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Abstract: We design an algorithm for computations of quasiconvex hulls of isotropic
compact sets in in the space of 2× 2 real matrices. Our approach uses a recent result by
the first author [Adv. Calc. Var. (2014), DOI: 10.1515/acv-2012-0008] on quasiconvex
hulls of isotropic compact sets in the space of 2 × 2 real matrices. We show that our
algorithm has the time complexity of O(N logN) where N is the number of orbits of the
set. We show some applications of our results to relaxation of L∞ variational problems.

1 Introduction

Generalized convexity notions play an important role in the modern calculus of variations
as conditions ensuring sequential weak lower semicontinuity (swlsc) of integral functionals
J : W 1,p(Ω;Rn)→ R

J(u) :=

∫

Ω

f(∇u(x)) dx ,

where f : Rn×n → R is a continuous function satisfying 0 ≤ f(A) ≤ C(1 + |A|p) for some
1 < p < +∞ and Ω is a bounded Lipschitz domain in R

n. It is well known [12] that swlsc
of I is equivalent to (Morrey’s) quasiconvexity of f . We say that f is quasiconvex if for
all A ∈ R

n×n and all ϕ ∈ W 1,∞
0 ([0, 1]n;Rn)

f(A) ≤
∫

[0,1]n
f(A+∇ϕ(x)) dx .

Quasiconvex functions are necessarily rank-one convex which means that

f(λA+ (1− λ)B) ≤ λf(A) + (1− λ)f(B)

for all 0 ≤ λ ≤ 1 and all A,B ∈ R
n×n with rank(A − B) = 1. It is well-known,

that rank-one convexity does not imply quasiconvexity at least if n > 2; [25]. Finite
rank-one convex functions are continuous. A stronger condition than quasiconvexity is
polyconvexity [3]. We say that f is polyconvex if there is a convex function h such
that for all A ∈ R

n×n f(A) = h(T (A)) where T (A) is a vector of all subdeterminants
of A. Quasiconvexity, rank-one convexity, and polyconvexity are implied by convexity
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and are equivalent to it for n = 1. It is, however, very difficult to decide whether a
given function is quasiconvex. Moreover, in many applications to mathematical elasticity
we know that a given integrand f is not quasiconvex. Then we search for the largest
quasiconvex minorant of f which is generically extremely difficult. Therefore its upper
and lower bounds represented by the largest rank-one convex and polyconvex minorants
bring an important piece of information and there is n extensive literature on the subject
[6, 7, 8, 13, 14, 20, 23, 24].

Analogously to the convex hull of a compact set we can define quasiconvex, rank-one
convex and polyconvex hulls.

If K ⊂ R
n×n is compact we define its quasiconvex hull Kqc as follows:

Kqc := {A ∈ R
n×n; f(A) ≤ sup

X∈K
f(X) , ∀f : Rn×n → R quasiconvex} .

Analogously, one defines the rank-one convex (polyconvex) hull of K denoted Krc (Kpc)
by replacing quasiconvex functions by rank-one convex (polyconvex) ones. We have
Krc ⊂ Kqc ⊂ Kpc ⊂ Kc where Kc denotes the convex hull of K.

Rank-one convex and quasiconvex hulls are generically very difficult (if not impossible)
to compute for a particular choice of K. The subset of Krc, easier to calculate, is the
so-called lamination convex hull K lc which is defined recursively as follows:

K lc := ∪∞i=0K
lc,i ,

where K lc,0 := K and for i ≥ 0

K lc,i+1 := {X ∈ R
n×n; X = λA+(1−λ)B; rank(A−B) = 1, 0 ≤ λ ≤ 1, A, B ∈ K lc,i} .

If K lc,i = K lc,i+1 for some i then the lamination hull is of the order i.
We say that K ⊂ R

n×n is lamination convex if K = K lc, i.e., if K contains every line
segment [A,B] with A,B ∈ K and rank(A−B) = 1. In fact, it is not difficult to see that
allowing rank-one convex functions to take also the value +∞ we have

K lc = {A ∈ R
n×n; f(A) ≤ sup

X∈K
f(X) , ∀f : Rn×n → R∪{+∞} rank-one convex} . (1.1)

Contrary to quasiconvex and rank-one convex hulls which are always compact for compact
sets, the lamination convex hull of K can be non-compact even if K is compact; cf. [19].
One can, however, make it compact if we allow only for lower semicontinuous functions
in (1.1).

