c, β) = 0. (4.13)

As a consequence, the sets ΣD(c), Σd(c) defined by

ΣD(c) := {(β, α±D(c, β)), β ≤ β̃(c)}, Σd(c) := {(β, α±d (c, β)), β ≥ β̂(c)}, (4.14)

are continuous curves in the (β, α) upper half-plane, which are moreover differentiable
if c 6= cKPP. Thanks to the above mentioned monotonicity properties in c of the
functions α±D and α±d , there exists c∗ such that the curves ΣD(c) and Σd(c) do not
intersect for c < c∗, touch for the first time, being tangent, for c = c∗ and are secant
for c > c∗ (see Figure 3). The (β, α) corresponding to the intersection points provide
the desired plane waves, for any c ≥ c∗.

Actually, we wish to know how many intersection points the curves ΣD and Σd

exactly have for c ≥ c∗. The answer is given in the following result, which, apart
from the importance that it will have in the rest of this work, is interesting because
it provides information about the number of solutions of systems (4.3) and (4.10)
using PDE tools, specifically the comparison principle. We think that this kind of
technique may be crucial in the study of other reaction-diffusion systems.

Proposition 4.1 The curves ΣD(c) and Σd(c) defined in (4.14) have, for c ≥ c∗, at
most two intersections. Moreover, for c = c∗, there is a unique intersection.

Proof. To prove the first part, assume by contradiction that there exist (βi, αi),
i ∈ {1, 2, 3}, with βi 6= βj for i 6= j. By the monotonicity in β of the curves, which
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has been established above, we have that αi 6= αj for i 6= j and we can label the
intersections so that

0 < α1 < α2 < α3. (4.15)

As a consequence, problem (4.1) admits three distinct solutions (ui, vi), i ∈ {1, 2, 3}
of the form (4.2) with (α, β, γ) = (αi, βi, γi), where γi = γ(βi) is given by (4.4). The
function (ũ, ṽ) := (u2 − u3, v2 − v3) is also a solution to (4.1). Thanks to (4.15), and
since γ1φ(β1, y) > 0 in BN(0, R), there exists L > 0 such that, for every y ∈ BN(0, R)
and t = 0,

(u1, v1) > (ũ, ṽ) for x ≤ −L, (ũ, ṽ) < (0, 0) for x ≥ L.

As a consequence, for large k > 0, we have k(u1, v1)(x, y, 0) ≥ (ũ, ṽ)(x, y, 0) in Ω.
Setting

k∗ = min
k≥0
{k(u1, v1)(x, y, 0) ≥ (ũ, ṽ)(x, y, 0) for (x, y) ∈ Ω},

there exists (x0, y0) ∈ Ω such that

k∗u1(x0, y0, 0) = ũ(x0, y0, 0) or k∗v1(x0, y0, 0) = ṽ(x0, y0, 0).

Now, the conclusion of Proposition 2.1, which obviously holds true for the linearized
system (4.1), ensures that k∗(u1, v1) ≡ (ũ, ṽ), which is impossible because u1 is posi-
tive while ũ is positive for large negative x and negative for large positive x.

Passing now to the second part of the statement, assume by contradiction that
for c = c∗ the curves intersect in two distinct tangency points. By continuity and
the monotonicity in β and c, each tangency point gives rise to two intersections for
c > c∗, c ∼ c∗, which is excluded by the first part of the Proposition. �

According to the position of the first intersection of the curves we give the following

Definition 4.2 Denoting by (β∗, α∗) the tangency point between the curves ΣD(c∗)
and Σd(c

∗), which is unique by Proposition 4.1. We say that

c∗ is of





type 1 if β∗ > 0; we write c∗ = c∗1 (cf. Figure 3(B))
type 2 if β∗ < 0; we write c∗ = c∗2 (cf. Figure 3(E))
mixed type if β∗ = 0; we write c∗ = c∗m.

As an important consequence of Proposition 4.1, we can characterize the type of
c∗ according to the different parameters of the problem. This will be used in Sections
5 and 6 to study some important properties of the asymptotic speed of propagation.

We start with the case D ≤ 2d and c = cKPP, for which the first relation of (4.12)
and (4.13) gives

α+
D(cKPP, 0) =

cKPP

D
≥ cKPP

2d
= α±d (cKPP, 0). (4.16)

This entails that c∗ < cKPP if D < 2d and, therefore, it is of type 1, since Σd(c
∗)

is defined for β ≥ β̂(c∗) > 0. The same conclusions hold true in the case D = 2d,
where the curve ΣD(cKPP) and the degenerate hyperbola Σd(cKPP) are secant, because
α+
D(cKPP, 0) = α±d (cKPP, 0) and ∂βα

+
D(cKPP, 0) = 0, while ∂βα

−
d (cKPP, β) is a negative

constant for β > 0.
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Figure 3: Relative position of ΣD(c) and Σd(c) as c increases (from left to right): c∗ = c∗1
(first row) and c∗ = c∗2 (second row).