Denoting by SO(n) rotation matrices in R
n×n, i.e., orthogonal matrices with unit de-

terminants, we call a setK ⊂ R
n×n isotropic if A ∈ K implies that the orbitQAR ∈ K for

all Q,R ∈ SO(n). We will often write SO(n)ASO(n) instead of {QAR | Q,R ∈ SO(n)}.
Accordingly, we call a function f : Rn×n → R∪{+∞} isotropic if f(A) = f(QAR) for
every A ∈ R

n×n and Q,R ∈ SO(n).
Finally, we denote by cc(K) the set of all connected components (meaning maximal

connected subsets with respect to “⊂”) of K.
Knowing the quasiconvex hull of a set is useful in many situations. For example, if

f ≥ 0 denotes strain energy density of a hyperelastic material and K := {A| f(A) = 0}
denotes the set of microscopically stress-free states then Kqc is the set of macroscopically
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stress-free states [4]. Another application is (sequential) weak* lower semicontinuity of
the functional I : W 1,∞(Ω;Rn)→ R

I(u) := esssupx∈Ω f(∇u) ,
for f ≥ 0 continuous. As it is proved in [5] quasiconvexity of sublevel sets of f (called
weak Morrey quasiconvexity of f in [5, Def. 2.2] is a necessary condition for weak* lower
semicontinuity of I. In other words, if c ∈ R and Ec := {A ∈ R

n×n| f(A) ≤ c} and I is
weak* lower semicontinuous then for all c ∈ R we have Eqc

c = Ec. A sufficient and also
necessary condition is the so-called strong Morrey quasiconvexity of f [5, Def. 2.1].

If I above is not weak* lower semicontinuous, we can search for the largest weak*
lower semicontinuous envelope of I called the relaxation of I and defined as

Irlx(u) := inf{lim inf
k→∞

I(uk)| uk
∗
⇀ u in W 1,∞(Ω;Rn)} .

To our best knowledge [22], however, an explicit formula for Irlx is not known.
The aim of the present work is to exploit our knowledge of the structure of the

quasiconvex hull of isotropic sets if n = 2. First we propose an algorithm (see Thm. 4.1,
Cor. 4.2) for computing the quasiconvex hull with the comlexity O(N logN) where N is
the number of orbits. This means that lim supN→∞ (number of operations)/(N logN) <
+∞. Secondly, assuming that the strong Morrey quasiconvexity coincides with the weak
one, we give an explicit formula for Irlx(u) as long as f is isotropic and u ∈ W 1,∞(Ω;Rn)
is piecewise affine. This is done in Corollary 5.3 giving thus a partial answer to the
open problem. Namely, we show that in this case Irlx(u) = esssupx∈Ω fqqc(∇u) , where
fqqc(A) := infc{A ∈ Eqc

c }. Therefore our algorithm can be used to approximate fqqc.
In what follows, we focus on the case where n = 2 and, thus, we work with 2×2 ma-

trices only. Our starting point is the following result, which was proved in [16].

Proposition 1.1. Let K ⊂ R
2×2 be compact and isotropic. Then its quasiconvex hull

coincides with its lamination convex hull of order 2, that is Kqc = K lc,2.

The plan of the paper is as follows. We first start with some description of the
notation and the description of isotropic sets in Section 2. Useful facts about hulls of
isotropic sets are collected in Section 3. Our algorithm is stated in Section 4 and the
relaxation results in Section 5. If f ∈ R

n×n → R and α ∈ R then we use the notation
{f≤α} := {X ∈ R

n×n| f(X)≤α}. Otherwise, we use a standard notation W 1,p(Ω;Rn) or
W 1,p

0 (Ω;Rn), 1 < p ≤ +∞, for Sobolev spaces.

2 Coordinates

Let A ∈ R
2×2 be a matrix. We denote by σ(A) = (σ1(A), σ2(A)) ∈ R

2 the ordered vector
of singular values of A, meaning the eigen values of the matrix

√
AtA such that 0 ≤

σ1(A) ≤ σ2(A). In addition, we consider the vector (λ1(A), λ2(A)) ∈ R
2 (sometimes called

the signed singular values) where we set λ1(A) = σ1(A) if det(A) ≥ 0 and λ1(A) = −σ1(A)
if det(A) < 0 as well as λ2(A) = σ2(A). Note that there exist rotations Q1, Q2 ∈ SO(2)
such that Q1AQ2 is nothing but the diagonal matrix diag(λ1(A), λ2(A)). We consider
the coordinate transformation (λ1, λ2) 7→ (γ, δ) given by

γ = sign(λ1)
√

|λ1|λ2, δ = λ2 − |λ1|. (2.1)
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Consequently, the inverse transformation reads

λ1 = sign(γ)
(

− δ/2 +
√

δ2/4+γ2
)

, λ2 = δ/2 +
√

δ2/4+γ2, (2.2)

where we always dropped the dependence on A. This is related to the transformations Φ
and Ψ introduced by [9, 10]. We will use the coordinates (λ1, λ2) as well as (γ, δ) within
the paper.

3 Quasiconvex hull

We recall known results and begin with some remarks on isotropic sets in R
2×2.

Remark 3.1 (Proposition 3.1 in [24]). For given matrices A,B ∈ R
2×2 the isotropic sets

SO(2)ASO(2) and SO(2)BSO(2) are rank-one connected if and only if both |λ1(A)| ≤
λ2(B) and |λ1(B)| ≤ λ2(A) hold.

Remark 3.2 (Lemma 3.2 in [16]). Let α, β ≥ 0 be non-negative numbers. Then the
following three sets are closed, isotropic and lamination convex:

{A∈R2×2 | α≤± λ1(A)}, {A∈R2×2 | λ2(A)≤β}.

Remark 3.3 (Remark 2 in [11]). Let A ∈ R
2×2 be given. Consider A+, A− ∈ R

2×2

defined via

A± =

(

| det(A)|1/2 ±
√

|A|2 − 2| det(A)|
0 | det(A)|−1/2 det(A)

)

.

Then every matrix B ∈ R
2×2 with det(A) = det(B) and λ2(B) ≤ λ2(A) lies in the set

(SO(2)ASO(2))lc,1.

We are going to introduce additional notation. Let K ⊆ R
2×2 be compact. We

consider the compact sets

F± =
{(

det(B), y
)

∈ R
2 | B∈K ∧ λ2(B)±λ1(B)≥y

}

. (3.1)

With the help of the convex hulls F c
+ and F c

−, we define the sets

K± =
{

B ∈ R
2×2 |

(

det(B), λ2(B)±λ1(B)
)

∈ F c
±

}

. (3.2)

The following two propositions give a characterization of the quasiconvex hull. In Section
4, we will use this characterization to analyze the time-complexity of an algorithm that
computes the quasiconvex hull. The first result is in the spirit of [9, 10], where the
polyconvex hull was given in a similar form. The second result is contained in [16].

Proposition 3.4. Let K ⊆ R
2×2 be isotropic and compact. Assume that Kpc is con-

nected. Then the polyconvex hull is given by Kpc = K+∩K−.

Proof. We know that A 6∈ Kpc holds if and only if there exists a polyconvex function
ϕ : R → R such that ϕ(A) > max{ϕ(B) | B∈K}. In order to prove [11, Theorem 2.1],
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Conti et al. show that it is sufficient to consider polyconvex ϕ which are given by
ϕ(X) = ±det(X) or

ϕ(X) = λ2(X)±λ1(X)−det(X)/c for some c ∈ R \ {0}. (3.3)

They assume that K is connected, while we just assume it for Kpc. Nevertheless, we can
use their arguments in view of Kpc = (Kpc)pc. Since the set K is compact, we just have
to deal with ϕ like in (3.3), where |c| 6= 0 may be very small. Hence, A 6∈ Kpc holds if
and only if there exists an affine function h : R→ R such that

∀B ∈ K h(det(B)) > λ2(B)±λ1(B) ∧ h(det(A)) = λ2(A)±λ1(A) (3.4)

where we have to read (3.4) as an alternative: it is true if it holds for + or −. In fact,
h and ϕ are linked by h(x) = ϕ(A)+x/c for x ∈ R. Note that the part on the left-hand
side of (3.4) means nothing but F± ⊆ H where we set H = {(x, y)∈R2 | h(x)>y}. Since
H is an open half plane and F+ as well as F− are compact, we also have F c

± ⊆ H . As a
consequence, we conclude that A 6∈ Kpc holds if and only if A 6∈ K+ or A 6∈ K−.

Proposition 3.5. Let K ⊆ R
2×2 be isotropic and compact. Then the quasiconvex hull is

given by

Kqc =
⋃

{(Z∩K)pc | Z∈cc(K lc,1)}.

Proof. A similar characterization of Kqc is given in [16]. In particular, it is shown that
Kqc equals

⋃{Zpc | Z∈cc(K lc,1)}. In addition, for every Z ∈ cc(K lc,1) we have that Z is
equal to (Z∩K)lc,1 and, hence, Zpc = (Z∩K)pc.

4 Computation of the quasiconvex hull

Proposition 3.5 characterizes the quasiconvex hull of an isotropic and compact set in R
2×2

with the help of the polyconvex hull and the lamination hull of order 1. This indicates
that the computation of the quasiconvex hull is possible. The aim of this section is to
show that there is an efficient way to do that. Let N > 0 be a nonnegative integer and
A1, . . . , AN ∈ R

2×2 be matrices ordered such that det(Ai) ≤ det(Ai+1) holds for every
i = 1, . . . , N−1. In what follows, we consider the isotropic and compact set

K = SO(2)A1SO(2) ∪ · · · ∪ SO(2)ANSO(2). (4.1)

Sets of the form SO(2)AiSO(2) are sometimes called wells. In the remainder of this
section, we will prove

Theorem 4.1. Let K be as above. Then the quasiconvex hull Kqc can be computed with
a time-complexity that lies in O(N).

Proof. We are going to show that there is an algorithm of the time-complexity class O(N)
which computes the following objects:

(i) partition K = K<∪K> such that K< ⊆ {det < 0} and K> ⊆ {det ≥ 0},

(ii) connected components of (K<)lc,1 and (K>)lc,1,
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(iii) connected components of K lc,1,

(iv) polyconvex hull for each connected component of K lc,1.