For D > 2d, instead, if we set

cM =
D√

4d(D − d)
cKPP, (4.17)

thanks to the first relations of (4.12) and (4.13), we have that

ΣD(c) ∩ Σd(c) ∩ {β = 0} 6= ∅ if and only if c = cM . (4.18)

We will now show that the value of the second derivatives with respect to β of the
left and right branches of ΣD and Σd, evaluated at (cM , 0), characterizes the type of
c∗. Namely, if

−2dµR

NνcM
= lim

β↓0

∂2

∂β2
α+
D(cM , β) > lim

β↓0

∂2

∂β2
α−d (cM , β) =

−2d√
c2
M − c2

KPP

,

then ΣD(cM) and Σd(cM) intersect, apart from β = 0, for some β > 0. Proposition
4.1 now entails that the curves do not intersect for {β ≤ 0} and the monotonicity in
c of the curves implies that c∗ is of type 1. Thanks to (4.17), the above relation reads
as

D(Nν − µR) > −2dµR.

Similarly, if

2dµR

NνcM
= lim

β↑0

∂2

∂β2
α+
D(cM , β) > lim

β↑0

∂2

∂β2
α−d (cM , β) =

2d√
c2
M − c2

KPP

,
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which can be equivalently written as

D(µR−Nν) > 2dµR,

then ΣD(cM) and Σd(cM) intersect for β = 0 and for some β < 0 and c∗ is of type 2.
From this discussion, we have

c∗ =





c∗1 if
2d

D
> 1− Nν

µR

c∗2 if
2d

D
< 1− Nν

µR

(4.19)

and that, when β∗ = 0, necessarily c∗ = c∗m = cM and

lim
β↓0

∂2

∂β2
α+
D(cM , β)=lim

β↓0

∂2

∂β2
α−d (cM , β)=− lim

β↑0

∂2

∂β2
α+
D(cM , β)=− lim

β↑0

∂2

∂β2
α−d (cM , β).

(4.20)
In the case D ≤ 2d, we have seen in (4.16) that c∗ = c∗1, and therefore (4.19) is valid
for every choice of the parameters.

With the plane wave solutions constructed in this section we are able to give
the Proof of Theorem 1.1(i) Let c∗ be the quantity constructed above and (u, v)
the corresponding positive solution of the form (4.2) to the linearized problem (4.1).
By the Fisher-KPP hypothesis (1.2), for k > 0, k(u, v) is a supersolution to (1.1).
Moreover, since the initial datum has bounded support, k can be chosen so that

(u0(x, y), v0(x, y)) < k(u(x, y, 0), v(x, y, 0))

and, since (0, 0) is a subsolution of (1.1), we have from the comparison principle of
Proposition 2.1, that

(0, 0) < (u(x, y, t), v(x, y, t)) < k(u(x, y, t), v(x, y, t)), for all t > 0.

Pick c > c∗. Since the α in (4.2) is positive, we have that

0 < sup
−x≥ct
|y|=R

u(x, y, t) < sup
−x≥ct

keα(x+c∗t) ≤ keα(c∗−c)t −→ 0 as t→ +∞.

The limit for v follows analogously. By the symmetry of the system, the same limits
hold true in the case x ≥ ct. �

4.2 Generalized subsolutions and proof of (1.6)

We construct now some generalized, in the sense of Proposition 2.4, subsolutions
to (1.1) which are compactly supported and stationary in the moving frame with
velocity −c along the x-direction, that is, for system (2.1). To do so, we will make
use of the construction of c∗ carried out in Section 4.1 and of a variant of Rouché’s
theorem from complex analysis, whose proof is given in Appendix A.
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Proposition 4.3 Let c∗ be the quantity constructed in Section 4.1. Then, for every
c < c∗, there exist c ∈ (c, c∗) and two functions u ∈ C(∂Ω), v ∈ C(Ω) which are
nonnegative, compactly supported, invariant by rotations in y and such that ε(u, v) 6≡
(0, 0) is a generalized stationary subsolution of (2.1) for all ε ∈ (0, 1].

Proof. Consider the linearization around v = 0 of the stationary version of (2.1),
i.e.




−d∆v(x, y) + cvx(x, y) = f ′(0)v(x, y) for (x, y) ∈ Ω
−D∆∂Ωu(x, y) + cux(x, y)=νv(x, y)−µu(x, y) for (x, y) ∈ ∂Ω
d∂nv(x, y) = µu(x, y)− νv(x, y) for (x, y) ∈ ∂Ω.

(4.21)

Suppose first that c∗ is of either type 1 or 2, that is, c∗ = c∗j with j ∈ {1, 2} (cf. Def-
inition 4.2). The study performed in Section 4.1 concerns the existence of solutions
to (4.21) of the form