In view of Proposition 3.5, the steps (i) to (iv) suffice to compute the quasiconvex hull of
K. The step (i) is trivial, since the matrices A1, . . . , AN are ordered by the determinant.
The time-complexities of (ii), (iii) as well as (iv) are linear in N , which is shown in
Lemma 4.4, Lemma 4.5 and Lemma 4.7 below.

Now assume that the matrices A1, . . . , AN may not be ordered by the determinant.
Recall that the time necessary to sort N elements grows like N logN . As a direct conse-
quence of Theorem 4.1, we get

Corollary 4.2. Let K be as above, but the matrices A1, . . . , AN may not be ordered by
the determinant. Then the quasiconvex hull Kqc can be computed with a time-complexity
that lies in O(N logN).

The time-complexity classes given in Theorem 4.1 and Corollary 4.2 are both optimal.

4.1 Step (ii) - The case of nonnegative determinant.

Before we come to the first ingredient of the proof for Theorem 4.1, we make a simplifying
observation. Let us use the coordinates (λ1, λ2) which are given in Section 2. Assume
that K is such that λ1(A1) ≥ 0 for every A ∈ K. This means that we are in the case
of nonnegative determinant. We consider the set Λ ⊆ R given by the union of closed
intervals

Λ = [|λ1(A1)|, λ2(A1)] ∪ · · · ∪ [λ1(AN ), λ2(AN)]. (4.2)

Lemma 4.3. Let A,B ∈ K be two matrices. Then the following conditions are equivalent:
(i) A and B belong to the same connected component of K lc,1 and (ii) the intervals
[|λ1(A)|, λ2(A)] and [|λ1(B)|, λ2(B)] belong to the same connected component of Λ.

Proof. We assume detA ≤ detB, otherwise we exchange A and B. First, assume that
(ii) holds. Then there are matrices X1, . . . , XM ∈ K with X1 = A and XM = B such
that for every i = 1, . . . ,M−1 the intervals [|λ1(Xi)|, λ2(Xi)] and [|λ1(Xi+1)|, λ2(Xi+1)]
overlap. In particular, SO(2)XiSO(2) and SO(2)Xi+1SO(2) are rank-one connected by
Remark 3.1. Since SO(2) is connected, we have (i). Second, assume that (ii) fails. Then
we find real numbers α > β ≥ 0 such that for every i = 1, . . . , N either λ2(Ai) ≤ β
or λ1(Ai) ≥ α holds and, at the same time, λ2(A) ≤ β and λ1(B) ≥ α. Here we have
also used the assumption λ1(Xi), λ1(Xi+1) ≥ 0. The sets {X∈R2×2 | λ2(X) ≤ β} and
{X∈R2×2 | λ1(X) ≥ α} are disjoint and, in view of Remark 3.2, both lamination convex.
Hence, (i) must fail.

Lemma 4.4. The connected components of (K<)lc,1 and the connected components of
(K>)lc,1 can be computed with a time-complexity that lies in O(N).

Proof. We concentrate on (K<)lc,1. Note that the connected components of (K>)lc,1

can be handled in a similar way exploiting the isomorphism on R
2×2 which is given by

A 7→ diag(1,−1)A. As an application of Lemma 4.3 with K< instead of K, it is sufficient
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to compute the connected components of Λ in order to get the connected components of
(K<)lc,1. This is done with the help of

Algorithm A.

1: i← 1;

2: t← 0;

3: while i ≤ N do

4: begin

5: t← t+1;

6: (Λt, It)← ([|λ1(Ai)|, λ2(Ai)], {i});
7: while t ≥ 2 and Λt−1∩Λt 6= ∅ do
8: begin

9: (Λt−1, It−1)← (Λt−1∪Λt, It−1∪It);
10: t← t−1;
11: end;

12: i← i+1;

13: end;
After Algorithm A halts, the sets Λ1, . . . ,Λt are the connected components of Λ. Clearly,
these sets are of the form Λ1 = [α1, β1], . . . ,Λt = [αt, βt]. Recall that det(Ai) ≤ det(Ai+1)
holds for every i = 1, . . . , N−1. As a consequence of this ordering, the condition
Λt−1∩Λt = ∅ in the line 7 implies that βt−1 < αt holds (βt < αt−1 being impossible).
By induction, we get βτ−1 < ατ for every τ = 2, . . . , t. Hence, the sets Λ1, . . . ,Λt are
pairwise disjoint. The rest directly follows from the design of Algorithm A. The time-
complexity of Algorithm A is linear in N . In particular, we enter the inner loop (lines 9
and 10) less than N times during the whole computation.

4.2 Step (iii) - Connected components of Klc,1

Assume that for some integer M ∈ {1, . . . , N−1} we have det(A1) ≤ · · · ≤ det(AM) < 0
as well as 0 ≤ det(AM+1) ≤ · · · ≤ det(AN). Let us consider the sets

K< =
⋃

{SO(2)AiSO(2) | 1≤i≤M}, K> =
⋃

{SO(2)AiSO(2) | M<i≤N}

and, accordingly, Λ< as well as Λ>, see (4.2). Let Λ<
1 , . . . ,Λ

<
s be the connected compo-

nents of Λ< and let K<
1 , . . . , K

<
s be the corresponding subsets of K<. More precisely, for

every matrix A ∈ K< and every index σ ∈ {1, . . . , s} we have that A ∈ K<
σ holds if and

only if [|λ1(A)|, λ2(A)] ⊆ Λ<
σ . In a similar way, we introduce Λ>

1 , . . . ,Λ
>
t and K>

1 , . . . , K
>
t

for Λ> and K>. Assume that the ordering is exactly the one coming from Algorithm A:
β<
σ−1 < α<

σ holds for every σ = 2, . . . , s and β>
τ−1 < α>

τ for every τ = 2, . . . , t. Here we set
[α<

σ , β
<
σ ] = Λ<

σ and [α>
τ , β

>
τ ] = Λ>

τ .

Lemma 4.5. The connected components of K lc,1 can be computed with a time-complexity
that lies in O(N).

Proof. Using the above notation, we consider
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Algorithm B.

1: σ ← s;

2: τ ← t;

3: while σ ≥ 1 and τ ≥ 1 and Λ<
σ∩Λ>

τ = ∅ do
4: begin

5: if α<
σ > β>

τ then σ ← σ−1;
6: if α>

τ > β<
σ then τ ← τ−1;

7: end;
After Algorithm B halts, we distinguish two cases. First, assume that σ = 0 or τ = 0
holds. Then for every σ̃ = 1, . . . , s and every τ̃ = 1, . . . , t the intersection Λ<

σ̃∩Λ>
τ̃ is

empty. This is guaranteed by the tests made in line 3 and the ordering of the intervals
coming from Algorithm A. In view of Remark 3.1, K< and K> cannot be rank-one
connected. The connected components of K lc,1 are, thus, characterized by

{Z∩K | Z∈cc(K lc,1)} = {K<
s , . . . , K

<
1 , K

>
1 , . . . , K

>
t }.

Second, assume that σ and τ are both greater than 0. Then σ and τ are the largest
indices such that Λ<

σ∩Λ>
τ is non-empty and, in particular, the sets K<

σ and K>
τ are rank-

one connected. In this case, we consider the set K∗ ⊆ K given by

K∗ = K<
s ∪ · · · ∪K<

σ ∪K>
τ ∪ · · · ∪K>

t .

As a consequence of Lemma 4.6 below, we can replace K by K∗, meaning, we drop the
whole set K \K∗, without changing the quasiconvex hull (K∗)

qc = Kqc. By the design of
Algorithm B, the connected components are characterized by

{Z∩K∗ | Z∈cc(K lc,1
∗ )} = {K<

s , . . . , K
<
σ+1, K

<
σ ∪K>

τ , K
>
τ+1 . . . , K

>
t }.

Clearly, the time-complexity of Algorithm B is linear in N .

λ1

λ2

K<
σ

K>
τα

Figure 1: The black dots form K. In this example, the subsets K<
σ and K>

τ are rank-one
connected. Components of K which completely lie below the dashed line (λ2 = α) can
be dropped without changing the hull Kqc.
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Lemma 4.6. Let the sets K and K∗ be as in the proof of Lemma 4.5. Then (K∗)
qc = Kqc

holds.

Proof. Set α = max{α<
σ , α

>
τ }, see Figure 1. Then there exist matrices A< ∈ K<

σ and
A> ∈ K>

τ such that α lies in [|λ1(A
<)|, λ2(A

<)] as well as in [|λ1(A
>)|, λ2(A

>)] and, in
addition, A< and A> are rank-one connected. Fix a matrix A ∈ K \K∗. It is not hard
to see that λ2(A) < α holds as well as det(A<) < det(A) < det(A>). There is a matrix
B on the rank-one line between A< and A> such that det(B) and det(A) are the same.
We can assume that α = α>

τ = |λ1(A
>)|, otherwise the argument is similar. Since A>

and B are rank-one connected, we conclude that λ2(B) ≥ |λ1(A
>)| = α, see Remark 3.1.

This means that λ2(B) > λ2(A), which implies that A lies in (SO(2)BSO(2))lc,1, see
Remark 3.3. But then A lies in (K∗)

lc,2. We conclude that K is a subset of (K∗)
lc,2 and,

hence, (K∗)
lc,2 = K lc,2 because of Proposition 1.1.

4.3 Step (iv) - Polyconvex hull

Recall that K ⊆ R
2×2 is defined by

K = SO(2)A1SO(2) ∪ · · · ∪ SO(2)ANSO(2)

where the matrices A1, . . . , AN are ordered by the determinant. Let K1, . . . , KL ⊆ K be
the output of Algorithm A and Algorithm B, which characterizes the connected compo-
nents of (K∗)

lc,1 such that

{Z∩K∗ | Z∈cc(K lc,1
∗ )} = {K1, . . . , KL}.

Lemma 4.7. The polyconvex hulls of the sets K1, . . . , KL can be computed with a total
time-complexity that lies in O(N).