(u, v) = eαx(1, γφj(βy)), (4.22)

with α, γ > 0, β ∈ R and φj defined there. Observe preliminarily that the function
ψj appearing in the definition of ΣD in (4.5) or (4.11) is analytic and that the radius
of convergence of its Maclaurin series is ∞. This is a consequence of (4.8) for both
ψ2 and ψ1, because it can be easily seen, following analogous arguments as in Section
4.1, that ψ1(r) = 0F1(; τ + 1;−r2/4). As a consequence, we can use the same power
series to define φj(βy) := ψj(β|y|) for complex β too, and the search for plane waves
in the form (4.2), but now with α, β, γ ∈ C, works exactly as in Section 4.1, and
leads to the systems (4.3) or (4.10) even in this case. Solving such systems amounts
to finding intersections between the curves ΣD(c) and Σd(c) from (4.14), with now
α±d and α±D defined for β ∈ C. By the definition of c∗ given in Section 4.1, ΣD(c)
and Σd(c) have real intersections if c > c∗, a real tangency point (β∗, α∗) for c = c∗

satisfying β∗ 6= 0, and no real intersections if c < c∗. Complex intersections are
sought for c < c∗, c ∼ c∗. If the tangency is not vertical, then the function

h(ξ, τ) := αkd(c
∗ + ξ, β∗ + τ)− αlD(c∗ + ξ, β∗ + τ),

(with k, l ∈ {+,−} that have to be chosen accordingly to which branches are tangent
for c = c∗) when restricted to R2, is analytic in a neighborhood of (0, 0) and satisfies
the hypothesis of Theorem A.1. Indeed, the strict monotonicity in c of ΣD(c) and
Σd(c) yields that ∂h

∂ξ
(0, 0) has a sign; moreover, since h(0, ·) does not change sign, the

first nonzero derivative of h with respect to τ at (0, 0) has even order and opposite
sign to ∂h

∂ξ
(0, 0). If the tangent at (β∗, α∗) is vertical, which happens for D = d, we can

parameterize, thanks to the implicit function theorem, the curves ΣD(c) and Σd(c)
using α instead of β, obtaining two analytic functions whose difference h satisfies the
hypothesis of Theorem A.1.

Consider now the case c∗ = c∗m, i.e. when β∗ = 0. Observe that, thanks to (4.18),
we have c∗ = cM . In this case, ΣD and Σd are constructed by attaching two different
analytic curves at the tangency point and therefore the above defined function h is
no longer analytic around (0, 0). We overcome this difficulty by considering just the
curves α+

D(c, β) and α−d (c, β) for c ∼ c∗ and, say, β ≥ 0, extending them analytically
for β < 0 (which amounts to taking their even prolongation) and then defining h as
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their difference. Observe that, in this case, Theorem A.1 can be applied with n ≥ 2,
since (4.20) implies that ∂2

∂τ2h(0, 0) = 0.
Summing up, in all the cases, we obtain a solution of h(ξ, τ) = 0 for any ξ < 0,

ξ ∼ 0, and τ = τ(ξ) ∈ C. Namely, for c < c∗ close enough to c∗, we have a solution
α, β, γ ∈ C of (4.3) or (4.10), and moreover, by (A.4) (and also (A.5) in the case
β∗ = 0), β (respectively α when D = d) has nonzero real and imaginary parts. Using
the first equation of the systems, we then get that Imα 6= 0 also if D 6= d.

In the end, we have a complex solution (u, v) of (4.21) in the form (4.22). By
linearity we conclude that the pair

(u1, v1) := Re [(u, v)]

is a real solution of (4.21).
Of course, the above construction can still be achieved if f ′(0) is replaced by

f ′(0) − δ, with 0 < δ < f ′(0). This penalization only affects the quantity c∗, which
is easily seen to converge to the original one as δ ↓ 0. Hence, for any c < c∗, we
can construct (u1, v1) solution to (4.21) for some c ∈ (c, c∗) and f ′(0) penalized by
δ > 0, δ ∼ 0. Let us denote αr := Reα, αi := Imα and ϕ(y) := γφj(βy) = γψj(β|y|).
Direct computation shows that

u1(x, y) = eαrx cos(αix), v1(x, y) = eαrx|ϕ(y)| cos(αix+ Argϕ(y))

where Arg denotes the argument of complex numbers.
It is then apparent that the regions {u1 > 0} and {v1 > 0} ∩ ∂Ω are just one

the translation of the other. Moreover, fixing a connected component Ẽ of {u1 > 0},
there is at most one connected component F̃ of {v1 > 0} intersecting Ẽ; if there is
none, we take as F̃ any component of {v1 > 0}. Then, calling E := Ẽ × [0,+∞) and
F := F̃ × [0,+∞), for all ε̃ > 0, the pair (u, v) defined by

(u(x, y, t), v(x, y, t)) :=

{
ε̃(u1(x, y), v1(x, y)) in E × F
(0, 0) otherwise,

satisfies condition (2.2). Moreover, if ε̃ is small enough, f(ε̃v1) ≥ (f ′(0)− δ)ε̃v1, and
therefore (u, v) fulfills all the requirements of the proposition. �

We now have all the elements to give the proof of Theorem 1.1(ii), but, before, we
recall a result from [4] that will be needed. Actually, the statement in [4] is related
to the case of the half-space (i.e. problem (1.4)) but the proof directly adapts to our
case. Anyway, for the sake of completeness and in order to remedy some typos in [4],
we will provide it.

Lemma 4.4 ([4], Lemma 4.1) Let c1 6= c2 be such that any nonnegative, bounded
solution (u, v) 6≡ (0, 0) of (1.1) satisfies, for i ∈ {1, 2},

lim
t→+∞

u(x+ cit, y, t) =
ν

µ
, locally uniformly in (x, y) ∈ ∂Ω,

lim
t→+∞

v(x+ cit, y, t) = 1, locally uniformly in (x, y) ∈ Ω.
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Then,

lim
t→+∞

sup
c1t≤x≤c2t
|y|=R

∣∣∣∣u(x, y, t)− ν

µ

∣∣∣∣ = 0, lim
t→+∞

sup
c1t≤x≤c2t
|y|≤R

|v(x, y, t)− 1| = 0.