Proof. Fix an index 1 ≤ i ≤ L. Determine the numbers 1 ≤ i0 < i1 ≤ N such that

Ki = SO(2)Ai0SO(2) ∪ · · · ∪ SO(2)Ai1SO(2)

for matrices Ai0 , . . . , Ai1 ∈ {A1, . . . , AN}. Proposition 3.4 gives us the polyconvex hull of
Ki once we have computed (Ki)+ and (Ki)−. Following (3.2), we have to compute the
convex hulls of (Fi)+ and (Fi)−. The computation of the (poly-)convex hull, basically,
means sorting out points which lie in the interior and, hence, are superfluous for the
hull, see Figure 2.The matrices Ai0 , . . . , Ai1 , which define (Fi)+ and (Fi)−, are ordered
by the determinant. They form a so-called simple polyline. Therefore, the computation
of (Fi)

c
+ and (Fi)

c
− can be done, for example, using the algorithm proposed in [21] with

a time-complexity linear in i1 − i0 + 1. As a result, we have access to (Ki)+ and (Ki)−
and, in particular, to the boundaries ∂[(Ki)+] and ∂[(Ki)−]. Following Proposition 3.4,
we can effectively characterize the boundary of (Ki)

pc (and, hence, (Ki)
pc itself) with the

help of the matrices Ai,1, . . . , Ai,N(i) given by

{Ai,1, . . . , Ai,Ni
} = {A1, . . . , AN}∩∂[(Ki)+]∩∂[(Ki)−]. (4.3)

Now if i varies between 1 and L, we end up with a total time-complexity that is linear
in N .
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The sets in (4.3) are considered to be the output of the whole algorithm, once the
matrices Ai,1, . . . , Ai,N(i) have been collected for every i = 1, . . . , L. Note that these
matrices inherit the ordering from A1 . . . , AN , meaning,

(i1<i2) ∨ (i1=i2 ∧ j1≤j2)⇒ det(Ai1,j1)≤det(Ai2,j2). (4.4)

In view of Proposition 3.5, we get a simple characterization for the quasiconvex hull

Kqc =
L
⋃

i=1

(

SO(2)Ai,1SO(2)∪ · · · ∪SO(2)Ai,N(i)SO(2)
)pc

. (4.5)

(a) Eight wells (b) Quasiconvex hull

Figure 2: The example is drawn in the λ1-λ2-plane: (a) a set of the form (4.1) with eight
wells and (b) the boundary of its quasiconvex hull, showing two connected components.
The two wells near the origin lie in the interior and, hence, can be seen as “superfluous”.

The following remark indicates that this characterization can be used to compute Kqc.
It works with the coordinates (γ, δ), see (2.1) in Section 2.

Remark 4.8. Let K as well as the matrices Ai,j with i = 1, . . . , L and j = 1, . . . , N(i)
be as above. In addition, let γ̃1 ≤ · · · ≤ γ̃M be real numbers. Then the time-complexity
to compute the M values

δk = sup{δ(B) | B∈Kqc ∧ γ(B)=γ̃k} for k = 1, . . . ,M

lies in O(max{N,M}). Note that δk is equal to −∞ if the supremum is taken over the
empty set and that a matrix B ∈ R

2×2 with γ(B) = γ̃k lies in Kqc if and only if δ(B) ≤ δk.

Proof. For every index k ∈ {1, . . . ,M} find, if possible, ik ∈ {1, . . . , L} and jk ∈
{1, . . . , N(i)−1} such that γ(Aik,jk) ≤ γ̃k ≤ γ(Aik,jk+1) holds. This can be done with
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a time-complexity that lies in O(max{N,M}) because the matrices are ordered by the
determinant, see (4.4). If such indices i(k) and j(k) do not exist, then the characteriza-
tion (4.5) implies that δk has to be equal to −∞. If such indices exist, set γ1 = γ(Aik,jk),
γ2 = γ̃k and γ3 = γ(Aik,jk+1). We use Proposition 3.4 in order to compute δk. Let
B ∈ Kqc be any matrix such that γ(B) lies between γ1 and γ3. Then the largest possible
value of δ(B) is given by convex interpolation. In fact, choose matrices B+, B− ∈ B such
that γ(B±) = γ2 holds and, simultaneously,

(λ2±λ1)(B±) =
γ3−γ2
γ3−γ1

(λ2±λ1)(Aik ,jk)+
γ2−γ1
γ3−γ1

(λ2±λ1)(Aik,jk+1).

Then we have δk = min{δ(B+), δ(B−)}.

5 Relaxation

Before we present our relaxation result, we prove a nice property for first order laminates
which is of independent interest and might not be well-known. The lemma holds in any
matrix space R

n×d with n, d ≥ 1. Yet, we deal with the case R
2×2 only.