Proof. Let (u, v) be as in the statement, fix ε ∈ (0, ν/µ) and consider the solutions
(u1, v1) of (1.1) starting from (u1

0, v
1
0) := (supu, sup v) and (u2, v2) starting from

(u2
0, v

2
0), with 0 ≤ u2

0 ≤ ν/µ − ε, u2
0 6= 0, suppu2

0 ⊂ [−1, 1] × {|y| = R} and v2
0 ≡ 0.

By hypothesis, there exists T > 0 such that, for i ∈ {1, 2},

sup
|y|=R
t>T

∣∣∣∣ui(c1t, y, t)−
ν

µ

∣∣∣∣ <
ε

2
, sup

|y|≤R
t>T

∣∣vi(c1t, y, t)− 1
∣∣ < ε

2
. (4.23)

For the same reason, calling k := max(1, |c2 − c1|T ), there exists T ′ > 0 such that

sup
|x|≤k, |y|=R

t>T ′

∣∣∣∣u(x+ c2t, y, t)−
ν

µ

∣∣∣∣ < ε, sup
|x|≤k, |y|≤R

t>T ′

|v(x+ c2t, y, t)− 1| < ε. (4.24)

Fix λ ∈ [1/2, 1] and consider c = (1− λ)c1 + λc2 and t > 2T ′.
If (1− λ)t ≤ T , then applying (4.24) with x = (c− c2)t ∈ [−k, k] yields

sup
|y|=R

∣∣∣∣u(ct, y, t)− ν

µ

∣∣∣∣ < ε, sup
|y|≤R

|v(ct, y, t)− 1| < ε. (4.25)

If instead (1− λ)t > T , we have, by construction and (4.24) again,

u2
0(x, y) ≤

(
ν

µ
− ε
)
1[−1,1](x) ≤ u(x+ c2λt, y, λt) ≤ u1

0(x, y), for all (x, y) ∈ ∂Ω,

v2
0(x, y) ≤ v(x+ c2λt, λt) ≤ v1

0(x, y), for all (x, y) ∈ Ω.

By the comparison principle, considering the evolution by (1.1) of the above data
after time (1− λ)t and at x = c1(1− λ)t, we derive

u2(c1(1− λ)t, y, (1− λ)t) ≤ u(ct, y, t) ≤ u1(c1(1− λ)t, y, (1− λ)t),

v2(c1(1− λ)t, y, (1− λ)t) ≤ v(ct, y, t) ≤ v1(c1(1− λ)t, y, (1− λ)t).

Property (4.23) then allows us to infer (4.25) also in this case. Since λ ranges in
[1/2, 1], this shows that, as t → +∞, (u, v) converges to (ν/µ, 1) uniformly in the
section of the cylinder with x between c1+c2

2
t and c2t. By exchanging the roles of c1

and c2, we obtain the uniform convergence in the whole section between c1t and c2t,
as desired. �

Proof of (1.6) We are going to prove that, for all c ∈ (0, c∗), there exists c ∈
(c, c∗) such that any solution (u, v) to (1.1) with bounded nonnegative initial datum
(u0, v0) 6≡ (0, 0) satisfies

lim
t→+∞

u(x± ct, y, t) =
ν

µ
, locally uniformly in (x, y) ∈ ∂Ω,

lim
t→+∞

v(x± ct, y, t) = 1, locally uniformly in (x, y) ∈ Ω.
(4.26)

21



Then, (1.6) with c arbitrarily close to c∗ will follow from Lemma 4.4 applied with
c1 = −c = −c2. Of course, by the symmetry of the problem, it is sufficient to prove
(4.26) in the case of propagation towards left, i.e., x− ct. To do this, we consider the
pair

(ũ(x, y, t), ṽ(x, y, t)) := (u(x− ct, y, t), v(x− ct, y, t)).
This is a solution to (2.1) with initial datum (u0, v0). From the comparison principle
of Proposition 2.1 we have that at, say, t = 1, (ũ, ṽ) > (0, 0). By Proposition 4.3,
there exists c ∈ (c, c∗) and a generalized stationary subsolution (u, v), in the sense
of Proposition 2.4, to (2.1) which is rotationally invariant in y and lies below (ũ, ṽ)
at t = 1. By Proposition 2.4, this order is maintained for all later times, and from
Propositions 3.1 and 3.3 we obtain that

(
ν

µ
, 1

)
≤ lim inf

t→+∞
(ũ(x, y, t), ṽ(x, y, t))

locally uniformly in Ω. The proof of (4.26) in the case x − ct is thereby achieved
thanks to Corollary 3.4 and Remark 3.5(ii). �

5 Limits for small and large diffusions

In this section we will study how the speed of propagation behaves as a function
of D, the diffusion on the boundary of the cylinder. For this reason we will denote
it by c∗(D). The next proposition yields the first relation in (1.7), as well as the
characterization of the limit c0 as the speed of propagation for the semi-degenerate
problem (2.3). Notice that the latter is formally derived from the system (1.1) by
letting D ↓ 0.

Proposition 5.1 The function D 7→ c∗(D) is increasing and, as D ↓ 0, tends to the
(positive) asymptotic speed of spreading of the semi-degenerate problem (2.3).

Proof. It is easily seen from (4.5) and (4.11) that the function D 7→ α−D(c, β) is
increasing if β > 0, while D 7→ α+

D is decreasing for every β ∈ R. Hence, since the
curves ΣD(c∗(D)) and Σd(c

∗(D)) are tangent, they will not touch for c = c∗(D) and
D′ > D. As a consequence c∗(D′) > c∗(D), which gives the desired monotonicity.

Let D < d and recall from (4.16) that c∗(D) = c∗1(D) < cKPP in such case. We
further have that

min
β
α+
D(c∗1, β) =

c∗1
2D

>
c∗1
2d

= max
β

α−d (c∗1, β).

It follows that the tangent point between ΣD(c∗1) and Σd(c
∗
1) is actually between the

graphs of α−D(c∗1, ·) and α+
d (c∗1, ·). As D ↓ 0, α−D tends locally uniformly in β ∈ [0, β)

to the function

α−D,0(c, β) :=
χ1(β)

c
=

−µdβψ′1(βR)

c
(
dβψ′1(βR) + νψ1(βR)

) ,
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which is increasing in β and satisfies

α−D,0(c, 0) = 0, lim
β↑β

α−D,0(c, β) = +∞.

Moreover, the curve α−D,0(c, ·) increases to +∞ as c ↓ 0 and therefore it does not

intersect α+
d (c, ·) for c ∼ 0. On the other hand, the curves are secant for c = cKPP

and, as a consequence, they are tangent for some value c0 ∈ (0, cKPP). This is the
desired limit of c∗(D), owing to the locally uniform convergence of α−D to α−D,0.

To see that c0 coincides with the asymptotic speed of spreading for the semi-
degenerate problem (2.3), it is sufficient to consider the plane waves

(u, v) = eα(x+ct)(1, γψ1(β |y|))

and repeat the arguments of Section 4 to construct supersolutions and generalized
subsolutions for the system. Indeed, plugging (u, v) in (2.3) one is led to find re-
spectively real and complex intersections between the curves α+

d and α−D,0, the limit

of α−D as D ↓ 0 introduced above. This is precisely the way in which c0 has been
defined. With the super and subsolutions in hand, in order to conclude one has only
to ensure that the comparison principles hold true for (2.3) and the analogous version
with an additional transport term in the x-direction. The weak comparison principle
can be derived using the standard technique of reducing to strict sub- and superso-
lutions and then repeating the arguments of [3, 5], while the strong one is given by
Proposition 2.5 and Remark 2.6. �

We complete this section by studying the behavior of c∗(D) as D goes to +∞,
giving the proof of the second relation in (1.7).

Proposition 5.2 As D increases to +∞, c∗(D) increases to +∞ too, and

0 < lim
D→+∞

c∗(D)√
D

<∞. (5.1)

More precisely, the limit in (5.1) coincides with the asymptotic speed of spreading of
the semi-degenerate problem (2.4).

Proof. We will prove that both c∗1(D) and c∗2(D) increase to +∞ as D → +∞ and
both satisfy (5.1). Then, the conclusion of the proposition will follow from (4.19).

The case of c∗1(D) follows as in the proof of [13, Proposition 7.2], with little
modifications.

The case of c∗2 is more involved, since it requires some asymptotic expansions
of the generalized hypergeometric function defining ψ2; for this reason we give the
details. From the monotonicities in β of α+

D and α−d we have (see Figure 3(E))

α−d (c∗2(D), 0) < lim
β→−∞

α+
D(c∗2(D), β). (5.2)

To calculate the limit in (5.2), we recall the well known relation between the hyper-
geometric function 0F1 and the Bessel J function ([14, page 100])

Jτ (z) =
1

Γ(τ + 1)

(z
2

)τ
0F1(; τ + 1;−z

2

4
),
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which, owing to (4.7) and (4.9), entails

ψ2(r)

ψ′2(r)
=

2(τ + 1)

r

0F1(; τ + 1; r
2

4
)

0F1(; τ + 2; r
2

4
)

= i
Jτ (ir)

Jτ+1(ir)
.

This, together with the following asymptotic expansion for Jτ (z) in a neighborhood
of |z| =∞ (see [14, § 7.21])

Jτ (z) =

(√
2

πz
+ o

(
1

z

))
cos
(
z − (2τ + 1)

π

4

)
+ o

(
1

z

)
sin
(
z − (2τ + 1)

π

4

)
,

leads to

lim
r→−∞

ψ2(r)

ψ′2(r)
= i lim

r→−∞

cos
(
ir − (2τ + 1)π

4

)

sin
(
ir − (2τ + 1)π

4

) = − lim
r→−∞

1 + e2r+i(2τ+1)π
2

1− e2r+i(2τ+1)π
2

= −1. (5.3)

As a consequence, the function χ2(β) in the definition (4.11) of α+
D tends to −µ as