Lemma 5.1. Let K ⊆ R
2×2 be a compact set and δ0 > 0 a real number. Moreover, let

Ω ⊆ R
2 be an open and bounded set. Then for every matrix A ∈ R

2×2 with dist(A,K lc,1) ≤
δ0 and every δ > 0 there exists a function w ∈W1,∞(Ω,R2) vanishing at the boundary of
Ω such that

dist(A+∇w(x), K) ≤ δ0+δ for a.e. x ∈ Ω.

Proof. Fix A ∈ R
2×2 with dist(A,K lc,1) ≤ δ0 and fix a real number δ > 0. If even

dist(A,K) ≤ δ0 holds, we can choose w = 0 and are done. Otherwise, there exist a scalar
λ ∈ (0, 1) and matrices B1, C1 ∈ R

2×2 such that all the following conditions are fulfilled:
rank(B1−C1) = 1, dist(B1, K) ≤ δ0, dist(C1, K) ≤ δ0 as well as A = λB1 + (1−λ)C1.
Choose vectors a, ν ∈ R

2 such that B1 − C1 = a⊗ν holds. We are going to construct
functions w1, w2, . . . ∈W1,∞(Ω,R2) which vanish at the boundary of Ω.

For every 1 > σ1 > 0 we consider a rectangle ω1 ⊆ R
2 with one edge parallel to ν

and of length σ1 and the other edge orthogonal to ν and of length 1. There is a function
v1 ∈W1,∞(ω1,R

2) vanishing at the boundary of ω1 such that the quantity A+∇v1 takes
only four values: B1, C1, A

+
1 or A−

1 . In addition, we force the width of the boundary
layer (where A+∇v1 ∈ {A+

1 , A
−

1 }) to be
√
σ1, see Figure 3(a). The set Ω can be written

as a union of countably many scaled and translated copies of ω1, see Figure 3(b). As
a result, we end up with a function w1 ∈ W1,∞(Ω,R2) vanishing at the boundary of
Ω such that A + ∇w1 ∈ {B1, C1, A

+, A−} holds almost everywhere. Consider the set
Ω1 = {A+∇w1 ∈ {B1, C1}}. By construction, there exists a constant c > 0 independent
of σ1 such that the norms |A+

1 −A| and |A−

1 −A| as well as the volume of the set Ω \Ω1

are smaller than c
√
σ1. Choose σ1 = δ2/(2c)2, then we have

|A+
1 −A|, |A−

1−A| ≤ δ
2
.

In addition, the volume of the set Ω \ Ω1 is smaller than δ/2.
We choose the function w2 equal to w1 on Ω1, but different on Ω\Ω1. Let us focus on

the case where A+∇w1 = A+
1 holds. The construction is like above. Set B+

2 = B1−A+A+
1
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as well as C+
2 = C1−A+A+

1 . Then all the following conditions are fulfilled: B+
2 −C+

2 =
a⊗ν, dist(B+

2 , K) ≤ δ0 + δ/2, dist(C+
2 , K) ≤ δ0 + δ/2 as well as A+

1 = λB+
2 + (1−λ)C+

2 .
For every 1 > σ2 > 0 we consider a rectangle ω2 ⊆ R

2 with one edge parallel to ν and
of length σ2 and the other edge orthogonal to ν and of length 1. There is a function
v+2 ∈ W1,∞(ω2,R

2) vanishing at the boundary of ω2 such that the quantity A+
1 + ∇v+2

takes only four values: B+
2 , C

+
2 , A

++
2 or A+−

2 . The set where A +∇w1 = A+
1 holds can

be written as a union of countably many scaled and translated copies of ω2. The case
where A+∇w1 = A−

1 holds can be handled in a similar way. We end up with a function
w2 ∈ W1,∞(Ω,R2). Consider the set Ω2 = {A + ∇w2 ∈ {B1, C1, B

+
2 , C

+
2 , B

−

2 , C
−

2 }}.
Choose σ2 = δ2/(22c)2, then we have

|A++
2 −A|, |A+−

2 −A|, |A−+
2 −A|, |A−−

2 −A| ≤ δ
4
+max{|A+

1 −A|, |A−

1−A|} ≤ δ
2
+ δ

4
.

In addition, the volume of the set Ω \ Ω2 is smaller than δ2/8.
In this spirit, we construct the functions w1, w2, . . . ∈W1,∞(Ω,R2). There is a function

w ∈W1,∞(Ω,R2) such that wk → w holds pointwise almost everywhere in Ω. The values
of the quantity A + ∇w are contained in the set {B1, C1, B

+
2 , C

+
2 , B

−

2 , C
−

2 , . . .} almost
everywhere, since the volume of Ω \ Ωk tends to zero. We compute

dist(A+∇w(x), K) ≤ δ0+
δ
2
+ δ

4
+ · · · = δ0+δ for a.e. x ∈ Ω.

As a consequence, w has the desired property.

√
σ1

σ1

B1

C1

A+
1

A−

1

ν

(a) Basic structure (b) Filled domain

Figure 3: The construction of w1 is sketched. Scaled copies of the basic structure are
used to fill an arbitrary domain.