β → −∞, whence (5.2) reads as

1

2d

(
1−

√
1− c2

KPP

c∗22 (D)

)
<

1

2D

(
1 +

√
1 + 4µ

D

c∗22 (D)

)
. (5.4)

If c∗2(D) was bounded as D → +∞, (5.4) would give a contradiction (recall that
D 7→ c∗2(D) is increasing and larger than cKPP), so c∗2(D) tends to +∞ and (5.4) can
be written as

(
c2

KPP

2d
+ o(1)

)
<
c∗22 (D)

D

(
1 +

√
1 + 4µ

D

c∗22 (D)

)
. (5.5)

On the other hand, we have (see Figure 3(E)) α+
D,2(c∗2(D), 0) < α−d,2(c∗2(D), 0), which

gives

1

D
<

1

2d

(
1−

√
1− c2

KPP

c∗22 (D)

)
,

that is,
c∗22 (D)

D
<
c2

KPP

4d
+ o(1).

Therefore, taking the limsup as D → +∞ in this relation and the liminf in (5.5), we
obtain

0 < lim inf
D→+∞

c∗22 (D)

D
≤ lim sup

D→+∞

c∗22 (D)

D
<∞.

It is then natural to perform the change of variables

c̃ =
c√
D
, α̃ = α

√
D

in (4.10), obtaining




−dα̃
2

D
− dβ2 + c̃α̃ = f ′(0),

−α̃2 + c̃α̃ =
−µdβψ′2(βR)

dβψ′2(βR) + νψ2(βR)
.
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For β < 0, the second equation describes the curve ΣD(c̃) introduced in (4.14) with
D = 1, therefore the α̃ solutions of the system are bounded independently of D.
Thus, taking the limit as D → +∞ the system becomes




−dβ2 + c̃α̃ = f ′(0),

−α̃2 + c̃α̃ =
−µdβψ′2(βR)

dβψ′2(βR) + νψ2(βR)
,

(5.6)

whose first equation describes a parabola. The first value of c̃, denoted by c̃∗2, for
which the two curves of (5.6) intersect, being tangent, provides us with the limit
in (5.1).

To see that the limit in (5.1) coincides with the asymptotic speed of spreading
for the semi-degenerate problem (2.4), one repeats the construction of plane wave
solutions of Section 4, this time for (2.4). This leads exactly to the system (5.6) and
the analogous one with ψ2 replaced by ψ1. Finally, the validity of the needed weak
comparison principle follows as in the discussion at the end of the proof of Proposition
5.1, while the strong one is again given by Proposition 2.5 and Remark 2.6. �

6 Limits for small and large radii

This section is devoted to the proof of Theorem 1.2(ii), i.e. to the study the behavior
of c∗ as a function of R. For this reason, the dependence on R will be pointed out in
all the quantities introduced in the previous sections. We begin with the limit R→ 0.

Proof of the first limit in (1.8). Observe preliminarily that, thanks to (4.19),
c∗(R) = c∗1(R) for R ∼ 0. The function χ1 = χ1(β,R) appearing in the definition
(4.5) of α±D converges locally uniformly to 0 as R ↓ 0. Hence, the functions α±D
converge locally uniformly to the constants c/D and 0 respectively. It then follows
from the geometrical construction of c∗1, see Figure 3, and in particular from the fact
that Σd(c) (which does not depend on R) intersects the β-axis, that c∗1(R) → 0 as
R ↓ 0. �

We study now the limit of c∗(R) as R → +∞, and its identification with the
asymptotic speed of spreading c∗∞ in the half-space, i.e., for problem (1.4). This
speed is derived in [3] in the case N = 1, but the arguments easily adapt to higher
dimensions, providing the same speed c∗∞ (independent of N) along any direction
parallel to the hyperplane y = 0. For the sake of completeness, we give some details
on how this can be performed.

Derivation of the spreading speed for (1.4). Let us focus on the first component,
denoting x = (z, x′) ∈ R × RN−1. Plane waves supersolutions can be constructed
“ignoring” the extra x′ variable, i.e., in the form (u, v) = (u(z, t), v(z, y, t)), reducing
in this way to the situation N = 1 considered in [3]. This shows that the asymp-
totic speed of spreading in the z-direction cannot be larger than the spreading speed
obtained in [3], that we denote by c∗∞.

The same argument cannot be used to obtain the lower bound, because the x′-
independent subsolution would have an unbounded support, and this will not allow
us to conclude. To obtain a compactly supported subsolution one can proceed as
follows.
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In the case D > 2d, consider plane waves of the form

(u, v) = eα(z+ct)Φ(x′)
(
1, γeβy − γLe−βy

)
,

where β < 0, L > 0 and Φ is the Dirichlet principal eigenfunction of −d∆ in the
(N − 1)-dimensional ball of radius L, i.e.,

{
−d∆Φ = λ(L)Φ in BN−1(0, L),
Φ = 0 on ∂BN−1(0, L).

The quantity γL is chosen in such a way that v vanishes at y = L, that is, γL = γe2βL,
which tends to 0 as L → +∞. It is well known that λ(L) → 0 as L → +∞. As
a consequence, if we plug (u, v) into the linearization of (1.4) around (0, 0), we are
reduced to finding intersections in the (β, α)-plane between two curves approaching
locally uniformly, as L→ +∞, respectively

α∞D (c, β) :=
1

2D

(
c+

√
c2 − 4Dχ∞(β)

)
, with χ∞(β) :=

µdβ

ν − dβ , (6.1)

and the half-circle R+ 3 β 7→ α±d (c, β), defined in Section 4.1 above (see page 15).
These are the same curves obtained in [3], which eventually lead to the definition of
c∗∞. In particular, exactly as in [3], if D > 2d, we find complex solutions α, β of the
system for c < c∗∞, c ∼ c∗∞, and L large enough. The set where the real part of the
associated (u, v) is positive has connected components which are bounded in z, y,
and also in x′ because Φ vanishes on ∂BN−1(0, L). From this, one eventually gets the
compactly supported shifting generalized subsolution.

In the case D ≤ 2d, we need to construct a compactly supported subsolution
moving with any given speed 0 < c < c∗∞ = cKPP. This is achieved, in a standard way,
by simply taking a support which does not intersect the boundary with fast diffusion.
Namely, call λc(L) the Dirichlet principal eigenvalue of the operator −d∆+c∂z in the
ball BN+1(0, L), and Φc the associated positive eigenfunction. This operator can be
reduced to the self-adjoint one −d∆ + c2/(4d) by multiplying the functions on which
it acts by ecz/(2d). This reveals that λc(L) − c2/(4d) = λ0(L), which tends to 0 as
L→ +∞. Hence, since 0 < c < cKPP = 2

√
df ′(0),

lim
L→∞

λc(L) =
c2

4d
< f ′(0).

As a consequence, for L large enough, after suitably normalizing Φc and extending it
by 0 outside BN+1(0, L), we have that

(u(x, t), v(x, y, t)) = (0,Φc(z + ct, x′, y − L− 1)) (6.2)

is a generalized subsolution to (1.4).
The existence of these subsolutions immediately implies that solutions to (1.4)

cannot spread with a speed slower than c∗∞. It actually implies more: reasoning as
in Section 3, one can obtain the Liouville-type result for (1.4) and eventually infers
that c∗∞ is actually the spreading speed for such problem.

We now go back to our problem, showing the convergence of the propagation
speed for (1.1) to the one for (1.4) as R→ +∞.
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Proof of the second limit in (1.8). We start with the case D ≤ 2d. We know from
(4.19) that c∗(R) = c∗1(R) in this case. We need to show that limR→+∞ c∗1(R) = cKPP.
Using the log-concavity of φ1 as in Section 4.1, we find that the function R 7→ α+

D(c, β)
is decreasing in its domain of definition and that R 7→ α−D(c, β) is increasing. Since
α±d do not depend on R, this implies that c∗1(R) is increasing and that the limit for
R→ +∞ exists.

Fix 0 < c < cKPP. For L large enough, the pair (u, v) defined before by (6.2) is
a generalized subsolution to (1.4), and its support is contained in a closed cylinder
with radius L which does not intersect the boundary with fast diffusion. Therefore,
if R > L, after a suitable translation, we can have this support contained in the
interior of the cylinder Ω and then get a subsolution to (1.1) as well. As usual, fitting
this subsolution below a given solution to (1.1) at time 1 and using the comparison
principle, one derives c∗1(R) ≥ c. Since this holds for any 0 < c < cKPP, the proof in
the case D ≤ 2d is achieved.

Passing to the case D > 2d, we know from (4.19) that c∗ = c∗2 for large R. More-
over, (5.3) entails that the curve α+

D introduced in (4.11) converges locally uniformly
to the curve α∞D from (6.1). By continuity, for any given c > c∗∞, the curve α∞D is
strictly secant to the half-circle α±d , and hence the same is true for α+

D, provided R is
large enough. We deduce from the construction of c∗ performed in Section 4.1 that

lim sup
R→+∞

c∗(R) ≤ c∗∞.

On the other hand, if c < c∗∞, c ∼ c∗∞, since the curve α∞D lies at a positive distance
from α±d , so does α+

D for large R and, therefore, no intersection can occur, which gives

lim inf
R→+∞

c∗(R) ≥ c∗∞

and completes the proof. �
We conclude this section with the proof of the monotonicities and the rest of

Theorem 1.2(ii).
Conclusion of the Proof of Theorem 1.2(ii). We have seen in the proof of the

second limit of (1.8) that R 7→ c∗1(R) is increasing. Conversely, the log-convexity of
ψ2 implies that R 7→ α+

D, considered for β < 0, is increasing and therefore R 7→ c∗2(R)
decreases. With these informations in hand, to conclude the proof we only need to
determinate whether c∗ = c∗1 (type 1) or c∗ = c∗2 (type 2) using the conditions (4.19).

The first condition in (4.19) implies that c∗(R) = c∗1(R) if D ≤ 2d, and thus
c∗(R) is increasing in such case. In the case D > 2d, we deduce from (4.19) that
c∗(R) = c∗1(R) (increasing) if R < RM and c∗(R) = c∗2(R) (decreasing) if R > RM ,
with RM given by (1.9).