Let f : R2×2 → R be isotropic, continuous and coercive, meaning, we have f(A)→∞
whenever |A| → ∞. In addition, let Ω ⊆ R

2×2 be a domain. We study the weak* lower
semicontinuity of the functional I : W1,∞(Ω,R2)→ R given by

I(u) = esssup f(∇u).

In particular, we want to find the weak* lower semicontinuous envelope Irlx (sometimes
called relaxation) whenever I fails to be weak* lower semicontinuous. Strongly connected
to this is quasi-quasiconvexity and the quasi-quasiconvex envelope. For every continuous
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and coercive function g : R2×2 → R the quasi-quasiconvex envelope gqqc : R2×2 → R is
defined via

gqqc(A) = min
{

α∈R | A∈{g≤α}qc
}

.

Here {g≤α}qc denotes the quasiconvex hull of the set {g≤α}. Moreover, g is called quasi-
quasiconvex if g = gqqc holds. Clearly, we have always gqqc ≤ g. We obtain the lower
estimate

Irlx(u) ≥ esssup fqqc(∇u) for every u ∈W1,∞(Ω,R2) .

If u 7→ esssupfqqc(∇u) is weak* lower semicontinuous we have the following two result.

Lemma 5.2. Let u ∈ W1,∞(Ω,R2) be affine and u 7→ esssupfqqc(∇u) be weak* lower
semicontinuous. Then Irlx(u) = esssupfqqc(∇u).

Proof. Fix a matrix A ∈ R
2×2. It is sufficient to show that for every ǫ > 0 there exists a

function w ∈W1,∞(Ω,R2) vanishing at the boundary of Ω such that

esssup f(A+∇w) ≤ fqqc(A)+ǫ.

Since f is continuous, there exists a number δ = δ(ǫ) > 0 such that the above condition
is implied by

dist
(

A+∇w(x), {f≤fqqc(A)}
)

≤ δ for a.e. x ∈ Ω. (5.1)

By definition, we must have A ∈ {f≤fqqc(A)}qc and, in view of Proposition 1.1, A ∈
{f≤fqqc(A)}lc,2 follows. Now two iterations of Lemma 5.1 imply that for every δ > 0
there is a function w ∈ W1,∞(Ω,R2) vanishing at the boundary of Ω such that (5.1)
holds.

A function u ∈W1,∞(Ω,R2) is called piecewise affine if for almost every x ∈ Ω there
exists a nonempty open subset O ⊆ Ω, a matrix A ∈ R

2×2 and a vector b ∈ R
2 such

that for almost every y ∈ O we have u(y) = Ay+b. As an immediate consequence of
Lemma 5.2 we get the following corollary.

Corollary 5.3. Let u 7→ esssupfqqc(∇u) be weak* lower semicontinuous and let Aff ⊆
W1,∞(Ω,R2) be the closure of the set of all piecewise affine functions with respect to
strong convergence in W1,∞(Ω,R2). Then for every function u ∈ Aff we have equality
Irlx(u) = esssupfqqc(∇u).
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[8] Bartels, S., Kruž́ık, M.: An efficient approach to the numerical solution of rate-independent prob-
lems with nonconvex energies. Multiscale Modeling & Simulation 9 (2011), 1276–1300.

[9] Cardaliaguet, P., Tahraoui, R.: Equivalence between rank-one convexity and polyconvexity for
isotropic sets of R2×2 (Part I). Nonlin. Anal. 50 (2002), 1179–1199.

[10] Cardaliaguet, P., Tahraoui, R.: Equivalence between rank-one convexity and polyconvexity for
isotropic sets of R2×2 (Part II). Nonlin. Anal. 50 (2002), 1201–1239.

[11] Conti, S., De Lellis, C., Müller, S., Romeo, M.: Polyconvexity equals rank-one convexity for con-
nected isotropic sets in M

2×2. C. R. Acad. Paris, Ser. I 337 (2003), 233–238.

[12] Dacorogna, B.: Direct Methods in the Calculus of Variations, 2nd ed., Springer, Berlin, 2008.

[13] Dolzmann, G.: Numerical computation of rank-one convex envelopes. SIAM J. Numer. Anal. 36

(1999), 1621–1635.

[14] Dolzmann, G., Walkington, N.: Estimates for numerical approximations of rank one convex en-
velopes. Numer. Math. 85 (2000), 647–663.

[15] Grigorieff, R. D.: A Note on von Neumann’s Trace Inequality. Math. Nachr. 151 (1991), 327–328.

[16] Heinz, S.: Quasiconvexity equals lamination convexity for isotropic sets of 2 × 2 matrices. Adv.
Calc. Var. (2014), DOI: 10.1515/acv-2012-0008.

[17] Kohn, R., Strang, G.: Explicit relaxation of a variational problem in optimal design. Bull.

Amer. Math. Soc. 9 (1983), 211–214.

[18] Kohn, R., Strang, G.: Optimal design and relaxation of variational problems I, II, III. Comm. Pure

Appl. Math. 39 (1986), 113–137, 139–182, 353–377.
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