It only remains to prove (1.10), which is equivalent to c∗(RM) = cM . Thanks to
(4.18), it is sufficient to show that β∗(RM) = 0. From (4.19) we have that β∗(R) < 0
for R > RM and β∗(R) > 0 for R < RM . As a consequence, up to subsequences
(recall that the region of the (β, α) plane where the tangency is possible is bounded),
we have that there exist β+ ≤ 0 and β− ≥ 0 such that

lim
R→R±M

β∗(R) = β±.

We deduce that tangency occur at both β+ and β− and, therefore, Proposition 4.1
entails that β+ = β− = 0, which completes the proof. �
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Appendix A Existence of high-order complex ze-

ros for a class of holomorphic func-

tions

In this section we generalize the theorem given in [3, Appendix B], which proves the
existence of complex roots for functions which are, in a neighborhood of a fixed real
root, perturbations of polynomials of degree 2 which depend on a parameter. Here
we consider functions which behave like polynomials of higher (even) degree and our
result is used in the construction of generalized subsolutions in Section 4.2. The proof
is based on a parametric version of Rouché’s theorem and is similar to the one in [13,
Proof of Proposition 5.1], however we present it here for the sake of completeness and
since we use some slightly different estimates. The result reads like follows.

Theorem A.1 Assume h : R2 → R is analytic in a neighborhood of (ξ, τ) = (0, 0)
and that there exists n ∈ N \ {0} such that

h(0, 0) = 0,
∂jh

∂τ j
(0, 0) = 0 for 1 ≤ j ≤ 2n− 1, (A.1)

(
∂2nh

∂τ 2n
(0, 0)

)(
∂h

∂ξ
(0, 0)

)
< 0. (A.2)

Then, the holomorphic extension of h is such that, for ξ < 0, ξ ∼ 0, the equation

h(ξ, ·) = 0 (A.3)

admits a complex root τ = τ(ξ) which satisfies, for some k > 1 independent of ξ,

|Re τ(ξ)| ≤ k|ξ| 1
2n , k−1|ξ| 1

2n ≤ Im τ(ξ) ≤ k|ξ| 1
2n . (A.4)

Moreover, if n ≥ 2, k > 1 can be chosen so that

k−1|ξ| 1
2n < Re τ(ξ). (A.5)

Proof. Thanks to the analyticity and (A.1) we have that, in a (complex) neigh-
borhood of (0, 0), h admits a Taylor expansion of the type

h(ξ, τ) = a2nτ
2n + a1ξ + h1(ξ, τ)ξ +O(τ 2n+1)

where

a1 =
∂h

∂ξ
(0, 0), a2n =

1

(2n)!

∂2nh

∂τ 2n
(0, 0), h1 = O(|ξ|+ |τ |) (A.6)

As a consequence, equation (A.3) is equivalent to

h2(ξ, τ) := a2nτ
2n + a1ξ = −h1(ξ, τ)ξ +O(τ 2n+1).

Thanks to (A.2), h2(ξ, ·) = 0 admits, for ξ < 0, 2n complex solutions of the form

τj = τj(ξ) = K(ξ)ei
(2j+1)

2n
π, j ∈ {0, . . . , 2n− 1}, with K(ξ) :=

(
a1ξ
a2n

) 1
2n

. The distance

between two roots τj, τl, j 6= l, satisfies |τj − τl| ≥ ϑK(ξ), for some constant ϑ only
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depending on n. Take δ > 1
2n

. It follows that, for |ξ| small enough, the unique
solution of h2(ξ, τ) = 0 in the ball of center τ0 and radius |ξ|δ, denoted by B(τ0, |ξ|δ),
is τ = τ0. Moreover, for τ ∈ ∂B(τ0, |ξ|δ) we have

|h2(ξ, τ)| = a2n|τ − τ0|
2n−1∏

j=1

|τ − τj| ≥ a2n|ξ|δ(ϑK(ξ)− |ξ|δ)2n−1 ≥ k|ξ|δ+1− 1
2n (1 + o(1))

as ξ → 0, for some constant k > 0. On the other hand, again for τ ∈ ∂B(τ0, |ξ|δ),
recalling the last relation of (A.6),

|h1(ξ, τ)ξ +O(τ 2n+1)|≤O
(
|ξ|+ |ξ| 1

2n

)
|ξ|+O

(
|ξ|1+ 1

2n

)
= O

(
|ξ|1+ 1

2n

)

as ξ → 0. As a consequence, taking ( 1
2n
<) δ < 1

n
, we have that, for |ξ| small enough,

|h1(ξ, τ)ξ + O(τ 2n+1)| < |h2(ξ, τ)| on ∂B(τ0, |ξ|δ). Applying Rouché’s theorem, we
obtain that h(ξ, ·) has the same number of roots inside B(τ0, |ξ|δ) as h2(ξ, ·), i.e., one.
We call it τ(ξ). Relations (A.4) and (A.5) immediately follow since

Re τ(ξ) ∈ [Re τ0 − |ξ|δ,Re τ0 + |ξ|δ)], Im τ(ξ) ∈ [Im τ0 − |ξ|δ, Im τ0 + |ξ|δ]

and Re τ0 = K(ξ) cos( π
2n

), Im τ0 = K(ξ) sin( π
2n

). �
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